
Analysing Ego-Networks via Typed-Edge
Graphlets: A case study of Chronic Pain Patients
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Abstract. Graphlets, being the fundamental building blocks, are es-
sential for understanding and analysing complex networks. The origi-
nal notion of graphlets, however, is unable to encode edge attributes
in many types of networks, especially in egocentric social networks. In
this paper, we introduce a framework to embed edge type information
in graphlets and generate a Typed-Edge Graphlets Degree Vector (TyE-
GDV). Through applying the proposed method to a case study of chronic
pain patients, we find that not only a patient’s social network structure
could inform his/her perceived pain grade, but also particular types of
social relationships, such as friends, colleagues and healthcare workers,
are more important in understanding the effect of chronic pain. Further,
we demonstrate that including TyE-GDV as additional features leads to
significant improvement in a typical machine learning task.

Keywords: edge-labelled graphs, heterogeneous networks, attributed
graphs, graphlets, egocentric networks, chronic pain study

1 Introduction

Underlying the formation of complex networks, topological structure has al-
ways been a primary focus in network science. Among numerous analytical ap-
proaches, graphlets [1] have gained considerable ground in a variety of domains.
In biology, it is revealed that proteins performing similar biological functions
have similar local structures depicted by the graphlet degree vector [2]. In social
science, egocentric graphlets are used to represent the patterns of people’s social
interactions [3]. More broadly, the notion of graphlets is introduced in computer
vision to capture the spatial structure of superpixels [4], or in neuroscience to
identify structural and functional abnormalities [5].

However, the original graphlets concept is unable to capture the richer in-
formation in networks that contain different types and characteristics of nodes
or edges. Specifically, there are situations in which we are more interested in
edge-labelled networks. For example, in a routing network where edges repre-
sent communication links, the label of each edge indicates the cost of traffic over
that edge and is used to calculate the routing strategy. Or in an egocentric social
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network, the different types of social relationships between the ego and the alters
are essential in analysing ego’s behaviour and characteristics. Some studies have
extended graphlets to attributed networks (also called heterogeneous networks).
Still, they either only deal with different types of nodes [6] or they categorise
each graphlet into a number of “colored-graphlets” according to the exhaustive
combinations of different node types and/or edge types [7, 8].

In this work, we introduce an approach to embedding edge type information
in graphlets, named Typed-Edge Graphlets Degree Vector, or TyE-GDV for
short. We employ both the classic graphlets degree vector [2] (GDV) and the
proposed TyE-GDV to represent and analyse 303 egocentric social networks of
chronic pain patients. The real-life data is collected from three chronic pain
leagues in Belgium. Each patient selects up to ten connections and each edge is
labelled with one social relationship type. After grouping the patients into four
groups according to their self-perceived pain grades, we find that patients with
higher grades of pain have more star-like structures (3-star graphlets) in their
social networks, while patients in lower pain grades groups form more 3-cliques,
tailed-triangles, 4-chordal-cycles and 4-cliques. With the additional edge type
information provided by TyE-GDV, we further discover that the outnumbered
3-star graphlet in higher pain grade patients is mainly formed of friends or
healthcare workers; and that in 3-cliques and 4-cliques, friends and colleagues
appear more frequently among patients with lower pain grades.

We further apply TyE-GDV into a node classification task. The dataset con-
tains demographic attributes, detailed information about chronic pain (duration,
diagnosis, pain intensity, etc.), and other related data such as the physical func-
tioning score, depression score, social isolation score, etc. We show that the
edge-type encoded graphlet features depicted by TyE-GDV are more distinc-
tive than the classic non-typed graphlet features given by GDV in telling apart
patients of different pain grades.

The remainder of this paper is organised as follows. Preliminary knowledge
is provided in Section 2. Our proposed approach is introduced in Section 3.
Experiments, results and analysis are presented in Section 4. And finally we
conclude in Section 5 and discuss future directions.

2 Background and Preliminaries

In this section, we introduce the concepts of graphlets and graphlets in the
context of egocentric networks.

2.1 Graphlets

Graphlets are small non-isomorphic induced subgraphs of a network [1]. Non-
isomorphic means that two subgraphs need to be structurally different, and
induced means that all edges between the nodes of a subgraph must be included.
At the size of 2 to 5 nodes, there are 30 different graphlets in total. And, when
the non-symmetry of node position is taken into consideration, there are 73



Edge-Type Embedded Graphlet Degree Vector 3

0

1

2

3 4

5

6

7

8

9

10

11

12

13 14

G0 G1 G2 G3 G4

G5 G6 G7 G8

Fig. 1. 9 graphlets and 15 orbits of 2 to 4 nodes.

different local structures, which are also called automorphism orbits [2]. Simply
put, orbits are all the unique positions of a subgraph. For any given node, a
vector of the frequencies of all 73 orbits is then defined as the Graphlet Degree
Vector (GDV). GDV or normalised GDV is often used as node feature to measure
the similarities or differences among all nodes.

We summarise graphlets together with their orbits of 2 to 4 nodes in Figure 1.
Take G6 for example, the node at orbit-11 touches orbit-0 three times, orbit-2
twice, orbit-3 once and orbit-11 itself once. Thus, its GDV has 3 at the 0th
coordinate, 2 at the 2nd coordinate, 1s at the 3rd and 11th coordinates, and 0
at the remaining coordinates.

2.2 Egocentric graphlets

In social network analysis, egocentric networks are sometimes of particular inter-
est when we care more about the immediate environment around each individual
than the entire world [9]. We may want to learn why some people behave the
way they do, or why some people develop certain health problems. Since the
notion of graphlets is defined at node-level, it is naturally suitable to be applied
in egocentric networks, with two modifications. First, some graphlets that do not
meet the requirement of being an egocentric network are excluded. For example,
in graphlets of size up to 4 nodes (Figure 1), G3 and G5 are eliminated because
any node in them serving as an ego cannot reach all other nodes with 1-hop.
Second, there is no need to distinguish different orbits in egocentric graphlets
because only one orbit can act as an ego. Therefore, there are in total 7 egocen-
tric graphlets of size 2 to 4 nodes, which are 2-clique, 2-path, 3-clique, 3-star,
tailed-triangle, 4-chordal-cycle and 4-clique (Figure 2).

3 Typed-Edge Graphlet Degree Vector

This section describes the framework for generating edge-type embedded graphlet
degree vector.
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Fig. 2. 7 egocentric graphlets of 2 to 4 nodes. Ego node is painted in black.

The original concept of graphlets manages to capture rich connectivity pat-
terns in homogeneous networks. However, many real-world networks are more
complex by containing different types of nodes and edges, making them hetero-
geneous networks. Specifically, edge type information is crucial in that it indi-
cates the specific relationship between the nodes. For example, in the dataset
of this study, each chronic pain patient describes their egocentric social net-
work, including up to ten actors, and each edge is labelled with 1 of 13 types of
social relationships. In order to analyse edge-labelled networks at a finer gran-
ularity, we propose to embed edge-type information in graphlets. The original
graphlet degree vector counts the occurrences of each type of graphlet, and as
a result, a one-dimensional vector is created. Here, we propose to construct a
two-dimensional vector by counting each type of edge touched by each type of
graphlet.

To begin with, we give the formal definition of an edge-labelled network.

Definition 1. An edge-labelled network G is a triple 〈V,E, Te〉, where V =
{v1, v2, ..., vn} is the set of nodes, E = {eij} ⊂ V × V is the set of edges where
eij indicates an edge between nodes vi and vj, and Te is the set of edge types,
where τeij denotes the type of edge eij.

The first step of the framework is graph preprocessing, in which the set of
edge types is mapped to integers ranging from 0 to |Te|. For instance, the 13
types of social relationships in the targeted dataset are denoted from 0 to 12
(τe ∈ [0, 12]). Also, the set of types of graphlets Tg is mapped to integers ranging
from 0 to |Tg|. In this work, we consider all possible egocentric graphlets up to
4 nodes (Figure 2). Therefore the seven types of graphlets are coded from 0 to
6 (τg ∈ [0, 6]).

Algorithm 1 shows the approach of generating a two-dimensional vector of
size |Tg|×|Te|, i.e., the Typed-Edge Graphlet Degree Vector (TyE-GDV) for any
nodes of interest. Specifically, after initialisation, for each node in a given node
set V ′ and for each type of the seven egocentric graphlets, the vector is updated
through the Update function (Algorithm 2). C(Ni, 2) and C(Ni, 3) denotes all
possible 2-combinations and 3-combinations of the set of neighbours of node i.
Due to the preprocessing step, τg and τe are conveniently used as indices when
updating the vector. For example, if a type ‘2’ graphlet (3-clique) is detected
and its three edges are of type ‘0’, ‘1’ and ‘2’, vector elements at coordinates
(2, 0), (2, 1) and (2, 2) will increase by 1. In the end, a dictionary of nodes as
keys and their corresponding TyE-GDV as values is returned.
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Algorithm 1: Typed-Edge Graphlet Degree Vector.

input : preprocessed graph G = 〈V,E, Te〉, set of graphlet types Tg,
node set V ′.

output: dictionary dic of vectors for all nodes ∈ V ′.
1 initialise: dic = {};
2 foreach i ∈ V ′ do
3 initialise a 2d-vector vec of size |Tg| × |Te| with zeros;
4 foreach u ∈ Ni do
5 Update(vec, g0, eiu); . 2-clique

6 foreach u, v ∈ C(Ni, 2) do
7 if v /∈ Nu then
8 Update(vec, g1, [eiu, eiv]); . 2-path
9 else

10 Update(vec, g2, [eiu, eiv, euv]); . 3-clique

11 foreach u, v, w ∈ C(Ni, 3) do
12 if u /∈ Nv ∧ u /∈ Nw ∧ v /∈ Nw then
13 Update(vec, g3, [eiu, eiv, eiw]); . 3-star
14 else if v ∈ Nu ∧ w /∈ Nu ∧ w /∈ Nv then
15 Update(vec, g4, [eiu, eiv, eiw, euv]);
16 else if w ∈ Nu ∧ v /∈ Nu ∧ v /∈ Nw then
17 Update(vec, g4, [eiu, eiv, eiw, euw]); . tailed-tri
18 else if w ∈ Nv ∧ u /∈ Nv ∧ u /∈ Nw then
19 Update(vec, g4, [eiu, eiv, eiw, evw]);
20 else if u ∈ (Nv ∩Nw) ∧ w /∈ Nv then
21 Update(vec, g5, [eiu, eiv, eiw, euv, euw]);
22 else if v ∈ (Nu ∩Nw) ∧ w /∈ Nu then
23 Update(vec, g5, [eiu, eiv, eiw, euv, evw]); . 4-chord-cyc
24 else if w ∈ (Nu ∩Nv) ∧ v /∈ Nu then
25 Update(vec, g5, [eiu, eiv, eiw, euw, evw]);
26 else
27 Update(vec, g6, [eiu, eiv, eiw, euw, evw, euv]); . 4-clique

28 dic[i] = vec;

4 Experiments and Analysis

In this section, we apply the proposed method to analyse egocentric social net-
works of chronic pain patients. Our code is available at https://github.com/
MingshanJia/explore-local-structure.

4.1 Dataset

The dataset is collected from chronic pain patients of the Flemish Pain League,
the League for Rheumatoid Arthritis and the League for Fibromyalgia [10]. Each
patient uses the graphical tool GENSI [11] to generate their egocentric social
networks containing up to 10 alters. The types of relationship between the ego
and the alters are explicitly given (all 13 types of social relationships are listed
in Table 1). Participants were also asked to fill out a sociodemographic/pain

https://github.com/MingshanJia/explore-local-structure
https://github.com/MingshanJia/explore-local-structure
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Algorithm 2: Update Vector.

1 Function Update
input : 2d-vector vec, type of graphlet τg, edge list Le.

2 foreach e ∈ Le do
3 τe = GetType(e);

/* τg and τe are used as indices in vec. */

4 vec[τg][τe] increase by 1;

questionnaire. After excluding inconsistent and incomplete entries, 303 patients’
egocentric social networks and their sociodemographic/pain characteristics con-
stitute the final dataset. The average age of all patients is 53.5 ± 12 years (248
females and 55 males).

Relationship Type Total number of occurs.

Partner T-1 222
Father/Mother T-2 209
Brother/Sister T-3 293
Children/Grandchildren T-4 493
Friend T-5 506
Family-in-law T-6 207
Other family T-7 142
Neighbour T-8 69
Colleague T-9 57
Healthcare worker T-10 233
Member of organisations T-11 74
Acquaintance T-12 15
Other T-13 17

Table 1. Edge type and total number of occurrences of each type in all networks.

Figure 3 gives some basic information about these egocentric networks, in-
cluding the ego nodes’ degree distribution and their edge-type distribution. The
edge-type distribution is calculated by summing over all ego nodes on each type
of the edges, which is also shown in the third column of Table 1. From the de-
gree distribution (Figure 3a), we know that most patients (62%) have 10 social
contacts in their networks. However, we don’t expect degree being a discrimi-
native feature in the following analysis because 10 alters is the upper limit in
the dataset. The edge-type distribution (Figure 3b) informs us that “friend” and
“children” are the most frequent types appearing in these networks. In contrast,
edges of types “neighbour”, “colleague” and “member of organisations” are un-
derrepresented; “acquaintance” and “other” are almost negligible simply because
if somebody is asked to name 10 contacts, they will name strongest contacts and
there is no space for ”acquaintance” or ”other” relationships.

Furthermore, pain grades are calculated by means of the Graded Chronic
Pain Scale (GCPS), which assesses both pain intensity and pain disability [12].
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Fig. 3. Degree distribution and edge type distribution of all patients.

Patients are then classified into 5 grades based on their average intensity and
disability scores: grade-0 no pain; grade-1 low intensity and low disability; grade-
2 high intensity and low disability; grade-3 moderate disability regardless of pain
intensity; and grade-4 high disability regardless of pain intensity. Because all
participants are chronic pain patients, their GCPS grades range from grade-1 to
grade-4. Specifically, we have 21 patients of grade-1, 33 patients of grade-2, 67
patients of grade-3 and 182 patients of grade-4. In this work, we aim to explore
whether the graphlets and typed-edge graphlets are beneficial to recognising
GCPS grades of chronic pain patients.

4.2 Analysing pain grades via GDV and TyE-GDV

Previous studies have revealed that social interactions play an important role
in the perception of pain [13]. For example, a strong association was found
between perceived social support and pain inference [14]; and improvements
in social isolation lead to significant improvements in patients’ emotional and
physical functioning [15]. Usually, the social context of a patient is measured
by means of the Patient Reported Outcome Measurement Information System
(PROMIS®) [16] or the Social Support Satisfaction Scale (ESSS) [17]. These
measurements, however, are not based on patients’ actual social networks and
therefore cannot provide insights on the impact of network structures or specific
types of interactions. To cope with this issue, we apply the classic graphlets and
the proposed typed-edge graphlets to analyse patients’ social networks.

First, we calculate the average Graphlet Degree Vectors of patients from
each GCPS grade. A parallel coordinates plot shows the average degrees of all
seven egocentric graphlets at each grade (Figure 4). We see that patients of
higher-grade pains (grade 3 and grade 4) have more star-like structures (3-star
graphlets) in their social networks, and patients of lower pain grades (grade 1 and
grade 2) form more 3-cliques, tailed-triangles, 4-chordal-cycles and 4-cliques. A
worse connected star-like structure indicates a more isolated social environment,
and a better connected structure such as the 3-clique or the 4-clique could be a
sign of better social support. These findings are consistent with the previously
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Fig. 4. Parallel coordinates plot of average GDV of different GCPS grades. Each co-
ordinate represents the average number of graphlets belonging to that type.

mentioned studies [13–15] and provide further evidence that a patient’s social
network could inform the perceived pain grade. In addition, we find that the
number of connections (2-cliques) does not help distinguish pain grades. This
may result from the limited number of contacts in the dataset. Still nevertheless,
another work also found that the size of a patient’s egocentric social network
is not significantly related to changes in pain [18]. This also explains why more
complicated network structures should be considered in the analysis of patients’
social networks.

Further, in order to investigate the relationship between the types of interac-
tions and the pain grades, we employ the Typed-Edge Graphlet Degree Vector
and focus on two particular graphlets, i.e. the poorly connected 3-star graphlet
and the well connected 4-clique graphlet. These two graphlets are chosen because
they present distinct differences between patients of lower pain grades and pa-
tients of higher pain grades. For each of the graphlets, we calculate the average
TyE-GDV of patients from every pain grade and generate a parallel coordinates
plot (Figure 5). We find that in the 3-star graphlet (Figure 5a), higher-grade
pain patients have significantly more edges of type ‘5’ (friend) and type ‘10’
(healthcare worker) than lower-grade pain patients. In other words, friends and
healthcare workers are not well connected in higher-grade pain patients. It thus
provides the potential for interventions that increase the social involvements of a
patient’s friends and healthcare workers to improve the management of chronic
pain.

Then from the average TyE-GDV of the 4-clique graphlet (Figure 5b), we
observe that lower-grade pain patients have more edges of type ‘5’ (friend) than
higher-grade pain patients (5.2 compared to 3.2). That is to say, friends appear
more often in these tightly connected groups among patients of lower-grade pain.
The importance of the friend relationship is revealed in both 3-star and 4-clique
graphlets. As pointed out by other studies [19, 20], patients with severe chronic
pain may be at risk of deterioration in their friendships and are in need of sup-
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Fig. 5. Parallel coordinates plot of average TyE-GDV of different GCPS grades for two
graphlets. Each coordinate represents the average number of edges belonging to that
type.

portive behaviours from friends. Another marked contrast between the higher-
grade and lower-grade pain patients is in edge type ‘9’ (colleague). Colleagues
hardly appear (0.24 on average) in these closely connected structures among
the former group, whereas more than one colleague (1.1 on average) emerges
among the latter group. It may reflect the adverse effects of severe chronic pain
on patients’ professional activities [21]. To give an intuitive understanding of the
structural differences, we give two actual examples from the dataset as the social
network prototypes of pain grade-1 and pain grade-4, respectively (Figure 6).

This experiment shows that the extra information brought by TyE-GDV pro-
vides us with more insights into the relationship between patients’ social link
types and their pain grades. Therefore, it has implications for how therapeutic
interventions could be improved by increasing particular types of social connec-
tions.
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Fig. 6. Prototypes of GCPS grade-1 and GCPS grade-4.

4.3 Predicting pain grades via GDV and TyE-GDV

As a new approach capturing both topological structures and edge attributes,
TyE-GDV provides additional information for ego node analyses and inferences.
We further exhibit its usage in a node classification task where significant im-
provement is observed on test set performance.

Node classification is one of the most popular and widely adopted tasks in
network science [22], where each node is assigned a ground truth category. Here,
we aim to predict the GCPS grade of chronic pain patients. In order to test the
utility of TyE-GDV as extra features, we fit three sets of features into a ran-
dom forest classifier. The first set, the baseline, includes patients’ demographic
attributes, pain-related descriptions and physical/psychological well-being indi-
cators. Since the baseline contains no structural information, we identify it as
raw features. The second set includes the raw features plus the classic GDV. The
third set includes the raw features plus the proposed TyE-GDV. As the dataset
is not large and the distribution of four grades is not balanced (see Section 4.1),
we adopt a stratified 5-fold cross-validation [23] to evaluate the classification
performance with different sets of features. Also, because decision tree-based
models are inherently stochastic, we repeat the above step 500 times and report
the mean metric score.

Macro F1
(Mean ± Std)

Gain over raw feat.
(Mean)

Time
(Sum)

Stratified 0.248 ± 0.024 — 3
Raw feat. 0.578 ± 0.005 — 116
Raw feat. + GDV 0.597 ± 0.008 3.3% 138
Raw feat. + TyE-GDV 0.619 ± 0.004 7.1% 252

Table 2. Prediction results in average macro-F1 score (± standard deviation), average
gain over raw features, and total running time of 500 repetitions.



Edge-Type Embedded Graphlet Degree Vector 11

We report the average macro-F1 scores of three models in Table 2. The
macro-F1 score is chosen because this is a multi-class classification problem and
the distribution of the four classes is unbalanced. A naive classifier (Stratified)
is also added in the table, which generates predictions by respecting the class
distribution in the training set. We observe a significant 7.1% improvement after
adding TyE-GDV to the raw features. In comparison, adding GDV leads to an
improvement of about 3.3%. As expected, however, the running time of using
TyE-GDV also increases with an increased dimension of features (total running
time of 500 repetitions is shown in the last column of Table 2). This experiment
shows that the structural information captured by GDV and especially the edge
attribute information captured by TyE-GDV are useful as additional features to
predict a patient’s pain grade.

5 Conclusion

In this paper, we proposed to embed edge type information in graphlets, and
we introduced the framework for calculating Typed-Edge Graphlets Degree Vec-
tor for ego nodes. After applying GDV and TyE-GDV to the chronic pain pa-
tients dataset, we found that 1) a patient’s social network structure could inform
their perceived pain grade; and 2) particular types of social relationships, such
as friends, colleagues and healthcare workers, could bear more importance in
understanding the effect of chronic pain and therefore lead to more effective
therapeutic interventions. We also showed that including GDV or TyE-GDV as
additional features results in improvement of a typical machine learning task
that predicts patients’ pain grades. Future studies will extend TyE-GDV by in-
corporating all orbits of graphlets and applying them to sociocentric networks
or further considering the dynamics of time-varying networks.
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geneous network alignment via colored graphlets,” Scientific reports, 2018.

9. B. L. Perry, B. A. Pescosolido, and S. P. Borgatti, Egocentric network analysis:
Foundations, methods, and models. Cambridge university press, 2018.

10. M. Van Alboom, L. De Ruddere, S. Kindt, T. Loeys, D. Van Ryckeghem, P. Bracke,
M. M. Mittinty, and L. Goubert, “Well-being and perceived stigma in individuals
with rheumatoid arthritis and fibromyalgia: A daily diary study,” The Clinical
Journal of Pain, 2021.

11. T. H. Stark and J. A. Krosnick, “Gensi: A new graphical tool to collect ego-centered
network data,” Social Networks, 2017.

12. M. Von Korff, J. Ormel, F. J. Keefe, and S. F. Dworkin, “Grading the severity of
chronic pain,” Pain, 1992.

13. N. V. Karayannis, I. Baumann, J. A. Sturgeon, M. Melloh, and S. C. Mackey,
“The impact of social isolation on pain interference: a longitudinal study,” Annals
of Behavioral Medicine, 2019.

14. M. A. Ferreira-Valente, J. L. Pais-Ribeiro, and M. P. Jensen, “Associations be-
tween psychosocial factors and pain intensity, physical functioning, and psycholog-
ical functioning in patients with chronic pain: a cross-cultural comparison,” The
Clinical journal of pain, 2014.

15. S. Bannon, J. Greenberg, R. A. Mace, J. J. Locascio, and A.-M. Vranceanu, “The
role of social isolation in physical and emotional outcomes among patients with
chronic pain,” General Hospital Psychiatry, 2021.

16. E. A. Hahn, R. F. DeVellis, R. K. Bode, S. F. Garcia, L. D. Castel, S. V. Eisen, H. B.
Bosworth, A. W. Heinemann, N. Rothrock, and D. Cella, “Measuring social health
in the patient-reported outcomes measurement information system (promis): item
bank development and testing,” Quality of Life Research, 2010.

17. J. L. P. Ribeiro, “Escala de satisfação com o suporte social (esss),” 1999.
18. A. W. Evers, F. W. Kraaimaat, R. Geenen, J. W. Jacobs, and J. W. Bijlsma, “Pain

coping and social support as predictors of long-term functional disability and pain
in early rheumatoid arthritis,” Behaviour research and therapy, 2003.

19. P. A. Forgeron, P. McGrath, B. Stevens, J. Evans, B. Dick, G. A. Finley, and
T. Carlson, “Social information processing in adolescents with chronic pain: My
friends don’t really understand me,” Pain, 2011.

20. Y. Yang and H. Grol-Prokopczyk, “Chronic pain and friendship among middle-
aged and older us adults,” The Journals of Gerontology: Series B, 2020.

21. S. Harris, S. Morley, and S. B. Barton, “Role loss and emotional adjustment in
chronic pain,” Pain, 2003.

22. S. Bhagat, G. Cormode, and S. Muthukrishnan, “Node classification in social net-
works,” in Social network data analytics. Springer, 2011.

23. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine
learning in python,” the Journal of machine Learning research, 2011.

View publication statsView publication stats

https://www.researchgate.net/publication/356944411

	Analysing Ego-Networks via Typed-Edge Graphlets: A case study of Chronic Pain Patients

