
On the complexity of trial and error for
constraint satisfaction problems

Gábor Ivanyos1, Raghav Kulkarni2, Youming Qiao24, Miklos Santha23, and
Aarthi Sundaram2

1 Institute for Computer Science and Control, Hungarian Academy of Sciences,
Budapest, Hungary Gabor.Ivanyos@sztaki.mta.hu

2 Centre for Quantum Technologies, National University of Singapore
kulraghav@gmail.com, aarthims@nus.edu.sg

3 LIAFA, Univ. Paris 7, CNRS, 75205 Paris, France
miklos.santha@liafa.univ-paris-diderot.fr

4 Centre for Quantum Computation and Intelligent Systems
University of Technology, Sydney jimmyqiao86@gmail.com

Abstract. In a recent work of Bei, Chen and Zhang (STOC 2013), a
trial and error model of computing was introduced, and applied to some
constraint satisfaction problems. In this model the input is hidden by an
oracle which, for a candidate assignment, reveals some information about
a violated constraint if the assignment is not satisfying. In this paper we
initiate a systematic study of constraint satisfaction problems in the trial
and error model. To achieve this, we first adopt a formal framework for
CSPs, and based on this framework we define several types of revealing
oracles. Our main contribution is to develop a transfer theorem for each
type of the revealing oracle, under a broad class of parameters. To any
hidden CSP with a specific type of revealing oracle, the transfer theorem
associates another, potentially harder CSP in the normal setting, such
that their complexities are polynomial time equivalent. This in princi-
ple transfers the study of a large class of hidden CSPs, possibly with a
promise on the instances, to the study of CSPs in the normal setting. We
then apply the transfer theorems to get polynomial-time algorithms or
hardness results for hidden CSPs, including satisfaction problems, mono-
tone graph properties, isomorphism problems, and the exact version of
the Unique Games problem.

1 Introduction

In [2], Bei, Chen and Zhang proposed a trial and error model to study algorith-
mic problems when some input information is lacking. As argued in their paper,
the lack of input information can happen when we have only limited knowledge of
and access to the problem. They also described several realistic scenarios where
the inputs are actually unknown. Then, they formalized this methodology in
the complexity-theoretic setting, and proposed a trial and error model for con-
straint satisfaction problems. They further applied this idea to investigate the

information needed to solve linear programming in [3], and to study information
diffusion in a social network in [1].

As mentioned, in [2] the authors focused on the hidden versions of some
specific constraint satisfaction problems (H–CSPs), whose instances could only
be accessed via a revealing oracle. An algorithm in this setting interacts with
this revealing oracle to get information about the input instance. Each time,
the algorithm proposes a candidate solution, a trial, and the validity of this
trial is checked by the oracle. If the trial succeeds, the algorithm is notified
that the proposed trial is already a solution. Otherwise, the algorithm obtains
as an error, a violation of some property corresponding to the instance. The
algorithm aims to make effective use of these errors to propose new trials. The
optimal algorithm minimizes the number of trials while keeping in mind the
cost for proposing new trials. When the CSP is already difficult, a computation
oracle that solves the original problem might be allowed. Its use is justified as
we are interested in the extra difficulty caused by the lack of information. Bei,
Chen and Zhang considered several natural CSPs in the trial and error setting,
including SAT, Stable Matching, Graph Isomorphism and Group Isomorphism.
While the former two problems in the hidden setting are shown to be of the same
difficulty as in the normal one, the last two cases have substantially increased
complexities in the unknown-input model. They also studied more problems, as
well as various aspects of this model, like the query complexity.

In this paper, following [2], we initiate a systematic study of the constraint
satisfaction problems in the trial and error model. To achieve this, we first adopt
a formal framework for CSPs. Based on this framework we define three types
of revealing oracles to generalize the model of [2]. Our main contribution is to
develop a transfer theorem for each type of the revealing oracle, under a broad
class of parameters. For any hidden CSP with a specific type of revealing oracle,
the transfer theorem associates another CSP in the normal (unhidden) setting,
such that their difficulties are roughly the same. This in principle transfers the
study of hidden CSPs to the study of CSPs in the normal setting. We also apply
transfer theorems to get results for concrete CSPs, including some problems
considered in [2], for which we usually get much shorter and easier proofs.

The framework for CSPs, and hidden CSPs. To state our results we describe
informally the framework of CSPs. A CSP S is defined by a finite alphabet
JwK = {0, 1, . . . , w − 1} and by R = {R1, . . . , Rs}, a set of relations over JwK
of some fixed arity q. For a set of variables V = {x1, . . . , x`}, an instance of S
is a set of constraints C = {C1, . . . , Cm}, where Cj = R(xj1 , . . . , xjq) for some
relation R ∈ R and some q-tuple of variables. An assignment a ∈ JwK` satisfies
C if it satisfies every constraint in it.

Example 1. 1SAT: Here w = 2, q = 1, and R = {Id,Neg}, where Id = {1} is
the identity relation, and Neg = {0} is its complement. Thus a constraint is a
literal xi or x̄i, and an instance is just a collection of literals. In case of 3SAT the
parameters are w = 2, q = 3 and |R| = 8. We will keep for further illustrations
1SAT which is a problem in polynomial time. 3SAT would be a less illustrative

example since the standard problem is already NP-complete. We omit 2SAT as
its hardness is implied from that of 1SAT.

To allow for more versatility, we often consider some promise W ⊆ JwK` on
the assignments, and only look for a satisfying assignment within this promise.
This case happens, say when we look for permutations in isomorphism problems.

Recall that in the hidden setting, the algorithm interacts with some revealing
oracle by repeatedly proposing assignments. If the proposed assignment is not
satisfying then the revealing oracle discloses certain information about some
violated constraint. This can be in principle an index of such a constraint, (the
index of) the relation in it, the indices of the variables where this relation is
applied, or any subset of the above. Here we will require that the oracle always
reveals the index of a violated constraint from C. To characterize the choices for
the additional information, for any subset U ⊆ {R,V} we say that an oracle is
U-revealing if it also gives out the information corresponding to U . For a CSP
problem S we use H–SU to denote the corresponding hidden problem in the trial
and error model with U-revealing oracle.

Example 1 continued. Let us suppose that we present an assignment a ∈ {0, 1}`
for an instance of the hidden version H–1SATU of 1SAT to the U-revealing oracle.
If U = {V} and the oracle reveals j and i respectively for the violated constraint
and the variable in it then we learn that the jth literal is xi if ai = 0, and x̄i
otherwise. If U = {R} and say the oracle reveals j and Id then we learn that
the jth literal is positive. If U = ∅ and the oracle reveals j then we only learn
that the jth literal is either a positive literal corresponding to one of the indices
where a is 0, or a negative literal corresponding to an index where a is 1.

In order to explain the transfer theorem and motivate the operations which
create richer CSPs, we first make a simple observation that H–S{R,V} and S are
polynomial time equivalent, when the relations of S are in P (note that the latter
does not necessarily imply that S is in P). Indeed, an algorithm for H–S{R,V}
can solve S, as the answers of the oracle can be given by directly checking if the
proposed assignment is satisfying. In the other direction, we repeatedly submit
assignments to the oracle. The answer of the oracle fully reveals a (violated)
constraint. Given some subset of constraints we already know, to find a new
constraint, we submit an assignment which satisfies all the known constraints.
Such an assignment can be found by the algorithm for S.

With a weaker oracle this procedure clearly does not work and to compensate,
we need stronger CSPs. In the case of {V}-revealing oracles an answer helps us
include as possibilities for the specified clause, all those relations which were
violated at the specified indices of the proposed assignment, and remove all
the relations which were satisfied at those indices. Therefore, to find out more
information about the input, we would like to find a satisfying assignment for a
CSP instance whose corresponding constraint is the union of all its possibilities.
This naturally brings us to consider the CSP

⋃
S, the closure by union of S whose

relations are from
⋃
R, the closure by union of R, which contains relations by

taking union over any subset of R.

The situation with the {R}-revealing oracle is analogous, but here we have
to compensate, in the stronger CSP, for the lack of revealed information about
the variable indices. For a relation R and q-tuple of distinct indices (j1, . . . , jq),
we define the `-ary relation R(j1,...,jq) = {a ∈ W : (aj1 , . . . , ajq) ∈ R}, and

for a set I of q-tuples of indices, we set RI =
⋃

(j1,...,jq)∈I R
(j1,...,jq). The arity

extension of S is the constraint satisfaction problem E–S whose relations are
from arity extension E–R =

⋃
I{RI : R ∈ R} of R.

The transfer theorem first says that with
⋃
S (resp. E–S) we can compensate

the information hidden by a {V}-revealing (resp. {R}-revealing) oracle, that is
we can solve H–S{V} (resp. H–S{R}). In fact, with

⋃
E–S we can solve H–S∅.

Moreover, perhaps more surprisingly, it says that these statements also hold in
the reverse direction: if we can solve the hidden CSP, we can also solve the
corresponding extended CSP.

Transfer Theorem. (informal statement) Let S be a CSP whose parameters
are “reasonable” and whose relations are in P. Then for any promise W on
the assignments, the complexities of the following problems are polynomial time
equivalent: (a) H–S{V} and

⋃
S, (b) H–S{R} and E–S, (c) H–S∅ and

⋃
E–S.

The precise dependence on the parameters can be found in the theorems of
Section 3 and Corollary 1 highlights the conditions for polynomial equivalence.

Example 1 continued. Since
⋃
{Id,Neg} = {∅, Id,Neg, {0, 1}},

⋃
1SAT has only

the two trivial (always false or always true) relations in addition to the relations
in 1SAT. Therefore it can be solved in polynomial time, and by the the Transfer
Theorem H–1SAT{V} is also in P. On the other hand, for any index set I ⊆ [`],

IdI is a disjunct of positive literals with variables from I, and similarly NegI

is a disjunct of negative literals with variables from I. Thus E–1SAT includes
MONSAT, which consists of those instances of SAT where in each clause either
every variable is positive, or every variable is negated. The problem MONSAT is
NP-hard by Schaefer’s characterization [6], and therefore the Transfer Theorem
implies that H–1SAT{R} and H–1SAT∅ are also NP-hard.

In a further generalization, we will also consider CSPs and H–CSPs whose
instances satisfy some property. One such property can be repetition freeness
meaning that the constraints of an instance are pairwise distinct. The promise
H–CSPs could also be a suitable framework for discussing certain graph problems
on special classes of graphs. For a promise PROM on instances of S we denote by
SPROM the promise problem whose instances are instances of S satisfying PROM.
The problem H–SPROM

{U} is defined in an analogous way from H–S{U}.

It turns out that we can generalize the Transfer Theorem for CSPs with
promises on the instances. We describe this in broad lines for the case of {V}-
revealing oracles. Given a promise PROM on S, the corresponding promise⋃

PROM for
⋃
S is defined in a natural way. We say that a

⋃
S-instance C′

includes an S-instance C if for every j ∈ [m], the constraint C ′j in C′ and the
constraint Cj in C are defined on the same variables, and seen as relations,
Cj ⊆ C ′j . Then

⋃
PROM is the set of instances C′ of

⋃
S which include some

C ∈ PROM. The concept of an algorithm solving
⋃

S
⋃

PROM has to be relaxed:

while we search for a satisfying assignment for those instances which include a
satisfiable instance of PROM, when this is not the case, the algorithm can abort
even if the instance is satisfiable. With this we have:

Transfer Theorem for promise problems. (informal statement) Let S be
a constraint satisfaction problem with promise PROM. Then the complexities of
H–SPROM

{V} and
⋃
S
⋃

PROM are polynomial time equivalent when the parameters
are “reasonable” and the relations of S are in P.

Example 1 continued. Let RF denote the property of being repetition free, in the
case of 1SAT this just means that no literal can appear twice in the formula.
Then H–1SATRF

∅ , hidden repetition-free 1SAT with ∅-revealing oracle, is solved
in polynomial time. To see this we first consider X–1SAT, the constraint satisfac-
tion problem whose relations are all `-ary extensions of Id and Neg. (See Section 2
for a formal definition.) It is quite easy to see that hidden 1SAT with ∅-revealing
oracle is essentially the same problem as hidden X–1SAT with {V}-revealing ora-
cle. Therefore, by the Transfer Theorem we are concerned with

⋃
X–1SAT with

promise
⋃
RF. The instances satisfying the promise are {C1, . . . , Cm}, where

Cj is a disjunction of literals such that there exist distinct literals z1, . . . , zm,
with zj ∈ Cj . It turns out that these specific instances of SAT can be solved in
polynomial time. The basic idea is that we can apply a maximum matching algo-
rithm, and only output a solution if we can select m pairwise different variables
xi1 , . . . , xim such that either xij or xij is in Cj .

Applications of transfer theorems. Since NP-hard problems obviously re-
main NP-hard in the hidden setting (without access to an NP oracle), we inves-
tigate the complexity of various polynomial-time solvable CSPs. We first apply
the Transfer Theorem when there is no promise on the instances. We categorize
the hidden CSPs depending on the type of the revealing oracle.

With constraint index revealing oracles, we focus on various monotone graph
properties like Spanning Tree, Cycle Cover, etc. We define a general framework
to represent monotone graph property problems as H–CSPs and show that they
become NP-hard. This framework also naturally extends to directed graphs.

With constraint and variable index revealing oracles, we obtain results on
several interesting families of CSPs including the exact-Unique Games Problem
(cf. Section 5), equality to a member of a fixed class of graphs, and graph proper-
ties discussed as above. Interestingly, many of the graph properties mentioned in
the last paragraph are no longer NP-hard but in P, as well as some other CSPs
like 2SAT and the exact-Unique Game problem on alphabet size 2. Still, there
are some NP-hard CSPs, like the exact-Unique Game problem on alphabet size
≥ 3, and equality to some specific graph, such as k-cliques. The latter problem
is just the Graph Isomorphism problem considered in [2, Theorem 13], whose
proof, with the help of the Transfer Theorem, becomes very simple.

With constraint and relation index revealing oracles, we show a dichotomy
theorem similar to results obtained in [4, 5] for any CSP with constant arity and
alphabet size: if some string of the form (α, . . . , α) satisfies all the non-empty
relations then the problem is in P, otherwise it is NP-hard.

Finally, we investigate hidden CSPs with promises on the instances. We first
consider the repetition freeness promise, as exhibited by the 1SAT example as
above. Though the hidden repetition free 1SAT problem becomes solvable in
polynomial time, in this setting 2SAT is still NP-hard. The group isomorphism
problem can also be cast in this framework, and we give a simplified proof of [2,
Theorem 11]: to compute an explicit isomorphism of the hidden group with Zp
is NP-hard.

Organization. In Section 2 we formally describe the model of CSPs, and hidden
CSPs. In Section 3, the transfer theorems are stated and proved. Section 4, 5,
and 6 contain the applications of the main theorems in the case of ∅-revealing,
{V}-revealing and {R}-revealing oracles respectively. Finally in Section 7 we
present the results for hidden promise CSPs. Most proofs are omitted from this
version of the paper due to space constraints.

2 Preliminaries

The model of constraint satisfaction problems. For a positive integer k, let
[k] denote the set {1, . . . , k}. (Recall that JkK = {0, 1, . . . , k − 1}.) A constraint
satisfaction problem, (CSP) S, is specified by its set of parameters and its type,
both defined for every positive integer n.

The parameters are the alphabet size w(n), the assignment length `(n), the
set of (admissible) assignments W (n) ⊆ Jw(n)K`(n), the arity q(n), and the num-
ber of relations s(n). We suppose that W (n) is symmetric, that is for ∀π ∈ S`(n),
if a1 . . . a`(n) ∈ W (n) then aπ(1) . . . aπ(`(n)) ∈ W (n). To simplify notations, we
often omit n from the parameters, and just write w, `,W, q and s.

We denote by Wq the projection of W to q coordinates, i.e. Wq = {u ∈
JwKq : uv ∈ W for some v ∈ JwK`−q}. A q-ary relation is R ⊆ Wq. For b in
Wq, if b ∈ R, we sometimes write R(b) = T, and similarly for b 6∈ R we write
R(b) = F. The type of S is a set of q-ary relations Rn = {R1, . . . , Rs}, where
Rk ⊆Wq, for every k ∈ [s]. As for the parameters, we usually just write R.

We set [`](q) = {(j1, . . . , jq) ∈ [`]q : |{j1, . . . , jq}| = q}, that is [`](q) denotes
the set of distinct q-tuples from [`]. An instance of S is given by a set of m (m may
depend on n) constraints C = {C1, . . . , Cm} over a set V = {x1, . . . , x`} of vari-
ables, where a constraint is Rk(xj1 , . . . , xjq) for some k ∈ [s] and (j1, . . . , jq) ∈
[`](q). We say that an assignment a ∈ W satisfies Cj = Rk(xj1 , . . . , xjq) if
Rk(aj1 , . . . , ajq) = T. An assignment satisfies C if it satisfies all its constraints.
The size of an instance is n + m(log s + q log `) + ` logw which includes the
length of the description of C and the length of the assignments. In all our appli-
cations the instance size will be polynomial in n. A solution of C is a satisfying
assignment if there exists any, and no otherwise.

We further introduce the following notations. For a relation R let comp(R)
be the time complexity of deciding the membership of a tuple in R, and for a
set of relations R let comp(R) be maxR∈R comp(R). We denote by dim(R) the
dimension of R which is defined as the length of the longest chain of relations
(for inclusion) in R.

We also introduce two new operations which create richer sets of relations
from a relation set. For a given CSP S, these richer sets of relations derived from
the type of S, will be the types of harder CSPs which turn out to be equivalent to
various hidden variants of S. The first operation is standard. We denote by

⋃
R

the closure of R by the union operation, that is
⋃
R = {

⋃
R∈R′ R : R′ ⊆ R}.

We define the (closure by) union of S as the constraint satisfaction problem
⋃
S

whose parameters are the same as those of S except the number of relations
which is at most 2s, and whose type is

⋃
R. We remark that dim(

⋃
R) ≤

min{|R|, |Wq|}.
For a relation R ∈ R and for (j1, . . . , jq) ∈ [`](q) we define the `-ary relation

R(j1,...,jq) = {a ∈ W : (aj1 , . . . , ajq) ∈ R}, and X–R = {R(j1,...,jq) : R ∈
R and (j1, . . . , jq) ∈ [`](q)}. The set X–R contains the natural extension of
relations in R from arbitrary coordinates. If we want to consider unions of
the same relation from arbitrary coordinates, then for I ⊆ [`](q), we set RI =⋃

(j1,...,jq)∈I R
(j1,...,jq), and define the arity extension ofR, as E–R=

⋃
R∈R{RI :

I ⊆ [`](q)}. Observe that E–R ⊆
⋃

X–R =
⋃

E–R. The arity extension of S is
the constraint satisfaction problem E–S whose parameters are the same as those
of S except for the arity which becomes `, and the number of relations which
becomes at most s `!

(`−q)! . The type of E–S is E–R. The problem X–S is defined

similarly, but with type X–R.

Hidden CSP in the trial and error model. Suppose that we want to solve a
CSP problem S whose parameters and type are known to us, but for the instance
C, we are explicitly given only n and the number of constraints m. The instance
is otherwise specified by a revealing oracle V for C which can be used by an
algorithm to receive information about the constraints in C. The algorithm can
propose a ∈ W to the oracle which is conceived as its guess for a satisfying
assignment. If a indeed satisfies C then V answers yes. Otherwise there exists
some violated constraint Cj = Rk(xj1 , . . . , xjq), and the oracle has to reveal some
information about that. We will require that the oracle always reveals j, the index
of the constraint Cj in C, but in addition, it can also make further disclosures.
These can be k, the index of the relation Rk in R; (j1, . . . , jq), the q-tuple of
indices of the ordered variables xj1 , . . . , xjq in V; or both of these. To characterize
the choices for the additional information, for any subset U ⊆ {R,V}, we require
that a U-revealing oracle VU give out the information corresponding to {C}

⋃
U ⊆

{C,R,V}. Thus for example a ∅-revealing oracle V∅ reveals the index j of some
violated constraint but nothing else, whereas a V-revealing oracle V{V} also
reveals the indices (j1, . . . , jq) of the variables of the relation in the clause Cj ,
but not the name of the relation.

Analogously, for every CSP S, and for every U ⊆ {R,V}, we define the
hidden constraint satisfaction problem (H–CSP) with U-revealing oracle H–SU
whose parameters and type are those of S, but whose instances are specified by
a U-revealing oracle. An algorithm solves the problem H–SU if for all n,m, for
every instance C for S, specified by any U-revealing oracle for C, it outputs a
satisfying assignment if there exists any, and no otherwise. The complexity of

an algorithm for H–SU is the number of steps in the worst case over all inputs
and all U-revealing oracles, where a query to the oracle is counted as one step.

3 Transfer Theorems for Hidden CSPs

In this section we precisely state our transfer theorems between H–CSPs and
CSPs with extended types. We will only give the proof for the case of the {V}-
revealing oracle below owing to space constraints.

Theorem 1. (a) If
⋃
S is solvable in time T then H–S{V} is solvable in time

O((T + s× comp(R))×m×dim(
⋃
R). (b) If H–S{V} is solvable in time T then⋃

S is solvable in time O(T ×m× comp(
⋃
R)).

Theorem 2. (a) If E–S is solvable in time T then H–S{R} is solvable in time

O((T + |[`](q)| × comp(R)) ×m × |[`](q)|). (b) If H–S{R} is solvable in time T
then E–S is solvable in time O(T ×m× comp(E–R)).

Theorem 3. (a) If
⋃
E–S is solvable in time T then H–S∅ is solvable in time

O((T + s × |[`](q)| × comp(R)) ×m × dim(
⋃

E–R)). (b) If H–S∅ is solvable in
time T then

⋃
E–S is solvable in time O(T ×m× comp(

⋃
E–R)).

Proof of Theorem 1. We first prove (a). Let A be an algorithm which solves⋃
S in time T . We define an algorithm B for H–S{V}. The algorithm will re-

peatedly call A, until it finds a satisfying assignment or reaches the conclu-
sion no. The instance Ct = {Ct1, . . . , Ctm} of the tth call is defined as Ctj =⋃
R∈R:R∩At

j=∅
R(xjt1 , . . . , xjtq) where Atj ⊆ Wq and (jt1, . . . , j

t
q) ∈ [`](q), for j ∈

[m], are determined successively by B. Initially A1
j = ∅ and (j11 , . . . , j

1
q) is arbi-

trary. If the output of A for Ct is no then B outputs no. If the output of A for Ct
is a ∈W then B submits a to the {V}-revealing oracle V. If V answers yes then B
outputs a. If the oracle does not find a satisfying, and reveals j and (j1, . . . , jq)
about the violated constraint, then B does not change Ati and (i11, . . . , i

1
q) for

i 6= j, but sets At+1
j = Atj

⋃
{(aj1 , . . . , ajq)}, and (jt+1

1 , . . . , jt+1
q) = (j1, . . . , jq).

Observe that the q-tuple for the jth constraint is changed at most once, the first
time when the revealing oracle gives the index of the jth constraint.

To prove that the algorithm correctly solves H–S{V}, let C = {C1, . . . , Cm}
be an instance of S and let V be any {V}-revealing oracle for C. We have to show
that if B answers no then C is unsatisfiable. If B answers no, then for some
t, the tth call of A resulted in output no. By construction Atj and (jt1, . . . , j

t
q),

for every j ∈ [m], are such that if R ∩ Atj 6= ∅ then Cj can’t be R(xj1 , . . . , xjq).
Indeed, if Cj = R(xj1 , . . . , xjq) and b ∈ R∩Atj then at the call when b was added
to Atj the oracle’s answer is incorrect. Therefore all possible remaining Rjs are
included in Ctj , and since Ct is unsatisfiable, so is C.

For the complexity of the algorithm let us remark that if for some j and t,
the constraint Ctj is the empty relation then B stops since Ct becomes unsatisfi-
able. This happens in particular if Atj = Wq. Since for every call to A one new
element is added to one of the Atj and at least one new relation in R is excluded

from Ctj , the number of calls is upper bounded by m × dim(R). To compute a
new constraint, some number of relations in R have to be computed on a new
argument, which can be done in time s× comp(R).

We now prove (b). Let A be an algorithm which solves H–S{V} in time
T . Without loss of generality we suppose that A only outputs a satisfying as-
signment a after submitting it to the verifying oracle. We define an algorithm
B for

⋃
S. Let C = {C1, . . . , Cm} be an instance of

⋃
S where for j ∈ [m],

Cj =
⋃
R∈Rj

R(xj1 , . . . , xjq), for some Rj ⊆ R and (j1, . . . , jq) ∈ [`](q). The
algorithm B runs A, and outputs no whenever A outputs no. During A’s run
B simulates a {V}-revealing oracle V for A which we describe now. Simultane-
ously with V’s description we also specify instances Ct = {Ct1, . . . , Ctm} of

⋃
S

which will be used in the proof of correctness of the algorithm. For j ∈ [m], the
constraints of Ct are defined as Ctj =

⋃
R∈R:R∩At

j=∅
R(xjt1 , . . . , xjtq), where the

sets Atj ⊆Wq are determined by the result of the tth call to the oracle. Initially

A0
j = ∅. For every request a ∈W , the algorithm B checks if a satisfies C. If it is

the case then V returns a and B outputs a. Otherwise there exists j ∈ [m] such
that a violates Cj , and the answer of the oracle is j and (j1, . . . , jq) (where j
can be chosen arbitrarily among the violated constraints, if there are several).
Observe that this is a legitimate oracle for any instance of H–S{V} whose jth

constraint is arbitrarily chosen from Rj . We define At+1
j = Atj

⋃
{(aj1 , . . . , ajq)},

and for i 6= j we set At+1
i = Ati.

To show the correctness of B, we prove that whenever A outputs no, the in-
stance C is unsatisfiable. Let us suppose that A made t queries before outputting
no. An algorithm for H–S{V} can output no only if all possible instances of S
which are compatible with the answers received from the oracle are unsatisfi-
able. In such an instance the jth constraint has necessarily empty intersection
with Atj , therefore we can deduce that the

⋃
S instance Ct is unsatisfiable. It

also holds that Atj
⋂
Cj = ∅ for every j ∈ [m], since if b ∈ Atj

⋂
Cj then the

request to the oracle because of which b was added to Atj wouldn’t violate the
jth constraint. Thus Cj ⊆ Ctj , and C is unsatisfiable.

For the complexity analysis we observe that during the algorithm, for every
query to the oracle and for every constraint, one relation in

⋃
R is evaluated. �

Corollary 1. Let comp(R) be polynomial. Then the complexities of the follow-
ing problems are polynomial time equivalent: (a) H–S{V} and

⋃
S if the number

of relations s is constant, (b) H–S{R} and E–S if the arity q is constant, (c)
H–S∅ and

⋃
E–S if both s and q are constant.

The polynomial time equivalence of Theorems 1, 2, 3 and Corollary 1 re-
main true when the algorithms have access to the same computational oracle.
Therefore, we get generic easiness results for H–CSPs under an NP oracle.

4 Constraint-index Revealing Oracle

In this section, we present some applications of our transfer theorems in the
context of the constraint-index revealing oracle. Here we propose a framework

for monotone graph properties to present our examples. Recall that a monotone
graph property of an n-vertex graph is a monotone Boolean function P on

(
n
2

)
variables invariant under relabeling of vertices. The CSP SP associated with P
has parameters w = 2, q = 1, ` =

(
n
2

)
, WP = {A | A is a graph with minimal

number of edges satisfying P}, and R = {Neg}. The goal is to decide, given
a graph G = (V,E), whether there exists an A ∈ WP such that A ⊆ G. The
corresponding constraints are e /∈ A for every e /∈ E. We have X–R = {Nege |
e ∈

(
n
2

)
}, where Nege(α1, . . . , α(n

2)
) = ¬αe. Thus, the

⋃
X–SP problem becomes

the following: given a graph G = (V,E), and E1, . . . , Em ⊆
(
[n]
2

)
, does there exist

an A ∈ WP such that A ⊆ E and A excludes at least one edge from each Ei?
This framework naturally extends to directed graphs and to bipartite graphs.

By Theorem 3, H–SP can be analyzed by considering
⋃
X–SP . We do this

for the following: Spanning Tree (ST, the property of being connected), Undi-
rected Cycle Cover (UCC, containing an undirected cycle cover), Undirected
Path (UPATH, containing an undirected path between s and t), Bipartite Per-
fect Matching (BPM, having a perfect matching in a bipartite graph), Directed
Spanning Tree (DST), Directed Cycle Cover (DCC), and Directed Path (DPATH).

Theorem 4. In the monotone graph property framework for the hidden model
using constraint-index revealing oracle the following properties are NP-hard: ST,
DST, UCC, DCC, BPM, DPATH, UPATH.

5 Constraint-index and Variable-index Revealing Oracle

In this section, we present some applications of our transfer theorem when
the index of the constraint and the indices of the variables participating in
that constraint are revealed. We consider following CSPs: Deltas on Triplets
(∆): w = 2, q = 3, and R = {Rabc : {0, 1}3 → {T,F} | a, b, c ∈ {0, 1}},
where Rabc(x, y, z) := (x = a) ∧ (y = b) ∧ (z = c); Hyperplane Non-cover
(HYP−NC): Given a group ZNp , the hyperplane non-cover problem is the solv-

ability of a system of homogeneous linear in-equations in ZNp ; Arbitrary sets
of binary relations on Boolean alphabet, in particular, the 2-SAT Problem
(2SAT); Exact-Unique Game Problem (UG[k]): Given an undirected graph
G = (V,E) and given a permutation πe : JkK → JkK, for every edge e ∈ E,
the goal is to decide if one can assign labels αv ∈ JkK for every vertex v ∈ V
such that for every edge e = {u, v} ∈ E with u < v we have πe(αu) = αv;
k-Clique Isomorphism (kCLQ–ISO): Given an undirected graph G = (V,E),
does there exist a permutation π on [n] such that: (a) ∀(i, j) ∈ E, π(i), π(j) ≤ k,
(b) ∀(i, j) /∈ E, π(i) > k or π(j) > k; Polynomial time Solvable Graph
Properties (Ppoly): The framework for graph properties as defined in Section 4,
but with {V}-revealing oracle; Equality to some member in a fixed class
of graphs (EQK): For a fixed class K of graphs on n vertices, we denote by

PK : {0, 1}(
n
2) → {T, F} the property of being equal to a graph from K. For ex-

ample, Equality to k-Clique (EQkCLQ), Equality to Hamiltonian Cycle (EQHAMC),
and Equality to Spanning Tree (EQST).

Theorem 5. (a) The following problems in the hidden setting with constraint-
index and variable-index revealing oracle are in polynomial time: 2SAT, UG[2],
Ppoly, EQST. (b) The following problems in the hidden setting with constraint-
index and variable-index revealing oracle are NP-hard: ∆, HYP−NC, UG[k] for
k ≥ 3, kCLQ–ISO, EQkCLQ, EQHAMC.
Remarks. (1) Polynomial-time solvable graph properties are in P this time, in
contrast to the NP-hardness result when only constraint index is revealed (The-
orem 4). (2) UG[k] for k = 2 is in P, while for k ≥ 3 it is NP-hard.

6 Constraint-index and Relation-index Revealing Oracle

Theorem 6. Let S be a CSP with constant arity and alphabet size w. If for
every α ∈ JwK, there is a non-empty relation R ∈ R such that (α, . . . , α) 6∈ R,
then H–S{R} is NP-hard; otherwise H–S{R} is (trivially) in P.
Remark. Under the same conditions H–S∅ is NP-hard. As an application, let
LINEQ be the CSP in which that alphabet is identified with a finite field F and
the `-ary constraints are linear equations over F . Then H–LINEQ∅ is NP-hard.

7 Hidden CSPs with Promise on Instances

In this section we consider an extension of the H–CSP framework where the
instances satisfy some property. For the sake of simplicity, we develop this subject
only for the constraint index revealing model. Formally, let S be a CSP, and let
PROM be a subset of all instances. Then S with promise PROM is the CSP SPROM

whose instances are only elements of PROM. One such property is repetition
freeness where the constraints of an instance are pairwise distinct. We denote
by RF the subset of instances satisfying this property. For example 1SATRF, (as
well as H–1SATRF) consists of pairwise distinct literals. Such a requirement is
quite natural in the context of certain graph problems where the constraints are
inclusion (or non-inclusion) of possible edges. The promise H–CSPs framework
could also be suitable for discussing certain graph problems on special classes of
graphs (e.g, connected graphs, planar graphs, etc.).

We would like to prove an analog of the transfer theorem with promise. Let
us be given a promise PROM for the CSP S of type R = {R1, . . . , Rs}. The
corresponding promise

⋃
PROM for

⋃
S is defined quite naturally as follows.

We say that an instance C = (C1, . . . , Cm) of S, where Cj = Rkj (xj1 , . . . , xjq), is
included in an instance C′ = (C ′1, . . . , C

′
m) of

⋃
S if for every j = 1, . . . ,m C ′j =

R′j(xj1 , . . . , xjq) for R′j ∈
⋃
R such that Rkj ⊆ R′j . Then

⋃
PROM is defined

as the set of instances in C′ ∈
⋃
S which includes some C ∈ PROM. In order for

the transfer theorem to work, we relax the notion of a solution. A solution under
promise for C′ ∈

⋃
PROM has to satisfy two criteria: it is a satisfying assignment

when C′ includes a satisfiable instance C ∈ PROM, and it is exception when C′
is unsatisfiable. However, when all the instances C ∈ PROM included in C′ are
unsatisfiable but C′ is still satisfiable, it can be either a satisfying assignment
or exception. We say that an algorithm solves

⋃
S
⋃

PROM under promise if
∀C′ ∈

⋃
PROM, it outputs a solution under promise.

Using the above definition in the transfer theorem’s proof allows the algo-
rithm for H–S{V} to terminate, at any moment of time, with the conclusion no as
soon as it gets enough information about the instance to exclude satisfiability and
without making further calls to the revealing oracle. In some ambiguous cases,
it can still call the oracle with an assignment which satisfies the

⋃
S-instance.

Other cases when the satisfiability of a
⋃
S-instance with promise implies the

existence of a satisfiable promise-included instance lack this ambiguity. With
these notions the proof of Theorem 1 goes through and we obtain the following.

Theorem 7. Let SPROM be a promise CSP. (a) If
⋃
S
⋃

PROM is solvable under
promise in time T then H–SPROM

{V} is solvable in time O((T +s×comp(R))×m×
min{dim(

⋃
R), |Wq|}). (b) If H–SPROM

{V} is solvable in time T then
⋃
S
⋃

PROM is
solvable under promise in time O(T ×m× comp(

⋃
R)).

We apply Theorem 7 to the following problems: H–1SATRF
∅ , H–2SATRF

∅ ,

H–2COLRF∅ , and H–kWEIGHTRF
∅ . Informally, the problem kWEIGHT decides if a

0-1 string has Hamming weight at least k, and H–kWEIGHT∅ is NP-hard under
the constraint index revealing oracle. Interestingly, in the repetition-free setting,
H–1SATRF

∅ and H–kWEIGHTRF
∅ are in P. On the other hand, H–2SATRF

∅ and

H–2COLRF∅ are still NP-hard. Finally, we give an alternative proof, via Theo-
rem 7, for [2, Theorem 11], showing NP-hardness of the isomorphism problem
of a hidden group (specified by its multiplication table) with a given group.

Acknowledgements. We are grateful to an anonymous referee for various insight-
ful comments and improvements. Most of this work was conducted when the
authors were at the Centre for Quantum Technologies (CQT) in Singapore, and
partially funded by the Singapore Ministry of Education and the National Re-
search Foundation, also through the Tier 3 Grant “Random numbers from quan-
tum processes”. Research partially supported by the European Commission IST
STREP project Quantum Algorithms (QALGO) 600700, by the French ANR
Blanc program under contract ANR-12-BS02-005 (RDAM project), and by the
Hungarian Scientific Research Fund (OTKA), Grant NK105645.

References

1. Xiaohui Bei, Ning Chen, Liyu Dou, Xiangru Huang, and Ruixin Qiang. Trial and
error in influential social networks. In KDD, pages 1016–1024, 2013.

2. Xiaohui Bei, Ning Chen, and Shengyu Zhang. On the complexity of trial and error.
In STOC, pages 31–40, 2013.

3. Xiaohui Bei, Ning Chen, and Shengyu Zhang. Solving linear programming with
constraints unknown. CoRR, abs/1304.1247, 2013.

4. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone
monadic snp and constraint satisfaction: A study through datalog and group theory.
SIAM J. Comput., 28(1):57–104, February 1999.

5. Barnaby Martin. First-order model checking problems parameterized by the model.
In CiE, pages 417–427, 2008.

6. Thomas J. Schaefer. The complexity of satisfiability problems. In STOC, pages
216–226, 1978.

