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ABSTRACT
Accurate information on accidents and on the relevant factors that affect
them is critical for establishing the relationship between accident
frequency and explanatory factors. In this study, we present a simplified
method to extract road geometric features accurately from very
high-resolution laser scanning data to analyze accident frequency on the
North-South Expressway in Malaysia. Using expressway geometric features
(i.e. horizontal and vertical alignments) extracted from laser scanning data
and accident histories, this research first developed an APM based on
geometric regression and a geographic information system (GIS). Then, an
elasticity analysis was conducted to investigate the relationship between
accident occurrence and road geometric design features. Results of the
case study showed that the length of the road segments (mean D 0.014,
elasticity D 0.122), the number of vertical curves in a road section (mean
D 4.797, elasticity D 0.999), and the presence of a horizontal curve in a
road segment (mean D 2.746, elasticity D 0.877), the average distance to
the nearest access point (mean D -0.001, elasticity D ¡0.035), and AADT
(mean D 3.01, elasticity D 0.881) determined accident occurrence, all at a
significance level of 5%. This study shows that laser scanning systems can
provide an easy and efficient method to collect transportation data,
particularly those for accident analysis.
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approach; LiDAR; GIS;
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1. Introduction

Recent studies have predicted that road accidents will become the fifth leading cause of death
worldwide by 2030 (Pei et al. 2011). In Malaysia, current statistics show that the deaths per
100,000 people are close to 24 for all road users (Global Status Report on Road Safety 2015).
Therefore, many researchers have realized the seriousness of the matter and have conducted an
extensive body of research to improve road safety. The most common approach in studying
explanatory factors associated with various traffic entities is analyzing the frequency of accidents
on roadway segments over a specified period (Huang & Abdel-Aty 2010). The frequency of road
accidents on definite roadway segments is typically analyzed using accident prediction models
(APMs) (Wang et al. 2011). Such models are significant in emergency planning through site
ranking, identifying prone areas and key factors that affect the severity of an accident, and in
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improving road geometric design by incorporating safety consideration into road designs and
standards. Road accidents are not negative, discrete, and random (Huang & Abdel-Aty 2010).
Transportation data are commonly modelled using two approaches: statistical and computational
intelligence (Karlaftis & Vlahogianni 2011). Statistical methods are highly recommended for
developing APMs. Statistics have solid and widely accepted mathematical foundations and can
provide insights into the mechanisms that create data. Statistical methods are best performed
when researchers have knowledge or prior information regarding the functional relationship of
the variables in a problem. In addition, statistical methods should be conducted when interpret-
ing results and causalities is important (Karlaftis & Vlahogianni 2011).

A wide variety of statistical and machine learning approaches for modelling accident data is avail-
able in literature. One of the most popular methods used to estimate accident frequency is the count
data model (Abdel-Aty & Radwan 2000; Anastasopoulos & Mannering 2009; Ayati & Abbasi 2011;
Gomes 2013). The popularity of this method is mostly attributed to its suitability for count data
modelling (Wang et al. 2011). Poisson distribution requires the variance of the count data to be
equal to the mean. However, this case is not always true in accident data. Moreover, directly using
Poisson models will underestimate the standard error of parameters, and thus, cause a biased selec-
tion of parameters. Therefore, negative binomial (NB) models have been developed to accommodate
the overdispersion problem in accident data by including an error term in the Poisson model; add-
ing this term enables the variance to differ from the mean (Hosseinpour et al. 2014). However, the
presence of excess zero limits the use of these models because they cannot predict the existence of
excess zero. To address this problem, zero-inflated models have been proposed (Hosseinpour et al.
2014). These models allow zeros to be generated through the following processes: generating struc-
tural zeros estimated from a binary (logit) distribution and generating sampling zeros derived from
the NB distribution. Nonlinear relationships sometimes exist between dependent and explanatory
variables, which cannot be identified by NB and zero-inflated methods. The use of support vector
machine (SVM) algorithm has been proposed to address the nonlinear relationship between varia-
bles (Deublein et al. 2014; Dong et al. 2015). Some studies indicated that SVM is better than NB
models in terms of goodness of fit (Li et al. 2008). The strength of SVM is ascribed to its basis on
structural risk minimization, which provides a trade-off between hypothetical space complexity and
the quality of fitting the training data (Li et al. 2008). However, the major challenge associated with
the SVM model is the optimal input feature subset, particularly in complex and highly multivariate
prediction models. This difficulty mostly arises from the feature subset selection influencing the
appropriate kernel parameters, and vice versa (Dong et al. 2015).

In addition to the aforementioned models, generalized linear models (Cafiso et al. 2010), which
exhibit the advantages of overcoming the limitations of conventional linear regression in traffic acci-
dent modelling, are widely used to model accidents. These models facilitate the assumption of an NB
error structure, which is pertinent to accident frequency variation (Cafiso et al. 2010). However,
these models are fixed parameter models, and thus, they can be limited for roads on which traffic is
not mixed with numerous internal variabilities. For highways on which traffic is mixed with numer-
ous internal variabilities ranging from differences in vehicle type to variations in driver behaviour,
these models can result in varying effects of explanatory variables on accidents across locations.

Although selecting appropriate statistical models is critical to ensure accurate prediction model
development, the quality and accuracy of traffic and highway geometric data are also critical. Match-
ing data from different sources and then combining them require considerable effort and mostly
produce low-quality data. By contrast, laser-scanning systems can provide high-quality, detailed,
and accurate highway geometric data by capturing dense point clouds of selected highway sections.
A complete highway geometric environment can be modelled using the point clouds collected by
laser scanning systems (Poullis & You 2010). In addition, accident data are difficult to collect and
only become available gradually, such as yearly. Possible variations can also exist for APMs as a
result of changes in several influential factors, such as widening of road lanes, construction of new
bridges, or installation of traffic lights.
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Thus, the present study aims to use very high-resolution laser scanning data and a geometric
regression model to fit the geometric design features of a subset extracted from the longest express-
way in Malaysia (i.e. North-South Expressways [NSE]) into the number of accidents that occurred
from 2009 to 2015. This study is different from those listed in literature because it uses a new data
source (i.e. laser scanning systems) for geometric road modelling and accurate road geometric
design features extraction. Furthermore, a geographic information system (GIS), which is capable of
spatial analysis, is used for accurate road modelling through the proposed simplified methodology.
First, this study presents a simplified methodology for extracting road geometric parameters from
airborne laser scanning data. Then, using the extracted parameters and geometric regression, an
APM is developed with the aid of GIS to evaluate the effects of road geometric design features on
accident frequencies. The main contribution of this study is a new method for extracting accurate
road geometric design features from laser scanning data and its application for road accident analy-
sis. In this research, ArcGIS 10.3 is used for LiDAR data and orthophotos processing. AutoCAD
Civil 3D 2015 is used to extract road geometric design features from LiDAR-based digital surface
model, and regression analysis is conducted in NCSS 11 statistical analysis software (http://www.
ncss.com/, accessed on 15 May 2016).

2. Geometric regression

Geometric regression (Hilbe 2014) is a generalization of Poisson regression which loosens the
restrictive assumption that the variance is equal to the mean made by the Poisson model. In geomet-
ric regression, the Poisson distribution is generalized by including a gamma noise variable with a
mean of 1 and a scale parameter of n. This results in an NB distribution as follows (Hilbe 2014):

PrðY D yi jmiaÞD rðyi Ca¡ 1Þ
Gðyi C 1ÞGða¡ 1Þ

a¡ 1

a¡ 1 Cmi

� �a¡ 1

mi

a¡ 1 Cmi

� �yi

(1)

where Gð�Þ is the Gamma function, mi D tim; aD 1=v, m is the mean frequency rate of y per unit of
exposure. Exposure is often a period of time and the symbol ti is usually used to represent the expo-
sure for a particular observation. When no exposure given, it is assumed to be one. When the disper-
sion parameter a is set to one, the result is called the geometric distribution.

In geometric regression, the mean of y is determined by the exposure time t and a set of k regres-
sor variables (the x’s). The expression relating these quantities is

mi D expðlnðtiÞC b1x1i C b2x2i C � � �bkxkiÞ (2)

Often, x1 � 1; in which case b1 is called the intercept. The regression coefficients b1, b2; . . . ;bk

are unknown parameters that are estimated from a set of data. Their estimates are symbolized as
b1; b2; . . . ; bk. The regression coefficients are estimated using the method of maximum likelihood.
The method is explained in details in Cameron (2013, p. 81).

3. Materials and study area

The study area is a subset corridor from the longest expressway in Malaysia (i.e. NSE), with a total
length of 44 km running from the stretch of Pedas Linggi to Ayer Keroh (239.7–195.4 km) (Figure 1).
This study aims to determine the relationship between road geometric variables and the number of
accidents occurring on an urban expressway. The prediction model proposed in this study aims to
understand the relationship between road geometric variables and the number of accidents. There-
fore, to establish the APM, accident data were collected from the police department in digital form
(Excel sheets) over a six-year period (2009–2015). The accident data were collected from a 44 km
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section of the three-lane expressway (433 segments). The average number of accidents is five per
road segment during the study period (2009–2015).

The LiDAR data used in this study were collected on 8 March 2015 using Riegl LM Q5600 and
Hassleblad 39 Mp camera. The device had a spatial resolution of 13 cm, a laser scanning angle of
60�, and a camera angle of approximately –45�. In addition, the point spacing density of the LiDAR
data was 3–4 pts/m2. Figure 2 presents an example of the point clouds (a) and orthophotos (b) col-
lected by the airborne LiDAR system for a small part of the study area.

4. Methodology

4.1. Extraction of road boundary from LiDAR point clouds and orthophotos

The overall methodology used to extract road boundary from LiDAR point clouds and the aerial
photo is shown in Figure 3. In general, three main steps are used: preprocessing the original data,

Figure 1. Location of the studied expressway.

Figure 2. Example of LiDAR data, (a) a digital surface model constructed from LiDAR point clouds, (b) orthophoto.
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processing the enhanced data, and road boundary extraction from the enhanced data. LiDAR sys-
tems capture point clouds and aerial photos using two separate sensors, and thus, geometric correc-
tion is an essential step. In the geometric correction step, the aerial photo is corrected based on a
LiDAR intensity image to ensure accurate geometric matching between the LiDAR and aerial photo
data. The steps of geometric correction method include identification of tie points in the LiDAR
intensity image and the orthophoto. The points were uniformly distributed in the data-set. After
that, the least square method (Kardoulas et al. 1996) was applied to estimate the coefficients which
are important for geometric transformation process. After the least-squares solution, the polynomial
equations were used to solve for X and Y coordinates of the GCPS, and to determine the residuals
and the root mean square (RMS) errors between the source X, Y coordinates and the retransformed
X, Y coordinates. The orthophoto was corrected using 34 GCPs identified from the LiDAR intensity
image at clearly identifiable points (i.e. road intersections, corners, power lines). The geometric cor-
rection was done in ArcGIS 10.3 software.

Once the LiDAR and aerial photo are geometrically corrected, applying filtering techniques is
important to eliminate or reduce noises in the data. LiDAR point clouds are then filtered using the
threshold technique to eliminate the outliers from the data (Brink 1996). In particular, the threshold
technique is adopted to evaluate the difference between ground elevation and surface elevation by
checking whether the difference is less than a certain value; otherwise, the point is considered an
outlier. The aerial photo is used to simplify road boundary extraction in two dimensions (X, Y). In
this study, the aerial photo was first filtered using Canny edge detection to enhance the edges in the
image. The enhanced aerial photo was then manually digitized to extract the road boundary as vec-
tor features (Esri vector data storage format).

Figure 3. Overall workflow of extraction of road geometry from LiDAR point clouds.

GEOMATICS, NATURAL HAZARDS AND RISK 737



4.2. Extraction of road geometric design parameters

In this research, six road geometric design parameters were identified from literature that has a
potential relationship with road accident count and can be extracted from LiDAR data. These
parameters are the radius of a horizontal curve, length of a vertical curve, K value of vertical curves,
number of vertical curves in a segment, presence of a horizontal curve in a segment, and distance to
the nearest access point. This section explains the steps of extracting these design parameters from
LiDAR data and orthophotos.

At first, the LiDAR point clouds and the extracted road boundary were prepared and organized
in a personal geodatabase. Note that the vector data in the personal geodatabase can be converted
into AutoCAD Civil 3D by using conversion tools of ArcGIS. The data was converted from shapefile
(.shp) to CAD (.DWG) file formats during data processing stages. After the data was prepared in
correct formats, the LiDAR point clouds were then clipped based on the road boundary extent.
Afterwards, the new set of point clouds was used to generate three-dimensional (3D) surface in
AutoCAD Civil 3D software. The 3D surface generated from the previous step allowed modelling of
the complete road geometry. For each road segment (see Section 4.2), design parameters were calcu-
lated from the generated 3D surface. Figure 4 illustrates the process of curve fitting for one road seg-
ment (Figure 4(a)) and also shows a basic diagram of vertical curves (Figure 4(c)). The horizontal
curvature of a road segment was estimated by fitting a curve using the least square method. In this
step, the centreline of the road was generated by offsetting the road boundary. Based on the centre-
line, a curve was constructed and its parameters were calculated (Figure 4(b)). Among the curve
parameters, radius was used to describe the relationship between horizontal curve geometry and
accident count. On the other hand, vertical curves are important transition elements in geometric
design for highways (Figure 4(c)). Most vertical curves in road design are symmetrical parabolic
curves for a good reason. The parabolic curve is the natural vertical curve followed by any projectile.
The quadratic equation of vertical curves is expressed as:

yD g1
100

xC g1¡ g2
200L

x2 (3)

where g1 is the grade of tangent in, g2 is the grade of tangent out, and L is the length of the curve.

Figure 4. Estimation of road geometry features, (a) the process of curve fitting, (b) an example of attribute information about the
road segments and their design parameters, and (c) a basic diagram of vertical curves.

738 M. I. SAMEEN AND B. PRADHAN



In addition, K value is another factor used to predict the accident frequency. It is a design param-
eter related to vertical curves. This value represents the horizontal distance along which a 1% change
in grade occurs on the vertical curve. It is a function of grade change and length of the curve and it
can be expressed as:

K D L
j g1¡ g2 j (4)

Calculation of the K value requires two parameters, length of curve and grade changes. The verti-
cal curves were estimated by fitting a parabolic curve using the least square method with manually
selected points. After that, the grade changes were estimated from curve tangents and the curve
length. The estimation of grade changes and the length of the curve allowed to calculate the K value
which was used for accident investigation.

Furthermore, Figure 5 shows an example of the distance to the nearest access point. The distance
was calculated from the centre of a road segment to the nearest access point using the ‘Euclidean
Distance’ tool in ArcGIS. Previous studies showed that vehicles entering from the access point were
involved in serious traffic conflicts (Manan & V�arhelyi 2015). This could cause increasing number
of accidents. The number of accidents of road segments is represented by blue dots in Figure 5. It
can be observed that the number of accidents occurred in the segment at access point is relatively
higher than other neighbouring segments. This may not be always true and detailed analysis should
be made for general conclusion. Some observations are presented related to this factor in the results
and discussion section of the current manuscript.

4.3. Road segmentation

The two possible means to segment a road into small sections, which can be used in accident predic-
tion modelling, are fixed length and homogenous segmentations. Homogenous segmentation is

Figure 5. An example of the factor ‘distance to the nearest access point’ used in the accident count modelling.
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mostly recommended in recent literature (Cafiso et al. 2010; Deublein et al. 2013; Fernandes &
Neves 2013). A homogeneous segment is a road section on which the values of all explanatory varia-
bles to be included in the model can be assumed to be constant, and thus, risk is uniform (Deublein
et al. 2013). Although homogeneous road segmentation is suggested, some considerations should be
made when segmenting a road into small sections based on the included explanatory variables. For
example, a study focusing on a single characteristic of a road segment (e.g. circular or straight align-
ments, width of lanes, etc.) is extremely limiting because the influences of other possible variables of
the road environment are disregarded. To overcome the limitations inherent in considering only
uniform road segments, high-quality road geometric data can be used (Fernandes & Neves 2013). In
addition, accidents may not be reported on some roadway segments during the period over which
the data are collected. In this case, the data are considered left-censored at zero. This censoring may
occur for a number of reasons ranging from the possibility that no accident occurred on the roadway
segment during the study period to the possibility that accidents that do not involve injury may not
be reported (Anastasopoulos et al. 2012). If fixed length sections are used, then longer sections are
suggested to obtain reliable APMs (Ackaah & Salifu 2011). In particular, accident rates should be
computed from 0.8 km or longer sections.

On the basis of the preceding discussion, the homogeneous road segmentation method is used in
this study because accurate road geometric parameters can be extracted from LiDAR point clouds.
Figure 6 illustrates the process of sub-dividing a road section into four homogeneous segments
based on the values of six explanatory variables (i.e. radius of a horizontal curve, length of a vertical
curve, K value of vertical curves, number of vertical curves, presence of a horizontal curve, and dis-
tance to the nearest access point). The change in the value of any explanatory variable results in the
start of a new homogeneous segment.

4.4. Modelling accident frequency using road geometry

The summary of the descriptive statistics of the explanatory variables derived from the 3D road geo-
metric model is presented in Table 1. These explanatory variables were fitted into the number of
accident occurrences in each homogeneous section using the geometric regression model.

Figure 6. Example for segregation of a road section into four homogenous segments based on values of the observed explanatory
variables.
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The maximum-likelihood estimates of the regression coefficients are then estimated by the geo-
metric regression model. These coefficients were then converted into elasticity values which could
provide causalities better than the estimated coefficients by the geometric regression. Elasticity is the
ratio of the per cent change in one variable to the per cent change in another variable. The coeffi-
cient in a regression is a partial elasticity since all other variables in the equation are held constant.

5. Results and discussion

Accurate road geometric parameters were extracted from very high-resolution laser scanning data
using the proposed simplified approach. Afterwards, the geometric regression was estimated using
the maximum likelihood approach as described in Section 2. Table 2 shows the intercept b0 and the
b coefficients associated with each explanatory variable used. The precision of the regression coeffi-
cient is shown as standard error. The fourth column in Table 2 shows the Wald statistic which rep-
resents the Chi-square test value. In this test, the null hypothesis bi D 0 was tested against the two-
sided alternative bi 6¼ 0. P-value indicates the significance level of the test. In this study, the value
less than 0.05 indicates that the explanatory variable is said to be statistically significant. On the
other hand, the lower and upper confidence limits provide a large-sample confidence interval for
the values of the coefficients.

Table 2 also shows the indicators estimated for checking model performance (i.e. Log likelihood,
Deviance, and AIC). The Log likelihood is the value of log-likelihood function for the model that

Table 1. Summary of characteristics of homogeneous section variables considered for model development.

Explanatory variable Mean Min Max Standard deviation

Length of road segment 1388.86 577.69 2342.28 404.17
Radius of road horizontal curvature 34,804.73 1432.32 159,233.37 44,754.26
Length of vertical curve 612.75 0.00 2867.75 874.82
K value 249.94 0.00 1636.57 432.37
Number of vertical curves 0.56 0.00 4.00 0.89
Presence of a horizontal curve 0.47 0.00 1.00 0.51
Distance to nearest access point 1606.75 74.68 4217.52 1238.67
Accident occurrence 88.97 32.00 179.00 33.90
AADT (2010-2015) 3376 3231 3940 2896.92

Note: Number of observations (road segments) D 34.

Table 2. The geometric regression model and the estimated coefficients.

Explanatory variable
Regression

coefficient b(i)
Standard
error Sb(i)

Z value H0:
b D 0

Two-sided
P-value

Lower 95.0%
confidence limit

Upper 95.0%
confidence limit

Intercept –6.534 0.668 –9.780 0 –7.843 –5.224
Length of road
segment

0.014 0.001 27.050 0 0.013 0.015

Radius of horizontal
curve

0 0 1.950 0.051 0 0

Length of vertical
curve

–0.001 0.001 –2.020 0.044 –0.002 0

K value –0.004 0.001 –3.750 0 –0.006 –0.002
Number of vertical
curves

4.797 0.284 16.860 0 4.239 5.354

Presence of a
horizontal curve

2.746 0.534 5.140 0 1.699 3.792

Distance to nearest
access point

–0.001 0 –3.650 0 –0.001 0

AADT 3.01 0 6.312 0 2.65 4.74
Log Likelihood –516.430
Deviance 664.115
AIC(1) 1048.861
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fits the data perfectly. The deviance is the measure of the discrepancy between the fitted values and
the data. AIC (1) is the Akaike Information Criterion and is one of the most commonly used fit sta-
tistics to compare different types of models.

The analysis of variance and the estimated elasticities are shown in Table 3. The information in
the table provides the effect of each explanatory variable on the frequency of traffic accidents ana-
lyzed by the geometric regression model. The variables that found to be statistically significant at 5%
confidence level are: length of road segment (P-value D 0), number of vertical curves (P-value D
0.007), presence of a horizontal curve (P-value D 0.033), distance to nearest access point (P-value D
0.003), and AADT (P-value D 0.009). On the other hand, the remaining variables [i.e. radius of hor-
izontal curve (P-valueD0.699), length of vertical curve (P-value D 0.219), K value (P-value D
0.153)] are found to be statistically insignificant at 5% confidence level.

The proposed model fits the common road geometric design features into the number of acci-
dents that occurred on the homogeneous sections and offers insight into the effect of geometric fea-
tures. The overall accuracy of the developed model for predicting the number of accidents with only
the geometric variables was R2 D 0.637. The scatter plot of the actual accident numbers versus the
predicted number of accidents is shown in Figure 7. Given that road characteristics are not the
major factors that contribute to accident occurrence, the overall accuracy of the proposed model is
acceptable in this study. The output of the proposed model allows designers to determine the thresh-
olds of geometric variables such as maximum grade, minimum horizontal curve radius, and the
number of vertical curves in each section. In addition, the proposed model can be used as a guideline
for setting highway design standards and developing highway geometric design policies or manuals.

Table 3. The analysis of variance and the estimated elasticities.

Explanatory Variable DF Deviance x2 P-value Elasticity

Intercept only 1 564.934 –
Length of road segment 1 598.082 66.03 0� 0.122
Radius of horizontal curve 1 663.966 0.15 0.699 0.001
Length of vertical curve 1 665.623 1.51 0.219 ¡0.011
K value 1 662.081 2.03 0.153 ¡0.052
Number of vertical curves 1 671.224 7.11 0.007� 0.999
Presence of a horizontal curve 1 659.571 4.54 0.033� 0.877
Distance to nearest access point 1 672.584 8.47 0.003� ¡0.035
AADT 1 633.678 6.91 0.009� 0.881
(Full model) 9 664.115 -
�Statistically significant at a D 0.05.

Figure 7. Scatter plot of observed accidents versus those predicted by the Bayesian logistic model.
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As shown in Table 3, the length of a road segment (regression coefficientD 0.014, elasticity D
0.122), the number of vertical curves (regression coefficientD 4.797, elasticityD 0.999), the presence
of a horizontal curve in a section (regression coefficient D 2.746, elasticity D 0.877), and AADT
(regression coefficient D 3.01, elasticity D 0.881) determine accident occurrence, all at a 5% signifi-
cance level. By contrast, other variables (i.e. radius of a horizontal curve, length of a vertical curve,
and K value of a vertical curve) are statistically insignificant. The interpretations of these results,
which are based on elasticity values (Couto & Ferreira 2011), are presented in the subsequent
sections.

The roadway-geometric variables included in the model are the length of road segment, number
of vertical curves in a road section, presence of a horizontal curve in a road section, average distance
to the nearest access point from the centre of the road section, radius of a road horizontal curvature,
length of a vertical curve in a road section, K value, and also is included one traffic related variable
AADT. The analysis showed that the length of a road segment tends to increase the number of acci-
dents. On the basis of the value of the estimated coefficient (meanD 0.014) associated with road seg-
ment length and the elasticity value (0.122) with respect to accidents, the number of accidents is
expected to increase with the length of road segment. This assumption is consistent with the logic
that shorter road segments are less likely to experience accidents than longer road segments because
of decreased exposure. Moreover, this finding is consistent with that of other studies (Anastasopou-
los et al. 2009; Wang et al. 2009, 2011; El-Basyouny and Sayed 2010; Couto and Ferreira 2011). In
addition, determining road segment length from other geometric parameters (i.e. homogeneous seg-
ments) results in varying segment lengths across observations. It is also found that the number of
vertical curves in each homogeneous section tends to increase accident frequency. This parameter is
statistically significant and positively associated with accident frequency. This finding is consistent
with those of other studies (Anastasopoulos & Mannering 2009). In addition, by comparing the elas-
ticity values of the variables included in the proposed model, the number of vertical curves exhibits
the highest value. Therefore, this variable is the most risky factor that contributes to accidents. One
possible and logical explanation for this finding is that a large number of vertical curves reduce the
sight distances on the sections where the vertical curves are located. Thus, drivers are more likely to
experience accidents. Improving the vertical alignment of a section is one way to reduce accidents.
However, improving vertical alignment is extremely costly. Accordingly, other improvements, such
as optimizing the vertical alignment/curve with respect to accident frequencies and vehicle dynam-
ics, are appreciated.

In addition, this study found that the presence of a horizontal curve in a road section increases
accident frequency. Evidently, drivers are more likely to commit errors and lose control of a vehicle
in the presence of a horizontal curve. One possible solution to reduce the effects of this variable is to
use horizontal curves with larger radius and to design distributed super elevations on the horizontal
curves. Another possible solution that can be practiced to reduce the effects of this variable is to use
a good pavement material that helps improve the control of car by the drivers. On the other hand,
an increase in the distance to the nearest access point decreases accident frequency. Greibe (2003)
found that access points had no significant effect on a two-lane roadway but had a significant effect
on multi-lane roadways. This is the illustrative of the fact that drivers close to an access point are
usually less attentive at merging and diverging areas and tend to change their speed. Moreover, the
current research indicated that increasing the traffic volume (AADT) tends to decrease the fre-
quency of traffic accidents. Crash frequency increases in congestion because of the increased interac-
tions among vehicles.

The remaining geometric design features are found to be statistically insignificant at 5% confi-
dence level. The estimated regression coefficient of the radius of a road horizontal curvature is 0,
suggesting that there is no effect for this parameter on the frequency of traffic accidents. According
to the literature review, the main reason for the insignificant relationship between the radius of a
horizontal curvature and accidents is attributed to the combined effects of road curvature and the
limited variation in the degree of curvature (Milton & Mannering 1998; Wang et al. 2009). Wang
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et al. (2009) used road segments with a standard deviation of less than 6 km. In the case of the cur-
rent study, the standard deviation of road segment length used is larger than 44 km (Table 1)
because of the fact that the approximately straight segments have an extremely high degree of curva-
ture value. Although high variation was found in the radius of the horizontal curvature, the result of
the model estimates showed that this variable remained insignificant at a 5% confidence level.
Length of a vertical curve in a road section is intended to assess the effects of the length of vertical
curves in road segments on accident frequency. It is mostly used during the process of designing ver-
tical alignments, and thus, understanding its effects on the number of accidents is important to
improve the design of vertical alignments for urban expressways. On the basis of the elasticity value
associated with this variable, our finding indicates that an increase in the length of vertical curves in
road segments slightly increases the number of accidents. However, this variable is found to be sta-
tistically insignificant at a 5% confidence level. The reason for this finding is that the positive rela-
tionship of this variable with accidents is probably attributed to the effect of road segment length,
given that the length of a vertical curve and that of a road segment are highly correlated. In road seg-
ments wherein no vertical curve is found, the length of a vertical curve is set to zero. This variable
can also be affected by other geometries (i.e. presence of a vertical curve and number of vertical
curves). Furthermore, the K value, which is defined as the horizontal distance in feet (meters), is
required to make a 1% change in gradient. This variable is important and is commonly used to
determine the minimum length of vertical curves in the road design process. The K value is a func-
tion of the algebraic difference between the upgrade and downgrade of a vertical curve (A) and the
length of a vertical curve (K D L/A). The length of vertical curves is assumed to have no significant
effect on accidents, as analyzed from the preceding variable. The K value is inversely correlated with
the gradient of the vertical curves. Therefore, this finding is consistent with those of other research-
ers (Wang et al. 2009). Moreover, it supports the interpretation of the effects of the length of a verti-
cal curve as explained earlier. Therefore, vertical gradients are positively associated with the number
of accidents. Accordingly, an increase in K value tends to decrease the number of accidents, assum-
ing that the length of a vertical curve has no significant effect on accidents.

In addition, the regression analysis was repeated for fixed-length road segments to show the dif-
ference of this method with the homogeneous segments. Table 4 shows the results of coefficients
estimates by the geometric regression model. Note that the variable, length of road segment was dis-
carded from the analysis because it is constant throughout all the segments. Based on the analysis,
the following variable were statistically significant at 5% confidence level: number of vertical curves,
presence of a horizontal curve in a road segment, and traffic volume (AADT) and they are shown in
Table 4. The remaining variables were found to be statistically insignificant at 5% confidence level.
Comparing the results of fixed-length and homogenous segment methods, the finding is almost
same. This was confirmed by the Mann-Whitney test. The test value (U) was found to be 19.5 and
by comparing this value with the expected value (24.5), the estimated P-value (two-tailed) was found
to be 0.565 because the estimated P-value (0.565) is greater than the set alpha (0.05). This suggests
that there is no significant difference between the estimated regression based on the two methods
(i.e. homogeneous segments and fixed-length method).

Table 4. Coefficients and elasticity estimates for the explanatory variables based on fixed-length segments.

Explanatory variable Coefficient Mean Elasticity

Intercept Beta0 2.35� –
Radius of horizontal curve Beta1 –3.05E-06 –0.00146
Length of vertical curve Beta2 9.66E-04 0.01122
K value Beta3 –0.015 –0.0529
Number of vertical curves Beta4 11.09� 0.987
Presence of horizontal curve Beta5 7.87� 0.974
Distance to nearest access point Beta6 0.0014 0.0351
AADT Beta7 12.89� 0.999
�Statistically insignificant at the 5% level.
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6. Conclusion

In this study, very high-resolution laser scanning data were investigated for road geometric model-
ling and its application for accident frequency analysis. A geometric regression model, combined
with various geometric design features extracted from laser scanning data, was used to develop asso-
ciations between road geometry and traffic accidents that occurred on NSE in Malaysia. The devel-
opment of an APM was followed by an elasticity analysis, which was conducted to understand the
effects of the geometric design features included in the model on the number of accidents.

In literature, several studies have indicated that accurate road geometric parameters and accident
data are critical for accurate association development between explanatory factors and accidents.
Data collection on high-speed expressways is a difficult and challenging task because of the high vol-
ume of traffic. This study demonstrates that laser scanning systems can provide an easy and efficient
method for collecting transportation data, particularly for accident analysis. Data collected by laser
scanning systems can be used to model road environments in 3D with high accuracy. The road geo-
metric model developed for NSE in Malaysia can be used to derive various geometric variables, par-
ticularly those related to vertical and horizontal alignments. Accurate road geometric variables can
improve our understanding on the causes of traffic accidents occurring on high-speed highways and
expressways in modern megacities. Improvements in the APMs can be conducted using two
approaches. The first approach involves using highly accurate accident data and explanatory factors,
whereas the second approach involves using robust statistical models that consider missing data and
the combined effects of various explanatory variables. Therefore, using laser scanning systems is
suggested for collecting transportation data for accident analysis.

The three main factors that contribute to the number of accidents are road environments, vehicle
factors, and human factors. Although road environment is not a major factor, investigating the
effects of road environment on accidents is important to improve road designs and develop road
design policies and manuals. Using only road geometric parameters, the model based on a Bayesian
logistic approach proposed in this study can predict the number of accidents on NSE in Malaysia
with reasonable accuracy (R2 D 63.7%). The aim of this study is not to propose a model that can pre-
dict the number of accidents but to propose a model that can interpret the contributing factors.
Interpreting the contributing factors is relatively more important than only predicting accidents.
This method can improve planning and decision making to reduce accident frequency on such
expressways.

The results of the elasticity analysis conducted in this study indicate that four main factors con-
tribute significantly to the number of accidents. These factors are the length of a road segment
(elasticity D 0.122), the number of vertical curves (elasticity D 0.999), the presence of a horizontal
curve in a road section (elasticity D 0.877), the average distance to the nearest access point (elasticity
D –0.035) and AADT (elasticity D 0.881) all at a 5% significance level. By contrast, other variables
(i.e. radius of a horizontal curve, length of a vertical curve, and K value of a vertical curve) are statis-
tically insignificant at a 5% significance level. On the other hand, the analysis of regression based on
fixed-length segments shows relatively similar results analyzed by the Mann-Whitney test. Although
most of the findings of this research are consistent with those of previous studies, using only
geometric parameters may affect model estimates, and consequently, final interpretations. There-
fore, including other traffic-, human-, and vehicle-related factors into the model is suggested for a
more accurate development of APMs.
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