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Abstract

In the age of the information explosion, data mining and machine learn-
ing techniques have become heavily involved in financial market modelling.
Many scholars have demonstrated the significance of dependence modelling
across the multiple financial markets, especially during the catastrophic glob-
al financial crisis (GFC) in 2008. Sharp fluctuations across different markets
demonstrate that the dependence is high-dimensional, contains various hier-
archical and horizontal relationships, and often presents complicated depen-
dence structures and characteristics such as an asymmetrical structure and
tail dependence. Thus, a strong understanding of cross-market dependence
is critical in cross-market applications such as portfolio management and risk

management.

Unfortunately, modelling the dependence across multiple financial mar-
kets is highly challenging for the following reasons: (i) the cross-market de-
pendence structure is often embedded with strong and complicated coupling
relationships of high dimensionality as with any complex behavioural and
social system; (ii) financial variables such as daily return have been demon-
strated to follow non-Gaussian distributions, which means that dependence
models should cover a wide range of dependencies to capture the asymmetric
dependencies; and (iii) various tail dependencies such as lower and upper tail

dependence are ubiquitous in financial markets.

Typical approaches such as Markov models, probabilistic graphical mod-
els, and neural network models could have advantages by building a condi-

tional dependence structure between random variables to resolve the high-

XiX



ABSTRACT

dimensional problem. However, these models always impose unrealistic as-
sumptions (e.g., Gaussian or mixtures of it), which leads to failure in captur-
ing the complex dependence structures in the real world. In addition, copulas
have been demonstrated to be effective in presenting dependence between
variables in the statistics and finance communities. By splitting the join-
t distribution into dependence between variables and independent marginal
distributions, copulas provide a flexible mechanism for investigating the spec-
ifications of the dependence across the market and the marginal distributions
independently. Nevertheless, building effective dependence structures to ad-
dress the aforementioned complexities is still a significant challenge for ex-
isting copula approaches. Over the last decade, various mixed models (e.g.,
tree-structured copula models and copula Bayesian networks) have been de-
veloped by utilising the advantages of both traditional copula models and
probabilistic graphical models; however, assumptions and restrictions on the

dependence structure have still not been avoided.

Based on the aforementioned research limitations and challenges, this
thesis proposes weighted partial D vine copula, weighted partial regular vine
copula and weighted regular vine variational long short-term memory (LST-

M) models for high-dimensional cross-market modelling.

In Chapter 4, a novel bottom-to-top approach with no prior dependence
assumptions called a weighted partial D vine copula is presented to capture
the nonlinear and asymmetric dependence structures of cross-market data.
By releasing these restrictions regarding the Gaussian assumptions, the new
model is able to capture more sophisticated dependence structures between
variables. The new modelling outcomes are applied to stock and exchange
markets data as a case study, the extensive experimental results demonstrate
that this model and its intrinsic design significantly outperform typical mod-

els and industry baselines.

Chapter 5 extends the approach presented in Chapter 4 to a more general
structure, namely weighted partial regular vine. The new model can capture

the nonlinear and asymmetric dependence structures with more flexible way

XX



ABSTRACT

by utilising the advantages of the regular vine structure and non-restricted
bivariate copula families. Then, the application of model for asset allocation
by optimising the utility of a portfolio is presented as a case study. Compared
with the general approaches, such as minimum variance, the optimised utility
function using the new weighted partial regular vine can avoid the Gaussian
assumption, which is always implied in these models due to computational
issues.

Chapter 6 discusses the benefits of taking flexible bivariate copulas with
different tail dependencies using the new regular vine copula model. Exper-
iments are conducted to implement the new model on the exchange market
to analyse the dynamic movement of the tail dependencies, consequently
demonstrating better performance.

Chapter 7 introduces a novel vine copula-based variational autoencoder
(VAE) to generate randomness for LSTM to model the cross-market da-
ta. Current VAE models usually apply mean-field assumption to simplify
the calculation process; however, such an assumption may lead to posterior
collapse by removing the dependencies between variables. Our new model
provides a two-step parameter estimation process to be incorporated with
variational LSTM for capturing the complex dependencies on latent vari-
ables. By maintaining such dependency relationships over latent variables,
the empirical results demonstrate a dramatic improvement for cross-market
data modelling and avoid posterior collapse.

All of the aforementioned approaches and frameworks for high-dimensional
cross-market dependence modelling are applied in accordance with business
applications, such as value at risk. These models not only provide insight-
ful knowledge for investors to control and reduce the aggregation risk of
the portfolio, but also show promising potential for further exploration and

development.
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