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Abstract 35 

This study determined stroke and movement accelerometry metrics from a wearable sensor and 36 

compared between court surface (grass vs. hard) and match outcome (win vs. loss) during 37 

competitive tennis match-play. Eight junior high-performance tennis players wore a trunk-38 

mounted GPS, with in-built accelerometer, magnetometer and gyroscope during singles 39 

matches on hard and grass courts. Manufacturer software calculated accelerometer-derived 40 

total Player Load (tPL). A prototype algorithm classified forehands, backhands, serves and 41 

“other” strokes, thereby calculating stroke player load (sPL) from individual strokes. 42 

Movement player load (mPL) was calculated as the difference between tPL and sPL, with all 43 

metrics reported as absolute and relative (.min-1, %, .stroke). Analysis of accelerometer load 44 

and stroke count metrics were performed via a two-way (surface [grass vs. hard] x match 45 

outcome [win vs. loss]) ANOVA (p < 0.05) and effect sizes (Cohen’s d). No interaction effects 46 

for surface and match outcome existed for absolute tPL, mPL and sPL (p>0.05). Increased 47 

mPL% featured on grass courts, while sPL% was increased on hard courts (p=0.04, 48 

d=1.18[0.31-2.02]). Elevated sPL.min-1 existed on hard courts (p=0.04, d=1.19[0.32-2.04]), but 49 

no differences in tPL.min-1 and mPL.min-1 were evident for surface or outcome (p>0.05). 50 

Relative forehand sPL (FH-sPL.min-1) was higher on hard courts (p=0.03, d=1.18[0.31-2.02]) 51 

alongside higher forehand counts (p=0.01, d=1.29[0.40-2.14). Hitting demands are heightened 52 

on hard courts from increased sPL and counts. Conversely, increased mPL% on grass courts 53 

likely reflect the specific movement demands from point-play. Physical preparation strategies 54 

during training blocks can be tailored towards movement or hitting loads to suit competitive 55 

surfaces. 56 

Key Words: athlete monitoring, external workload, physical demands 57 

 58 

 59 
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INTRODUCTION 60 

Understanding the stroke and movement activities of tennis players during competition can 61 

inform the design of conditioning and skills training to enhance athlete preparation (28). 62 

Contemporary methods for understanding these competitive loads in other sports exist through 63 

wearable technologies (i.e., global positioning systems [GPS] and accelerometry) (20); 64 

however, the uptake of this technology in tennis has been slow. This is likely the result of 65 

restrictive regulations from governing bodies, as well as the sport’s complex activity profile. 66 

Indeed, the physical demands of tennis involve acyclic, high-speed actions of the upper and 67 

lower limbs to execute stroke and movement demands (27), though current wearable metrics 68 

seemingly represent lower-body activity (20). Previous uses of wearable technology in tennis 69 

have quantified whole-body match-play movement via GPS measures, such as distance 70 

covered, metres per minute, etc. (7), largely failing to distinguish between lower (traversing 71 

the court) and upper (hitting the ball) body actions. Thus, implementation and understanding 72 

of microtechnology to determine concurrent movement and hitting load within match-specific 73 

contexts (i.e., court surface, match outcome) is important for the future of physical preparation 74 

and monitoring in tennis. 75 

 76 

Accelerometry-derived measures of workload during match-play vary based on manufacturer-77 

specific processing systems (i.e., “Player LoadTM”), though report the sum of accelerations from 78 

running, jumping/landing and rotations in arbitrary units (AU) (3). The vagaries observed in 79 

tennis accelerometer load data are noted, where absolute values >3900 AU were reported in 80 

players aged 13-15y during simulated clay-court competition  (25); whilst another study on 81 

clay reported 395-418 AU from longer match durations with similar aged athletes (12). Such 82 

discrepancy could be due to different accelerometer data processing methods between studies 83 

given matches in the latter study were longer (81.2 min vs. 61.7 min) with greater distance 84 
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covered. Hence, how these findings inform training prescription and match planning remain to 85 

be determined. Separately, movement intensity has also been inferred from accelerometer data 86 

to reveal an effect for court surface, with clay court matches eliciting more frequent movement 87 

events at greater acceleration magnitudes compared to hard courts (24). Additionally, tennis 88 

movement profiles may also be influenced by match outcomes, as players who win points were 89 

reported to cover an additional four metres per point (19). However, these alterations in 90 

movement demands due to surface or match outcome exist as a requirement of stroke execution 91 

during point-play. Accordingly, wearable devices that can report concurrent but separate 92 

physical and hitting demands remains a gap in current literature. 93 

 94 

Whilst tennis movement volume and intensity are reported from accelerometer units, stroke 95 

loads are typically limited to volume-based measures from video coding (15). Such 96 

observations have revealed typical stroke demands on hard courts to consist of 5.9 ±0.1 97 

strokes/rally (30) and result in cumulative volumes of 274 ± 174 strokes/match (26). Similar 98 

to movement profiles, court surface influences hitting volumes due to altered rally length; 99 

which, on fast surfaces such as hard and grass courts, result in decreased stroke counts per rally 100 

and reductions in cumulative point-play time (4, 29). Accordingly, this could be postulated to 101 

mitigate upper limb loading profiles relative to movement, which possibly alters training foci 102 

during tournament preparation. However, determining this remains speculative and requires 103 

concurrent measures of stroke and movement demands. Such concepts have been introduced 104 

to a degree in other racket sports, such as badminton, and suggests accelerometry profiles 105 

measured at the upper and lower limbs are influenced by stroke type (17). Consequently, this 106 

points to possibilities in tennis for reporting respective movement and hitting demands from a 107 

single wearable sensor during match-play. Thus, the aims of this study were: 1) to describe the 108 

accelerometer loads for stroke and movement actions (from a single sensor) in junior-elite 109 
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tennis match-play, 2) to compare the accelerometer stroke and movement loads between hard 110 

and grass courts, and 3) to compare accelerometer stroke and movement load between winners 111 

and losers. 112 

 113 

METHODS 114 

Experimental Approach to the Problem 115 

A cross-sectional observational study design was employed to capture respective movement 116 

and hitting accelerometer loads obtained from a wearable sensor during hard and grass court 117 

tournament blocks in a group of junior-elite male tennis players. A prototype algorithm, 118 

developed from the wearable sensor’s accelerometer, gyroscope and magnetometer outputs, 119 

was used to classify tennis stroke events with >90% accuracy and consequently determined 120 

stroke-specific player load (i.e., sPL). Movement demands (i.e., mPL) were inferred from the 121 

difference between traditional player load and the sPL metric. Match result was recorded for 122 

each player to examine the effect of winning and losing on respective sPL and mPL metrics. 123 

 124 

Subjects 125 

Eight junior-elite male tennis players (age 15.5 ± 1.6 y) were recruited for this study. The 126 

players were part of Tennis Australia’s National Academy program in both Adelaide and 127 

Sydney. As per Tennis Australia’s youth development guidelines, players engaged in: 1) 20 128 

h of on-court training per week, 2) 6 h off-court training per week and 3) were competing in 129 

regular International Tennis Federation (ITF) sanctioned junior tournaments. All players were 130 

right-handed and utilised and a double-handed backhand. The university’s Human Research 131 

Ethics Committee (HREC) approved this study (ETH19-4062). Parental consent was obtained 132 

for players’ participation in the study. 133 

 134 
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Procedures 135 

Data was collected across three separate tournaments in Australia, including the Adelaide ITF 136 

Grade 5, Australian Grass Court Nationals and Australian Hard Court Nationals, occurring in 137 

September, October and December 2019, respectively. Plexicushion hard courts were used in 138 

both the Adelaide ITF and hard court events, with natural grass used in the grass event. Singles 139 

matches were contested as a best-of-three sets and were legislated in accordance with the rules 140 

of the ITF (13). Twenty-nine singles match observations were captured for analysis accounting 141 

for 4 ± 3 match observations per player (outlined in Table 1 and Table 2). Of note, two players 142 

from the sample contested both hard and grass court tournaments. 143 

 144 

All players wore a global positioning systems (GPS) unit (Catapult OptimEye S5, Catapult 145 

Sports, Melbourne) between the scapulae and housed in the manufacturer-designed harnesses, 146 

which allowed for minimal movement on the skin (21). The GPS unit sampled at 10 Hz with 147 

an in-built triaxial accelerometer sampling at 100 Hz, though for the purposes of this study, 148 

only the accelerometer data was analysed. PlayerLoadTM (i.e., player load, PL) was the 149 

predominant measure in this study and is defined as the square root of the sum of instantaneous 150 

accelerations in the medio-lateral (x), vertical (z) and antero-posterior (y) planes and is 151 

presented in arbitrary units (AU). Reliability of the PL metric has previously been established 152 

at 1.9% coefficient of variation (CV) from observations in team-sport athletes (2). Further, all 153 

matches were video recorded using Sony video cameras (HDR-CX700VE, Sony, Japan) and 154 

positioned 10 m and 6 m behind the baseline in accordance with previous match protocols (23, 155 

26).  156 

 157 

Raw accelerometer data was downloaded and processed via the manufacturer’s custom 158 

software (OpenField 2.3.4, Catapult Sports, Melbourne), with PL determined via custom-159 
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developed prototype algorithms; though, it is noted that varied methods of calculation have 160 

been reported (3). This process enabled the calculation of a traditional generic PL, herein 161 

defined as total player load (tPL), as previously described (1). In addition, the raw 162 

accelerometer data was exported and stored as a comma-separated values (.csv) file to be 163 

further analysed to discern the PL specific to stroke actions. Investigations from Catapult 164 

Sports (Catapult Sports, Melbourne) on a prototype algorithm documented in an internal “white 165 

paper” describes the machine learning models implemented to detect ‘forehand drive’ (FH), 166 

‘backhand drive’ (BH), ‘serve’ and ‘other stroke’ (other) events based on absolute rotation yaw 167 

values and showed respective accuracies of 94%, 96.5%, 99.9% and 83.5% (Personal 168 

Communication, Catapult Sports). The “other” stroke category from the prototype algorithm 169 

may encompass volley or “end-range” strokes that are not captured within respective FH or 170 

BH “drive” categorisations. We have recently tested these findings, with our unpublished work 171 

revealing respective accuracies of 89%, 94% and 98% for ‘forehand’, ‘backhand’ and ‘serve’ 172 

swings from comparing manually coded stroke events to the stroke event detection from the 173 

prototype algorithm. Following stroke detection and classification, the prototype algorithm is 174 

trained over a one-second window (i.e., 0.5 s before and after event detection) to quantify the 175 

sum of accelerations (i.e., PL) and is classified in the present study as stroke-specific PL (sPL). 176 

Hence, determination of sPL allowed for separation of movement-based PL (mPL) by 177 

subtracting sPL from tPL determined from the manufacturer software. 178 

 179 

The processed file from Catapult Sports contained the coordinated universal time (UTC) of 180 

each stroke event, which was used in combination with the video footage to time align the start 181 

and end times of each set and match on the manufacturer software. This ensured the data 182 

captured are reflective of those experienced throughout each set and excludes the between-set 183 

changeover activity. Accordingly, all player movement and stroke activities captured during 184 
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set-times were included for analysis. Using this dataset, stroke counts and respective PL 185 

metrics across the four categories were quantified for each match and reported as sPL 186 

derivatives (i.e., FH-sPL). All load metrics were reported in both absolute (AU) and relative 187 

(per minute [AU.min-1]) metrics across matches, with sPL and mPL also reported as a 188 

proportion (%) of tPL to account for match duration. Stroke count data was reported in both 189 

absolute (n) and relative (n.min-1) terms across the four respective stroke categories. 190 

Additionally, the sPL associated with respective strokes was classified in absolute and relative 191 

terms as described previously, though an additional relative metric of AU.stroke was reported 192 

for respective stroke type. 193 

 194 

Statistical Analyses 195 

All statistical analysis was performed in the R language (RStudio, 1.1.463, RStudio, Inc.). 196 

Descriptive statistics of the mean and standard deviation were used across all player load and 197 

stroke count variables in all matches. Normality of data was first assessed via Shapiro-Wilk’s 198 

test, with non-normally distributed log-transformed. To investigate the effect of surface and 199 

match outcome on all accelerometer load metrics and stroke count data, a two-way (surface x 200 

match outcome) analysis of variance (ANOVA) with Tukey’s post-hoc test was performed. 201 

Due to the large number of variables in the present study, Bonferroni’s correction was applied 202 

to minimise the risk of Type II errors. Significance level was set at 0.05. Effect size (ES) was 203 

calculated using Cohen’s d statistic with d<0.2 classified as trivial, d=0.2-0.5 small, d=0.5-0.8 204 

medium, and d>0.8 large, with 95% confidence intervals (CI). 205 

 206 

RESULTS 207 

Table 1 presents accelerometer metrics across all hard and grass court matches for winning and 208 

losing outcomes. There were no significant interaction effects observed for absolute or relative 209 
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tPL (p=0.78 and p=0.80, respectively) or absolute and relative mPL (p=0.67 and p=0.58, 210 

respectively). Further, no significant interaction effects were observed for the proportion of 211 

mPL (mPL%) (p=0.18); however, a significant main effect for court surface existed, showing 212 

greater mPL% on grass than hard courts (p=0.04, d=1.18[0.31-2.02]). Absolute and relative 213 

sPL showed no significant interaction effects for surface and match outcome (p=0.80 and 214 

p=0.25, respectively), though significant main effects for court surface demonstrated a 215 

decreased sPL on grass courts (p=0.04, d=1.19[0.32-2.04]). No significant interaction effects 216 

existed for sPL proportion (sPL%) (p=0.18), though a significant main effect for court surface 217 

showed increased sPL% on hard courts (p=0.04, d=1.18[0.31-2.02]). No significant main 218 

effects for match outcome were observed for any absolute or relative tPL, sPL or mPL metric 219 

(p>0.05). 220 

 221 

Absolute and relative sPL specific to the four stroke categories (i.e., forehand, backhand, serve 222 

and other) are also presented in Table 1. Across respective stroke types, there were no 223 

interaction effects for absolute or relative sPL (p>0.05). However, a main effect for court 224 

surface was observed for FH-sPL.min-1 (p=0.03, d=1.18[0.31-2.02]). No significant differences 225 

existed for main effects of court surface or match outcome for sPL, sPL.min-1 or sPL.stroke 226 

within any respective stroke category (p>0.05). 227 

 228 

***TABLE 1 NEAR HERE*** 229 

 230 

Table 2 shows stroke count metrics for all matches and categorised by court surface and match 231 

outcome. No significant interaction effects were observed across all absolute stroke counts 232 

(p>0.05). There were no significant main effects for court surface or match outcome for 233 

absolute stroke counts (p>0.05, d=0.23-0.77[-0.50-1.56]). No significant interaction effects 234 
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existed for relative stroke counts (p>0.05); however, a significant main effect for court surface 235 

was observed for FH.min-1 and showed greater values on hard compared to grass surfaces 236 

(p=0.01, d=1.29[0.40-2.14). Conversely, BH.min-1 showed no main effect for court surface 237 

(p=0.12, d=1.02[0.17-1.84]). No main effects existed for relative serve and other stroke counts 238 

(p>0.05, d=0.00-0.50[-0.76-1.28]). No significant differences in stroke count metrics were 239 

evident based on match outcome (p>0.05). Stroke-specific sPL is reported within the respective 240 

stroke categories in Table 2. No significant interaction effects existed for all stroke types 241 

(p>0.05). No significant main effects for court surface or match outcome existed for sPL.stroke 242 

across remaining BH, serve or other stroke categories (p>0.05). 243 

 244 

***TABLE 2 NEAR HERE*** 245 

 246 

DISCUSSION 247 

This study reports a novel approach to accelerometry measures in tennis via describing 248 

concurrent movement and stroke match-play demands from a single wearable sensor and 249 

comparing the effect of court surface and match outcome. Whilst no significant differences 250 

existed for tPL based on surface or outcome, reduced mPL% on grass courts and increased 251 

sPL% on hard courts points to differential lower limb (locomotion) and upper limb (hitting) 252 

demands on the two surfaces. This finding is further supported by greater sPL.min-1 evident on 253 

hard courts, likely due to higher FH.min-1 and resultant FH-sPL.min-1, which suggests tactical 254 

approaches influence hitting demands and in turn upper/lower limb load. Accordingly, 255 

coaching and sport science staff in tennis can start to quantify these novel measures of PL to 256 

interpret hitting and moving demands during match-play and subsequently guide future athlete 257 

preparation strategies. 258 

 259 
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Accelerometer-based measures are useful for court sports given the acceleration and 260 

deceleration actions occurring in confined spaces (10) and thus, are suited to investigations of 261 

tennis-specific demands. We observed tPL values of 548 ±235 AU and 507 ±92 AU on 262 

respective hard and grass court matches, which are higher than previous observations in 263 

younger populations (12) and more reflective of observations in adult males (8). Similar tPL 264 

or tPL.min-1 characterised match-play regardless of match outcome, which is consistent with 265 

previous work (12). Additionally, court surface did not affect tPL, which may be an artefact of 266 

the surfaces generally attracting similar court pace ratings (4), producing lower and faster ball 267 

bounces, shorter rally lengths and less active playing time (29). This finding adds to previous 268 

knowledge of tPL in tennis, whereby increased accelerometer loads have been observed on 269 

slow versus fast (i.e., clay vs. hard) surfaces (24) as a product of increased movement demands 270 

and longer point durations. It is also plausible that more subtle surface or outcome effects may 271 

have been masked by the variation in the playing styles of the small cohort (5), which would 272 

have been partly mitigated had the match-ups been controlled or a larger sample obtained. 273 

Accordingly, it is recognised that individual playing style from the opponent will influence 274 

match activity profiles and resultant accelerometer load, though this could not be controlled 275 

during official tournament settings. 276 

 277 

The measurement of hitting demands through sPL, alongside measures of court movement 278 

(mPL), is a novel aspect of this study. The revelation that sPL% was greater on hard courts 279 

compared to grass courts points to heightened relative hitting-induced accelerometer loads. 280 

Previous tennis research reports shorter point lengths and cumulative time spent in point-play 281 

on grass courts, leading to reductions in relative stroke-play volume (4) and may explain the 282 

observed reduction of sPL% on grass. As hard and grass courts are grouped as “fast” surfaces 283 

(29), the sensitivity of sPL measures to detect increases on hard courts may hint at future 284 
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applications of accelerometry in tennis to distinguish playing demands historically masked by 285 

oversimplified classifications of court speed. Whilst speculative, the increased FH.min-1 and 286 

FH-sPL.min-1 observed on hard courts may be a reflection of the increasingly forehand-287 

dominant approach of junior tennis matches, which contribute 44% of strokes during hard 288 

court match-play (16). Conversely, successful grass court match strategies include utilising the 289 

slice stroke (11), which is currently not a classification in the prototype algorithm and 290 

differences in hitting activity with this stroke across court surface remains unclear. 291 

 292 

Movement strategies are often altered by players based on court surface, where the friction and 293 

rebound coefficient of these surfaces require different temporal and coordinative demands (6). 294 

Interestingly though, our current mPL or mPL.min-1 measures were similar between hard and 295 

grass courts, which could be explained by a number of factors. First, it may be that enough of 296 

the sport’s gross locomotion demands are similar between these two court surfaces, as has been 297 

suggested on hard and clay courts (18) that subtle contextual load differences (such as 298 

anticipatory changes in direction or initiation of movement) are muted and gross accelerometry 299 

measures are comparable. Second, it is plausible that players adapt their deceleration strategies 300 

to preserve stroke integrity regardless of the frictional characteristics of court surface (9) and 301 

that current mPL metrics, as a difference between tPL and sPL, are not sensitive enough to 302 

detect any mechanical variation. Alternatively, as has been widely reported elsewhere (4), 303 

players may simply spend less time in point-play on grass and movement load may reflect 304 

locomotion during change-overs and between points.  305 

 306 

Match activity and movement profiles contextualised by winning or losing may influence 307 

conditioning practices, especially for continuation through tournament rounds. However, the 308 

present study observed little evidence of a difference in mPL metrics based on match outcome. 309 
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This agrees with the work of Kilit and Arslan (14), who reported trivial differences in the 310 

average acceleration (measured via g force) of winning and losing players in junior tennis, but 311 

contrasts with reports in professional men’s tennis that winning players cover an additional 2-312 

4 metres per point (19, 28). While this may reflect actual differences in tennis match-play 313 

amongst professional players with greater physical development, it is possible that 314 

measurement differences also explain the similarity in mPL for winning and losing. 315 

Accordingly, future accelerometry research conducted in tennis at the point-level may lead to 316 

improved standardisation of methodologies and measurement of movement profiles to better 317 

differentiate these contexts. 318 

 319 

The prototype algorithm used in the present study is acknowledged as presenting possible 320 

limitations. Indeed, stroke classifications are limited to being more generic in nature, with 321 

future developments required to capture more explicit stroke type descriptions. Further it is 322 

unclear when the specific event detection for stroke classifications occurs, which may impact 323 

the contribution of pre- and post-stroke activity reflected in sPL metrics. This study is also 324 

limited by its small sample size; however, this is an unavoidable result of the limited 325 

scholarship athletes within high-performance tennis academies. Accordingly, we acknowledge 326 

the limitation in generalising our findings to broader tennis populations and suggest 327 

practitioners consider the application of mPL and sPL metrics for more refined on-court 328 

exposure measures. A further sample-related limitation is the absence of female data, which 329 

may present an area for future research given observed sex effects in the movement demands 330 

of elite players (31). Additionally, the set-level analyses implemented in the present study may 331 

mask subtle differences in respective stroke and movement demands at more granular levels of 332 

tennis (i.e., point, game) (27) and thus, reflects a potential area for future research. Lastly, 333 

investigating the influence of match outcome in junior tennis players represents a possible 334 
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limitation due to unrefined game-styles that result from varying technical, tactical, and physical 335 

skills. 336 

 337 

This study quantified accelerometer load in tennis match-play through concurrent reporting of 338 

stroke and movement load metrics and compared these measures across court surface and 339 

match outcome. The key results of this study were sPL metrics are impacted by court surface 340 

but not match outcome. Indeed, hard court matches elicit greater stroke load and counts relative 341 

to grass courts, with particular manifestation in heightened hitting demands on the forehand 342 

side. Limited differences in mPL metrics likely reflect adaptations to movement strategies 343 

across surface to uphold stroke execution. Accordingly, the results of the present study show 344 

promise for use of a single wearable sensor to determine concurrent hitting and movement 345 

demands in tennis to then guide athlete training and tournament preparation. 346 

 347 

PRACTICAL APPLICATIONS 348 

Strength and conditioning staff working in tennis can maximise available training block time 349 

in targeting movement- or stroke-specific physical adaptations dependant on the competitive 350 

surface. Within grass court tournament blocks, detraining effects due to match-play exposures 351 

(22) may be heightened due to lower time spent in point-play (i.e., reduced sPL.min-1) and 352 

could require supplementary drills from conditioning staff to mitigate this occurrence. For sport 353 

science practitioners, load monitoring surveillance via accelerometry measures can be 354 

confidently implemented during training blocks given the sensitivity of sPL to court surface 355 

changes, which is reflective of different stroke types used and overall hitting volumes. Lastly, 356 

technical coaches can utilise stroke count measures to improve understandings of hitting load 357 

exposures across stroke type during competitive periods. 358 

 359 
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Table 1. Mean ±standard deviation of accelerometer load metrics in singles matches across hard and grass courts amongst winning and losing players 

Load Variable 

Hard Court 

Matches 

(n = 19) 

Grass Court 

Matches 

(n = 10) 

Hard Court 

Winners 

(n = 9) 

Hard Court 

Losers 

(n = 10) 

Grass Court 

Winners 

(n = 6) 

Grass Court 

Losers 

(n = 4) 

Player Load (AU) 548 ±235 507 ±92 490 ±250 599 ±221 457 ±86 583 ±25 

Movement Player Load (AU) 

(Proportion of Player Load [%]) 

431 ±185 

(79 ±5)*(4) 

419 ±72 

(83 ±2) 

380 ±192 

(77 ±6) 

478 ±176 

(80 ±2) 

382 ±69 

(84 ±1) 

475 ±18 

(82 ±1) 

Stroke Player Load (AU) (Proportion 

of Player Load [%]) 

116 ±55 

(21 ±5)*(4) 

88 ±22 

(17 ±2) 

110 ±64 

(23 ±1) 

121 ±48 

(20 ±2) 

75 ±17 

(16 ±1) 

108 ±10 

(18 ±1) 

Player Load (AU.min-1) 6.07 ±0.51 5.55 ±0.25 6.20 ±0.59 5.95 ±0.41 5.57 ±0.17 5.53 ±0.38 

Movement Player Load (AU.min-1) 4.76 ±0.37 4.59 ±0.23 4.78 ±0.42 4.73 ±0.34 4.65 ±0.14 4.51 ±0.34 

Stroke Player Load (AU.min-1) 1.31 ±0.37*(4) 0.96 ±0.09 1.42 ±0.49 1.21 ±0.18 0.92 ±0.08 1.02 ±0.08 

Forehand Player Load (AU) 40 ±28 24 ±12 42 ±34 39 ±23 18 ±9 32 ±10 

Backhand Player Load (AU) 36 ±18 25 ±8 32 ±21 40 ±16 22 ±10 29 ±4 

Serve Player Load (AU) 30 ±9 28 ±6 28 ±8 32 ±10 25 ±7 32 ±2 

Other Stroke Player Load (AU) 9 ±4 12 ±4 9 ±4 10 ±5 11 ±3 15 ±4 

Forehand Player Load (AU.min-1) 0.44 ±0.20*(4) 0.25 ±0.10 0.52 ±0.25 0.37 ±0.11 0.22 ±0.11 0.30 ±0.08 

Backhand Player Load (AU.min-1) 0.41 ±0.16 0.27 ±0.06 0.41 ±0.21 0.41 ±0.13 0.26 ±0.06 0.28 ±0.06 

Serve Player Load (AU.min-1) 0.35 ±0.08 0.31 ±0.06 0.38 ±0.09 0.33 ±0.07 0.31 ±0.07 0.30 ±0.04 

Other Stroke Player Load (AU.min-1) 0.10 ±0.03 0.13 ±0.03 0.12 ±0.04 0.10 ±0.02 0.13 ±0.03 0.14 ±0.04 

All data presented as mean ±standard deviation. 

*significant main effect for surface (p<0.05). 
(4)large effect size (d>0.8). 
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Table 2. Mean ±standard deviation of stroke count and individual stroke load metrics in singles matches across hard and grass courts amongst winning and 

losing players 

Load Variable 

Hard Court 

Matches 

(n = 19) 

Grass Court 

Matches 

(n = 10) 

Hard Court 

Winners 

(n = 9) 

Hard Court 

Losers 

(n = 10) 

Grass Court 

Winners 

(n = 6) 

Grass Court 

Losers 

(n = 4) 

Forehand Count (n) 166 ±90 113 ±54 168 ±101 165 ±84 86 ±40 153 ±50 

Backhand Count (n) 122 ±52 93 ±32 104 ±57 138 ±42 87 ±38 102 ±20 

Serve Count (n) 97 ±28 99 ±22 84 ±18 107 ±32 88 ±21 116 ±3 

Other Stroke Count (n) 49 ±23 67 ±17 44 ±17 54 ±28 59 ±10 78 ±21 

Forehand Count (n.min-1) 1.86 ±0.64*(4) 1.20 ±0.47 2.14 ±0.73 1.60 ±0.43 1.05 ±0.47 1.42 ±0.41 

Backhand Count (n.min-1) 1.39 ±0.47 1.01 ±0.27 1.34 ±0.56 1.44 ±0.40 1.03 ±0.29 0.98 ±0.30 

Serve Count (n.min-1) 1.13 ±0.24 1.09 ±0.15 1.16 ±0.26 1.10 ±0.23 1.07 ±0.18 1.10 ±0.10 

Other Stroke Count (n.min-1) 0.56 ±0.17 0.65 ±0.17 0.59 ±0.22 0.52 ±0.11 0.73 ±0.13 0.74 ±0.18 

Forehand Player Load (AU/stroke) 0.23 ±0.03 0.21 ±0.01 0.23 ±0.04 0.23 ±0.03 0.20 ±0.01 0.21 ±0.01 

Backhand Player Load (AU/stroke) 0.29 ±0.04 0.27 ±0.05 0.30 ±0.04 0.29 ±0.05 0.26 ±0.04 0.29 ±0.05 

Serve Player Load (AU/stroke) 0.32 ±0.04 0.28 ±0.02 0.33 ±0.04 0.30 ±0.04 0.29 ±0.02 0.27 ±0.02 

Other Stroke Player Load 

(AU/stroke) 
0.19 ±0.01 0.18 ±0.01 0.20 ±0.02 0.18 ±0.02 0.18 ±0.02 0.19 ±0.00 

All data presented as mean ±standard deviation. 

*significant main effect for surface (p<0.05). 
(4)large effect size (d>0.8). 


