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ABSTRACT This paper aims to provide a comprehensive critical overview on how entities and their
interactions in Complex Networked Systems (CNS) are modelled across disciplines as they approach their
ultimate goal of creating a Digital Twin (DT) that perfectly matches the reality. We propose four complexity
dimensions for the network representation and five generations of models for the dynamics modelling to
describe the increasing complexity level of the CNS that will be developed towards achieving DT (e.g.
CNS dynamics modelled offline in the 1st generation v.s. CNS dynamics modelled simultaneously with a
two-way real time feedback between reality and the CNS in the 5th generation). Based on that, we propose a
new framework to conceptually compare diverse existing modelling paradigms from different perspectives
and create unified assessment criteria to evaluate their respective capabilities of reaching such an ultimate
goal. Using the proposed criteria, we also appraise how far the reviewed current state-of-the-art approaches
are from the idealised DTs. Finally, we identify and propose potential directions and ways of building
a DT-orientated CNS based on the convergence and integration of CNS and DT utilising a variety of
cross-disciplinary techniques.

INDEX TERMS Complex network systems, digital twins, dynamic processes, network dynamics.

I. INTRODUCTION
A complex network can be seen as a universal concept used
for representation and analyses of complex systems. Given
the growing interest in real complex systems and a fast devel-
opment of modelling techniques, the complex networked
system (CNS) area has become a highly cross-disciplinary
field that involves multiple modelling approaches with
various research aims posed and achieved over the years.

There is a considerable literature about complex networks
and various researchers have published several surveys
reviewing and exploring the topic from different perspectives
and application areas. Those include works on complex
networks and their applications covering multiple applica-
tion areas [1] or orientated towards specific topics such
as networks of cryptocurrency transactions [2], vehicular
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networks [3],supply chain networks [4], internet of things [5]
and networks of short written text [6].

When it comes to the models of complex networks in
the context of their structure, there is also a body of work
surveying a variety of network topologies [6], [7] and
dynamics. The networks dynamics can be either considered
as: (i) dynamic processes over networks, that involve surveys
on spreading processes like epidemic processes, information
spreading processes [8], [9], or (ii) dynamic networks with
evolving structures and features [10], [11].

When it comes to modelling techniques that have been
applied to build complex networked systems, there are also
surveys that review certain types of modelling approaches
for complex networks, including Graph Neural Network [10],
game theory [12] or non-parametric Bayesian modeling [13].

Complex networked systems are modelled with the goal
of accurate reflection of reality with the aim of simulation,
prediction and/or control. Over the years, proposed CNSs
models have become more and more accurate with more
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realistic networks topologies, characteristics and evolving
dynamicsmodelled. Increasingly, they can capture features of
real world scenarios and behave like their twins. Researchers
have already focused on the studies of Digital Twining of
real systems across disciplines, which involves a wide range
of applications but so far complex networks area has been
marginalised in this development space. Digital Twins are
expected to provide an accurate reflection and extension
of the reality fulfilling simultaneously multiple aims of
modelling. In our review of the current state-of-the-art of the
modelling of CNS, a DT is treated as an ultimate goal for
the representation and modelling of the Complex Networked
Systems, which hasn’t been realized yet but is expected to
be steadily approached with the ability to take more complex
information into account, capture and represent dynamics of
and on the networks as well as simulate and interact with the
modelled reality in real time.

Therefore, the convergence of Digital Twinning and
ComplexNetworked Systems emerges as an exciting research
focus with a potential to address some of the outstanding
modelling and representational challenges ultimately leading
to the establishment of a DT-orientated CNS area as its main
goal. And in this space, the modelling of CNS in the context
of DT is to represent the observable information faithfully
in a form of a network together with dynamics of and on
this network, while enabling the fulfilment of model’s aim
and, in its ultimate realization, seamlessly intertwining and
interacting with reality in real time.

Multiple modelling paradigms, with their ways of data
analysis, representation and modelling, have been applied
to answer various questions about CNSs. By modelling
paradigm we understand a family of approaches, which are
built around common principle (e.g. rule–based systems), that
can be used to build a model of a system. There is a need to
review and explore where, how and why complex networked
systems are modelled across many different disciplines.
However, most of the surveys only account for certain types
of complex networked systems from a specific perspective
or a single discipline (e.g. supply chain networks [4],
network topology [6], [7], etc.). Therefore, to fill in this
gap, we review conceptually and compare research on
complex networks from a holistic point of view while trying
to deal with the questions concerning diverse modelling
paradigms and their distance to the idealised DTs. We devise
a framework that enables to compare various modelling
paradigms and evaluate their respective distances to DTs,
which involves answering the following four fundamental
questions: (1) What is the aim of the modelling?; (2) How to
represent information about a system in a form of a network?;
(3) How to model the dynamics in a networked system?; and
(4) How do we approach the ultimate goal of building a CNS
that models the reality at a Digital Twin level?

Hence, while answering the above questions, this critical
survey aims to integrate and overview the current, relevant
state-of-the-art from multiple disciplines and inform future
research directions and foci for this new multidisciplinary

area. Four complexity dimensions and five generations of
models are proposed to describe the increasing complexity
level of CNS that has been/will be developed towards a DT
in terms of the network representation and the dynamics
modelling. Another contribution of this survey is a unified
assessment framework that is proposed to evaluate how far
the reviewed CNSs are from the idealised DTs.

Our paper is organised as follows. Section II-B illustrates
the prerequisites of setting and fulfilling model’s aims,
discusses different model’s aims across different disciplines
and summarises their research foci. This is followed by two
sections concerned with complex networked systems with
section III defining and reviewing different network repre-
sentations and modelling paradigms and section IV focusing
on modelling dynamics in networked systems. In Section V a
new framework is proposed for evaluatingmodels of complex
network systems given the ultimate goal of achieving DTs
faithfully representing the reality. The research gaps and
future research directions are also identified and discussed in
this section. Finally, the Conclusions are provided in the last
section.

II. THE AIM OF MODELLING COMPLEX NETWORKED
SYSTEMS
There is always a need to determine the aim of developing
a new model at the start of the modelling process, where,
under the constraints of observability, we model a Complex
Networked System in a way to fulfill this aim. The choice
of modelling paradigms, which can be understood as the
approaches employed to model real state or dynamics of the
system, is largely dependent on the model’s aims determined
based on the research questions. The aims of modelling
Complex Networked Systems include solving a wide range of
tasks such as link prediction, network detection, mimicking
of real systems, etc. The CNS models together with
their respective primary aims are also typically developed
within different disciplinary focuses such as epidemiology,
sociology, microeconomics, etc. We categorise the modelling
paradigms based on their concrete model’s aims, which
helps us to understand what is expected from modelling
complex network systems and serves as the basis for further
discussions of detailed modelling paradigms. In this section,
having in mind various model’s aims that influence how we
build such a model, we also set an ultimate goal of modelling
complex networked systems, which is to create a Digital
Twin (DT) of a real world system. Achieving such a goal
would enable the fulfilment of multiple aims simultaneously
through accurate reflection and mimicking of the reality.

A. PREREQUISITES OF MODELLING
Selecting the right modelling paradigm together with the
availability of the needed input data are the prerequisites
of setting and fulfilling model’s aims. Given varying com-
plexity of reality which can only be partially observed and
modelled (e.g. instantaneously emergent patterns motivated
by intractable dynamics), there are no concrete standards or
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measures to ensure and prove the implementation of these
prerequisites. Thus the model is always built on the strong
assumptions of appropriate variable and model selection. The
discrepancy between these assumptions and the truth may
result in incapability of predicting dramatic changes due to
partially observable input space [14] or overfitting problem
that is typical for overly complex models [15]. Therefore,
researchers start to evaluate and reduce their distance to these
prerequisites by considering observability.

Observability, in structural way, is about the ability of
reconstructing the state of a system from a limited set
of measured variables in finite time [16], while from the
perspective of dynamics, observability is related to a deeper
understanding about how the selected variables interact and
evolve to change the states of the system. The structural
observability is dependent on the available data set while
the dynamical observability is analysed based on a model
of dynamics, which is inevitably wrong to some extent but
may be useful either in reflecting the reality or diagnosing an
input space that is partially observable. Linear time-invariant
system proposed by [17] is one typical modelling paradigm
widely used in the studies on observability of dynamical
systems [18].

In complex networked systems (CNS), structural observ-
ability determines the number of nodes to be measured to
render a network observable, while dynamical observability
considers node dynamics and coupling when selecting the
best driver (sensor) node to modulate (observe) the whole
network activity [16]. The design and analysis of CNS for
each model’s aim involves the observability of topology [18],
variables for coupling nodes [19] and node dynamics [20].
These structural observability and dynamical observability
are closely related to variable and model selection, and serve
as the prerequisites of representing and modelling reality
under each model’s aim in different application scenarios.

The measures of observability vary depending on the
linearity of systems. Linear networks without symmetries
have been well studied research objects with respect to
the topic of observability, where the observability matrix
based on the dynamic model for a linear (time-invariant)
system proposed by [17] is widely used. Nonlinearity
of dynamical networks have been recently considered in
the studies on dynamical observability. For example, [21]
quantify the observability and controllability of nonlinear
networks with explicit symmetries that shows the connection
between symmetries and nonlinear measures of observability
and controllability. [22] propose a nonlinear graph-based
theory for dynamical network observability from the Jacobian
matrix of the governing equations of nonlinear systems.

B. CURRENTLY STUDIED CNS MODELLING AIMS
The model’s aims can be categorised as: (i) specific
and (ii) abstract goals. Specific model’s aims, such as
community discovery, link prediction, anomaly detection,
synchronization and controllability of networked systems,
focus on specific external tasks for observable research

TABLE 1. Different goals of building CNS models.

object (i.e. CNS in our case) with measurable model outputs.
Abstract model’s aims, like topological feature analysis
and the mimics of real life systems, approach the inner
rules of real dynamics, analyse observables and simulate
unobservables for further research on specific model’s aims.
Examples of different CNS models’ aims together with the
relevant references are shown in Table 1:

Community discovery aims to decompose complex
networks into meaningful sub-networks that better describe
local phenomena [11]. The local phenomena refers to a set
of entities that share some closely correlated sets of actions
with the other entities of the community [11], [75]. This has
been explored and discussed in a wide range of applications,
including the detection of community structure hidden in real
social networks [23]–[25], collaboration network analysis
like detecting citation patterns [26], improving routing of
telecommunication network [27], reconfiguration of the brain
network [28] or political affiliation [29].

Link prediction aims to infer the behaviour of the
network link formation process by predicting missed or
future relationships based on observed links and the attributes
of both nodes and relationships [31], [32]. Link predic-
tion involves questions of dealing with missing links or
link labels of networks and predicting links in changing
networks, including social networks [30], [33], [34], food
webs [35], networks in collaborative recommendation tasks
[36], knowledge graphs [37] and biochemical networks of
protein interaction [38] and metabolism [35].

Node classification aims to provide a labeling for
unlabeled nodes in a network composed of partially labelled
nodes and edges [39]. Node classification, as an important
way to explore node features and links, has been widely
studied in social networks [39], [40], citation networks [41]
and co-author networks [42].

Synchronisation of complex networks implies that the
states of two or more interacting nodes in a network with
different initial conditions gradually approach each other
and finally reach the same state [43]. The applications
of synchronisation in complex networks range from the
stability of power grids [44], [45], controllablity of neuronal
networks [46]–[48], optimising timetables for transporta-
tion [49] to the synchronization patterns affected by network
topology in chemical systems [50] and IoT systems [51].

Controllability of networks represents the ability of
controlling the networks, which is independent of the way
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that the outputs are formed, while its related concept of
observability, depends only on the outputs but not on the
inputs [76]. The studies on controllability are often combined
with observability, which range from social networks [77],
protein interaction networks [78], brain networks [79] to
transportation networks [80].

Anomaly detection of networks is about finding objects,
relationships, or points in time that are unlike the rest [53].
There are many studies on anomaly detection in various
application scenarios, ranging from anomaly detection in
social networks [54]–[56], public health [55], IP net-
works [57], wireless sensor networks [58] to intrusion
of networks [59]. Similarly to the principles of anomaly
detection, pattern recognition is also used for diagnostic
analysis [60] and heterogeneous component detection in
knowledge networks [61].

Topological feature analysis is a very popular model’s
aim in both real-life networks and artificial networks. This
is a research topic that probes network topological features
from real data for applications across disciplines based
on network-based models, such as the probed topological
features of text network for language organisation [6], [62],
probed boundary features within the small world complex
networks for image classification [63] and organisation of
brain network [46]. Local network topological features like
three-node motif [81], directed closure [82] and quadrangle
structure [83] are researched through topological feature
analysis of social networks. There are also discussions
of artificial network topological effects on network based
models, which involves studies of topological effects on P2P
trading in financial market [64], artificial neural networks
in computation tasks [65], epidemic spreading [66] and
enhancing synchronization of IoT systems [51].

Mimics of reality helps to deal with questions about
analyses of dynamics over networks or features of net-
works [67]. There are studies of spreading processes in
artificial networks including epidemic dynamics [9], [68],
opinion dynamics [69], [70] and meme diffusion [71]. There
are also studies that simplify the real complex systems
as data-driven networks to assist further analyses, which
involves applications ranging from Digital Twins of IoT
systems [51], [72], image information representation [60],
mimics of transportation systems [73], design of supply
chain networks [84], [85], [85]–[88] and the representation
of human-object interactions via networks [74].

C. DIGITAL TWIN: AN ULTIMATE GOAL
Researchers focus on the studies of twining real systems
across many disciplines and those efforts have already
resulted in a development of a field on its own known as
Digital Twins (DT). DT serves as an ‘‘almighty’’ paradigm of
mimics across spatial and temporal scales. It has also grown
to become an ultimate goal of modelling complex networked
systems due to its reality-friendly nature, integration of model
functions and the wide range of applications.

Digital Twin is a virtual extension of reality, which not only
allows to compare current conditions with historical data to
provide meaningful information to assist in decision-making,
but also enables forecasting and feedback of eventualities that
have never happened before [89]. Researchers have defined
DTs from different perspectives across the application
scenarios. In a fully digitalized product life cycle, DT is
a comprehensive virtual product model with the features
of real-time monitoring, simulation and forecasting [90].
For mechanical and cyber-physical systems, DT is a linked
collection of digital artefacts that evolves with the real system
along the whole life cycle and integrates currently available
knowledge with the purpose of describing behaviour and
deriving solutions for the real system [91].

DTs have three elementary components repeatedly empha-
sised: the digital (virtual part), the real physical product
and the connection between them [92], while there are also
other imperative components added with the accumulation
of practice, including data, service, machine learning, and
DT Performance evaluation [93]–[95]. DTs also resemble a
series of models with integrated functions like simulation,
optimization and data analytics [96] and features of real-time
processing and continuous updates [97]. This makes DTs
impossible to be replaced by any single tool and ideal
modelling paradigms for health monitoring [98], planning
of manufacturing [99], management of smart city [100],
accurate healthcare [101] and anomaly detection [102]
within a wide range of complex systems, including complex
networked systems like IoT systems [103], [104] and
blockchain-encapsulated systems [105], [106].

The above mentioned components, integrated functions
and universal application of DTs differentiate them from any
other simulation tool or modelling paradigms by emphasising
the properties of real-time data acquisition of observations
and feedback, and self-evolution through continuousmachine
learning analysis. They contribute to DTs’ status as a
powerful tool for the mimicking of a series of realities and
an ultimate goal for modelling complex networked systems
across disciplines.

Modelling complex networked systems using a Digital
Twin paradigm has a potential to build a universal model
that can be adapted to fulfil multiple, different models’ aims
discussed in this section. But before this can be attempted,
we need to review and assess how the modelling of complex
networks, their dynamics as well as dynamics on those
networks is approached currently and this is the focus of the
following sections.

III. HOW TO REPRESENT INFORMATION IN A FORM OF A
NETWORK
This question involves two important issues in building
complex networked systems, which are: (1) what types
of networks are needed in modelling certain phenomena
including the ways of building the required network topology
with appropriate complexity using real data and simulations,
and (2) how to obtain these networks from different
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perspectives of obtaining and processing data to realise
such complexity. To achieve a faithful representation of a
network that preserves as much information as needed in the
modelling of networked systems (see section III) for certain
models’ aims (see II-B), one needs to collect and process
observable data and information about the network structures
and associated dynamics with modelling paradigms that
minimise the information loss in the process of a network
generation.

A. HOW TO REPRESENT NETWORKED DATA
According to [107] network topology is a representation
of the physical connections that exist among entities in a
communication network. This definition can be and has
been easily expanded across disciplines as network topology
describes how the entities of any type relate to each other in
any type of network. The establishment of network topology
is a crucial step for modelling complex networked system,
and its effect on the dynamics has been a popular research
focus.

a: COMPLEXITY DIMENSIONS
Network topologies vary in complexity when they represent
networked information that can vary in data availability and
modelling necessity. Complexity of the topology results from
different types of nodes, edges and their attributes. As shown
in equation 1, the network at time t can be represented as
Gt , with its complexity level dependent on the heterogeneous
network components and their changes over time: the set
of nodes Vt = {v1,t , · · · , vN ,t }, the set of edges Et =
{(vi,t , vj,t )|vi,t , vi,t ∈ V , i 6= j}, the attributes of each node
At = {a(v1,t ), · · · , a(vN ,t )} and the attributes of each edge
Wt = {w(vi,t , vj,t )|vi,t , vi,t ∈ V , i 6= j} [24],

Gt = (Vt ,Et ,Wt ,At ) (1)

In Figure 1, we propose to describe this complexity
alongside and using the following four dimensions: (i) a
structural dimension connected to the scale and diversity of
the topology, (ii) a temporal dimension concerned with time-
to-live of different components of the network, (iii) a spatial
dimension connected with the space in which the topology
can be embedded, and (iv) a dynamics dimension connected
to the topology’s exerted or encapsulated dynamics. The
complexity in structural, temporal and spatial dimensions
describes the necessary reality required to be represented
via networks, while the dynamics complexity depends on
the models selected to explore the complex reality. These
modelling paradigms are shown in Figure 1. Given available
networked data set that is observable from the perspective of
the above mentioned four complexity dimensions, in topo-
logical feature analysis, only structural information about
networks need to be represented and analysed based on a
model that reveals the inner rules of network formation,
while for prediction of link formation over time, temporal
complexity is further incorporated and a complex model that
performs well in such an external task is employed.

Structural complexity of the scale and diversity of
nodes, edges and their attributes involves discussions of
non-attributed and attributed networks in terms of their
diversity, as well as small/big networks and sparse/dense
networks in terms of their scale, where structural complexity
increases with more detailed information needed to be
represented.

Research studies usually start from the exploration of
non-attributed networks that are built only with homogenous
nodes and edges. Such networks represent simplified real
world scenarios and are thoroughly studied in terms of
their topological features, like the analysis of potential
energy landscape with both a small-world and scale- free
character [108] or the conduction of specific model’s aim e.g.
community discovery which only uses network topology to
find partitions [109].

Attributed networks can better represent real-world net-
worked interactions and information as they introduce the
auxiliary information via node or edge attributes [110],
[111]. The node attributes describe the features of nodes
within interactions or relations, while the edge attributes
capture information about how the adjacent nodes interact
with others in the networks [110]. These attributes vary with
application scenarios. Taking online social networks as an
example, nodes represent users and are attributed with user
profiles [112], while edges represent online relationships and
have attributes like nature of relation, direction, intensity
and durability [113]. Many researchers study the structural
complexity of node-attributed networks having in mind such
modelling aims as community discovery [24], [114], link pre-
diction [115], anomaly detection [112], controllability [116],
topological feature analysis and mimicking of reality [117].
However, few researches focus on the representation and
modelling of generalised edge-attributed networks. Edge-
attributes of such networks within most researches typically
take the numerical or categorical forms [110], [118], where
directions [119] and edge weights [120], [121] are often
studied. Compared with the large number of studies on
node-attributed networks with various model’s aims, only
a small number of studies focuses on community discov-
ery [122] and anomaly detection [110] of edge-attributed
networks.

The structural complexity also increases with the require-
ments of representing more information within large-scale
networks and the difficulty of processing networks with
sparse edge information. Structural complexity of large-scale
networks with thousands and millions of nodes results
from a complicated and higher-order inner structure [123],
which are common in DTs like city IoT [117] and DT
of manufacturing with big data [124]. Structural com-
plexity of sparse networks, given fewer edges, lies in
their restrictions of attributes processing [111], [125] and
optimal modelling [126]. There is an even more complex
case for large sparse networks where both complicated
large-scale inner structure and problematic sparse edges are
involved [126].
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FIGURE 1. Four dimensions of complexity related to a network’s topology.

Temporal complexity of networks increases when more
temporal information about nodes, edges and their attributes
can be captured and modelled meaning that less information
is lost. Networks can be conceptually described as static,
edge-weighted, evolving and temporal [10], [11] as they are
transforming to be instantaneous and approaching the state of
continuity without temporal aggregation.

The basic modelling of real-world phenomena and systems
using CNS starts with a static network topology where nodes
and edges are fixed and they are assumed to be ‘‘frozen’’ in
time. Such an assumption greatly simplifies the modelling
process but fails to capture the evolving features of real-world
systems.

The attempts of accounting for temporal information in
the network modelling process have gained attention as
they usually improve the model performance. For example,
social network analysis initially viewed networks as static
rather than changing over time [127], [128]. As the field
developed, social interactions started being represented using
temporal networks to capture dynamics and instantaneous
character of the contacts [121], [129]. In terms of biomolec-
ular networks, studies on protein-protein networks first
employed static data-driven networks to represent and anal-
yse the protein-protein interaction [130] until the dynamic
protein-protein networks have been found to benefit the study
on the molecular systems of protein complexes [131]. The
analyses of transportation networks also initially used static
networks [132] and then shifted to dynamic management of
transportation systems for better model performance [133].
However, the transition from the static networks under the
most stringent assumptions to the temporal networks that

result in smaller loss of information can not be achieved
overnight, while the scale of involving time dimension also
differs from case to case.

Some of the researches focus on edge-weighted networks
with temporal weights in the analysis of social relations [121]
and the mobility in wireless networks [120]. Other researches
focus on evolving networks where network topology changes
slowly over time so that its instantaneous snapshot yields
a well defined network [10]. Some evolving networks just
represent more stable relations, rather than instantaneous
interactions between the nodes, which can be captured with
durable edges like citations [134] and friendships [113],
[135], while some researches use evolving networks built
with snapshots to aggregate the temporal information of
interactions within a time window for a more stable repre-
sentation in the analysis of instantaneous features [26], [27],
[52], [135]. There are also studies on temporal networks that
have non-trivial topology changes and can not be represented
via instantaneous snapshots. They preserve all the temporal
information and build networks in a more faithful way,
such as instantaneous contacts of communication via e-
mail, text messages, or phone calls with temporal edges of
networks [136].

Spatial complexity involves discussion of spatial net-
works, which are proposed and defined as networks where
nodes are located in a space equipped with a metric of
the usual euclidean distance [137]. For example, spatial
networks that represent urban street patterns can be built
with a metric of distance, which is measured not just
in topological terms (steps), but in properly spatial terms
(meters, miles) [138]. Considerable applications of spatial
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FIGURE 2. Observability and complexity with corresponding relations.

networks involve modelling of human activities that take
place on a spatial matrix obtained from largely three
types of transportation networks including matter (streets,
roads, highways, railways, airport networks), energy (the
power grid) and information (Internet, telephone networks)
[139], [140].

Researchers have been characterising and understanding
the structure and the evolution of networks under the
impact of spatial constraints [137], where topology alone
does not contain all the information to understand the
dynamics of networks and the spatial information is needed.
Some social-spatio networks consider the interplay of social
networks and locations, such as social interactions under
the impact of transportation [141], employment outcomes
in a labour market driven by social contacts under an
explicit geographic structure [142] and the social properties
of Twitter users’ networks with the spatial proximity of the
networks [143]. Traffic under the constraints of transportation
networks also involves studies on commuter flows con-
strained in large transportation networks [144] and planning
of unobstructed paths in traffic-aware spatial networks [145].

Dynamics complexity is about the dynamics of networks
that enables to develop a deeper understanding of temporal
complexity based on structural and spatial complexity by
investigating the rules of network evolution via simulation
or modelling. Temporal and dynamics complexity, which
are respectively derived from structural and dynamical
observability, represent varying degrees of reality. The
temporal complexity describes which components of a
network change over time, while the dynamics complexity,
as a deeper understanding of temporal complexity, considers
why and how these components change. The relations
between observability and complexity dimensions are shown
in Figure 2.

For dynamics built on inner rules that direct network
formation and evolution, the dynamics complexity increases
as networks are generated with less human involvement based
onmore realistic rules ranging from statistical relations [146],
[147] to realistic principles like homophily [148], [149]. This
dynamics can either be exerted dynamics that controls the
network changes to a desired state of CNS [150]–[152],

or encapsulated dynamics that motivates the network forma-
tion and evolution with higher degrees of automation [40],
[148], [149]. For example, exerted dynamics used for social
network intervention can control each step of network
evolution by changing attributes of nodes that are identified
based on different man-made strategies [151]. Encapsulated
dynamics mainly focuses on the edge formation mecha-
nisms, e.g. based on preferential attachment principles [40],
[149] which are typical examples of highly-automated self-
evolution without involvement of human decision.

The synergy effects of complexity dimensions describe
the ‘‘1+1>2’’ effect of the combined complexities from
different dimensions, which are more complex but closer
to reality. Spatial temporal networks are typical examples
for combined complexity of temporal and spatial dimension,
which are proposed for a more faithful representation of
reality with the influence of space on constraining the
structure of temporal networks considered. Some researches
employ temporal networks to capture and process temporal
information under consecutive frames, while they construct
spatial networks to extract certain static features. Such
spatial-temporal networks have beenwidely used in computer
vision like facial expression [153], video-based person
reidentification [154] and identification of human-object
interaction [74]. Some researches introduce temporal infor-
mation to spatial networks. Taking recommendation task
as an example, [129] build spatial temporal networks with
temporal edge-weights by incorporating time dimension to
user-location graphs and using sessions that capture the
co-locations among two or more users during a time window.

It is clear that different complexity dimensions are
intertwined. They influence and build on each other and
this is one of the challenges that need to be considered
when modelling of complex networked systems is attempted.
Research has been conducted in each of the complexity
dimensions but building overarching framework that would
enable to flexibly adjust a level of complexity of each of the
dimensions and simulate various what if scenarios is still an
outstanding challenge. With the recent developments in the
Digital Twin space, modelling CNS using DT paradigm is a
promising way forward.

b: DATA-DRIVEN VS SIMULATION-BASED NETWORKS
Researchers have made a lot of effort to faithfully represent
the information from real world systems by developing
variety of modelling approaches. This involves data-driven
networks, simulation-based networks and networks that are
built by combining these two approaches. These networks are
featured with varying degrees of complexity. Components of
different network types are shown in Figure 3.
Data-driven networks built on rich real data sets may

not necessarily capture all the information as they may
be confined by relatively simple model’s aims under strict
assumptions, like the ignorance of temporal information for
temporal networks analysed in a ‘‘static’’ time scale [127].
As researchers explore the real data sets with more complex
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FIGURE 3. Different types of networks and their components.

modelling aims and advanced techniques, data-driven net-
works gradually approach reality as more complexity is
allowed to be introduced to network topology with more
relaxed assumptions. For example, the analysis of social net-
works started from statistical analysis of static networks and
their topology [127] and then evolved into a more complex
modelling aims such as community discovery in networks
that are increasingly more and more complex, starting from
static [155] to evolving [23], [156], attributed [125] and both
evolving and attributed networks [11].

When real data is not available, simulated (synthetic)
networks can be generated and used to analyse various
phenomena [8]. These simulated networks enable to model
network phenomena with different levels of complexity. The
statistics-based simulations based on predetermined network
statistics involve classical examples like the Barabasi-Albert
model for the scale-free network [157], the Watts-Strogatz
small-world model for the small-world network [158] or
the Erdos-Renyi model for the random graph network
[146], [147]. The simulation-based approaches increase their
complexity and flexibility as more complex rules governing
creation of structure and its dynamics are introduced. The
capability of generating networks with distinctive features
enabled the similutaion-based approaches to become a
universal tool for topological feature analysis. They also help
with assessing the impact of network topology on dynamic
processes, involving researches like synchronization of IoT
systems using networks ranging from scale-free to small
world models [51].

Another type of simulation-based networks, the principle-
based simulations, are built according to different con-
nection principles like homophily [148], [149], triadic
structure [149], geographic proximity [152], [159]. These
networks have typically higher degrees of temporal and
dynamics complexity than statistics-based network simu-
lations as they self-evolve with highly autonomous and
interpretable edge formation process and generate temporal
networked information. However, few researches involve
principle-based network simulations with various edge
attributes [40] or network simulations embedded in spa-
tial dimension [160]. They are more complex but closer
to reality, which calls for future research on network
simulations with the combination of different levels of

complexity from structural, temporal, spatial and dynamics
space.

There are also networks built using combination of real
data and simulations. They are featured with the mix of
different levels of complexity either captured from real data
or represented via simulation. Such networks consist of real
attributed nodes and connections between the nodes are cre-
ated using network simulation dynamics. For example, [151]
build social networks by extracting necessary information
about nodes’ attributes from real database and simulate
the edges using scale-free networks based on a network
density from referenced literature. Some researches simulate
missing edges for real networks, where the single imputation
methods including null-tie imputation and reconstruction
summarised by [161] are typical examples. The complexity
of networks built using this hybrid approach increases as
more data-driven features are captured by having the network
simulation dynamics trained to fit observable real network
components. For example, as an improvement of single
imputation, researches propose a multiple imputation method
that fits an exponential random graph model (ERGM) to the
real data and simulates missing ties via inference [161].

B. HOW TO GENERATE NETWORKS USING DIFFERENT
MODELLING PARADIGMS
Networks, no matter to what extent real data or simulation is
used, are created to faithfully represent information about a
given system in preparation for further analyses. Depending
on the modelling goal, networks used for analysis will
differ with respect to the four introduced above complexity
dimensions and will have varying settings of nodes, edges
and attributes. There are several modelling paradigms that
are used to obtain desired networks and those include
rule–based, agent–based and event–based approaches that
focus on fundamental generative process from a local per-
spective of network formation, as well as basic graph–based,
probabilistic graph–based and network–embedding based
approaches that aim at condense network representation
from the global perspective. These modelling paradigms,
of local or global level, differ in ways of observing and
processing networks but converge to a faithful representation
of reality that aims at minimising the information loss
between reality and the model. Observed local interactions
lead to global emerging characteristic behaviours observed
and analysed via graphs, while graphs lose less information as
the four complexity dimensions are introduced via local level
observations.

c: A LOCAL VIEW
Modelling paradigms of networks from a local view focus
on mechanisms ruling the network formation. They take
local level observations as a starting point and explore
how they construct the characteristic CNS at a global
level, corresponding to the discussion of observability
considering the structural, temporal, spatial and dynamics
complexity. The rule–based, agent–based and event–based
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approaches at a local level are introduced below with more
information observed or simulated for the four complexity
dimensions.

Rule–based paradigm generates networks under explicit
dependence laws from predetermined assumptions or rules
detected from real world cases, which not only focuses
on network topology, but also investigates dynamics of
network structures via simplified rules of edge formation and
evolution.

Rule–based paradigms are controlled by a limited number
of parameters according to a rule-based mathematical func-
tion, where randomness is introduced via certain probability
distributions involved in edge formation or variable changes,
like the scale-free network generation via a scale-free power-
law distribution [162], edge formation with a bias probability
dependent on the similarity of node attributes [149], and
the changes of node property according to a uniform dis-
tribution [40]. For rule-based paradigms, there is inevitable
information loss resulting from the divergence of rules and
reality, as the rules greatly simplify the partially observable
and complex real world scenarios. Researchers have made
much effort to bridge this gap, involving studies on rule-based
dynamics transforming from simulated [146], [147], [157],
[158] to trained to better fit real networks [149], as well
as rules evolving from statistics-based [161], [163]–[166]
to principle-based [149], [167]. They include temporal
complexity by incorporating temporal changes of network
topology into the rule–based network generation process,
and sometimes, to better characterise network generation,
introduce the impact of node attributes with increasing
structural complexity.

Rule–based paradigm started from simulated dynamics of
networks either based on statistical rules [146], [147], [157],
[158] or principles [148], [149], [168] (as is mentioned in
section III-A0.b.), where they can be tuned to approach reality
via seeking optimal parameters for the rule-based mathe-
matical functions to fit real data and make inference [149].
For example, the ERGM involved in multiple imputation
of networks can fit real data and simulate missing ties
via inference [161], where the involved dynamics represent
data-driven features to some extent, but neither preserve
rich information about node/edge attributes nor explore
topological information other than typical interactive patterns
of ERGM rules.

Statistics-based network generators are able to fit real net-
works via statistical inference based on an explicit likelihood
function, like scale-free model [163], ERGM [161], [164]
and geometric branching growth model [166]. As statistics-
based dynamics on typical interactive patterns can hardly
represent diverse real-world networks, principle-based net-
work generators have been studied with their flexible and
adaptable design of principles, which fit the statistics of
real networks via likelihood-free inference such as approx-
imated Bayesian computation [149]. For example, scale-free
structure is empirically rare in social networks [163], while
a principle-based simulator based on cumulative effects of

triadic closure and homophily is able to reveal social network
dynamics [149].

Event–based paradigm refers to the network rep-
resentations with two elementary components: nodes
and their local pairwise interactions referred to as
events [169] or nodes of events and their logical relationships
[170]–[172], which involves event-based network represen-
tation and analysis [171]–[173] as well as stochastic point
processes for events that can perform network inferential
tasks [174].

Event–based paradigm started from a simple network
representation that captures richer heterogeneous information
of interactions related to events with increasing structural
complexity. As a typical example, event-based social net-
works (EBSNs) are enabled to further capture and use
the information of offline social interactions, in addition
to the online social relationships included in conventional
online social networks [173]. The enriched information
observed about events assist further analysis and modelling
tasks. For example, the consideration of both online and
offline interactions for EBSNs provides adequate information
for global level analysis and modelling via graph-based
models [172] and improves the prediction power for event
recommendation tasks [173].

Then it comes to stochastic point processes that are
enabled to make inference about nodes [174] or edges
(events) [175] via estimating dependencies between events
or dependencies between events and latent space models with
increasing dynamics complexity. Taking Hawkes process as
an example, [174] employ a self-exciting point process on the
edge to perform an identity-inference task, considering the
effect of available observations of geographically distributed
interactions (edges). [175] apply mutually exciting point
process on the edge that includes the effect of node-specific
latent vectors to assess the significance of previously
unobserved connections for anomaly detection tasks.

Agent–based paradigm applied in the context of complex
networked system refers to interactive structures that are
typically composed based on three basic components: agents,
interaction rules, and space (this could be geo-space or some
other abstract space) [176], which enables more degrees of
freedom in building networks from rich data or simulations as
they can select more detailed information about interactions
from microscopic perspective of agents.

Agent–based paradigms vary in degrees of information
loss with different dimensions and degrees of complexity
required for various research goals. The interactive structure
can either be static with neighbour sets determined once
and for all, or dynamic with evolution along time depending
on model assumptions [177], while the interaction rules
may either be simulation-based under certain constraints of
space [64], [178], [179] or data-driven based on realistic
scenarios [180]–[182].

The information about interactions of agents is initially
represented in a fixed network topology, where decisions
of agents are affected by network structures over which
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they interact. Such networks serve as an environment and a
constraint for agents’ behaviours [177]. Most static networks
involved in the researches on agent-based models are
simulation-based, focusing on the network effect on interac-
tions in agent-based systems like trading behaviours in double
auction [64], [183] and tax compliance and evasion [179].
Recently, these agent-based networks approach reality by
introducing real data with features of time and space. [180]
proposed a data-driven agent-based model for forecasting
emerging infectious diseases, where data-driven networks are
built with spatial information and social contact of realistic
synthetic population. [181] also proposed an agent-based
computational model under a data-driven decision-making
framework for supply chain networks given their complicated
micro structures, macro emergencies and dynamic evolution.

Multi-agent systems are also important simulation tools
for modelling evolving networked systems with multiple
agents interacting under certain constraints. [52] proposed a
multi-agent system that replays the evolution of a network
and reproduces the rise and fall of communities with the
strength of adapting to real-time, changing problems. [184]
research on the constrained concensus and optimisation of
multi agent networks, where multiple agents align their
estimates with a particular value over a network with
time-varying connectivity in different local constraint sets.

To better capture the structural patterns and instantaneous
dynamics of networks, event-driven models (also named as
activity-driven models) have been proposed with an activity
potential, a time invariant function characterising the agents’
interactions and encoding the instantaneous time description
of the network dynamics [185]. These paradigms include
the rich information observed or simulated from microscopic
views of agents and model their connections activated by
an event trigger, involving observations varying from binary
interactions [185] to simplicial complexes [186], as well as
applications ranging from event-based consensus [187] to
contagion problems [186], [188].

d: A GLOBAL VIEW
Modelling paradigms of networks from a global view aim at
representing high-dimensional and heterogeneous networked
information in a way that can be easily analysed. More
information can be observed at a global level as more
information about interactions is captured via local methods,
which involves discussion on how global performance can
change through controlling and modifying those interactions,
corresponding to the research aim about controllability. The
basic graph–based, probabilistic graph–based and network
embedding–based methods at a global level are introduced
below with increasing complexity as they are able to preserve
more observable information in network representation and
modelling.

Basic graph–based paradigm is based on the graph
theory and it can be seen as a set of selection principles
for microscopic laws of behaviour in network science [189]
which typically involves a simplified graph representation

and analysis of networks just concerned with nodes and their
connections, e.g. [190], [191].

Graph theory began when, in 1735, Leonhard Euler
presented the first mathematical demonstration based on
geometry of position to solve the seven bridges of Kön-
ingsberg puzzle [192], [193]. Graph theory focuses on
providing rigorous proofs for graph properties, such as
graph enumeration, coloring, and covering [189], [194],
while the evolution of random graphs motivated graph
theory to generate a new branch of network science for a
separate direction: quantifying the structure and dynamics of
real-world complex systems [189].

Graph-based paradigm simply represents networks as
basic graphs composed of nodes and connections, enabling
readily available graph analysis but taking the cost of
information loss to varying degrees especially in terms
of structural complexity [190], [191], [195]. For example,
from an accumulation of experimental data on biomolecules,
graph-based models for cell biology build the graph only
with cellular components (nodes) and their interactions
(edges), which allows for network topology analyses using
graph-theoretical concepts but lose information other than the
graph-structure [190].

Graphs are one of the widely studied data structures in
computer science and discrete mathematics [196], while the
graph-based models are also widely applied in the modelling
of CNS across disciplines, such as analyses of graphic
characteristics for networks in cell biology [190], anomaly
detection of computer networks using protocal graphs [195],
graph representation of vulnerability relations for industry
IoT network [191].

Probabilistic graph–based paradigm models networks
with uncertainties on the relationships between nodes [197],
which has two elementary components: a graph that defines
the network structure and a set of local functions whose
product is the joint probability of this compact represen-
tation [198]. The network representation with probabilistic
graph–based paradigm is typically flexible in directed or
undirected, static or dynamic dimensions, each correspond-
ing to varying degrees of structural complexity and temporal
complexity. The exploration of the local functions for
dependence rules or cause-effect relationships enables the
inference and learning of real networks in sophisticated
models [199].

The probabilistic graphs can either be undirected with
symmetric relations like conditional random fields [200] and
Markov networks [201], [202], or directed with cause-effect
relationships between the nodes, such as sigmoid belief
networks [203], Bayesian networks [204] and hiddenMarkov
model [205]. The usage of directed or undirected graphs
depends on the application scenarios. For example, Markov
networks, as a typical undirected graph, represent relational
dependencies without the hindrance of acyclicity constraint
and thus are well suited for discriminative training [201].
They have been widely used in argumentation tasks
like finding labellings or probabilistic inference tasks by
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deciding credulous and sceptical acceptance [206]. While
Bayesian networks, as a directed acyclic graph with explicit
cause-effect assumptions for interactions [204], can handle
problems including missing data, prediction and data over-
fitting [207]. Some researchers also employ Bayesian net-
works in DTs due to efficient linear computation [103], [208],
[209], while nonparametric Bayesian networks are more
flexible in capturing time varying features with computation
efficiency [13], [210].

Probabilistic graph–based paradigm can either be static or
dynamic based on whether the probabilistic graphs represent
variables at a time point or across different times [198], such
as the Bayesian networks [204] versus the dynamic Bayesian
networks [208]. They are transforming from static to dynamic
with the trend of modelling networks with more temporal
complexity. For example, continuous time Bayesian networks
[211] and continuous time Markov networks [212] are
proposed to capture changeable variables given the evolving
features of structured stochastic processes and the graphical
structure of Markov networks and Bayesian networks.

Probabilistic graph–based paradigms are able to conduct
inference that helps in answering different probabilistic
queries based on the model and some evidence as well as
learning that estimates the graph structure and parameters of
probabilistic graph–based paradigms’ local functions [198].
As exact inference is often intractable, researchers tend
to use approximation algorithms to find distributions that
are close to the correct posterior distribution [213], like
Gibbs sampling [214] and belief propagation [215]. While
maximum likelihood estimation methods and the expecta-
tion maximization (EM) algorithms [216] are respectively
employed for learning problems with or without hidden
variables. To deal with data uncertainty and to integrate
imprecise data, fuzzy probabilistic regression models are
employed to model the functional relationship between the
entities [217], [218]. However, probabilistic graph–based
paradigms have difficulty representing, inferring and learning
high-dimensional, heterogeneous networks, which calls for
combined application of network embedding methods.

Network embedding–based paradigm aims at network
construction and network inference via embedding node
information in the network into low-dimensional space [219],
which is featured with a concatenation of an encoder and a
decoder [10], [220], [221].

Network embedding starts from dimensionality reduction
techniques that are also applicable in scenarios other
than networks, which include stochastic multidimensional
scaling [222], isometric mapping (ISOMAP) [223], prin-
ciple component analysis (PCA) [224], linear discrimi-
nant analysis (LDA) [225], stochastic neighbor embedding
(SNE) [226] and t-distributed stochastics neighbor embed-
ding (t-SNE) [227]. There are also basic models that merely
focus on network embedding tasks, which, as summarised
by [228], are respectively built upon the skip-gram mod-
els [229] and matrix factorization models [230]. These
models are able to encode network information into a

low-dimensional space, but do not focus on decoding
information to reconstruct networks or perform inferential
tasks.

To preserve more information in the modelling process and
perform inferences, deep learning (DL) techniques have been
widely utilised to embed highly diverse, heterogeneous, high-
dimensional network information into a low-dimensional
latent space. DL-based network embedding, also referred
to as a network representation learning, is able to make
inferences and assist network analytic tasks including node
classification, link prediction, clustering, recommendation,
similarity search and visualization, involving unsupervised
and semi-supervised learning methods [231]. As it is
categorised by [232], DL based graph embedding methods
are either random walk based like Skip-Gram based deep
learning models [233]–[235], or without random walk
but directly utilising DL methods on a whole graph or
its proximity matrix via autoencoder [236], deep neural
networks [237] and graph convolutional networks [238].

Graph Neural Networks (GNN) refer to a widely used
DL-based embedding method that encode graph structures
via a neural networks architecture, which is able to decrease
information loss by aggregating features of neighbouring
nodes together [10]. This motivates the combination of
GNN with other models, which is typically composed
of an encoder, a generative model and a decoder. For
example, graph Bayesian networks [239] and graph Markov
Neural Networks [240], [241] can be employed to infer
graph parameters (statistical relational learning) based on
encoder/decoder - graph convolutional neural networks = and
generative model = the involved PGM. The GNN combined
with ordinary differential equation (ODE) is able to infer the
latent states of irregular observations (encoding), learn the
state transition in latent space via generative model = ODE,
and make predictions continuously (decoding) [242].

e: AN OVERALL VIEW
Three trends can be discovered if we look through the
modelling paradigms of generating networks from either
local or global view: (i) increasing complexity of network
topology and dynamics, (ii) decreasing interpretability with
the increase of complexity, (iii) models’ aims transforming
from abstract to specific. These trends are shown in Figure 4:
Complexity of networks increases when they are repre-

sented and generated more faithfully with less information
loss.

Models at a local level focus on the network formation pro-
cess. Rule–based paradigms are usually statistics-based and
generate static networks that are just composed of fixed nodes
and edges [162]. They recently turned to be principle-based
while allowing for the introduction of node attributes with
increasing structural complexity and edge addition over
time with increasing temporal complexity [40], [149]. Given
the above complexity dimensions, rule–based paradigms
generate networks under the simplest rules of edge addition
with lowest level of dynamics complexity. To incorporate
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FIGURE 4. An overall view of modelling paradigms.

more information about attributes and temporal changes
of network topology including edge addition and removal,
event–based paradigms based on more complex rules of local
pairwise interactions, such as the stochastic point processes,
are employed with increasing dynamics complexity [174].
Agent–based paradigms introduce more complex interaction
rules to account for more detailed information of agents
(nodes), including their attributes and various actions that
result in edge addition or removal over time [52].

Models at a global level aim at a condense representation of
high-dimensional and heterogeneous networked information.
Basic graph–based paradigms focus on a simplified graph
representation of networks that are just about nodes and
their connections [190]. Probabilistic graph–based paradigms
further incorporate information of network components
with increasing structural and temporal complexity via the
introduction of node attributes, edge directions or addition of
edges over time [32], [198]. These models, with increasing
dynamics complexity, also enable the inference and learning
of real networks via modelling the uncertainties on the rela-
tionships between nodes [197]. Network embedding–based
paradigms can conduct network construction and network
inference via embedding highly diverse, heterogeneous, high-
dimensional node information into a low-dimensional space.
This is characterised with the highest level of complexity in
terms of network representation and dynamics.

Interpretability represents the ability to explain or to
present in understandable terms to a human [243]. The inter-
pretability of networks is about the understanding of network
representation and the corresponding network dynamics.
It decreases as the network complexity increases with more
information represented and modelled. From a local view,
more complex rules of network formation enable smaller
information loss but may result in less interpretable global
emerging characteristic behaviours observed in networks. For
example, compared with rule–based paradigms, agent–based
paradigms may generate less interpretable networks as

they incorporate the impact of various observables from
microscopic perspective of agents [52]. From a global
view, more complex models can embed more complex
networked information but are characterised by less inter-
pretable embedding process and inference results, such as the
network embedding paradigms which are less interpretable
in encoding or decoding but can represent highly diverse and
heterogeneous networks.

Measurability represents the ability to measure a charac-
teristic of a class of objects [39]. Measurability of networks
generated for abstract model’s aims is about measuring
the similarity between the inner rules of a networked
system and that of real networks, while the measurability
of networks under specific model’s aims focuses on the
measurable output for external tasks. Networks of higher
interpretability but lower complexity, like non-attributed
static networks generated by rule–based or graph–based
paradigms, can be easily analysed, measured and compared
in terms of network components and dynamics. These
networks are usually involved in researches with abstract
model’s aims including topological feature analysis [157],
[162], [244], [245] and mimics of reality [164], [192].
Networks of high complexity but low interpretability like the
attributed temporal networks are always generated by event–
based, agent–based, probabilistic graph–based or network
embedding–based paradigms. They incorporate rich informa-
tion especially in structural and temporal dimensions while
preserve enough dynamics complexity for the fulfilment
of specific model’s aims including link prediction, node
classification, community discovery, anomaly detection,
synchronization and controllability.

To conclude, modelling paradigms of network repre-
sentation, either from a local or a global perspective,
get more complex with compromised interpretability while
transferring from the abstract models’ aims to the specific
model’s aims. Such a trade-off between complexity and
interpretability in the current CNSs does not indicate their
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incompatibility but reveals a research direction where new
CNSs models can be both complex and interpretable. And
the division between the abstract and the specific model’s
aims will also be eliminated when CNSs are modelled as a
Digital Twin and are enabled to undertake multiple external
tasks thanks to faithful representation of real systems.

IV. HOW TO MODEL THE DYNAMICS IN NETWORKED
SYSTEMS
In this section, we explore the answers to the question
‘‘how?’’ about the modelling of dynamics in complex
networked systems. This involves a discussion about two
key concepts of complex networked systems: (i) dynamics
of networks and (ii) dynamics over networks. Dynamics of
networks considers the network’s generation process and
network’s changes over time (evolution), while the dynamics
over networks refers to the dynamic processes that occur on
networks over time. In addition to the process and network
complexity, we also emphasise the complexity resulting
from various interrelations between dynamic processes and
network dynamics, where unilateral or mutual influence
from one-way or two-way interactions are reviewed and
discussed. Given complex networks (obtained via methods
from section III) and observable information of dynamic
processes, their dynamics and interrelations should be
modelled in a way that models’ aims (see section II-B) are
fulfilled.

A. AN OVERVIEW OF DYNAMICS AND THEIR
INTERRELATIONS
Taking the networks obtained via modelling paradigms
introduced in section III as a starting point, the modelling
of dynamics within the CNS, at the appropriate complexity
level as per complexity dimensions introduced in section III-
A, enables a deeper understanding of changeable network
structures and processes over them with and contributes
to achieving certain models’ aims under the constraints of
observability.

The complexity of modelling CNS dynamics comes from
three primary elements: the modelling of networks, processes
over networks, as well as the interrelation between the two.
Their states can be respectively represented as Gt , Pt and
It , with the dynamics of and over the networks modelled
as Fg(xt ) and Fp(yt ). The parameter xt and yt of these two
dynamics and their interrelation It , with the capability to
change over time, result in the complexity of modelling CNS.{

Gt = Fg(xt )
Pt = Fp(yt )

s.t. It (xt , yt ) = c

xt , yt ∈ R

c ∈ {R,NA} (2)

To have an overview of various CNS resulting from
those three elements, we introduce a 5-generation modelling
framework (see Table 2 for brief descriptions and Figure 5

for details) to navigate a pathway through different levels of
complexity of CNS.

As is shown in Figure 5a, in the first generation (genera-
tion 1), the research concentrates on static networks, where
spreading processes are introduced without changing their
parameters. The static networks with fixed nodes and edges
just provide necessary spatial or structural information rather
than one-way influence that might trigger the parameter
changes (evolution) of dynamic processes. Some studies
employ spatial networks that utilize a metric to embed spatial
information [137], [139], where the dynamic processes
are modelled under the constraints of space, like the
human activity on transportation networks [139]. Majority of
research on dynamic processes over complex networks can
be classified as the first generation of models [8].

Assuming a virus a spreading in the society where all
relevant information is observable, in the generation 1, we can
simplify this scenario into an epidemic spreading process
of virus a with fixed parameter (e.g. infection rate) on a
static non-attributed networks that are just built with fixed
nodes (e.g. people) and edges (e.g. social contact). This
simplified CNS increases complexity in structural and spatial
dimensions once we incorporate more information about
node attributes (e.g. age, gender, location, etc.) and edge
attributes (e.g. direction, weights, distance, etc.).

With the temporal complexity introduced in CNS in the
second generation (generation 2), parameter changes of
dynamic processes or network topology changes over time
can be observed via snapshots in discrete time steps. In the
generation 2a, CNS represents the interactions via evolv-
ing dynamic processes (captured in snapshots) and static
networks (see Figure 5b), where the spreading process on
static networks can evolve through parameter changes [246].
In the generation 2b, CNS represents the interactions directly
via evolving networks (captured in network snapshots) and
dynamic process with no parameter changes (see Figure 5c).
In this context, researchers aim to transform the snapshots
of CNS into latent states and model their transition process
discretely, involving the networks that switch arbitrarily
between different adjacency matrices according to stochastic
mechanisms like positive linear switched systems [247] and
Markov switching rules [248], [249].

Taking the above mentioned spreading of virus a as an
example, in the generation 2a, a parameter (e.g. infection
rate) of virus a can change just arbitrarily or according
to an external factor outside of CNS (e.g. temperature,
etc.), while in the generation 2b, edge addition (e.g. social
contact over time) or edge removal (e.g. enabled by the
implemented policies of social distancing) can naturally lead
to observations of evolving networks.

The modelling framework steps into the third genera-
tion(generation 3) as the dynamic process starts to co-evolve
with the evolving networks (see Figure 5d). The involved
evolving dynamic processes are captured via evolving snap-
shots with discrete parameter changes, where the changes of
parameters and the transition of the latent states of evolving
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FIGURE 5. Generations of modelling framework.
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networks can either be independent or interrelated. The
interrelations, including unilateral and mutual influences,
enable the modelling of co-evolution of dynamics and
greatly increase the complexity of modelling CNS. For
example, [250] model the co-evolution process of dynamic
social networks and the opinion migration on networks via
introducing mutual influence between these two dynamics,
where opinion migrates based on social structure and social
networks evolve considering the similarity of opinions.
Generation 3 can easily collapse into the generation 2a
when there is only one snapshot of dynamic processes
and no interrelation is considered and vice versa for the
generation 2b.

To have a better illustration of the interrelation in the
generation 3, we also start with the simplest scenario where
the virus a spreads on a static social network (a single
snapshot of evolving networks). In the generation 3, we can
allow the network topology to change over time in response
to the spreading of virus a (e.g. people die of virus a and are
removed from the social networks). These evolving networks
are interrelated with dynamic processes and are characterised
with increasing temporal complexity. The parameter (e.g.
infection rate) of virus a can also change according to the
network topology (e.g. number of social contacts, etc.) or
node attributes (e.g. age, gender, etc.). In this way, the
complexity of the CNS also increases with an introduction
of the evolving dynamic process and interrelations. The CNS
will become even more complex if we further incorporate a
vaccination b in the modelling framework of the generation 3,
where the spreading of the vaccination b can affect the node
attribute (e.g. vaccinated or not) and directly change the
parameter (e.g. infection rate) of the virus a.
The modelling framework then goes through a funda-

mental change in the fourth generation (generation 4) as
the time gaps between the CNS snapshots are narrowed,
in the limit, to zero and the co-evolving dynamics are
represented and modelled continuously with the introduction
of real time data. As is shown in Figure 5e, based on
both historical data from a data storage and the real
time data, the temporal networks capture and model all
the instantaneous interactions, while the temporal dynamic
processes are modelled with continuous parameter changes.
The complexity of the CNS increases as more complex
interrelations between continuous dynamics are introduced
and modelled. There are studies on modelling continuous
changes of networks via introducing ordinary differential
equations (ODE) to the GNN methods [242], but none of
them involve the most complex case of modelling continuous
co-evolving dynamics of interrelated dynamic processes and
dynamic networks. CNS in the generation 4 can approach
the ultimate goal of DTs when the model output of CNS
is additionally fed back to and can influence the reality in
a real time manner as a reference for practice. We refer to
this scenario as the fifth generation of modelling framework
(generation 5), where a closed feedback loop of real time
monitoring, simulation, forecasting and deriving solutions for

TABLE 2. Summary of CNS modelling generations.

reality is formed and enables the CNS to approach DTs as an
extension of reality.

To be more specific and continuing with our illustrative
example, in the generation 4, the constant event streams about
the spreading of the virus a and the temporal networks can
be observed and modelled simultaneously. The instantaneous
social contact and the virus a spreading can be captured
instantly. CNS in this context can react to sudden changes
observed in reality and evolve in real time. Any changes to
the temperature, recorded all the time, can trigger continuous
parameter (e.g. infection rate) changes of the spreading
virus a. The vaccination b can also be introduced at any time
and trigger network attribute (e.g. vaccinated or not) change
right away. In generation 5, the simulation result of CNS
about the spread of the virus a can be fed back to the policy
makers and trigger, for instance, a launch of a ‘‘promote
vaccination b’’ campaign, where the spread of vaccination b
will be simultaneously monitored and modelled by CNS with
a real time output about social networks fed back to the policy
makers.

The above mentioned modelling framework shows with
examples of real scenarios that CNSs can be represented and
modelled with increasing complexity through generations
and finally reach the goal of a DT in generation 5. To be more
aware of the progress of studies onCNSs under thismodelling
framework, we need to review and discuss what kind of
model’s aims can be achieved by modelling the dynamics in
networked systems, and how these dynamics are modelled
in network dimension, process dimension and both of these
dimensions.

B. MODELLING DYNAMICS OF NETWORKS
Dynamics of networks can result in networks with different
structural characteristics and their changes over time. Their
modelling fulfils models’ aims via analysing and learning
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these resulting patterns and changes of nodes, edges and
attributes. There are overlapping areas between modelling
dynamics of networks (in a way that models’ aims can be
fulfilled) and modelling paradigms of network generation
(in a way that minimises information loss), as a good
model that approaches real network dynamics can naturally
accomplish these two tasks simultaneously. Studies on
modelling dynamics of networks start from patterns of
non-attributed static networks and then turn to dynamic
networks that consist of nodes and edges that change over
time. Those networks include temporal information about
characteristics and behaviours of their components. Time
dimension is introduced to break the assumption of static
networks with fixed nodes and edges [10], [11], [53].

Modelling of the network dynamics, considering the
patterns and changes of nodes, edges or attributes from a
structural view, can be categorised as models that allow for:
(i) no changes, (ii) topology changes, (iii) attribute changes,
(iv) both attribute and topology changes and (v) structural
pattern changes. They differ in whether network structures
change and how they change over time, each to varying
degrees coping with the models’ aims including prediction
and classification of network components, as well as the
pattern discovery of network structures. As networks with
only attribute changes are only involved in studies of dynamic
processes on networks, we only discuss models of network
dynamics for category (i), (ii),(iv) and (v) just from the
perspective of a network dimension.

f: NO CHANGES
The modelling of network dynamics starts from static
networks without any changes of structural components over
time and focuses on the prediction of unobservable network
components.

Networks built only with fixed nodes and edges are of
the least complexity within this no change category, which
involves missing link prediction fulfilled with approaches
that are applicable for static networks. Some techniques
take a link prediction of these networks as an unsupervised
ranking problem based on a score for each non-observed link,
which can be calculated either with a structural similarity
index or probabilistic and statistical functions [32]. Structural
similarity–based methods assume that nodes tend to form
links with other similar nodes, which solely consider the
local or global topological information of networks [31].
Probabilistic and statistical function–based models abstract
the network structure and then predict probabilities of
the missing links using the learned model [32], [251],
where rule–based modelling paradigms in section III-B0.c
and probabilistic graph–based paradigms mentioned in
section III-B0.d can be employed to fit network topology
for a probability score of each link. There are also
techniques that take link prediction as a supervised binary
classification problem about whether each pair of nodes are
connected or not, wheremachine learningmodels like logistic
regression and decision tree can be applied to account for

the effects of different topological similarity metrics [252],
[253]. Another universally applied supervised approach is
the network embedding modelling paradigm mentioned in
section III-B0.d, where the low-dimensional latent space
representation of nodes is learned and their connections can
be inferred via dependencies of latent space.

Networks increase in structural complexity when attributes
are gradually introduced for nodes and edges. Some
approaches use node attributes to assist prediction of
links [38], where above introduced basic approaches for link
prediction have been altered to incorporate node features.
For unsupervised ranking algorithms, as is summarised
by [252], the similarity score between two attributed nodes
can be calculated to assist a link prediction using methods
including vertex feature aggregation [254], kernel feature
conjunction [255], extended graph formulation [256] and
generic SimRank method [257]. In addition, probabilistic
and statistical function–based models can also incorporate
attributes to model the probability of links between each pair
of nodes [252]. Supervised models that take link prediction
as a binary classification problem can also be improved based
on the above mentioned information about attributed nodes.
For example, [256] introduces node attributes via vertex
feature aggregation to the machine learning algorithms like
a decision tree or SVM in the link prediction tasks. There
are also improved network embedding methods extensively
reviewed by [219] for the link prediction task considering
an effect of both network topology and node attribute.
An example of such an approach is the deep attributed
network embedding method designed by [258] using a deep
neural network based on the topology proximity and attribute
proximity.

Some studies additionally introduce attributes to the
edges and transform the link prediction into a classification
task for multi-relational networks. Once the transformation
is completed, this problem can be approached by the
above mentioned probabilistic and statistical function–based
approaches and supervised learning approaches considering
the similarity of nodes and dependencies of inner principles.
For example, [259] uses relational Markov network to
investigate the probability of link labels given the known node
attributes. [260] performs link prediction in multi-relational
networks using a non-negative matrix factorization algorithm
based on relational similarity.

Other methods introduce attributes to the networks and
focus on the node classification tasks, which employ models
considering the effect including node attributes [258], [261],
[262] and edge attributes such as weights [258], [258],
[263]–[265]. Given the sparsity of graphs with fully labelled
nodes and the time consuming manual labelling, most studies
employ partially labelled graphs and train a classifier for
the prediction of unlabelled nodes. Referring to the models
for a node classification, very well summarised by [266],
we further categorise these modelling approaches into
three types: (i) unsupervised learning approaches including
probabilistic and statistical relational learning [263], metric
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modelling [264], spectral partitioning [265] and graph
clustering [267]; (ii) supervised learning approaches that
build classifiers like logistic regression model given features
of labelled nodes [261]; and (iii) the semi-supervised learning
approaches given the labels of few nodes, where network
embedding methods like random walk–based [268] and
GCN–based Network embedding [258], [269] are employed
to account for both topological and attribute proximity
effect [258].

g: TOPOLOGY CHANGES
The modelling of network dynamics becomes more complex
as network components start to change over time. The
changes of topology include the edge addition and removal,
node addition and removal. As the network formation and
evolution can be captured in a time series of static snapshots,
modelling approaches of link prediction for static networks
mentioned in section IV-B0.f can be extended and improved
to learn one or several types of topology changes.

Studies on network topology changes start from networks
built with fixed nodes and addition of edges, where the
edges can be predicted and inferred via edge formation
process extracted from networks over time using struc-
tural similarity–based models or probablistic and statistic
function–based models discussed in section IV-B0.f. For
example, [270] employ a Markov model based on both
topological and semantic features similarity between two
nodes to evaluate the probability of a link. [34] predict
formation of new links based on a combined popularity and
similarity measure, which incorporates both global and local
topological information via the introduction of Newton’s
gravitational law.

Modelling network dynamics becomes more complex
when it comes to networks built with fixed nodes and
temporal edges that are added or removed over time. Link
prediction tasks for these networks focus on the temporal
topology information and its evolution, where modelling
approaches for prediction of missing links in static networks
have been improved to account for the effect of historical
topology. For unsupervised similarity ranking–based models,
the link prediction task is based on the predicted similarity
scores calculated using past structural similarity scores via
a time series forecasting model such as ARIMA [271].
To deal with the model capacity and computational efficiency
problem for probabilistic and statistical function–based
models, efficient learning algorithms can be introduced to
account for influence of topology, such as the proposed
neighbour influence clustering algorithm in a conditional
temporal restricted Boltzmann Machine for a prediction of
temporal edges [272]. As for supervised learning approaches,
graph convolution network (GCN) is widely used to learn a
node structure of a network snapshot for each time slide and
LSTM is employed to performs a temporal feature learning
for all the network snapshots [41], [273]. The discussed so far
approaches only use network topology, but the heterogeneous
prior information, such as node attributes, is suggested

to be used to further improve the accuracy [274] but is
not commonly explored in the research community. [275]
propose a nonparametric link prediction algorithm that can
use both topology and node labels for the calculation of
linkage probability with seasonality linkage patterns.

There is an even more complex case when the networks
shrink or grow in size as they evolve with temporal nodes
and edges. However, as the networks can be modified to
include all observed nodes from all the snapshots of temporal
networks, it is always assumed that there is a fixed set of
nodes for all the networks at different time points [276],
where the above mentioned modelling approaches for link
prediction of networks built with fixed nodes and temporal
edges can be used.

To conclude, the existing studies focus on modelling
topology changeswhere nodes are fixed. The currentmethods
consider one of the two scenarios: (i) edge addition and
(ii) edge addition or removal. There is space for further
research on modelling networks with temporal nodes and
edges, where addition and removal of nodes, as well as the
resulting change of network sizes should be considered.

h: ATTRIBUTE AND TOPOLOGY CHANGES
The modelling of network dynamics becomes more complex
as we allow, on top of the topology changes, for network
attributes to change over time. As current models of topology
evolution are limited to networks built with a fixed set of
nodes and edge changes over time, the models of networks
where both attributes and topology change also have the
same limitation. These models, given an addition or removal
of edges, consider: (i) edge attributes changes, (ii) node
attributes changes and (iii) both of these changes. Modelling
approaches for the link prediction and node classification
of static networks presented in section IV-B0.f and the
network topology changes introduced in section IV-B0.g can
be extended to learn both attribute changes and topology
changes.

The topology change, linked to the edge addition or
removal, can be accompanied with changes of edge attributes.
There are studies on link prediction in temporal networks that
have edge weights [41], [274], [276] and directions [276].
The typical supervised learning approach for topology
changes mentioned in the section IV-B0.g, where GCN
explores the local topology of each snapshot and LSTM
characterises the evolving features of dynamic networks,
can be improved by introducing the generative adversarial
network (GAN) to tackle the sparsity and the wide-value-
range problem of edge weights [41]. Network embedding
methods based on matrix factorisation can also be improved
to include the information about edge weight or direction into
adjacency matrix for a prediction of temporal edges [274],
[276]. Further research is needed for a variation of other edge
attribute changes.

When node attributes change in networks built with
fixed nodes and non-attributed edges that change over time,
modelling approaches of node classification can be employed
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to learn the changes of the node attributes by considering
the evolution of attributes and topology. [40] use GCN to
conduct node classification task on the social networks built
with a fixed number of attributed nodes, changeable node
labels and non-attributed edges that are added over time. GCN
implemented in this research not only considers the local
topology and its attributes, but also uses the similarity–based
matrices to account for patterns of high-order neighborhood.
Further research is needed for node classification in networks
built with dynamic labelled nodes and temporal edges. There
also comes themost complex casewhere node attributes, edge
attributes and network topology all can change at the same
time. Currently, there is no research in this space and further
studies are required to model this very complex scenarios.

i: STRUCTURAL PATTERN CHANGES
The above mentioned structural components and their
changes result in various structural patterns and correspond-
ing changes. Structural patterns refer to the correlated com-
bination of nodes, edges and attributes within a community
or a network. Research in the space of structural patterns
includes patterns and their dynamics discovery, analysis
and prediction. The common models’ aims here are e.g.
a community discovery and an anomaly detection.

A community discovery starts from defining a com-
munity. This characterises the structural patterns of the
sub-networks to be discovered via generally unsupervised
way of modelling. A community in a complex network,
as is defined by [11], [75] in a generic way, is a set of
entities that share some closely correlated sets of actions
with the other entities of the community. To fulfil the
requirement of reflecting certain features of reality, the
closeness within each community can be measured based
on density, vertex similarity, actions of nodes or influence
spread, all corresponding to different types of community
discovery algorithms well summarised by [75].

Considering the increasing temporal and structural com-
plexity of networks resulting from the topology variations
and an introduction of attributes, the community discovery
approaches have also been further developed and categorised
from the perspective of process that is seen as the inner
structures of algorithms. To deal with the community insta-
bility problem in dynamic networks, the temporal smoothing
operations have been included in community discovery
models to smooth-out the evolution of communities, which
accordingly involve a new category based on varying extent
of temporal-smoothness [11]. For attributed networks, built
with attributed nodes and edges, a fusion procedure has been
introduced to community discovery models to account for
both effects of topology and node features, where another
category based on when and how they use and fuse network
structure and attributes is proposed [125]. To deal with the
directed networks that are featured with edge directions
and asymmetrical matrices, different community discovery
models have been proposed and well summarised depending
on the way directed edges are treated [277].

However, the perfect community discovery algorithm does
not exist despite of all the above mentioned attempts, as each
of them performs well on one specific declination of the
general problem and can achieve different partitions even
for the same networks [11]. Based on that, [278] further
categorise the community detection algorithms according to
the similarity of their results, which attempts to confirm the
valid definitions of a community and help with the choice of
algorithms for future research. There is still a need for further
research on the community discovery of network variations
with varying degrees of temporal complexity and structural
complexity, given the superposed challenges of community
definition, temporal smoothness as well as topology and
attribute information incorporation.

Studies on anomaly detection focus on the rare occurrences
of structural components, patterns as well as their changes,
involving detection of anomalous nodes, edges, subgraphs,
events and graphs [53], [56], [279]. They start from static
networks built with fixed nodes and edges, where anomaly
detection of nodes, edges and subgraphs can be realised
via traditional non-deep learning approaches based on the
network statistical features or using representation learning
methods, as is summarised by [279], [280]. These methods
have also been improved respectively when it comes to
attributed networks with richer information about network
structures [279], [280].

As temporal complexity is introduced to networks, two
types of anomaly detection methods can be distinguished.
More specifically, there is a two-stage approach that maps
networks into a vector of real numbers and then employs
an anomaly detector on it for a node, edge or subgraph
anomalies, involving well categorised community, compres-
sion, decomposition, distance, and probabilistic model–based
models [53]. There are also deep learning approaches
respectively applied to the anomaly detection of nodes, edges,
subgraphs and graphs [279]. There is also research gap
that calls for further study on anomaly detection models
incorporating both attribute and temporal information of
networks.

C. MODELLING DYNAMIC PROCESSES
In this subsection, we focus on the dynamic processes that
can take place over networks. These dynamic processes
interact with the dynamics of networks and vice versa.
Dynamic processes can result in three types of changes: (i) a
network topology change; (ii) a network attribute change;
and (iii) a parameter change of dynamic processes [281].
The network topology change and the attribute change
can also lead to the parameter change of dynamic pro-
cesses [282]. There are many interesting variations of the
combination of dynamic processes and dynamic networks,
which differ depending on the research objectives and
application scenarios. Corresponding studies start from single
parameterized dynamic processes on the static networks and
then turn to multiple dynamic processes with dynamically
changing parameters on the dynamic networks, which
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is featured with increasing process complexity, network
complexity, as well as the complexity resulting from vari-
ous interrelations between dynamic processes and network
dynamics

Modelling of the dynamic processes research can be
categorised into the following groups: (i) a single dynamic
process, (ii) independent multiple processes and (iii) interre-
lated multiple processes. They differ in a number of dynamic
processes and how they interact, each to a varying degree
mimicking the real world. Within each category, researchers
either focus on parameterized dynamics or dynamically
changing dynamics.

j: SINGLE DYNAMIC PROCESSES
Spreading dynamics on complex networked structures
obtained via methods in section III, as a typical dynamic
process, is covered by considerable literature on the spread
of phenomena/medium ranging from virus [283]–[286],
meme [71], opinion [69], [70], [287], decision making [288],
nutrition [289], [290] and social contagion [291].

The modelling of spreading dynamics on networks starts
from classic population models with the simplest analysis
that considers the evolution of the state for all individuals
rather than the state of each individual [9]. They include
the stochastic population model that describes the evolution
of the population state via a Markov process, as well
as its approximation, deterministic population model with
deterministic definitions of the population state [9], [292].
To model the states of each individual independently
and allow for arbitrary interactions among them, as is
summarised by [9], these population models are extended
and improved to faithfully learn spreading processes on
networks.

A spreading process on static networks is an example
of a simplified representation of various real world sce-
narios where networks underlying the dynamic processes
are simulated or represented under the most stringent
assumption of nodes and edges that do not change. When
a dynamic process evolves much faster than the network of
interactions, static networks can serve as accurate proxies
of slowly switching topologies. This real world situation
can be approximated as dynamic processes over static
networks [292].

The modelling of dynamic processes on static networks
start from analysing the impact of pairwise interactions
using the extended classic models, including stochastic
network model and deterministic network model [9], [292],
where networks with varying features and structures can be
introduced to the studies. Stochastic network models assume
the state transition for each node as a Markov jump process
or its extension under relaxed Markovian assumptions
[292]–[295]. Deterministic network models, as approxi-
mations of stochastic network models with deterministic
definitions of node states, are also widely used [296], [297].
A threshold model is one example of a typical deterministic
model for an epidemic process [291]. The modelling of

spreading dynamics becomes more complex and realistic as
complex contagion is also considered with the incorporation
of group interactions, which currently has been realised via
simplicial complexes [298].

A spreading process on dynamic networks refer to one
of the most common real-world application scenarios. The
underlying networks of interactions are not static, but dynam-
ically change while co-evolving with and influenced by the
dynamic processes over the networks [299]. Models that cap-
ture their co-evolution at comparable time-scales have been
well categorised into temporal-switching, activity-driven, and
edge-Markovian networks [292]. For dynamic processes on
dynamic networks, temporal switching networks model them
as snapshots switching arbitrarily between a set of topologies
according to stochastic mechanisms such as Markov switch-
ing rules [248], [249]. Activity-driven approaches focus on
the networks’ interactions generated according to a time
invariant function characterising individual properties, which
involves a series of extensions with the introduction of
epidemic threshold due to its analytical tractability, as is sum-
marised in detail by [300]. Edge-Markovian dynamic graphs
can model stochastic evolution of dynamic networks, which
also involves analytically tractable extensions with spreading
dynamics [301], [302].

Spreading dynamics on dynamic networks can also be
modelled with data-driven machine learning approaches.
They focus on transforming spatial information and other
temporal features involved in a spreading process to well
handled temporal information, where deep learning–based
predictive models like Recursive Neural Networks and
Convolutional Neural Networks can be employed to pre-
dict spreading process, as is well summarised by [303].
Researchers also start to employ network embedding
approaches, as is mentioned in section III-B0.d, to incorpo-
rate network information into the predictive systems, which
involves typical examples of predicting epidemic spreading
with graph neural networks [304] or using node regression
based on transfer learning [305].

Parameter changes of processes are discussed in terms of
the abovementioned single dynamics. The existingmodelling
approaches to a single dynamic process propagating over
the network are generally parameterized without any change
of parameters implemented. Only few studies focus on
the evolution of spreading processes on networks. [246]
incorporate mutation of pathogen strains and corresponding
changes of epidemic transmission probability, which trigger
the evolutionary adaptations of the spreading processes
with dynamically changing epidemic threshold. For this
example, transmissibility changes between limited number
of fixed values and is controlled via mutation and transition
probabilities.

k: INDEPENDENT MULTIPLE PROCESSES
Dynamic processes can result in three types of changes,
including: (i) a network topology change; (ii) a network
attribute change; and (iii) a parameter change of dynamic
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processes [281]. As almost all the models of multiple
processes in section IV-C0.j are based on probability of
state transition, the parameters of multiple processes in
section IV-C0.k and section IV-C0.l refer to the transmissi-
bility, adoptability or probability of an entity being infected
or activated or an entity adopting a given behaviour or
state.

Independent multiple processes take place independently
without direct influence on their parameters as they ignore
the dependence of multi-spread in co-infected status or just
exclude the concurrent infections of multi-spread. Since no
research can be found on independent multiple processes
where co-infected status is allowed, we mainly focus on
independent multiple processes that exclude co-infected
status and interact via changes of network topology, attributes
or structural patterns.

Mutually exclusive processes refer to the multiple
processes propagating over the network where the concurrent
infection by more than one spread is not possible. The goal is
to investigate circumstances under which the dominance of a
single spread can emerge [306]–[308].

These dynamic processes interact on the same network
while preserving their independence via assumptions includ-
ing temporal separation [307], structural separation [282],
cross immunity [306], [309], [310] and cross adoption [311],
[312]. Under temporal separation, two pathogens can spread
independently in separate time steps and interact via network
topology changes, such as node removal as a result of death
or immunity [307]. Studies on concurrent multiple processes
generally adopt cross immunity or cross adoption assumption
to deal with the concurrent infection that is not allowed
for mutually exclusive competing processes. Under cross
immunity, the states of an infected/recovered network vertex
are changed to be immune to any other infections [306],
[309], [310]. Under cross adoption, the infected network
nodes can transit to be just infected by another spread with
a specified probability [311]–[313]. There is also research on
concurrent multiple processes that use structural separation,
where network nodes are grouped and are only available for
specific spreading dynamics, such as the simple contagion
and the complex contagion that work out for predetermined
vertex groups [282].

Under the above mentioned assumptions and basic set-
tings, themodels widely employed in studies of single spread-
ing dynamics in section IV-C0.j can be extended and used to
model independent, multiple processes. In addition, there are
already studies using SI [282], SIS [309], SIR [310], [311],
independent cascade model [308], percolation model [307],
[310] and Reed–Frost model [306]. For example, [282]
propose dynamic message-passing equations for two SI -
type competing processes to incorporate the message-passing
into the parameters. [309] use the extended model, SI1I2S,
to model the propagation of two concurrent epidemic
spreading processes.

Parameter changes of dynamic processes are discussed
in terms of independent multiple processes. There are

scenarios (e.g. election information spread and entertain-
ment information spread in the same social networks)
concerning parameterized independent multiple processes
where co-infected status is allowed under the ignorance
of the dependence of multi-spread without changing their
parameters, though no research can be found here.

Most of the mutually exclusive processes involved in
the existing studies do not consider dynamically chang-
ing parameters of the process [306], [307], [309], [310].
A small number of studies introduce dynamics with param-
eter changes over time under the impact of node states,
where transmissibility varies from nodes’ groups (structural
patterns) [311], [312], states of neighboring nodes [313],
message-passing [282]. The parameters can either change
between limited number of fixed values [311], [312] or
change continuously according to the network attributes
resulting from another spreading process [282].

l: INTERRELATED MULTIPLE PROCESSES
Interrelated multiple processes are characterised by direct
unilateral or mutual influence of processes on their parame-
ters. They can interact not only by changing network topology
or attributes, but also via parameter changes.

Partially inclusive processes refer to the multiple pro-
cesses that allow the concurrent infections of nodes while also
incorporate the dependence between spreads themselves.

Interrelatedmultiple processes can have suppressing [314],
[315] or supporting [282] relations, which are involved in
only limited number of studies and so far all of them
consider static networks [282], [314], [315]. These spreading
dynamics change parameters with the transition of concurrent
infection states. For example, epidemic spreading process,
under the suppressing impact of awareness spreading,
has different infection probabilities given nodes’ different
levels of awareness [314]–[316]. Similarly, collaborative
multiple processes also have different probabilities under
their supporting impact [282].

Under the above mentioned assumptions of concurrent
infection, the models mentioned in section IV-C0.j and
section IV-C0.k can also be extended and used, where some
of them have already been used to model interrelated multiple
processes, including SI [282], SIS [316], SIR [314] and
SIS − SIRS [315].
Parameter changes of processes here are discussed in

the context of interrelated multiple processes. For almost
all the existing research, at least one of the considered
spreading dynamics has dynamically changing parameters
in response to the impact of another spreading dynamics
[314]–[316]. [282] further introduce collaborative multiple
processes that all change parameters with the message
passing of nodes. Similarly to the case of independent
multiple processes, parameters of interrelated multiple pro-
cesses can either change between limited number of fixed
values [314]–[316] or change continuously according to
the network attributes resulting from another spreading
process [282].

VOLUME 10, 2022 66905



J. Wen et al.: Toward Digital Twin Oriented Modeling of CNS and Their Dynamics: A Comprehensive Survey

D. COMBINATION OF THE NETWORK AND PROCESS
DIMENSIONS
In this section, we focus on the superposition of the
network dimension and the process dimension, as well as
the increasing complexity of modelling CNS considering the
interactions and interrelations between the network and a
dynamic process.

m: SUPERPOSITION OF NETWORKS AND PROCESSES
Propagation process dynamics, either on static networks or
dynamic networks, has been extensively studied using non-
machine learning approaches [9], [292], where data-driven
machine learning approaches have recently been a popular
choice of incorporating more structurally and temporally
complex network information [304], [305]. Dynamic net-
works involved in these studies only allow for topology
changes [248], [249], [304], [305] which influences the result
of spreading dynamics.

Themajority of the independentmultiple processes consid-
ered in the existing and current research take place on static
networks [282], [306], [308]–[311] and only a small number
of studies can be found for those on dynamic networks [307],
[312]. As a typical example of competing epidemic pro-
cesses, [307] allows removal of nodes and their edges over
time as a representation of death or immunity and this results
in the topology changes. However, interrelated multiple
processes are involved in only a limited number of studies and
so far all of them take place on static networks [282], [314],
[315]. Modelling approaches on multiple processes generally
employ non-machine learning approaches to model single
dynamics on networks, where further research is needed for
modellingmultiple processes using both non- and data-driven
machine learning approaches.

n: INTERACTIONS OF NETWORKS AND PROCESSES
Network dimension and dynamic process dimension can
either be interrelated or independent based on whether one
dimension can trigger the dynamics of another dimension
to change. Parameter changes of dynamic processes as
well as network changes of (i) topology, (ii) attributes and
(iii) structural pattern, each indicates the changes of dynamics
in the process dimension or the network dimension. Thus,
the interrelations exist in two scenarios: (a) certain states of
networks trigger the parameter changes of a dynamic process,
(b) a dynamic process results in one of the above mentioned
three types of the network changes. The interrelations can
either be described as a one-way influence that is just about
(a) or (b), or a mutual influence that refers to both (a) and (b).

Independent VS Interrelated relations between a net-
work and a dynamic process are discussed considering their
changes and the corresponding causes of change within the
CNS.

An independent relation between the network and a
dynamic process is common in terms of dynamic processes
on networks and the research space is dominated by this

approach [9], [249], [292]. In this case, a dynamic process
only influences and causes changes of the node attributes
connected with the process itself (e.g. whether a node, as a
result of the process, has been infected or adopted new
behaviour) rather than a change of the network structure or
dynamics. In this scenario parameters of a dynamic process
are not altered by the changes in the network.

Networks and dynamic processes with interrelated rela-
tions between them consider their mutually or unilaterally
triggered changes. Multiple processes that interact with
each other via changing network attributes are typical
examples of a one-way influence of the type (a), where
parameters of spreading dynamics can change with network
attributes [282], [311]–[316]. For example, in a rumour-truth
mixed spreading scenario, the truth spreading rate gets lower
when nodes are attributed as rumour-believers [313]. There
are also cases for a one-way influence of the type (b), where
networks change topology in response to the spread. For
example, disease spreading through the network can leave
some nodes dead and get them removed [307]. Currently no
research is found on interrelation about a mutual influence
between the process dimension and the network dimension
so the situation where a closed feedback loop between the
process and the network is considered.

Parameter changes of dynamic processes are here
discussed in terms of interactions and interrelations between
networks and processes. All the available examples of
processes on networks that are dynamically changing under
the impact of networks are about multiple processes, where
networks serve as a media for their interactions [282], [282],
[311], [311], [312], [312], [313]. Further research is required
in the space of dynamic processes that are dynamically
changing under the impact of network changes. Network
topology that changes in response to the dynamically
changing dynamics is another interesting and not addressed
research gap.

E. CONTROL MECHANISMS ON CNS
Control mechanisms of CNS aim to find the optimal strategy
to attain its desired state, which involves controllability
and synchronization of networks and a control of dynamic
processes on networks.

o: NETWORK CONTROL
Controllability of networks is achieved using model–based
or data–driven approaches [317]. Model–based approaches
aim to find an optimal set of driver nodes for CNS under
the assumption of a tractable model for network dynamics,
where a linear time-invariant systems are often employed to
approximate the nonlinear processes that drive the directed
networks [18], [318], [319]. This approach identifies the
driver nodes via maximum matching approach [320], which
enables the calculation of the structural controllability [318]
and exact (state) controllability [319]. In this context,
many studies investigate the impact of topology variations
on the controllability of directed networks, ranging from

66906 VOLUME 10, 2022



J. Wen et al.: Toward Digital Twin Oriented Modeling of CNS and Their Dynamics: A Comprehensive Survey

degree distributions [318], connection types [18], topology
switching [20] to even all possible network structures [320].
To measure the robustness of controllability, simulations
of node removal and edge removal attacks are also con-
ducted [320] and convolutional neural networks can be
further utilised to improve computation efficiency [321].
Data–driven based approaches, on the contrary, learn controls
from network data without knowing network dynamics [317].
Relevant studies generally focus on undirected, directed or
weighted networks, where machine learning methods like
reinforcement learning are used to find their optimal control
parameters for desired network states [317], [322].

Synchronization of CNS, as another type of control
towards the desired synchronized state, also involves inten-
sive studies that are well summarised from the perspective of
phase oscillator models, stability of synchronised state, and
synchronisation in complete or spare networks [43], [323].
In addition, given the similar definitions of synchronization
and consensus problem of multi-agent systems [324], they
can also be studied from a unified view point by employing
ideas about consensus problems across disciplinary areas to
complex networks [325]–[327].

p: PROCESS CONTROL
Controllability of dynamic processes is achieved via chang-
ing networks or introducing another dynamic process.

Control via changes of networks refers to the control
of spreading dynamics via changing network topology
and attributes, involving non-deep learning–based, deep
learning–based and manual strategy–based approaches. Tak-
ing control of epidemic spreading processes as an exam-
ple, researchers seek an optimal set of control actions
including topology changes like node removal and edge
removal as well as attribute changes via an antidote
allocation to minimise infections [9], [292], [322]. Non-
deep learning–based approaches, as is well summarised
in [292], mimick spreading dynamics, with the non-deep
learning models reviewed in section IV-C0.j, and optimise
the action sequence under corresponding model constraints
by a mean-field approximation or geometric programming.
Deep learning–based approaches use machine learning
methods to seek the optimal action sequence over graphs
based on the network information that is incorporated by
the network embedding. For example, [328] control the
epidemic processes over a temporal attributed network using
reinforcement learning as a ranking module for actions of
changing node attributes, where GNN is encapsulated to
embed information about networks and epidemic process.
Manual strategy–based approaches focus on the simulation
and comparison of manual strategies that change network
topology or attributes, like different social network-based
distancing strategies proposed and compared to reduce
infections of Covid-19 [152].

Control via interactions between processes refers to
the control of spreading dynamics realised via introduc-
ing another spreading dynamics with their competitive,

suppressing or supporting impact. For example, the disease
containment of a single epidemic spreading dynamics A
can be controlled by introducing its competitive process B,
which is realised by an optimal allocation of a limited
number of B spreaders to minimise the spreading of A
[282], [308]. The advertising campaign A can also be con-
trolled via introducing its collaborative spreading process B,
where the best joint advertising campaign can be designed
via the optimal allocation of spreader B with the aim of
maximising the number of susceptible nodes [282].

V. HOW DO WE APPROACH THE ULTIMATE GOAL?
In this section, we answer the question of how to approach
the ultimate goal of modelling complex networked systems:
building a Digital Twin (DT) for real world networked
systems. This question is decomposed into three sub-
questions: (1) What have we done so far to achieve the goal?
(2) How far are we from building the DT for CNS? and
(3) How can we move forward?

Existing research on modelling networked systems and
their dynamics aims at representing the complex reality
through networked structures that minimise information loss
and ensure that the model’s aims can be fulfilled. The
complementary effect of the model’s aims fulfilment and
minimised information loss contributes to a good model
of CNS and its convergence to a DT. To assess the
networked systems models and narrow their gaps with DTs,
we build an assessment framework from two perspectives:
(i) the CNS model’s aim fulfilment that diverges when a
specific model’s aims and an abstract model’s aims each
focuses on the external tasks and inner rules; and (ii) a DT
faithful representation and modelling that helps to merge the
requirement of both the specific model’s aims about external
tasks and the abstract model’s aims about its inner rules.

A. WHAT HAVE WE DONE SO FAR?
Researchers have done a lot of work on modelling real
world networked systems. A small number of studies have
already attempted to develop Digital Twins of complex
networked systems for specific application contexts, like
IoT systems [103], [104] and blockchain-encapsulated sys-
tems [105], [106]. However, while many recent studies on
modelling, simulation and control of complex networked
systems started taking into account the necessary details to
faithfully represent aspect of complex reality, none of them
explicitly attempted to create a DT of CNS with all its
implications which we will now discuss in more detail.

q: BOTTOM-UP VIEW: CNS-BASED ATTEMPTS
Researchers have been trying to build a Complex Networked
System (CNS) that can faithfully represent and adapt
to the real world situation. The networks, as the basic
representations of CNS, are approaching reality with more
faithful representation of real world information and infusion
of evolving dynamics. These attempts partially enable CNS to
meet the requirements of Digital Twins in terms of similarity
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to reality by incorporating complex inner rules and fulfilling
external tasks.

Networks are approaching reality as the structural, tem-
poral, spatial and dynamics dimensions are gradually taken
into account. For networks constructed in a data-driven way
based on readily observable data set, the description of the
the impact of time enables the modelling of data-driven
networks to capture the evolving feature of real-world
systems, while spatial information represented in the network
structure serves as space where dynamics take place.
Spatial temporal networks, where temporal networks are
modelled under the constrain of space that influences the
structure of the networks, are proposed to encompass both
temporal and spatial information, which are the closest
to the reality data-driven network structures considered
until now. For simulation-based networks and hybrid net-
works, the rule-based simulations have been developed to
approach reality as more complex inner rules of complex
networked systems are simulated to incorporate the above
mentioned complexity dimensions. Networks simulated from
microscopic views of agents enable the representation of
either real or simulated information in a flexible and
faithful manner. From another perspective, the networks have
also been widely employed in different scenarios across
disciplines, where a wide range of research objects can be
represented and analysed with network structures. As is
detailed in section III-B, networks are employed to represent
information in agent-based systems and graph structures,
relations that are statistically or semantically extracted and
constructed, complex systems infused in networks like IoTs
and Blockchains.

Dynamics of and on CNSs with different possible
interrelations between those two is another key aspect of
building an accurate model of CNS. With the infusion of
dynamics into the networks, the CNS is getting further
on the road to a DT. Referring to section IV, there are
built-in dynamics that trigger the evolution of networks,
while there are also dynamics that take place on the
networks under the influence of network structures. CNS
composed of networks and dynamics are approaching reality
as researchers try to understand and model the interrelations
among network dynamics and dynamic processes. Until now,
there is considerable literature on dynamic processes on
networks that are either static or dynamic. Among different
interrelations between dynamics and networks, we find that
some studies consider the unilateral interrelation between
dynamic processes and static networks. However, we can
hardly find any literature on the interrelation of dynamic
processes and network dynamics, which is actually the closest
to the real world situation.

r: TOP-DOWN VIEW: DT-DIRECTED METHODS
The digital twining tasks vary for different cases and require
to be adopted and adapted in the context of a CNS.
For example, [89] model the DT of an urban-integrated
hydroponic farm, where they decompose the modelling

process into three crucial elements: data creation that enables
an extensive monitoring system for a virtual representation of
the farm through data, data analysis that helps to identity key
influencing variables, data modelling that enables forecast
and feedback. [329] try to shape the actual state and a
possible future of the Product Data Technologies from a
Closed-Loop Product Lifecycle Management (C-L PLM)
perspective, where they see an intelligent product as a product
system which contains sensing, memory, data processing,
reasoning and communication capabilities at four intelligence
levels. [330] view the physical asset and its digital twin
as two coupled dynamical systems that evolve over time
through their respective state spaces, where the digital twin
acquires and assimilates observational data from the asset
(e.g., data from sensors or manual inspections) and uses this
information to continually update its internal models so that
they reflect the evolving physical system. These up-to-date
internal models can then be used for analysis, prediction,
optimisation and control of the physical system. Referring to
the previous studies, we generally decompose the modelling
of a DT as tasks including (a) data processing that includes
data creation and data integration, (b) data analysis with
the purpose of parameter selection, (c) data modelling that
enables forecast of eventualities and feedback of real system
under the impact of the decision that is made by reference to
the forecast.

Data processing, as the fundamental task of modelling
a DT, is composed of two parts: (i) data creation enabled
by an extensive and robust monitoring system that tracks
the observable information, (ii) data integration that features
with the record, management and retrieval of information
in a real time. In the data creation stage, taking the DT
of hydroponic farm built by [89] as an example, they
track changing environmental conditions and crop growth
through unstructured manual records and a wireless sensor
network that sends data in real time to a server. For
data integration function, semantic modelling that includes
the application of ontology has also been employed to
equip the DT with context awareness through record
of data, answering queries and information retrieval [91],
[331]–[335]. To accommodate and deal with a system’s
context and uncertainty when selecting an interaction mode
that reconfigures the system’s model in response to the model
output, a fuzzy logic rule based layer has often been employed
in complex systems, which enables the interaction mode
selection while considering the intermediate ranges between
the modes [84], [103]. While there also emerges another
popular data integration approach that employs blockchain
technology. The blockchain can serve as the middleware
of IoT with improved interoperability, privacy, security,
reliability and scalability [336]–[338]. However, in some
cases, it is hard to collect and process readily real-time data
for a well-established DT in an efficient way and there are
studies attempting to deal with problems of data integrity.
For example, [339] propose a collaborative city digital twin
based on federated learning, where multiple city DT can learn
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a shared model while keeping all the training data locally.
This is a promising solution to accumulate the insights from
multiple data sources efficiently and avoid violating privacy
rules.

Data analysis and variable selection task is of importance
to the establishment of DTs, which is presented by [89] as
something that includes: (a) the influence of the environment
on physical asset, (b) the influence of operable controls on
the environment, and (c) the influence of manual changes on
the operational controls, where, within the limitations of the
data, this exercise identifies the variables which are crucial
to track and forecast. Data analysis that enables variable
selection is of importance to the modelling of DT. However,
most studies ignore this process and just predetermine the
observable variables, while the fundamental question of how
to identify the minimum number of observable variables has
been understudied over the years and needs a systematic
research and answer. As is detailed by [330], a well-designed
digital twin should be comprised of models that provide a
sufficiently complex digital state space, capturing variation
in the physical asset that is relevant for diagnosis, prediction,
and decision-making in the application of interest. On the
other hand, the digital state space should be simple enough
to enable tractable estimation of the digital state, even when
only partially observable. Specifically, as a rare example of
selecting variables, [89] identify key influencing variables
on energy use and crop yield by analysing the relationships
between the broad data collected based on temperature,
visible radiation, and CO2 levels.

Data modelling process for a DT is essentially a
forecasting model that predicts and provides feedback on
real world system to help control the DT, which includes
two fundamental tasks, a forecast of extended future and
a feedback of real-world system. Prediction and inference
of reality that has happened before is the basic function
of forecasting models, while DTs can further forecast the
extended reality by predicting facts that have never happened
before. For example, [340] propose a disaster city DT for
enhancing disaster response and emergency management
processes, where disasters that have never happened before
are simulated and real world systems are extensively forecast
to enable increased visibility into network dynamics of
complex disaster management and humanitarian actions.
The digital twining of complex networked systems are
also featured with a decision-making feedback loop with
dynamically updated asset specific computational models
infused [330]. Especially in cases of solving multi-objective
optimisation problems for complex systems using DT, which
are common in analyses of entire product lifecycle in
manufacturing, researchers have proposed DT frameworks
aimed at multi-objective optimisation with effective feedback
from different dynamics. [341] enhance DTs of autonomous
manufacturing systems through reinforcement learning of
continuous data fed back from DT, where residual errors
between DT and its physical counterpart are compensated
and an improved autonomous system can be established.

[342] propose a bi-level iterative coordination mechanism to
achieve optimal design performance for AFMS, where an
effective feedback of collected decision-support information
from the intelligent multi-objective optimisation of the
dynamic execution is presented. To deal with uncertain
information in real life scenarios involving multi-objective
optimization problems, a fuzzy programming method can be
employed to obtain optimal solutions [343]

B. HOW FAR ARE THE CNSs, AS THEY ARE CURRENTLY
MODELLED, FROM DTs?
In most cases, CNS models presented in the literature, while
fulfilling the relatively simple model’s aims under relatively
stringent assumptions, have not been developed with the
goal of becoming DTs of their modelled aspects of reality.
In effect they only posses partial features of DTs. Therefore,
in order to bring the two areas closer together, we propose a
unified assessment approach by discussing and attempting to
answer the following three questions: (1) What constitutes a
good DT? (2) What is a good CNS model? (3) To what extent
the current CNS models approach a DT? We try to answer
the first two questions with measures that aim at assessing the
performance of CNS and metrics that evaluate the quality of
DT, as is shown in Fig.6, and try to answer question (3) in
the context of a good CNS that performs well under certain
model’s aims and thus has the potential of becoming a DT.

s: WHAT CONSTITUTES A GOOD DT AND HOW TO ASSESS
IT?
DTs are featured with integrated functions like simulation,
optimization and data analytics [96]. DTs use real-time
processing and updates characterised by: (1) real-time
connection with the physical entity, (2) self-evolution that
enables a DT to learn and adapt in real-time by providing
feedback to both the physical asset and the DT, (3) continuous
machine learning analysis (dependent on the frequency of
the synchronisation), not just a one-time output forecasting,
(4) availability of time-series (or time continuous) data for
monitoring, (5) level of autonomy that defines if a DT
could either make changes to the physical asset itself or if
it relies on a human in control who could make changes
to the DT, where the property of a DT to be autonomous,
not autonomous, or partly autonomous is case-dependent
and (6) synchronisation which could be partly continuous or
partly event-based [95]. A good DT should meet the require-
ment of researchers using relatively simple models while
preserving the trust in the data, model and their updates [344],
[345]. Based on the above features, the assessment of a
good DT in the context of CNS can be categorised into two
parts: (i) efficiency of data processing and modelling and
(ii) similarity with reality from the perspectives of multiple
model’s aims, self-evolving dynamics andmodel updates (see
Fig.6).

The evaluation of efficiency includes data processing
efficiency and modelling efficiency. Data processing effi-
ciency involves data quality such as validity and reliability
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FIGURE 6. The plot of unified assessment criterion for CNS and its distance to a DT.

enabled by handling the imperfection of real-time data
ranging from imprecision, uncertainty, incompleteness to
ambiguity during the process of information retrieval and
data integration [346]. Metadata (‘‘data about the data’’)
captures aspects of the measurement process that may affect
the reliability and future usability of the data, which partially
addresses trust in data gathered by sensors [344]. The belief
function theory is also utilised to estimate the reliability of the
information sources [346]. However, as the efficiency of data
processing is centered on the observability of experimental
physical asset confined by availability of time-series and
the real-time connection with the physical entity, it is
hard to create quantifiable measures for various evolving
application scenarios. For modelling efficiency of a DT, cost,
model maturity and model adaptability summarised as a DT
cross-phase metrics can be utilised in the assessment [345],
where a high-quality model may cost less in maintenance and
reuse. Amore mature model gives the expected outcomes and
meets application requirements better as time and frequency
of using the model increase and a highly-adaptable model
recreates the status of the real system better. The cost
and model maturity are quantifiable in each application
scenario [347], [348], while the adaptability is hard to be
quantified but can be enhanced via parameter sensitivity
analysis [349] and continuos monitoring of the model’s
accuracy over time.

Similarity level between modelled dynamics and reality
can be evaluated from the perspectives of multiple model’s
aims, dynamics and the model updates of parameters in
response to the real time data integration and feedback from
real systems. A good DT is characterised with multiple
model’s aim fulfilment and well-handled trade-off between
model performance and model complexity. The validation
and verification of a good DT is dependent on the model-aim
directed evaluation of model output for external tasks and

the faithful representation of the inner rules of real systems.
In case of a CNS modelled using a DT approach, the
evaluation involves the comprehensive application of CNS
model-aim evaluation methods (see section V-B0.t). Similar-
ity of the modelled network dynamics and dynamic processes
with that of real world systems can be evaluated using
DT construction metrics summarised by [345], including
quantifiable credibility, fidelity, maturity and qualitative
description of complexity and DT standardisation, while the
similarity in the context of model updates with the evolving
reality can also be evaluated using DT application metrics
including failure rate and qualitative description of decou-
pling ability and parallelizabiiity as well as DT reuse metrics
including degree of reconfigurability, reconstructibility and
composability. Based on the forementioned methods, the
capability of forecasting events that have never happened
before and the synchronisation of nodes existing in the CNS
can be assessed and enhanced. However, there is no unified
quantifiable measures across application scenarios, where the
assessment and the comparison of DTmodellingmethods can
be further studied.

t: IS IT A GOOD CNS?
To answer this question, both measures and standards
proposed for CNS and DT can be considered towards the goal
of building a good DT with high data processing efficiency
and similarity of dynamics with the reality. The assessment of
CNS can be divided into two parts: (i) model’s aim fulfilment
assessment, and (ii) model efficiency assessment (see Fig.6).

There is considerable literature on the specific model’s
aims with measurable outputs such as link prediction,
community discovery, synchronization, observability and
controllability. The evaluation methods for community
discovery can be summarised as the internal and external
quality evaluation, where more detailed measures can be
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found in [11]. The assessment of synchronization of networks
focuses on the stability of identical states [43], where
evaluation of consensus of multi-agent system can also be
utilised as they have similar definitions and can be studied
from a unified point [325]–[327]. The observability, with
its dual: controllability, can be categorised as structural and
dynamical, each representing observability of topology [18],
and variables for coupling nodes and node dynamics
[19], [20]. For its evaluation, observability matrix based
on the dynamic model for a linear (time-invariant) system
proposed by [17] has been widely used and extended, while
the observability and controllability of nonlinear networks are
also studied to investigate the effect of nonlinear dynamical
interdependences among variables or the connection with
symmetries of networks [21], [22]. Particularly, as an
evolving model can be mapped to a link prediction algorithm,
performance metrics for link prediction can also assist
the quantitative comparison of the accuracies of different
evolving models [31]. For example, link prediction can
be utilised to validate dynamic social network simulators
with graph convolutional neural networks (GCN) [40]. Link
prediction performance can be evaluated using precision
[31], Area Under the Precision–Recall (AUPR) curve [350],
Receiver Operating Characteristic (ROC) curves, Area Under
the ROC (AUC) [31], Geometric Mean of AUC and PRAUC
(GMAUC) [351], Error Rate [273], SumD [272], Kendall’s
Tau Coefficient (KTC) [253] and Micro/Macro/Weighted
Average Precision/Recall/F1 Score [352].

For abstract model’s aims such as the mimics of reality
using simulation-based networks, we can evaluate these
models based on their similarity with the characteristics
of reality that they are required to capture, where DT
construction metrics [345], as well as observability and
controllability measures for CNS can be utilised. In addition,
when the simulation-based networks are encapsulated in
complex networked systems with forementioned specific
model’s aims, the evaluation measures for specific model’s
aims can also reflect to what extent the network simulations
reach the research goals, especially in case of link prediction
where similarity of nodes, edges and their dynamics is the
focus.

DT feature assessment that is applicable in CNS is
mainly about the efficiency of simulation or modelling,
as modelling efficiency is a good quality persued by both
CNS and DT. DT application metrics and the DT cross-phase
metrics utilised in the DT modelling efficiency are also
applicable in the context of a CNS, even though it is not
a DT. The data processing efficiency can be assessed and
persued via observability and controllability measures for
CNS, as well as the measures utilised to ensure the trust in
the data in the evaluation of data processing efficiency for
a DT,

u: TO WHAT EXTENT IS IT APPROACHING A DT?
The assessment of the distance of a CNS model to a DT is
built on the prerequisite that the CNS is a good CNS, where

FIGURE 7. The plot of assessing the distance of a CNS to a DT.

a good CNS has partial DT features and has the potential to
approach a DT.

A DT has an appropriate level of complexity that enables
it, with good model performance in terms of faithful
representation of real systems, to meet the models’ aim.
As we have discussed in the previous sections, a CNS
can approach a DT with better model performance through
appropriately increased complexity. The distance between
a CNS and a DT can also be discussed from these two
perspectives: (i) complexity and (ii) model performance (See
Fig. 7).

There are no clear boundaries for the development path of
a CNS towards a DT, either in terms of model performance
or complexity. CNSswith an unnecessary level of complexity,
under the lower bound of development path, can be identified
when there exists a less complex CNS with equally good or
even better model performance. The upper bound of model
performance for a CNS naturally exists under the limit of
modelling paradigms. When a CNS achieves better model
performance through increasing complexity, while falling
out of the ‘‘unlikely’’ scope and the ‘‘unnecessary’’ scope,
it gets closer to a DT. The bounds of development path
for DT-orientated CNS can also be updated with empirical
findings in this space.

Complexity of a CNS is hard to measure using one,
concrete measure, but we are able to rank the complexity
of (i) network representation in each complexity dimension
(see section III-A), and (ii) CNS modelling based on the
5-generation framework (see section IV). Based on that,
a complexity metric can be identified for each generation
of CNSs, including their two components: (i) process and
(ii) network representation (see Fig. 8).

For generations of CNSs shown in Fig. 8, their compo-
nents, the process dimension and the network dimension, are
each represented with the coloured symbols of G1, G2a, G2b,
G3, G4 and G5. The CNSs in each generation of models vary
in dynamics complexity and temporal complexity, while for
structural and spatial complexity, they can be built with any
complexity level from those two dimensions. The temporal
complexity of a CNS increases as its process, network
representation, or both of them, start to change over time
in a manner from static (frozen in the time scale), evolving
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FIGURE 8. The complexity metric of a CNS.

FIGURE 9. The model performance metric of a CNS.

(captured in time windows) to temporal (continuous). The
dynamics complexity of a CNS also increases when the
dynamics are changeable, with the process modelled based
on the changing parameters or the networks evolving via
the changes of inner rules. We can compare the complexity
of one component of CNSs in one complexity dimension
based on this complexity metric. For example, compared with
the CNSs in G2a, CNSs in G2b are characterised with the
temporal complexity that is higher in network representation
but lower in process dimension.

Model performance of a CNS can be assessed based
on the two requirements of building a good CNS: (i) the
model’s aim fulfilment, and (ii) the model efficiency (see
section V-B0.t and Fig. 6). There are both quantitative
measures and qualitative description for a CNS assessment,
but how to combine them for a comprehensive assessment
and to deal with the multi-objective optimisation problem
for a good CNS, still requires further study. To gain a rough
understanding of the levels of model performance for each
generation of CNSs, a model performance metric is built
based on (i) the accuracy from the perspective of model’s aim
fulfilment and (ii) the efficiency (see Fig. 9).
As is shown in Fig. 9, the efficiency is described as ex-post,

delayed, real-time and ex-ante based on the CNSs’ ways of

data processing and modelling. CNSs and their components
in the ex-post group have the lowest ranking of efficiency
due to the completely post-hoc modelling, like CNSs in G1.
CNSs in the delayed group are characterised with streams of
snapshots feeding into the systems across time windows with
a time lag behind the real systems. CNSs in G4 fall in the
real-time group as they conduct real-time data processing and
modelling. CNSs in G5, also termed as DTs, are classified
in the ex-ante group as they are not only reactive to the
observations of real systems in a real-time manner, but also
proactive to the things that have never happened before
(enabled by the closed feedback loop). The other perspective,
i.e. the accuracy, represents a generalised conception of
model performance considering how accurately the model’
aims are fulfilled. It is classified as punctual, periodic,
continuous and advanced. These groups each requires a
faithful representation and modelling of the information at
only one static time point, within a discrete period, captured
continuously or simulated in advance. The required accuracy
level increases with the upgraded assessment criterion and the
paradigm shift from G1 to G5. For example, the evaluation
metrics of community discovery, like themodularity and error
rate, are widely used for static networks in G1. They can be
further supplemented with a relative reconstruction error rate
to analyse the temporal evolution of dynamic networks and
communities in G2 [156].
Current CNS, in terms of data efficiency, tends to rely

more on complex simulation-based networks to be able
to capture more realistic features or employ data-driven
networks introduced with observable temporal and spatial
information. However, the data quality is case-dependent in
each application scenario and confined by data sparsity, data
security, as well as data processing and representation tech-
niques. It is hard to find studies on CNS built and modelled
with real time information because of its observability and
the difficulties of building realistic real time data simulator.
Though there are studies on CNS built with big data [123],
it is still hard to achieve data efficiency at a ‘‘real-time’’
level. Though in some applications of CNS in a DT like
IoT, where networked information can be gathered in a real
time by sensors and integrated into a Knowledge Graph or a
block chain, such a method is not applicable in all application
scenarios given the requirement of equipment. Therefore,
there exists a large gap when it comes to data efficiency
between a good CNS in current studies and a good DT.
On the other hand, for model efficiency, some CNS start
to approach a DT with the development of modelling and
computation techniques like parallel computation [353], edge
computing [354], [355] and cloud computing [356], but it is
hard to find such empirical research on CNS except for CNS
encapsulated in a DT like IoT.
When it comes to the similarity of dynamism of CNS

to that of the reality, there are studies on dynamics of the
spatio-temporal networks where both time and space are
considered tomimic the reality [74], [153], [154].While there
are some studies that model dynamics over dynamic networks
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with interrelations between dynamics, including interrela-
tions of dynamic processes over networks [8] and unilateral
influence of dynamic process on static networks [357]. How-
ever, we can hardly find CNS with mutual influence between
dynamics on the networks and dynamics of the networks
or dynamic processes over spatio-temporal networks with
interrelations between dynamics across temporal and spatial
dimensions. Therefore, as the state-of-the-art CNS models
have relatively simple aims and often are developed under
some strict assumptions, it is hard to find a CNS that
fulfills DT standards, unless we focus on DT systems with
encapsulated networks like IoT [358] and blockchain [337],
where the networked systems are built using DT-oriented and
directed methods and the network features like topology and
interaction of networked node dynamics are ignored.

In terms of model updates, most studies model evolving
dynamics in an offline manner without model updates. There
are very few attempts to enable model updates e.g. where
complex systems are built on networked mobile devices
utilising Federated Learning (FL) [359], [360]. FL selects
random subsets of devices in an offline manner to collect the
local model updates and share the updated global model with
the devices. This method is also used to deploy distributed
data processing and learning in wireless networks in a
blockchain encapsulated in a DT [361], [362]. The divergence
of model updates remain a future research gap. In addition,
the assessment methods of CNS are also in need of updates,
as they are required to be more dynamic and able to evolve
with model changes.

C. HOW CAN WE GO FURTHER?
To answer the question of how to go further to achieve the
ultimate goal of building complex networked systems model
that faithfully reflects a real system, we build a framework of
CNS-based DT, where the modelling can be decomposed into
a series of tasks that require modelling methods from both
DT and CNS spaces while setting the half-way point as DT-
orientated CNS. We start with listing the research gaps that
will guide us in setting goals and tasks for future research.

v: CURRENT RESEARCH GAPS
Based on the five generations modelling framework proposed
in section IV and the conducted review of the state-of-the-
art, the current research can realise modelling framework
of generation 1 and generation 2 and a small number of
approaches can reach generation 3. There is no research on
generations 4 and 5, where further studies are required to
model this very complex scenarios. To build CNSs under
generation 4 or 5, and in this way achieving DT-orientated
CNS, seven research gaps need to be tackled:

1) fulfilment of external tasks (model aim’s) while
faithfully mimicking the inner rules of the real system;

2) meaningful feature extraction and model selection that
enables network representation to preserve as much
information as needed for the model’s aim fulfilment;

3) network simulation via models built with interpretable
inner rules which are able at the same time to deal with
structural observability and dynamical observability
problems;

4) dynamics of networks that not only focuses on
the topology change but also incorporates attribute
changes;

5) modelling dynamically changing dynamic processes in
a way that allows for continuous parameter changes
under the impact of network changes;

6) real time data acquisition and processing for CNS
modelling;

7) the establishment of a feedback loop that enables
continuous updates of CNS and the changes of real
systems referring to the CNS modelling.

w: SET THE HALF-WAY POINT: DT-ORIENTATED CNS
DT-orientated CNS emerges with the convergence of DT and
CNS modelling approaches, where CNS models approach
reality by introducing DT features to the modelling process
while a DT incorporates networked information through
blockchain, knowledge graph or IoT to assist data processing
and modelling. Studies on CNS generally focus on a single
model’s aim and simple research objectives with predefined
set of assumptions. Also, a vast majority of them use
historical rather than streaming and continuous data. DTs
can encompass various functions of tools like simulation,
optimization and data analytics [96] via real-time processing
and updates, with research objects ranging from a single
product to the society and relaxed assumptions that allow for
a CNS representation and modelling in structural, temporal,
spatial and dynamics complexity dimensions. When CNS
approaches DT more assumptions are being relaxed, more
model’s aims fulfilled and more complex features can be
modelled via more efficient data processing and modelling.

There are still several challenges to overcome and
trade-offs to be made on the way to DT-orientated CNS:
(i) trade-off between model performance and multiple
model’s aims, (ii) trade-off between controllability and
complexity, (iii) the trade-off between efficiency and accu-
racy. The existence of multiple model’s aims poses a
demanding challenge for modelling, which can only be
fulfilled by compromising the model performance for a
certain model’s aim. As complexity of CNS increases with
richer information about network components represented
and more complex inner rules modelled, it becomes more
difficult to control the CNS with limited number of features.
To achieve higher accuracy, which is a measure of model
performance for external tasks, also requires more complex
CNS structures and dynamics, diminishing the efficiency of
CNS representation and modelling.

A good DT-orientated CNS refers to the CNS that simu-
lates or models necessary reality to achieve the predetermined
model’s aim with a DT-level efficiency, which may not need
to be a ready DT but is required to deal with the before
mentioned trade-offs. Unified assessment criteria made of
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mathematical measures for particular model’s aims of CNS
and the DT evaluation metrics that reflect model efficiency
can be used to assess DT-orientated CNS in a dynamic way,
as an assistance of model selection and updates. Modelling
paradigms of DT across disciplines can also be introduced
to CNS to go further on the road to a DT. Therefore,
the modelling tasks of DT-oriented CNS and the research
gaps are mainly about the resolution of trade-offs between
performance (output accuracy, input controllability, model
efficiency) and complexity, dynamic assessment of evolving
dynamics and the introduction of DT features and paradigms
to CNS.

x: EMBARKING ON THE MODELLING TASKS
The modelling tasks of DT-orientated CNS should be based
on the modelling tasks of CNS and DT that are detailed
in section V-A and the assessment approach from a unified
view point of CNS and DT in section V-B. The network
representation involves tasks of data processing, data analysis
and variable selection, while the training of a node and
relationships dynamics and dynamics over networks can be
summarised as data modelling process, where trust in data,
model and updating procedure should be considered with the
requirements of observability, similarity and synchronization.
Therefore, the modelling tasks of DT-orientated CNS can be
generally categorised and presented as:

1) Data processing that cope with imperfection of data;
2) Data analysis and feature selection that considers

observability and controllability;
3) Network representation based on the selected variables

and the similarity measures;
4) Modelling of real-time self-evolving dynamics;
5) Model updates enabled by reconfiguration and recon-

struction;
6) Model evaluation over the entire process.
For the task (1) on data processing and data management,

uncertainty analysis has been utilised to deal with data
imperfection, while data fusion emerges as a prevalent
way to capture reliable, valuable and accurate information.
Also knowledge graphs as well as blockchain have been
popular choices for data integration and information retrieval.
However, it is challenging to ensure the efficiency of data
processing and data management, especially given the ‘‘real-
time’’ feature of a DT and the requirements of data quality,
where further research is needed. There is also an issue of
data sparsity which requires further research on simulation
of CNS to deal with the unobservability and unavailability of
data.

For the task (2), data analysis and variable selection
that considers observability and controllability, has been
studied in the context of CNS over the years. However,
more effort is needed given the high demand for adaptability
of CNS as they approach reality. Specifically, when it
comes to simulation-based networks, how to choose the
changeable variables that drive the evolution of networks
while preserving the characteristics of real world situation is

an interesting research gap given the problem of data scarcity
resulting from the rules of keeping data security.

For the task (3), network representation based on the
selected variables and the similarity measures, is thoroughly
studied research area, while CNS built with DT approaches
with the emphasis on network properties has not been
deeply studied. Spatio-temporal network, together with the
interrelation and interconnection of dynamics within or over
such networks are very interesting topics that can be further
studied.

The task (4) on modelling of real-time self-evolving
dynamics enabled by continuous machine learning is the core
element of building a DT, where the interrelations between
dynamics in CNS remain an unexplored area especially when
it comes to the mutual influence of dynamics on and of
networks. More specifically, the evolving dynamics on and
of a network is the most relevant to the case-dependent
autonomy of DT system, which can be autonomous, not
autonomous, or partly autonomous, where the research on the
interventions in networked systems can be further introduced
with context-awareness and autonomy.

For the task (5), model updates enabled by the reconfigu-
ration and reconstruction, is closely related to the task (4),
where the construction of feedback loop is crucial for the
continuous modelling process. There is research on a DT
built from the perspective of state transition in a discrete way,
where how to narrow the time gap between states and extend
the state transition to the continuous modelling is a research
gap.

For the task (6), model evaluation over the entire modelling
process of DT-orientated CNS needs a unified assessment
framework, where concrete measures that consider features
of both DT and CNS should be explored. There is already
literature on measures of network analysis and DT analysis,
though the principled combination of these two or proposing
new integrated quality measures remain an outstanding
research gap.

The above tasks show the complexity of the research that is
needed to be accomplished along the way of working towards
DT-orientated Complex Networked Systems.

VI. CONCLUSION
This survey focuses on the modelling approaches of Complex
Networked Systems that pave the path for its convergence to
the ultimate goal: a Digital Twin of a CNS.

We review and discuss the CNS from three perspectives:
(i) model’s aims that have been studied for CNS (see
section II), (ii) modelling paradigms that enable to represent
a networked system in a way that preserves as much
information as needed (see section III), (iii) modelling
approaches for dynamics of networks and dynamics over
networks that enable to meet model’s aims (see section IV).
Those themes are discussed through the lenses of four,
proposed by us, complexity dimensions of complex systems:
(i) structural, (ii) temporal, (iii) dynamics and (iv) spatial.
A discussion that considers those complexity dimensions
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enables to better understand current modelling challenges
and quantify how far we are from achieving Digital Twin
modelling capabilities when representing networked systems.

The model’s aims for CNS distinguish when they focus
either on the external task to be performed on the system or
modelling of the inner rules of real systems, and this division
and specialisation can be eliminated when a Digital Twin is
considered since it is able to undertake multiple external tasks
by faithfully covering and reflecting the complexities of real
systems. Models of CNS proposed over the years have been
found to approach real systems with increasing complexity
in structural, temporal, spatial and dynamics dimensions.
To generate and preserve this heterogeneous networked
information, modelling paradigms of network representation
get more complex with compromised interpretability. These
models either focus on inner rules of network generation at
a local level or aim at a compressed network representation
at a global level, but all converge to the goal for a faithful
representation of real systems.

Dynamics of networks, dynamic processes on networks as
well as their interrelations are three elementary sources of
complexity for dynamics in the CNS. To navigate a pathway
through different levels of complexity of modelling CNS,
we devise a modelling framework of CNS that considers
all these three elements and consists of five generations
reflecting the progress of work that has been done in this field.
Each generation builds upon the previous one meaning that
the next generation encompasses higher complexity levels
than the previous one.

This modelling framework is agnostic to the model’s aim
so any of the discussed aims can be attempted using models
built within each of the generations. Though, one needs to
remember that models from different generations will enable
to achieve selected aim to a different extent. The proposed
framework also shows how Complex Networked Systems’
models approach a Digital Twin with more complexity
through generations, (i) generation 1: dynamic process
on static networks, (ii) generation 2 with two variations:
dynamic process on evolving networks and evolving dynamic
process on static networks, (iii) generation 3: evolving
dynamic processes on evolving networks with interrelations
between them, (iv) generation 4: temporal dynamic processes
on temporal networks with interrelations between them
and the acquisition of real time information and finally
(v) generation 5 that further introduces modelling framework
of generation 4 with an information feedback from CNS’s
model to the real system. From generation 1 to generation 5,
the real system can be represented more faithfully with
richer information captured and finally a CNS-based DT
can be created in generation 5. Current studies have made
good progress under modelling framework of generation 1
and generation 2. Only small number of approaches reach
generation 3. For generation 4 and 5, there is no research
in this space and further studies are required to model this
very complex scenarios to achieve better performance in the
context of any of the presented model’s aims.

To be more aware of how to approach a Digital Twin with
CNS, we propose an assessment framework (see section V)
that aims at quantifying the distance of CNS to DT from
the perspective of CNS model’s aim fulfilment and the
perspective of a DT’s faithful representation of reality. A half-
way point referred to as a DT-orientated CNS is proposed to
bridge the gap between the current approaches to modelling
of CNS and the ultimate goal of a DT (generation 5 models)
for future study.

The goal of the future research in the space of complex
networked systems and network science more broadly is to
develop a DT-orientated CNS that will enable to address
research gaps presented in Section V-C. Integrating dynamic
networks with dynamic processes and allowing for mutual
influence between them (allowing at the same time for
continuous adaptation of the system using streaming data as
an input) will make it possible to create the DT-orientated
CNSs. This will be a major breakthrough in the space of
modelling CNS.
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