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Abstract 35 

This study analysed the accuracy of a prototype algorithm for tennis stroke detection from 36 

wearable technology. Strokes from junior-elite tennis players over ten matches were analysed. 37 

Players wore a GPS unit containing an accelerometer, gyroscope and magnetometer. 38 

Manufacturer-developed algorithms determined stoke type and count (forehands, backhands, 39 

serves and other). Matches were video recorded to manually code ball contacts and shadow 40 

swing events for forehands, backhands and serves and further by stroke classifications (i.e., 41 

drive, volley, slice, end-range). Comparisons between algorithm and coding were analysed via 42 

ANOVA and Bland-Altman plots at the match-level and error rates for specific stroke-types. 43 

No significant differences existed for stroke count between the algorithm and manual coding 44 

(p>0.05). Significant (p<0.0001) overestimation of  “Other” strokes were observed from the 45 

algorithm, with no difference in groundstrokes and serves (p>0.05). Serves had the highest 46 

accuracy of all stroke types (≥98%). Forehand and backhand “drives” were the most accurate 47 

(>86%), with volleys mostly undetected (58-60%) and slices and end-range strokes likely 48 

misclassified (49-51%). The prototype algorithm accurately quantifies serves and forehand and 49 

backhand “drives” and serves. However, underestimations of shadow swings and 50 

overestimations of “other” strokes suggests strokes with reduced trunk rotation have poorer 51 

detection accuracy. 52 
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Key Words: racquet sports, accuracy, external load, wearable sport technology 54 

 55 

 56 

 57 

 58 

 59 



 3 

Introduction 60 

Competitive tennis involves combinations of high-intensity intermittent court movement 61 

concomitant with the execution of stroke play, and both are important insights for optimal 62 

training and match preparation (Elliot, Reid & Whiteside 2019; Reid & Duffield 2014). 63 

Quantifying these physical loads via traditional methods, such as wearable microtechnology 64 

(i.e., global positioning systems [GPS] and accelerometers), has proven challenging in tennis 65 

as the location of the unit at the base of the cervical spine may be limited in inferring the 66 

specific mechanical demands of limb-dominant stroke play (Reid et al. 2019). Although wrist-67 

worn or racquet-mounted sensors provide accurate information on basic stroke type volumes 68 

(Genevois et al. 2018; Keaney & Reid 2020; Myers et al. 2019; Whiteside et al. 2017), they 69 

lack the reporting of player movement loads in their final output, which form an integral part 70 

of a tennis player’s overall mechanical load (Reid et al. 2019). Accordingly, greater 71 

understanding of tennis physical demands require measurements of both on-court activity (i.e., 72 

movement load) in combination with the stroke type and volumes (i.e., hitting load) similar to 73 

observations on cricket bowling (McNamara et al. 2015). Indeed, recent developments in 74 

commercially available, yet unvalidated GPS and micro electro-mechanical systems (MEMS) 75 

technologies, could reveal a way forward for tennis in the simultaneous capture of stroke events 76 

and movement metrics from a single device. 77 

 78 

Studies seeking to understand tennis stroke events and associated physical loading of the upper-79 

body have been performed mostly using wrist-worn sensors. Kos and colleagues (2016) 80 

evaluated the recall of a wrist-worn sensor for forehands, backhands and serve strokes during 81 

closed and open settings and reported respective accuracies of 96%, 98% and 100%. However, 82 

they did not include volleys, slices or smashes in their algorithm, with later research on wrist-83 

worn sensors showing poorer recall of these stroke types (80%) compared to groundstrokes 84 
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(≥98%) during typical training drills and simulated match-play (Whiteside et al. 2017). This is 85 

common in tennis, where the recall of basic stroke types (i.e., forehand, backhand and serve) 86 

show acceptable accuracies from wrist-worn sensors (Myers et al. 2019; Whiteside et al. 2017), 87 

but perform with reduced accuracy when detecting explicit stroke types (if reported at all). 88 

Keaney and Reid (2020) highlight this point, whereby a racquet-mounted sensor showed high 89 

accuracy for total strokes, but poor differentiation between specific stroke types (i.e. 90 

groundstroke, volley etc.), postulated to result from sensor quality and location. Indeed, the 91 

wider issue existing in tennis load measurement is not solely on limitations of stroke event 92 

detection, but rather the lack of application of hitting load measures in commercial wearables 93 

that already provide insights on whole-body movement. 94 

 95 

In team sport, the use of wearable sensors (i.e., GPS devices) are commonly used for 96 

quantifying running loads, but also increasingly for the specific detection of other load 97 

producing events, such as throwing and collisions (Crang et al. 2021). Indeed, the raw outputs 98 

from in-built accelerometer (linear accelerations), gyroscope (angular accelerations) and 99 

magnetometer (unit orientation) within commercially available GPS units have been used to 100 

develop algorithms to detect acute cricket bowling events with high accuracy (sensitivity 101 

>95%), though reductions in accuracy are observed in official matches due to the introduction 102 

of other upper-body events such as fielding (Jowitt et al. 2020; McNamara et al. 2015). Similar 103 

results have been observed in handball, where high event detection sensitivity (84-100%) was 104 

present in a controlled setting but reduced during match-play (sensitivity 52-91%) (Skejo et al. 105 

2021). These results highlight the challenges of identifying multi-dimensional sporting actions 106 

when algorithms developed from a single body location are relied upon for event detection 107 

(Ishii et al. 2021). Further limitations have been observed in event detection algorithms for 108 

rugby and Australian football (AF), where positional differences and tackling technique 109 
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negatively impacts the true reporting of collision events (Gastin et al. 2014; Reardon et al. 110 

2017). Whilst these limitations reveal the need for rigorous testing of event detection 111 

algorithms, the data available from such devices provide richer insights into the mechanical 112 

demands of technical actions to benefit athlete preparation and management, which is lacking 113 

in tennis (Reid et al. 2019). In this regard, the aims of this study were to; 1) evaluate the 114 

accuracy of a prototype algorithm to detect tennis strokes from a commercially available trunk-115 

mounted wearable sensor and 2) evaluate the accuracy of this event detection across different 116 

stroke types. It was hypothesised that serves will have the highest detection accuracy due to 117 

their distinctive trunk rotation profile, while strokes with less trunk rotation (such as end-range 118 

forehands and backhands) and shadow swings would be detected less accurately. 119 

 120 

Methods 121 

Ten matches from eight junior-elite male tennis players (age 15.5 ± 1.6y) were analysed in this 122 

study. The players were part of Tennis Australia’s National Academy program and trained and 123 

competed as per the guidelines suggested in Tennis Australia’s athlete development matrix 124 

including 20 h of on-court training per week, 6 h off-court training per week and were 125 

competing in regular International Tennis Federation (ITF) sanctioned junior tournaments. All 126 

players in the study were right-handed with a double-handed backhand. A Human Research 127 

Ethics Committee (HREC) gave ethical approval for the methods used in this study (ETH19-128 

4062).  129 

 130 

Matches were analysed across an ITF sanctioned Grade 5 tournament and two National 131 

Championships in Australia for singles matches held on hard and grass courts during the 2019 132 

season. All matches were best-of-three sets in accordance with the rules of the ITF (ITF 2016). 133 

Recording of matches was performed using video cameras (HDR-CX700VE, Sony, Japan) that 134 
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were positioned 10 m above and 6 m behind the baseline in accordance with previous protocols 135 

(Murphy et al. 2014; Perri et al. 2018).  136 

 137 

Stroke events were captured via a wearable device (Catapult OptimEye S5, Catapult Sports, 138 

Melbourne) with an in-built triaxial accelerometer, magnetometer and gyroscope. The device 139 

was worn between the scapulae in the manufacturer-designed harness that minimised 140 

movement on the skin (McLean et al. 2018), with a combined weight of 102g. The 141 

manufacturer has developed a prototype algorithm (White Paper, Catapult Sports) to recognise 142 

the swing and movement pattern of stroke events, which can be used to count strokes for 143 

workload monitoring. The prototype algorithm from the manufacturer has been internally 144 

investigated through implementing machine learning models that classify four categories of 145 

strokes (‘Forehand [FH] Drive’, Backhand [BH] Drive’, ‘Serve’ and ‘Other stroke’) based on 146 

absolute rotation yaw values. These unpublished investigations have shown respective 147 

accuracies of the aforementioned stroke categories to be 94%, 96.5%, 99.9% and 83.5% 148 

(Personal Communication, Catapult Sports). Raw accelerometer data from the wearable units 149 

were downloaded via custom software (OpenField 2.3.4, Catapult Sports, Melbourne) and 150 

processed by company staff using customised algorithms in RStudio (RStudio, 1.1.463, 151 

RStudio, Inc.). All data provided to the manufacturer were de-identified. The processed data 152 

detailing the Coordinated Universal Time (UTC) (hh:mm:ss) of each stroke and detail on its 153 

respective category was provided to the research team in a comma separated values (.csv) file 154 

to be analysed, without knowledge of the match, player or access to video footage. All strokes 155 

captured by the wearable device were presented in consecutive chronological rows to then be 156 

compared with the video footage. 157 

 158 
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Manual notation of each match was performed in the months after the conclusion of the final 159 

match and were analysed by a coder with five years of experience coding tennis matches and 160 

a coefficient of variation (CV) <2% from previous work notating stroke counts and technical 161 

errors during tennis training and match-play (Perri et al. 2018). The manually coded strokes 162 

were collated in the .csv file with algorithm stroke outcomes. Strokes were coded manually 163 

from the video footage in accordance with their basic type of stroke (i.e., forehand, backhand, 164 

serve) and further detailed by their specific spin or trajectory (i.e., rally, slice, volley, drop shot) 165 

(Table 1) and whether they were in “live play” or in-between points. Strokes that did not meet 166 

these general classifications (i.e., an underarm stroke to pass ball back to server) were coded 167 

as an “Other stroke”. As the Catapult algorithm does not differentiate between smashes and 168 

serves, smashes were manually coded as an “Other stroke”. Racquet swings, which still 169 

resemble a forehand or backhand drive but without ball contact, were coded in respective 170 

“forehand” or “backhand” categories (Table 1). Reliability of the coding method was 171 

determined through re-coding a randomly selected match that was separated by one month. A 172 

total of 624 stroke events existed in the match, with 616 strokes correctly matching the previous 173 

coding method (CV = 0.9%). 174 

 175 

***TABLE 1 NEAR HERE*** 176 

 177 

Data was further prepared for analysis using a customised Microsoft Excel (Microsoft Excel, 178 

16.49, Microsoft, Washington) spreadsheet. Strokes detected by the Catapult algorithm were 179 

compared to the manually coded data across multiple levels. The dataset was first analysed to 180 

denote whether a stroke event was detected by the wearable device. This was then further 181 

scrutinised to classify whether the algorithm correctly identified the type of stroke (i.e., 182 

forehand, backhand or serve). In this example, a stroke labelled a “FH Drive” by the algorithm 183 
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and manually coded as a forehand volley was considered to be correct from the algorithms 184 

perspective as it does not discriminate between stroke types beyond rally strokes. Instances 185 

where the algorithm detected a forehand, backhand or serve but classified it as an “Other 186 

stroke”, this was categorised as an incorrect classification. However, if “Other stroke” was 187 

recorded by the algorithm and a smash or stroke not meeting the previous criteria was played, 188 

this was considered to be correct. 189 

 190 

Statistical Analysis 191 

All statistical analysis was performed in the R language (RStudio, 1.1.463, RStudio, Inc.). 192 

Initial comparisons between wearable sensor and manual coding at a match level for strokes 193 

and shadow swing events were performed via a one-way analysis of variance (ANOVA), with 194 

significance set at p = 0.05. To calculate the levels agreement between wearable sensor and 195 

manual coding at a stroke level (n=5349), Bland-Altman limits of agreement (LOA) (standard 196 

error of the means [SEM]) with 95% confidence intervals (CI) were reported. To calculate 197 

absolute and relative measures of error for stroke and swing events across the respective four 198 

stroke categories (forehand, backhand, serve and other), the number of correctly classified 199 

strokes from the wearable sensor was divided by the total number of events in that category 200 

and multiplied by 100. This calculation was also applied to strokes detailed in Table 1 to 201 

determine specific limitations of the wearable technology versus manually coded categories. 202 

 203 

Results 204 

A total of 5349 stroke/swing events were identified through manual coding, with 5119 events 205 

detected by the wearable unit. Within the 5119 events detected by the wearable unit, 204 were 206 

classified as false positives via cross-referencing the video footage. At a match-level, Table 2 207 

shows the strokes and shadow swings during match play recorded in the dataset. No significant 208 
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differences were observed for total strokes (p=0.56) as well as the four stroke categories 209 

categorised by the wearable sensor (p>0.05). Bland-Altman analysis revealed a mean bias for 210 

an underestimation of total stroke counts (-67.80±35.96[-93.52 to -42.08]), by the wearable 211 

sensor. The wearable sensor showed the lowest mean bias for serves (-4.00±4.24[-7.04 to -212 

0.96], with highest bias levels observed for the “other stroke” category (30.70±17.13[18.45 to 213 

42.95]). Analysis of shadow swing data showed a significant main effect for “Other strokes”, 214 

with an overestimation by the wearable sensor compared to manual coding (p=0.0001). 215 

Significant main effects were also observed for forehand, backhand and other shadow swings 216 

between the two methods, with the wearable device significantly underestimating shadow 217 

swings played (p=0.001, p=0.002 and p=0.002, respectively). Bland-Altman analysis for 218 

shadow strokes revealed greatest bias for the “other stroke” category, with an overestimation 219 

of strokes from the wearable unit (8.80±7.90[3.15 to 14.45]). Mean bias for total, forehand and 220 

backhand shadow swings showed underestimations ranging from -3.10 to -6.10. 221 

 222 

***TABLE 2 NEAR HERE*** 223 

 224 

Table 3 shows the stroke and swing events observed in all matches by stroke type and 225 

respective absolute error between the wearable device and the video coding. Error rates <20% 226 

were observed for total stroke and swing actions for the wearable device, with error rates of 227 

≤11% for forehand and backhand stroke events. Lowest error rates (≤2%) were observed for 228 

serve stroke events. Poorest classification (>75% error) was evident in swings with no ball 229 

contact and “other strokes”. 230 

 231 

***TABLE 3 NEAR HERE*** 232 

 233 
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Detailed descriptions of the type of forehand stroke detected by the wearable sensor based on 234 

manual coding are detailed in Table 4. Forehand strokes classified as “rally” events showed 235 

the lowest error rates (6%), with the “dig”, “shadow” and “volley” classifications revealing the 236 

highest error (>90%). For “end-range” strokes, a greater proportion of errors existed due to 237 

misclassification rather than being undetected. Further, this pattern also existed for forehand 238 

slices however, forehand volley strokes were more likely to be undetected by the wearable’s 239 

algorithm. Additionally, strokes categorised as a “smash” are presented in Table 4 and reveals 240 

a lower error rate when smash strokes are classified as “other strokes” versus being classified 241 

as a serve (percent correct=62% vs. 26%, respectively). 242 

 243 

***TABLE 4 NEAR HERE*** 244 

 245 

For specific types of backhand strokes, the “drive” category had the lowest error rate (14% 246 

error) compared to all other backhand strokes categories. Backhand slice and end-range strokes 247 

respectively contributed the next highest proportions to the overall backhand stroke/swing 248 

count, with both sub-types revealing errors to be predominantly a result of algorithm 249 

misclassification versus being undetected (49% and 56% error, respectively). Similar to 250 

forehand strokes, backhand volleys and “dig” actions were not accurately classified by the 251 

algorithm (60% and 50% error, respectively).  252 

 253 

***TABLE 5 NEAR HERE*** 254 

 255 

Discussion 256 

This study is the first attempt to validate the accuracy of a prototype algorithm from a wearable 257 

device to detect stroke events in tennis. The present results indicate that total strokes from the 258 
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wearable sensor show acceptable accuracy for general stroke classification and count during 259 

tennis match-play, albeit with caution for more specific stroke classifications. In particular, 260 

strokes with more pronounced trunk rotation, such as the forehand (Landlinger et al. 2010) and 261 

backhand drive (Reid & Elliot 2002) and serves (Abrams et al. 2011) show acceptable accuracy 262 

in stroke count. However, stroke events such as volleys, end-range and slices experienced 263 

higher error rates resulting from non-detection or misclassification, and likely due to the 264 

prototype algorithm not being specifically trained to detect these specific stroke patterns. These 265 

findings support our hypotheses and demonstrates the usefulness of current technology to 266 

quantify high-load actions such as serving. Future enhancements to accurately identify stroke 267 

events with increased lower-limb dominance and reduced trunk rotation intensity (i.e., end-268 

range) would provide further insights for load management strategies in tennis. 269 

 270 

Accurate technology to detect tennis stroke type and counts in tennis can guide both training 271 

prescription and match preparation (Shanley & Myers 2019). The results of the present study 272 

indicate no differences in total stroke volume at the match level, which can be interpreted as a 273 

strength of the investigated technology. Tennis match-play is typified by the exchange of 274 

forehand and backhand drive or “rally” strokes, which contribute 73% of total strokes 275 

(Whiteside & Reid 2017); though training often emphasises higher volumes of forehand strokes 276 

and separate identification of these events is required (Genevois et al. 2018). Nevertheless, 277 

these strokes are characterised by distinct kinematic (axial rotation) profiles (Reid & Elliot 278 

2002; Reid, Elliott & Crespo 2013), which may help to explain this sensor’s accuracy in 279 

detecting these more frequent aspects of tennis stroke play. Accordingly, implementing this 280 

wearable technology in tennis training environments could improve understanding of the 281 

mechanical stresses imposed from repeated forehand and backhand groundstrokes (Johansson 282 

et al. 2021).  283 
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 284 

The underestimation of shadow swings suggests that ball impact somehow plays an important 285 

role in event detection. Previous work on wrist-worn sensors has identified that ‘swing-type’ 286 

movements of the arm can be captured in the absence of impact (Hadzic, Germic & Filipcic 287 

2021), which may suggest wearing the device on the torso is a limitation in itself rather that 288 

resulting from the algorithm. The practical implications of this finding are questionable though, 289 

as recent load management practices have not considered “shadow” technical actions in their 290 

reporting. Further, this may be seen as a positive from the algorithm’s perspective given the 291 

prototype was not designed to detect these events but rather quantify the load associated with 292 

these movement patterns. 293 

 294 

The application of a prototype algorithm from wearable sensor data showed no differences in 295 

serve count compared to manual coding. The accuracy of serve detection (≥98%) compares 296 

favourably with similar notation using wrist and racquet-mounted sensors (Kos et al. 2016; 297 

Yang et al. 2017). This is a notable practical application for tennis given the relevance of the 298 

serve to match-play success (Kolman et al. 2019) and trunk and upper-limb injury rehabilitation 299 

(Campbell et al. 2014; Sombelon et al. 2017). Hence, coaches and support staff can be 300 

confident in using this technology to monitor serve loads for tennis. This is especially relevant 301 

given that chronic upper limb and trunk injuries are often linked to the serve, which likely 302 

results from inappropriate overload (Pluim et al. 2006). Interestingly, the detection of 303 

“smashes” was comparatively poor and likely explained by the less predictable nature of stroke 304 

mechanics during match-play. Despite the low contribution of smashes to overall stroke 305 

volumes in tennis matches (Whiteside & Reid 2017), the imposed load resulting from overhead 306 

strokes (i.e., serve and smash) can have a negative impact on shoulder joint health if not 307 
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managed appropriately (Kekelekis et al. 2020) and thus, total overhead load may be 308 

underestimated from the wearable device. 309 

 310 

Forehand and backhand strokes classified as “drives” showed the highest detection accuracy 311 

across respective forehand and backhand strokes. This finding is unsurprising given their 312 

respective consistency in the direction and magnitude of trunk rotation (Landlinger et al. 2010; 313 

Reid & Elliot 2002). Therefore, the present algorithm appears well suited to detecting these 314 

stroke types and provides a suitable alternative to wrist-mounted sensors, which also produce 315 

high detection accuracies for forehand and backhand drives (Myers et al. 2019; Whiteside et 316 

al. 2017). However, the detection accuracy of the algorithm deteriorated for other strokes (i.e., 317 

volleys, slices) that have reduced or more variable magnitudes and intensities of trunk rotation 318 

(Chow, Carlton, Chae, et al. 1999; Chow, Carlton, Lim, et al. 1999) and presumably affects the 319 

distinctiveness of their kinematic signatures. Previous research has identified that although 320 

trunk rotation is involved in the execution of forehand volleys, the resultant force patterning is 321 

subject to considerable variability as a result of movement at the racquet arm (Crespo 1999; 322 

Roetert & Groppel 2001). This movement variability may complicate the precision and 323 

reliability of the algorithm’s detection of volleys, while the placement of the sensor (between 324 

scapulae) may be suboptimal for strokes characterised by lower magnitudes of trunk rotation. 325 

From a training load monitoring perspective, unregistered volleys are likely to have limited 326 

impact on training load decisions given they contribute 1% of total strokes in elite-level tennis 327 

(Whiteside & Reid 2017). 328 

 329 

The hypothesis that detection accuracy for low-intensity strokes (ie. low swing velocity or 330 

trunk rotation) would be comparatively poor was further supported when evaluating the 331 

sensor’s ability to detect “end-range” strokes. End-range shots represent an integrated load 332 
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profile in tennis given they are played under considerable time-pressure and, generally, after 333 

the player has moved at high-speed (Pieper, Exler & Weber 2007). From this perspective, these 334 

strokes are especially relevant for load monitoring and management in tennis, though were not 335 

detected by the algorithm given the low-level of torso rotation. End-range shots have high 336 

mechanical stresses at the lower limb concomitant with the load imposed on upper limb 337 

structures to execute the hitting action (Giles & Reid 2021). The fact that end-range shots are 338 

often characterised by alterations in upper limb involvement, likely manifesting as increased 339 

variability of accompanying trunk rotation may suggest an area for enhancement of the 340 

prototype algorithm given its current focus on recognising distinct “drive” groundstroke 341 

patterns and serving actions. 342 

 343 

Limitations 344 

Whilst this study is novel in that no previous literature has investigated the validity of applying 345 

this prototype event detection algorithm to trunk-mounted wearable sensor data in tennis, the 346 

study is limited by the homogenous sample of players (i.e., male, right-handed and double-347 

handed backhand). Indeed, the prototype algorithm was developed on data from elite senior 348 

males and may not be specific to the developing stroke patterns of junior players. Further, the 349 

stroke categories presented in Table 1 may be seen as a possible limitation given the subjective 350 

nature of such classifications; however, these were devised through discussion with tennis 351 

coaches holding the highest level of qualification in Australia for longer than 10 years in 352 

combination with previous expert reports (Crespo & Miley 1998). These descriptions are more 353 

detailed than the prototype algorithm and is acknowledged as a limitation of our methods. 354 

Additionally, assessing coder reliability from one match and for one coder conforms with 355 

previous methods (Gastin et al. 2014), though may be viewed as a potential limitation. The 356 

approach to classifying “shadow” swings may also be considered as a limitation given 357 
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difficulties in developing algorithms to detect actions mimicking detectable events. Lastly, the 358 

confidentiality of the proporiety algorithm did not allow for alterations of timing windows or 359 

specific signal detection for assessing possible modifications to the current device. 360 

 361 

Conclusions 362 

This study aimed to validate the tennis stroke event detection accuracy of a prototype algorithm 363 

developed from a trunk-mounted wearable sensor. Overall stroke events in match-play are 364 

accurately detected from the sensor, though inaccuracies can result through misclassification 365 

or non-detection of volleys, slices, and end-range strokes, which contribute the total of 366 

forehand and backhand strokes. Highest accuracies for specific stroke classifications were 367 

observed for serves, suggesting support staff can confidently monitor serve loads from the 368 

present device. Future enhancements toward the detection of stroke events with limited trunk 369 

movement (i.e., volleys, slices) and those occurring at high movement speeds (i.e., end-range) 370 

would provide greater insights into understanding the mechanical demands of stroke play. 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 
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Table 1. Manually coded stroke definitions 508 

Stroke Type Definition 

Drive 

A typical ‘topspin’ or ‘flat’ forehand or backhand stroke. Also included 

‘offensive’ lobs. 

End-Range 

A forehand or backhand stroke, typically played with the racquet arm at 

full stretch and in a wide position of the court.  

Volley 

A forehand or backhand stroke played ‘on-the-full’ with no bounce prior to 

the stroke. 

Drop shot 

A disguised forehand stroke that is played with the aim of the ball 

dropping short into the opposing player’s side of the court. 

Block 

A forehand or backhand stroke often played by the returner in response to 

a fast serve. 

Slice 

A forehand or backhand stroke played where the racquet’s forward-swing 

trajectory imparts backspin to the ball.  

Dig 

Strokes played with limited forward-swing and often are more vertical 

with a low to high ‘redirect’ trajectory 

Shadow Any stroke pattern played in absence of a ball being contacted. 

(Crespo & Miley 1998)509 
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Table 2. Mean ± SD of strokes and shadow swings captured per match from Catapult algorithms versus manually coded strokes and shadow 510 
swings in match play 511 

Stroke Type Catapult Coded p 
Bias 

(Mean ± SD) 

Bias 

(95% CI) 

Total strokes (n/match) 431 ± 219 464 ± 231 0.562 -67.80 ± 35.96 -93.52 to -42.08 

Forehand strokes (n/match) 172 ± 114 192 ± 119 0.655 -18.70 ± 27.79 -38.58 to 1.18 

Backhand strokes (n/match) 128 ± 64 169 ± 84 0.073 -45.10 ± 22.26 -61.03 to -29.17 

Serves/Overhead strokes (n/match) 93 ± 43 92 ± 42 0.780 -4.00 ± 4.24 -7.04 to -0.96 

Other strokes (n/match) 39 ± 22** 11 ± 8 0.0001 30.70 ± 17.13 18.45 to 42.95 

      

Total shadow swings (n/match) 10 ± 7 15 ± 9 0.451 -3.10 ± 4.07 -6.01 to -0.19 

Forehand shadow swings (n/match) 0 ± 1* 5 ± 4 0.001 -6.10 ± 4.41 -9.25 to -2.95 

Backhand shadow swings (n/match) 1 ± 1* 8 ± 6 0.002 -5.80 ± 4.61 -9.10 to -2.50 

Serve/Overhead shadow swings (n/match) 0 ± 0 0 ± 0 N/A N/A N/A 

Other shadow swings (n/match) 8 ± 7* 0 ± 1 0.002 8.80 ± 7.90 3.15 to 14.45 

*significantly different from manually coded strokes (p<0.01) 512 
**significantly different from manually coded strokes (p<0.001) 513 
 514 
 515 
 516 
 517 
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Table 3. Total count of Catapult versus manually coded swing patterns 518 

Stroke Type Coded Catapult 
Correctly 

Classified 
Incorrectly Classified 

%Error 

[Correctly Classified / 

Catapult] *100 

Total strokes/swings (n) 5349 5119 4123 996 19% 

Total strokes/swings (n) – 

Contact made (n) 
5175 5016 4123 893 18% 

Total strokes/swings -  

No contact made (n) 
174 103 14 89 86% 

Forehand swings (n) 2220 2002 1755 247 11% 

Forehand swings -  

Contact made (n) 
2155 1914 1751 163 9% 

Forehand swings - 

No contact made (n) 
65 4 4 0 0% 

Backhand swings (n) 1994 1485 1358 127 6% 

Backhand swings -  

Contact made (n) 
1889 1417 1351 66 5% 

Backhand swings - 

No contact made (n) 
105 7 7 0 0% 

Serves swings (n) 1015 1027 1005 22 2% 

Serves swings -  

Contact made (n) 
1015 1020 1005 15 1% 

Serve swings - 

No contact made (n) 
0 0 0 0 0% 

Other swings (n) 120 605 100 505 83% 

Other swings -  

Contact made (n) 
119 444 102 342 77% 

Other swings - 

No contact made (n) 
92 4 3 1 25% 

519 



 24 

Table 4. Manually coded forehand stroke classifications that were misclassified/not detected by Catapult algorithms 
 

 

Stroke Type 

True Events 

(n) 

Correctly Identified by Catapult (n) 

[%total] 

Total Errors (n) 

[%total] 

Undetected by Catapult (n) 

[%total] 

Misclassified by Catapult (n) 

[%total] 

Forehand drive (n) 

 

1743 1640 

[94%] 

 

102 

[6%] 

25 

[1%] 

77 

[4%] 

Forehand slice (n) 73 16 

[22%] 

 

57 

[78%] 

20 

[27%] 

37 

[51%] 

Forehand volley (n) 72 4 

[7%] 

 

67 

[93%] 

42 

[58%] 

25 

[35%] 

Forehand end range (n) 223 82 

[27%] 

 

141 

[63%] 

53 

[24%] 

88 

[39%] 

Forehand drop shot (n) 2 0 

[0%] 

 

2 

[100%] 

1 

[50%] 

1 

[50%] 

Forehand block (n) 5 1 

[20%] 

 

4 

[80%] 

2 

[40%] 

2 

[40%] 

Forehand dig (n) 3 0 

[0%] 

 

3 

[100%] 

2 

[67%] 

1 

[33%] 

Forehand shadow swing 

(n) 

55 3 

[5%] 

 

52 

[95%] 

23 

[42%] 

29 

[53%] 

Smash (n) 

Coded as “Other stroke” 

 53 33 

[62%] 

20 

[38%] 

 4 

[1%] 

 15 

[28%] 

 

Smash (n) 

Coded as “Serve” 

 53 14 

[26%] 

39 

[74%] 

 4 

[1%] 

 35 

[66%] 

 

 
 



 25 

Table 5. Manually coded backhand stroke classifications that were misclassified/not detected by Catapult algorithms 

 

Stroke Type 

True 

Events 

(n) 

Correctly Identified by Catapult (n) 

[%total] 

 

Total Errors (n) 

[%total] 

Undetected by Catapult (n) 

[%total] 

Misclassified by Catapult (n) 

[%total] 

Backhand drive (n) 1438 1235 

[86%] 

 

197 

[14%] 

23 

[2%] 

174 

[12%] 

Backhand slice (n) 214 74 

[35%] 

 

139 

[65%] 

34 

[16%] 

105 

[49%] 

Backhand volley (n) 65 3 

[5%] 

 

62 

[95%] 

39 

[60%] 

23 

[35%] 

Backhand end range (n) 145 31 

[19%] 

 

117 

[81%] 

36 

[25%] 

81 

[56%] 

Backhand block (n) 6 0 

[0%] 

 

6 

[100%] 

1 

[17%] 

5 

[83%] 

Backhand dig (n) 6 1 

[17%] 

 

5 

[83%] 

 

3 

[50%] 

2 

[33%] 

Backhand shadow swing (n) 91 7 

[9%] 

 

83 

[91%] 

29 

[32%] 

54 

[59%] 

 
 


