

Measurement and Modelling of Magnetic Properties of Fe-based Amorphous Magnetic Material

by Pejush Chandra Sarker

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Professor Youguang Guo, Associate Professor Hai Yan Lu, and Professor Jian Guo Zhu

University of Technology Sydney Faculty of Engineering and Information Technology

February 2022

Title of the thesis:

Measurement and Modelling of Magnetic Properties of Fe-based Amorphous Magnetic Material

Ph.D. student: Pejush Chandra Sarker Email: pejushchandra.sarker@student.uts.edu.au

Principal Supervisor:

Professor Youguang Guo Email: youguang.guo-1@uts.edu.au

Co-Supervisor:

Associate Professor Haiyan Lu Email: haiyan.lu@uts.edu.au

Co-Supervisor: Professor Jian Guo Zhu Email: jianguo.zhu@sydney.edu.au

Address: School of Electrical and Data Engineering Faculty of Engineering and Information Technology University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Pejush Chandra Sarker declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: Production Note: Signature removed prior to publication.

Date: 20 February 2022

Acknowledgments

First and foremost, I would like to express special appreciate and heart felt thanks to my principal supervisor, Professor Youguang Guo, for the continuous support in my research. His mentorship, guidance and sincere encouragement were invaluable throughout the Doctor of Philosophy (Ph.D.) study. I also would like to thank my co-supervisors, A/Professor Hai Yan Lu and Professor Jian Guo Zhu, for their opinions, suggestions and mentorships in my research.

The gratitude also goes to staff of the school Mr. Brett Lowder and Dr. Mike Zhong, and friend Dr. Shakil Ahamed Khan for their assistances and suggestions to drive the different equipment in the laboratory.

I would like to acknowledge the financial support from University of Technology Sydney and Australia Government.

Finally, I appreciate my family for their cooperations, inspirations and supports during the entire course of my Ph.D. study.

List of Publications

The following articles based on this thesis were published during the study.

Peer reviewed international journal publications:

- [1] P. C. Sarker, M. R. Islam, Y. Guo, J. G. Zhu, and H. Y. Lu, "State-of-the-art technologies for development of high frequency transformers with advanced magnetic materials," *IEEE Transactions on Applied Superconductivity*, vol. 29, no. 2, Mar. 2019, Art. no. 7000111. (DOI: 10.1109/TASC.2018.2882411)
- [2] P. C. Sarker, Y. Guo, H. Y. Lu, and J. G. Zhu, "A generalized inverse Preisach dynamic hysteresis model of Fe-based amorphous magnetic materials," *Journal of Magnetism and Magnetic Material*, vol. 514, Nov. 2020, Art. no. 167290. (https://doi.org/10.1016/j.jmmm.2020.167290)
- [3] P. C. Sarker, Y. Guo, H. Y. Lu, and J. G. Zhu, "Measurement and modelling of rotational core loss of Fe-based amorphous magnetic material under 2-D magnetic excitation," *IEEE Transactions on Magnetics*, vol. 57, no. 11, Nov. 2021, Art no. 8402008. (DOI: 10.1109/TMAG.2021.3111498)
- [4] P. C. Sarker, Y. Guo, H. Y. Lu, and J. G. Zhu, "Improvement on parameter identification of modified Jiles-Atherton model for iron loss calculation," *Journal* of Magnetism and Magnetic Materials, vol. 542, Jan. 2022, Art. no. 168602. (https://doi.org/10.1016/j.jmmm.2021.168602)

Abstract

Fe-based amorphous magnetic materials are attracting more and more attentions in the low and medium frequency electrical machines and transformers due to their favourable properties of low core loss and high saturation magnetic flux density. In this study, the core loss of a Fe-based amorphous magnetic material (amorphous 1k101) is measured and modelled under alternating and rotating magnetic field excitations. In particular, for numerical analysis using the vector magnetic potential under alternating magnetic field, an inverse magnetic hysteresis model is needed to predict the magnetic field strength from the magnetic flux density. This study proposes a generalised inverse Preisach model for characterisation of the magnetic material which considers the reversible magnetisation and magnetisation dependent hysteresis effect. Thus, the proposed inverse Preisach model improves the accuracy of the prediction of core loss compared to the normal inverse Preisach model. In addition, a modified Jiles-Atherton (J-A) model is utilised for modelling the magnetic material which eliminates the drawbacks of the inverse Preisach model such as high computational time and memory requirements. The implementation of J-A model is associated with model parameter identification which is generally carried out by different optimisation techniques. In the optimisation techniques, an additional error criterion along with conventional error criterion for the identification of the J-A model parameters is proposed in this study which improves the core loss prediction. Furthermore, a modified J-A model is proposed to improve the agreement between experimental and calculated results especially at the low magnetic induction levels by introducing a scaling factor in the anhysteretic magnetisation. Both the proposed inverse Preisach model and modified J-A model are verified by the results obtained from experimental methods and existing modellings in the literature. Moreover, the rotating (two-dimensional) magnetic properties of the Fe-based amorphous magnetic material is experimentally investigated in this thesis where a square specimen tester is exploited for experimental measurement. For modelling of the rotational hysteresis loss, an improved and simplified analogical model is proposed and verified for the magnetic material. The total specific rotational loss of the amorphous magnetic material for both circular and elliptical rotating magnetic fields are measured and modelled. Furthermore, an optimal design of a high-power density medium frequency transformer (MFT) using the Fe-based amorphous magnetic material is presented in this thesis where the effects of magnetisation

current is considered in the design process. A prototype of the MFT is utilised for the experimental verification of the design.

Keywords: Fe-based amorphous magnetic material; Direct and inverse Preisach models; Jiles-Atherton model; Hysteresis loss; Dynamic core loss; Alternating core loss; Rotational core loss; Medium frequency transformer.

Content

CERTIFICATE OF ORIGINAL AUTHORSHIP	i
ACKNOWLEDGMENTS	ii
LIST OF PUBLICATIONS	iii
ABSTRACT	iv
LIST OF FIGURES	xi
LIST OF TABLES	XV
ABBREVIATIONS	xvi
NOMENCLATURE	xvii
Chapter 1 Introduction	1
1.1 Background of the Research	1
1.2 Research Gaps	4
1.3 Research Objectives	6
1.4 Contributions of the Research	7
1.5 Thesis Outline	8
References	9
Chapter 2 Literature Review	14
2.1 Magnetisation Process	14
2.2 Measurement and Modelling of Alternating Core Loss	17
2.2.1 Measurement of Alternating Core Loss	17
2.2.1.1 Thermal or Calorimeter Technique	
2.2.1.2 Electrical Technique	18
2.2.2 Modelling of Alternating (1-D) Core Loss	
2.2.2.1 Empirical Core Loss Model	
2.2.2.2 Microstructures of the Material-Based Models	23
2.2.2.1 Preisach Model	24
2.2.2.2.2 J-A Model	25
2.3 Measurement of 2-D Core Loss	29
2.3.1 Calculation of H Components	32
2.3.2 Calculation of B Components	
2.3.3 Apparatuses of 2-D Measurement System	35
2.4 Design of the MFT	37
2.4.1 Winding AC Resistance Modelling	38
2.4.2 Leakage Inductance Modelling	41
	vii

2.4.3 Temperature Rise	42
2.5 Conclusion	43
References	43
Chapter 3 Modelling of Amorphous Magnetic Material Using Empirical and Preisach Models	49
3.1 Introduction	49
3.2 Empirical Model	52
3.3 Preisach Model	53
3.3.1 Normal Preisach Model	53
3.3.2 Generalised Preisach Model	54
3.4 Inverse Preisach Model	55
3.4.1 Normal Inverse Preisach Model	55
3.4.2 Proposed Inverse Preisach Model	57
3.5 Implementation of Preisach Models	58
3.5.1 Implementation of Normal Preisach Model	59
3.5.2 Implementation of Generalised Preisach Model	
3.5.2.1 Identification of Anhysteretic Magnetisation Curve	
3.5.2.2 Identification of Squareness	63
3.5.2.3 Identification of Feedback Coefficient	63
3.6 Implementation of Inverse Preisach Models	67
3.6.1 Implementation of the Normal Inverse Preisach Model	
3.6.2 Implementation of Generalised Inverse Preisach Model	
3.7 Dynamic Hysteresis Effects	71
3.7.1 Identification of Dynamic Coefficients	72
3.7.2 Incorporation of Dynamic Hysteresis with Inverse Preisach Model	74
3.8 Experimental Verification	74
3.8.1 Experimental Testing Method	
3.8.2 Verification of Simulated Results	77
3.9 Conclusion	83
References	84
Chapter 4Modelling of Amorphous Magnetic Material Using Jiles-Atherton Model	87
4.1 Introduction	87
4.2 Jiles-Atherton model	89
4.2.1 Formulation	
4.2.2 Identification of Model Parameters	91
	viii

4.3 Proposed Model	
4.4 Inverse J-A model	
4.5 Inclusion of Dynamic Losses	99
4.6 Results and Discussions	100
4.7 Conclusion	106
References	106
Chapter 5 Measurement and Modelling of Core Loss Under Rotating Magnetic Field	109
5.1 Introduction	109
5.2 2-D Core Loss Testing System	111
5.2.1 2-D Core Loss Tester	111
5.2.2 Measurement Methods for B and H	112
5.2.3 Misalignment of H Sensing Coils	115
5.2.4 Feedback System	116
5.3 Core Loss Measurements under Different Rotating Magnetic Fields	117
5.3.1 Core Loss Measurement under Circularly Rotating Magnetic Field	117
5.3.2 Core Loss under Alternating Magnetic Field	119
5.3.3 Core Loss under Elliptical Magnetic Field	
5.4 Modelling of Circularly Rotational Losses	123
5.4.1 Rotational Hysteresis Model	123
5.4.1.1 Existing Rotational Hysteresis Models	123
5.4.1.2 Proposed Rotational Hysteresis Model	125
5.4.2 Modelling of Rotational Eddy Current Loss	126
5.4.3 Modelling of Rotational Excess Loss	127
5.5 Modelling of Alternating Core Loss	129
5.6 Modelling of Elliptical Core Loss	130
5.7 Experimental Verification of Modelling of Core Losses	130
5.8 Conclusion	132
References	133
Chapter 6 Design of Medium Frequency Transformer	135
6.1 Introduction	135
6.2 Modelling of MFT	136
6.2.1 Core Loss	
6.2.2 Core Geometry	
6.2.3 Insulation Design	

6.2.4 Winding Wire Selection	
6.2.5 Consideration of Transformer's No-Load Current	141
6.2.6 Winding Losses	142
6.2.7 Leakage Inductance	143
6.2.8 Temperature Rise	144
6.3 Design Methodology	145
6.4 Experimental Testing	148
6.5 Conclusion	150
Reference	151
Chapter 7 Conclusion and Future Works	153
7.1 Conclusion	153
7.2 Possible Future Works	154

List of figures

Figure	Figure Caption	Page
No.		
Fig. 1.1	A typical MFT based voltage conversion system	1
Fig. 2.1	The general pattern of <i>B</i> - <i>H</i> loop of a magnetic material.	15
Fig. 2.2	A typical initial <i>B</i> - <i>H</i> curve of a magnetic material	15
Fig. 2.3	Orientation change of magnetic moments at magnetic domain wall	16
Fig. 2.4	The block diagram of core loss measurement system using calorimeter	18
Fig. 2.5	Schematic diagram of core loss measurement using oscilloscope	19
Fig. 2.6	Schematic diagram of core loss measurement with DC bias	20
Fig. 2.7	Core loss measurement using capacitive cancellation	21
Fig. 2.8	(a) Rectangular hysteresis model of magnetic dipoles and (b) Preisach diagram	24
Fig. 2.9	The typical pattern of the rotational hysteresis loss of a magnetic material	30
Fig. 2.10	The typical pattern of the alternating hysteresis loss of a magnetic material	30
Fig. 2.11	Induced torque angle due to the rotational magnetic field at general magnetic flux density	31
Fig. 2.12	Induced torque angle due to the rotational magnetic field at saturation magnetic flux density	31
Fig. 2.13	(a) ${\bf H}$ coil in one dimensional configuration and (b) ${\bf H}$ coils in two-dimensional configuration	32
Fig. 2.14	The arrangement of two coil method for measurement of H components	33
Fig. 2.15	A typical Hall element which uses the Hall effect	33
Fig. 2.16	Searching coil arrangement for (a) uniform B , and (b) nonuniform B	34
Fig. 2.17	Measurement of B component using B tips	35
Fig. 2.18	Block diagram of a square specimen tester	36
Fig. 2.19	Large sheet sample-based tester for rotational core loss measurement	37
Fig. 2.20	Typical pattern of R_{ac} for different layers (p) with frequency.	38
Fig. 2.21	Conversion of solid conductor from round shape to rectangular shape	38
Fig. 2.22	Conversion method of a Litz wire to several layers for calculation of AC resistance	40
Fig. 2.23	Typical leakage inductance with frequency for turn ratios (m) 1 and 2.	41
Fig. 3.1	(a) Rectangular hysteresis model of magnetic dipoles [3.23], [3.25], and (b) Preisach diagram	53
Fig. 3.2	Limiting loop of the Fe-based amorphous magnetic material	59
Fig. 3.3	Applied magnetic field strength and corresponding measured and calculated magnetic flux densities	59

- Fig. 3.4 Excitation magnetic field strength for prediction of anhysteretic 61 magnetisation using normal Preisach model: (a) upper value of anhysteretic magnetisation, and (b) lower value of anhysteretic magnetisation
- Fig. 3.5 Magnetisation processes for anhysteretic magnetisation using normal 62 Preisach model: (a) upper value of anhysteretic magnetisation, and (b) lower value of anhysteretic magnetisation
- Fig. 3.6 Anhysteretic magnetisation curve of the Fe-based amorphous magnetic 62 material calculated by the normal Preisach model and its derivative with respect to magnetic field strength H
- Fig. 3.7 Feedback coefficient for the upward magnetisation of the Fe-based 63 amorphous magnetic material at different magnetic flux density magnitudes
- Fig. 3.8 Comparison of the *B-H* loops predicted by using constant feedback 65 coefficient, proposed feedback coefficient, and no-feedback coefficient with the experimental result
- Fig. 3.9 The feedback coefficient of upward magnetisation with the change of B_m for 65 $H \ge H_c$.
- Fig. 3.10 The feedback coefficient of upward magnetisation with the change of H_m for 66 $H \ge H_c$
- Fig. 3.11 Calculated and measured magnetic field strengths and magnetic flux 67 densities for minor loops
- Fig. 3.12Flow chart of the proposed inverse Preisach model69
- Fig. 3.13 Variable squarenesses for inverse and direct Preisach model with: (a) 71 maximum magnetic flux density, and (b) maximum magnetic field strength, respectively
- Fig. 3.14 Curve fitting of the measured core loss data with frequency for different 73 maximum magnetic flux densities, (a) 1.08 T, and (b) 1.41 T
- Fig. 3.15 Block diagram of the experimental set up for measuring *B-H* loops of 75 magnetic materials
- Fig. 3.16 Comparison among measured and calculated *B-H* loops for minor loops over 76 a major loop
- Fig. 3.17 Comparison between measured and calculated power losses per cycle at 77 1.08 T.
- Fig. 3.18 Comparison of calculated and measured hysteresis loss using inverse 80 Preisach models with different squareness conditions
- Fig. 3.19 A comparison between calculated and measured core losses versus 82 frequency at B_m =1.29 T with two different loss units: (a) W/m³/Hz and (b) W/kg/Hz
- Fig. 3.20 A comparison of errors in calculation of core loss using different models 82
- Fig. 3.21 Calculated and measured *B-H* loops at 500 Hz and 1.29 T 83
- Fig. 4.1 Comparison of *B*-*H* loops obtained from measured and J-A models for 1 Hz 94 sinusoidal excitations at (a) $B_m = 1.26$ T and (b) $B_m = 0.83$ T
- Fig. 4.2 The percentage of error in the calculation of coercive magnetic field 94 strength, ε_{Hc} with the change of peak magnetic flux densities.

Fig. 4.3	Flow chart of the proposed method for the identifying the J-A model parameters.	96
Fig. 4.4	Pareto-optimal solutions by optimisation technique to identify model parameters at 1.26 T.	97
Fig. 4.5	The values of the loss factor k with the change of peak magnetic field strength, $H_{\rm m}$	97
Fig. 4.6	The values of scaling factor v with the change of peak magnetic field strength, $H_{\rm m}$	98
Fig. 4.7	The values of the loss factor k with the change of peak magnetic flux density, $B_{\rm m}$	99
Fig. 4.8	The values of scaling factor v with the change of peak magnetic flux density, B_m	99
Fig. 4.9	Percentage of core loss error, ε_r with change of peak magnetic flux densities for the proposed error criterion and existing error criterion	101
Fig. 4.10	Percentage of root mean square errors of the calculation of B at different peak magnetic flux densities at different conditions of J-A models	101
Fig. 4.11	Comparison between calculated and measured H at B_m =1.38 T and 1 Hz excitation	102
Fig. 4.12	Comparison between the calculated and measured <i>B</i> - <i>H</i> loops for two minor loops on a major loop.	103
Fig. 4.13	Core loss separation using the proposed modified inverse J-A model.	103
Fig. 4.14	Comparison between the measured and calculated $B-H$ loops at 1.41 T and 0.67 T for 500 Hz excitations	104
Fig. 4.15	Comparison between the measured and calculated core loss at 500 Hz with different peak magnetic flux densities	105
Fig. 4.16	Comparison among different core loss models at (a) B_m =1.08 T and (b) B_m =1.29 T.	106
Fig. 5.1	Block diagram of 2-D square specimen testing system	111
Fig. 5.2	A photo of the 2-D core loss measurement set-up	112
Fig. 5.3	Calibration of H sensing coils using a solenoid	114
Fig. 5.4	Rotation of the co-ordinate axis to deal the misalignment problems	116
Fig. 5.5	Feedback system used for the 2-D magnetic properties measurement system	117
Fig. 5.6	Rotational core losses of the amorphous magnetic material with $B_{\rm m}$ for different frequencies	118
Fig. 5.7	Loci of \mathbf{B} at different magnetic flux densities under 50 Hz rotating magnetic field	119
Fig. 5.8	Loci of \mathbf{H} at different magnetic flux densities under 50 Hz rotating magnetic field	119
Fig. 5.9	B-H loops under alternating magnetic field at 50 Hz and peak value of magnetic flux density 1.40 T on X and Y-axes	120
Fig. 5.10	Alternating core losses of the amorphous magnetic material with B_m for different frequencies	120

xiii

Fig. 5.11	The alternating core losses of the amorphous material with B_m under 50 Hz sinusoidal excitation	121
Fig. 5.12	The rotational core loss of the amorphous material with B_m under 50 Hz rotating magnetic field	121
Fig. 5.13	Elliptical loci of B at 50 Hz when major axis is on (a) X-axis and (b) Y-axis, and the corresponding loci of H when major axis is on (c) X-axis and (d) Y-axis	122
Fig. 5.14	Total core loss with different axis ratios at 50 Hz excitation	123
Fig. 5.15	Modification parameter a_m of the alternating hysteresis loss-based model rotational hysteresis loss model	125
Fig. 5.16	Curve fitting of the measured core loss data with frequency for different maximum magnetic flux densities, e.g., (a) 0.15 T, (b) 0.50 T, (c) 1.00 T and (d) 1.40 T	128
Fig. 5.17	Rotating and alternating excess loss coefficients with magnetic flux density	128
Fig. 5.18	Comparison of different models for modelling rotational hysteresis loss of the amorphous magnetic material	129
Fig. 6.1	A design sketch of a double C-core type MFT (only inside conductors are shown)	138
Fig. 6.2	<i>B-H</i> curve of the selected AMCC 50 core	141
Fig. 6.3	Conversion method of a Litz wire to several layers for calculation of AC resistance	142
Fig. 6.4	Conversion method of a Litz wire-based transformer windings to several layers for calculation of leakage inductance	143
Fig. 6.5	The flow chart of the optimal design of MFT	146
Fig. 6.6	Efficiency with respect to power density with inclusion and exclusion of the no-load current	147
Fig. 6.7	The experimental circuit for testing the MFT	149
Fig. 6.8	A photo of experimental set-up for testing the MFT	149
Fig. 6.9	Measured primary and secondary voltages, and excitation current of the MFT at no-load condition.	150
Fig. 6.10	The measured magnetic flux density of the MFT.	150

List of Tables

Table No.	Table Caption	Page
Table 3.1	Different parameters of the tested core	75
Table 3.2	(a) Comparison of calculated and measured hysteresis loss ($W/m^3/Hz$) for Preisach models	78
	(b) Comparison of calculated and measured hysteresis loss (W/kg/Hz) for Preisach models	
Table 3.3	(a) Comparison of calculated and measured hysteresis loss ($W/m^3/Hz$) for inverse Preisach models	79
	(b) Comparison of calculated and measured hysteresis loss (W/kg/Hz) for inverse Preisach models	
Table 3.4	Comparison of calculated and measured hysteresis loss with minor loops	81
Table 5.1	Calibration of H _x sensing coil	115
Table 5.2	Calibration of Hy sensing coil	115
Table 6.1	Comparison of winding loss and leakage inductance from primary side of a selected design of MFT (2.5 kW , $200 \text{V}/400 \text{V}$)	147
Table 6.2	Selected optimal design parameters of MFT (2.5 kW, 1 kHz, 200V/400V)	148

Abbreviations

MFT	Medium frequency transformer
HFT	High frequency transformer
1-D	One-dimensional
J-A	Jiles-Atherton
DC	Direct current
AC	Alternating current
SST	Solid state transformer
GSE	Generalized Steinmetz equation
SiFe	Silicon iron
NiFe	Nickel iron
CoFe	Cobalt iron
SMC	Soft magnetic composite
2-D	Two-dimensional
Fe	Iron
Co	Cobalt
Ni	Nickel
OSE	Original Steinmetz equation
IGSE	Improved generalised Steinmetz equation
UTS	University of Technology Sydney
CUT	Core under test
FEM	Finite-element method
DSP	Digital signal processing
GRG	General reduced gradient
NSE	Natural Steinmetz equation
AWG	American wire gauge
3-D	Three-dimensional
RMS	Root mean square
WCSE	Waveform coefficient Steinmetz equation

Nomenclature*

Core loss
Time
Magnetic flux density
Magnetic flux density vector
Constants associated with core loss separation model
Steinmetz parameters
Fundamental frequency
Equivalent frequency associated with OSE model
Parameter associated with GSE model
Frequency
Time period
Magnetic flux density variation
Parameter associated with NSE model
The ratio of areas of the non-sinusoidal and sinusoidal waveforms
Flow rate of the coolant
Specific heat of fluid
Cross section of coolant path
Maximum magnetic flux density
Primary current
Secondary voltage
Magnetic field strength
Magnetic field strength vector
Resistance of current sensor
Voltage across the current sensor resistor
Resonant capacitance
Porosity factor
Conductor height
$\alpha_1 d_t \operatorname{coth}(\alpha_1 d_t)$
$2\alpha_1 d_t \tanh\left(\frac{\alpha_1 d_t}{2}\right)$
Imaginary parts of M_w and D_w respectively
Real parts of M_w and D_w respectively

* Symbols that are not listed are explained where they firstly appear

α_l	$\sqrt{\frac{j\omega\eta\mu_0}{ ho_r}}$
ω	Angular frequency
μ	Permeability
R_{dc}	DC resistance of the winding
R_{ac}	AC resistance of the winding
Δ	Ratio of thickness of conductor and skin depth
δ	Skin depth
γ	$d_c / (\sqrt{2}\delta)$
d_c	Diameter of conductor
Irms	Root mean square value of current
I' _{rms}	Derivative of <i>I</i> _{rms}
Ns, Ns1, Ns2	Number of strands, and numbers of strands of primary and
	secondary windings
d_s	Diameter of a strand.
$\Delta_{ m s}$	Ratio of thickness of conductor and skin depth for Litz wire
G_W	Core window width
H_w	Core window height
M	Magnetisation
Μ	Magnetisation vector
Mirr	Irreversible magnetisation
M_{rev}	Reversible magnetisation
H_e	Effective magnetic field strength
M_s	Saturated magnetisation
Be	Effective magnetic flux density
H_x, H_y	Magnetic field strength components in X and Y-directions
H_n	Magnetic field strength at the last reversal point
L_{lP}	Leakage inductance refer to primary winding
χ	Magnetic susceptibility
Xio	Initial susceptibilities of normal magnetisation
χanho	Initial susceptibilities of anhysteretic magnetisation
ΔT	Temperature rise
R_{th}	Thermal resistance
Io	No-load transformer current
B_x, B_y	Magnetic flux density components in-X and Y-directions
A_c	Cross sectional area of the core

K_f	Form factor
R_{ac1} and R_{ac2}	AC resistances of primary and secondary windings
V_p, V_s, I_s, I_p	Voltage and current of primary and secondary windings
d_{ins}, d_{iso}	Thicknesses of insulation and isolation
d_{wI}	Diameter of the primary Litz wire
d_{w2}	Diameter of the secondary Litz wire
W_{I}	Primary half winding width
W_2	Secondary half winding width
Man	Anhysteretic magnetisation
H_e	Effective magnetic field strength
σ	Conductivity of the amorphous ribbon
d_l	Thickness of amorphous ribbon
A_l	Cross sectional area of the lamination
G, V_0	Constant coefficients depending on material metallurgical
	properties