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Abstract 

Fe-based amorphous magnetic materials are attracting more and more attentions in the 

low and medium frequency electrical machines and transformers due to their favourable 

properties of low core loss and high saturation magnetic flux density. In this study, the 

core loss of a Fe-based amorphous magnetic material (amorphous 1k101) is measured 

and modelled under alternating and rotating magnetic field excitations. In particular, for 

numerical analysis using the vector magnetic potential under alternating magnetic field, 

an inverse magnetic hysteresis model is needed to predict the magnetic field strength from 

the magnetic flux density. This study proposes a generalised inverse Preisach model for 

characterisation of the magnetic material which considers the reversible magnetisation 

and magnetisation dependent hysteresis effect. Thus, the proposed inverse Preisach model 

improves the accuracy of the prediction of core loss compared to the normal inverse 

Preisach model. In addition, a modified Jiles-Atherton (J-A) model is utilised for 

modelling the magnetic material which eliminates the drawbacks of the inverse Preisach 

model such as high computational time and memory requirements. The implementation 

of J-A model is associated with model parameter identification which is generally carried 

out by different optimisation techniques. In the optimisation techniques, an additional 

error criterion along with conventional error criterion for the identification of the J-A 

model parameters is proposed in this study which improves the core loss prediction. 

Furthermore, a modified J-A model is proposed to improve the agreement between 

experimental and calculated results especially at the low magnetic induction levels by 

introducing a scaling factor in the anhysteretic magnetisation. Both the proposed inverse 

Preisach model and modified J-A model are verified by the results obtained from 

experimental methods and existing modellings in the literature. Moreover, the rotating 

(two-dimensional) magnetic properties of the Fe-based amorphous magnetic material is 

experimentally investigated in this thesis where a square specimen tester is exploited for 

experimental measurement. For modelling of the rotational hysteresis loss, an improved 

and simplified analogical model is proposed and verified for the magnetic material. The 

total specific rotational loss of the amorphous magnetic material for both circular and 

elliptical rotating magnetic fields are measured and modelled. Furthermore, an optimal 

design of a high-power density medium frequency transformer (MFT) using the Fe-based 

amorphous magnetic material is presented in this thesis where the effects of magnetisation 
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current is considered in the design process. A prototype of the MFT is utilised for the 

experimental verification of the design. 
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