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ABSTRACT

The coronavirus disease 2019 (COVID-19) has evolved to a global pandemic and
poses significant demands and challenges in modeling its complex epidemic trans-
mission, infection, and contagion. Moreover, it has shown to be vastly different

from known epidemics. To address the COVID-19 pandemic, significant efforts have
been made to model COVID-19 transmission, diagnoses, interventions, and pathological
and influence analysis, etc. However, due to the unique and unknown problem and data
complexity, the related studies of COVID-19 still face numerous challenges, including
undocumented infections, asymptomatic contagion, uncertainty and quality issues in the
reported data, flexible external non-pharmaceutical interventions, unknown resurgence
patterns or periodicity, and multiple mutations.

This thesis aims to understand COVID-19 concerning the COVID-19 research land-
scape, transmission complexity, non-pharmaceutical interventions, and COVID-19 resur-
gence. Focusing on the COVID-19 challenges, this thesis first compares the key char-
acteristics of COVID-19 disease with several known epidemics, and it summarizes the
COVID-19 modeling complexities caused by these attributes. Starting from this basic
knowledge, this thesis further explores COVID-19 modeling, which results in the follow-
ing four contributions. (1) This thesis tracks the current COVID-19 modeling progress
with natural language techniques and statistically summarizes the major facts of COVID-
19 disease and COVID-19 modelling. This work structures a transdisciplinary research
landscape and provides a holistic picture of COVID-19 modeling. (2) It infers the possible
quantity of undocumented infections in the early stage of the COVID-19 outbreak with
the proposed density-based Bayesian probabilistic compartmental model. This work
examines the COVID-19 transmission complexities, in other words, undocumented in-
fections, contagion reinforcement, and the imperfect conditions existing in COVID-19
reported data, that is, noise, sparsity, and uncertainty. (3) With the proposed event-driven
generalized Susceptible-Exposed-Infectious-Recovered compartmental model, this thesis
studies the impact of external interventions and activities in the dynamic COVID-19
evolving process and quantifies the efficacy of control policies and relaxation measures.
(4) This thesis compares the differences between multiple COVID-19 waves, including
the epidemiological attributes and the countermeasures, and it simulates the possible
scenarios with different interventions and virus mutations. This exploration illustrates
the possible reasons for COVID-19 resurgence and provides reliable guidance for society
resuscitation.

Extensive experiments, including mean-field Bayesian inference, backward-looking
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empirical evaluations, forward-looking simulations, and short-term forecast, demonstrate
the effectiveness of the proposed methods for modeling the COVID-19 complexities
aforementioned. The findings and quantitative results in this thesis indicate clues,
evidence, and guidance for governments and policymakers to appropriately manage and
mitigate the COVID-19 pandemic.
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