
Received February 9, 2022, accepted April 16, 2022, date of publication May 18, 2022, date of current version June 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3175981

A Robust Comparative Analysis of Graph Neural
Networks on Dynamic Link Prediction
JOAKIM SKARDING, MATTHEW HELLMICH, BOGDAN GABRYS , (Senior Member, IEEE),
AND KATARZYNA MUSIAL
Complex Adaptive Systems Laboratory, Data Science Institute, University of Technology Sydney, Sydney, NSW 2007, Australia

Corresponding author: Joakim Skarding (joakim.skarding@student.uts.edu.au)

This work was supported by the Australian Research Council through the ‘‘Dynamics and Control of Complex Social Networks’’ under
Grant DP190101087.

ABSTRACT Graph neural networks (GNNs) are rapidly becoming the dominant way to learn on
graph-structured data. Link prediction is a near-universal benchmark for new GNN models. Many advanced
models such as Dynamic graph neural networks (DGNNs) specifically target dynamic graphs. However,
these models, particularly DGNNs, are rarely compared to each other or existing heuristics. Different works
evaluate their models in different ways, thus one cannot compare evaluation metrics and their results directly.
Motivated by this, we perform a comprehensive comparison study. We compare link prediction heuristics,
GNNs, discrete DGNNs, and continuous DGNNs on the dynamic link prediction task. In total we summarize
the results of over 3200 experimental runs (≈ 1.5 years of computation time). We find that simple link
prediction heuristics perform better than GNNs and DGNNs, different sliding window sizes greatly affect
performance, and of all examined graph neural networks, that DGNNs consistently outperform static GNNs.
This work is a continuation of our previous work, a foundation of dynamic networks and theoretical review
of DGNNs. In combination with our survey, we provide both a theoretical and empirical comparison of
DGNNs.

INDEX TERMS Dynamic network models, graph neural networks, link prediction, temporal networks.

I. INTRODUCTION
Recently, there has been a drive to enable fair comparisons
and benchmarks of GNNs [1]–[3]. The reason for this was
in part due to a lack of common practice in the validation
and testing of GNNs as well as concerns around replicabil-
ity and reproducibility. Reproducibility is a challenge for a
wider field of machine learning [4], [5] and even science
in general [6] making it difficult to identify actual scientific
advances.

In the space of dynamic graph neural networks (DGNNs),
these problems are further exacerbated by a set of challenges
that include (i) the dynamic and heterogeneous nature of
the data, (ii) the lack of common terminology [7], (iii) the
lack of established strong baselines (most works do not com-
pare performance of a proposed DGNN to other DGNNs),
(iv) the divide between discrete and continuous DGNNs and
(v) the wide array of experimental design choices. Among
the choices are: (i) how to represent the dynamic network

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Lai .

(e.g. snapshot, time-windows, continuous, time-to-live of
edges, etc.), (ii) which node features to include, (iii) how to
split the data into train-validation-test sets, (iv) which metrics
to use to evaluate the results, (v) how to use negative sampling
rate in reported metrics and (vi) how to choose/optimize
neural network parameters (e.g. learning rate, early stopping
criterion, embedding space dimensions, etc.). All of this
means that comparing the performance of methods through
meta-analysis, i.e. by reading research papers, is not pos-
sible unless they clearly state all their design choices and
those design choices are identical between papers. In our
previous work [8], we showed that DGNNs are a promis-
ing avenue in modeling network dynamics. This is mainly
due to their ability to encode both spatial patterns through
GNNs and temporal patterns through time-series components
(e.g. recurrent neural networks (RNN) or self-attention).
However, the so far proposedDGNNs have been tested on few
datasets and are rarely compared to other DGNNs. Different
studies compare the methods on different datasets as there
is no consensus when it comes to which datasets to use in
DGNN benchmarking. In light of these problems, a purely

64146 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-0790-2846
https://orcid.org/0000-0001-6038-7647
https://orcid.org/0000-0002-7703-9793


J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

theoretical comparison which we provided in our survey is
not sufficient [8]. We, therefore, extend our previous work by
performing a comprehensive comparison of GNNmethods on
the dynamic link prediction task. We benchmark each GNN
and DGNN using the same experiment design, including
the same strategy for optimizing hyperparameters (i.e. grid
search).

Previous works in the DGNN space focus on presenting
a new architecture. These models are either discrete or con-
tinuous DGNNs. However, these types of models are not
compared to each other. Discrete models operate on discrete
network representations while continuous models operate
on continuous representations. A comparison between these
kinds of models is not possible unless they are evaluated on
the same network representation. To enable this comparison,
we introduce the DIScrete and COntinuous dynamic link
prediction framework (DISCO). The framework represents
the datasets as both discrete and continuous while evaluat-
ing the predictions identically. This is achieved by transfer-
ring the continuous DGNNs to the discrete domain. In short,
this is done by training them separately on the continuous
representation, then training a decoder using the continuous
node embeddings on the discrete representation.

Using our new framework we compare link prediction
heuristics, static GNNs, discrete DGNNs, and continuous
DGNNs. This is therefore not just a comparison of different
models, but a comparison of different kinds of models. Our
aim is to give an indication of which GNNs are best capable
of encoding dynamic network topology and indeed if they are
better than well-established heuristics commonly used in the
network science community for link prediction. To the best
of our knowledge, this is the first comparison of discrete and
continuous DGNNs.

Another important question is whether DGNNs are better
than traditional GNNs at encoding dynamic graph struc-
ture. There are multiple ways that dynamic networks can
be represented as static networks, thus allowing GNNs to
encode dynamic networks. Previous works compare DGNNs
to GNNs and their results indicate that DGNNs do indeed
perform better than GNNs [9]–[12]. However, these works
use only one of the many ways of converting dynamic net-
works to static ones. Without exploring these options it is
still uncertain whether DGNNs tend to outperform GNNs on
dynamic network encoding. To gain more insight, we use
three different ways of aggregating dynamic networks to
static networks,

Our primary contribution is a fair comparison of graph neu-
ral networks and link prediction heuristics on dynamic link
prediction task. To this end, we introduce the DISCO frame-
work that can train different types of GNNs; static GNNs,
discrete DGNNs, and continuous DGNNs. Empirically we
find that 1) simple heuristics outperform DGNNs in terms of
mAP on almost all datasets. 2) Heuristics and discrete models
perform better in terms of mAP while continuous models
score better in terms of AUC. Indicating that heuristics and
discrete models are better at ranking the most highly ranked

links, while continuous models rank subsequent links better.
3) Static GNNs are outperformed by DGNNs. 4) Sliding
training windows greatly affects the model’s performance,
the models tend to perform better with a sliding training
window size of 5 or 10. 5) The compared continuousDGNNs’
performance is greatly affected by informative edge features.

To enable reproduction of our results and facilitate future
work we publicly release our code and configuration files.1

The relevant background is covered in Section II-A.
Section III covers the framework and how the experiments
are performed. The results are presented and discussed in
Section IV

II. BACKGROUND
This section covers the background and previous work of
dynamic network data, methods that we compare, namely,
graph neural networks and link prediction heuristics, the
dynamic link prediction task, and previous related compar-
isons and benchmarks.

A. DYNAMIC NETWORKS
Dynamic network terminology has yet to converge.
Networks, where edges and nodes may appear or disappear
over time, go by many names in the literature [7]. Here we
will refer to these networks as dynamic networks. There are
several kinds of dynamic networks and these may also go by
different names. In this work, we adopt the dynamic network
cube terminology for dynamic networks, a conceptual frame-
work that groups dynamic networks along three dimensions
and enables more precise terminology [8].
Definition 1 (Dynamic Network): a dynamic network is a

graph G = (V ,E) where: V = {(v, ts, te)}, with v being a
vertex of the graph and ts, te are respectively the start and
end timestamps for the existence of the vertex (with ts ≤ te).
E = {(u, v, ts, te)}, with u, v ∈ V and ts, te are respectively the
start and end timestamps for the existence of the edge (with
ts ≤ te).
Temporal granularity refers to how coarse or fine-grained

a network representation is [8]. In order of increasingly fine-
grained representation, we have static, discrete, and continu-
ous networks (Figure 1. Static networks are networks with no
information about time.

Discrete representations are ordered sets of static graphs,
examples of such representations include snapshots. A dis-
crete network representation is an ordered set of graphs,

DG = {G1,G2, . . . ,GT }, (1)

where T is the number of snapshots/time-windows.
Continuous network representations model exact temporal

information. They represent the dynamic network as one
graph with time stamps on the nodes and/or edges. Examples
of such representations include interval graphs [7], [13] and
graph streams [14]. Since this work uses interaction networks
where links have no duration, we use a contact sequence [13]

1Code available at https://github.com/xkcd1838/bench-DGNN

VOLUME 10, 2022 64147



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

FIGURE 1. An example of a static, discrete, and continuous representations of an interaction network. The interaction data consists of the pairwise
interaction between nodes and the time they interact at. The static representation only shows the nodes interacting but with no time information. The
discrete representation collects the links into snapshots (here the snapshots are of size 10). The continuous representation includes exact temporal
information.

to represent our continuous networks. A contact sequence is
a time-ordered list of triplets, where one triplet represents an
interaction between two nodes at a given time.

CS = {(ui, vi, ti); i = 1, 2, . . .}, (2)

where ui and vi is the node pair and ti is the time the nodes
interacted.

FIGURE 2. The link duration spectrum visualizes the different network
types on a spectrum from networks with links of instantaneous duration
(interaction networks) to networks with links of infinite duration (strictly
evolving networks).

The link duration spectrum (Fig. 2) distinguishes between
dynamic networks based on a link’s time-to-live (TTL).

Dynamic networks can also be distinguished by the link
duration spectrum [8]. Evolving networks are characterized
by links persisting for longer, while links in temporal net-
works are ephemeral. An interaction network is a type of
temporal network where links have no duration.

An instantaneous snapshot of an evolving network yields
a network structure, an instantaneous snapshot of a temporal
networkmay yield no edges at all. Links in temporal networks
do not persist for long, therefore a time-window is required to
observe a network structure. Interaction networks are special

cases of temporal networks and strictly evolving networks are
special cases of evolving networks. Links (interactions) are
instantaneous in interaction networks and no link disappears
in a strictly evolving network.

The distinction between discrete and continuous networks
is important because a model, e.g. a DGNN, is made to
encode one of the representation forms. A discrete DGNNcan
only encode networks represented as discrete networks and a
continuous DGNN can only encode networks represented as
continuous networks. In this work, we feed discrete graphs
(Equation 1) to the discrete models and contact sequences
(Equation 2) to the continuous models.

B. GRAPH NEURAL NETWORKS & LINK
PREDICTION HEURISTICS
Graph neural networks (GNN) have seen a surge in popularity
in recent years. GNNs are representation learning models
which aim to store a latent representation of a graph structure.
GNN models use message passing to aggregate features of
neighboring nodes together [15]. A common output of a GNN
layer is node embeddings. Most GNNs can only encode static
networks, in this work we refer to these models as static
GNNs.

Dynamic graph neural networks (DGNN) is a subclass
of GNNs capable of encoding dynamic networks [8].2 The
two main types of DGNNs are discrete DGNNs and contin-
uous DGNNs which are capable of encoding discrete and
continuous networks respectively. Due to the difference

2There also exist GNN architectures for static networks with dynamic
node and/or edge labels. These so-called spatio-temporal graph neural net-
works are discussed in some GNN surveys but are out of scope of this
study [15], [16].

64148 VOLUME 10, 2022



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

in network representation, their architectures are radically
different.

Discrete DGNN architectures usually consist of GNN lay-
ers and time series layers, with the time series layers being
RNN layers or attention layers. Continuous DGNNs on the
other hand have more varied architectures. The key challenge
for the continuous models is to encode the inter-event time
between node interactions. For this, some models [17], [18]
use RNNs, such as a time-aware LSTM [19], other models
use temporal point processes [20]–[22] and the most recently
emerged approaches use time embeddings [23]. There are
currently only two time embedding basedmodels, TGAT [11]
and TGN [12]. Discrete DGNNs iterate over the data snapshot
by snapshot, while continuous DGNNs iterate over the data
edge by edge.

Link prediction heuristics are compared to GNNs fairly
simple methods. The heuristics calculate a similarity score
which is then used to rank the links. The heuristics we
compare are all based on the idea that two nodes are more
likely to form links if they have common neighbors. The
simplest implementation of this idea is the common neighbor
heuristic [24] where the similarity score is given by

|0(u) ∩ 0(v)| (3)

where 0(u) is the neighbors of node u. There is a
rich literature on these methods in the network science
community [24], [25].

The two modern methods that we compare are slightly
more complex. Newton [26] combines the node degree
(degree centrality) and the shortest path between two nodes
to compute the similarity score. CCPA [27], combines the
common neighbor heuristic with the shortest path approach.

C. DYNAMIC LINK PREDICTION
Traditionally, link prediction is the task of predicting links
in static networks. Where there is no distinction between
predicting missing links and future links. When predicting
links in dynamic networks, this distinction is important.Miss-
ing link prediction can be referred to as interpolation and
future link prediction can be referred to as extrapolation [28].
In this work, we compare methods on the future link predic-
tion (extrapolation) task on discrete networks.

We predict which links will appear in the next time-
window. From the perspective of discrete methods, this is
a very natural prediction task. The methods read in time-
windows (snapshots) which are in chronological order and
predict which links appear in the next snapshot. Adapting
static and continuous models for dynamic link prediction is
more involved. We cover the details on how static, discrete,
and continuous models are adapted to dynamic link predic-
tion in Section III-E.

Link prediction can be seen as a special case of dynamic
link prediction, where there are only three snapshots; the
train, validation, and test snapshots. In that sense, dynamic
link prediction is simply an extension of link prediction with
multiple snapshots in the train, validation, and test sets.

D. FAIR COMPARISONS AND BENCHMARKS
A benchmark with representative datasets, thoughtfully
applied metrics and clear reporting can help, but is not by
itself sufficient for a fair comparison between different meth-
ods [29]. A fair comparison requires, among other things,
that each model is tuned in a consistent manner to fit each
dataset. The words benchmarking and comparative analysis
can often be used interchangeably when describing works
that compare different models. However, we have observed
a trend where there are two related but distinct types of
comparative papers in the machine learning community. The
first kind of paper, which we refer to as benchmarking papers,
are papers that aim to establish standardized benchmarks
for specific tasks [2], [3]. Their contributions often come in
the form of presenting novel datasets, or novel evaluation
frameworks for established tasks. These works tend to not
tune their compared methods thoroughly, a fair comparison
can then be achieved between newmodels assuming that each
author thoroughly tunes their respective models. In this type
of paper, the expensive task of tuning each model is thus
distributed to new authors. The second type of paper, which
we refer to as a comparative analysis, are papers that aim
to provide a fair comparison of existing models [1], [30].
Their contributions often come in the form of an analysis
providing insight into how themodels compare and the effects
of hyperparameters. In these terms, this work is intended to
be a comparative analysis rather than a benchmark.

III. EXPERIMENTAL SETUP
In this section we cover in detail how the comparison is done
and the justification for why these choices were made. This
includes an overview of the selected datasets and their statis-
tics, the specific methods that we compare, howwe define the
dynamic link prediction task, how we measure performance,
how the framework trains the GNN models including all
the different training pipelines it supports, how we optimize
hyperparameters, and the hardware and computation time
used to run the experiments.

A. DATASETS
Table 1 shows statistics of the datasets used in the exper-
iments. We select six continuous interaction networks and
one discrete evolving network (Autonomous) as datasets. The
datasets are shown on the link duration spectrum in Figure 3.
We chose interaction networks as they allow us to easily
convert to more coarse-grained temporal granularities such
as discrete networks. Sparser snapshots indicate a greater
imbalance between links and non-links, thus making the
classification problem harder. Autonomous was chosen as a
representative for evolving networks it is also one of very few
publicly available network datasets where links have duration
and may disappear again.

Enron,3 is an email communication network, where a link
is an email sent between two people. Enron is a small network

3http://networkrepository.com/ia-enron-employees.php

VOLUME 10, 2022 64149



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

TABLE 1. Dataset statistics. Snap density is the average density of the snapshots, Snap size, is the size of the snapshots (time-windows) in days. Num
snap is the number of snapshots in the network. Total time is the time period (in days) that the dataset covers. Persistence is the probability of an existing
edge to still exist in the next snapshot. Reoccurrence is the probability of an edge that has existed at one point, that is currently not existing, to reappear.
For persistence and reoccurrence, we report mean and standard deviation (in parenthesis) across the snapshots.

spatially (number of nodes), but medium-sized temporally
with a reasonable number of continuous links and covering a
time span of over 3 years. Due to the small number of nodes
(151) and a comparatively large number of edges (5,780), it is
much denser than the other networks.

UC Irvinemessages,4 shortened to UC, is an online forum
network from the University of California, Irvine. Two stu-
dents are connected if they interact on the same forum post.
Thus, this was originally a bipartite network but it has been
projected to have nodes of only one type. The odd choice of
snapshot size is adapted fromEvolveGCN [9] which observes
that a smaller snapshot size yields some snapshots without
any edges.

Bitcoin-OTC,5 is a who-trust-whom network of people
trading on the Bitcoin OTC platform. A link is an evaluation
by one user of another. The bitcoin network is medium-sized
in terms of nodes, however, most of its edges are unique edges
which indicate that very few edges are reoccurring. A low
recurrence rate is expected from the way a link is defined
since it is fairly rare to frequently update trust reviews. Lack
of reoccurring edges causes each snapshot to be much sparser
than most of the other datasets.

Autonomous-systems,6 shortened to Autonomous, is an
internet router communication network. A link is a router
exchanging traffic flow with a peer. This network is already
aggregated as a discrete network. We follow Pareja et al. [9]
in selecting the first 99 days and using that as our dataset. It is
the only evolving network among the selected datasets, this
is reflected by the persistence measure in Table 1. It is also,
by far the dataset with the most edges.

Wikipedia,7 a bipartite Wikipedia page editing network.
Nodes are either aWikipedia user or aWikipedia page. A link
is a user editing a Wikipedia page, it is thus a bipartite graph.
Wikipedia also has few reoccurring edges and similarly to
Bitcoin, has then comparably sparse snapshots.

Reddit,8 a bipartite Reddit posting network. Nodes are
either a Reddit user or a subreddit. A link is a user posting
on a subreddit, it is thus, like Wikipedia, a bipartite graph.

4http://konect.cc/networks/opsahl-ucforum/
5https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
6http://snap.stanford.edu/data/as-733.html
7http://snap.stanford.edu/jodie/wikipedia.csv
8http://snap.stanford.edu/jodie/reddit.csv

FIGURE 3. The compared datasets on the link duration spectrum from
Figure 2.

Reddit is the largest network spatially as it has the largest
number of nodes and unique edges.

The UC, Bitcoin, and Autonomous data-splits follow
Pareja et al. [9], and the Wikipedia and Reddit splits follow
Xu et al. [11]. We use the same splits so we can compare our
results to the previous works. We use a slightly larger train
split on Enron as it is a tiny dataset and we had difficulties
with the models learning anything if the training set was too
small. For details see Table 1.

We prepare two versions of each dataset, a directed con-
tinuous interaction network and an undirected discrete net-
work. Continuous models encode the continuous network.
The static and discrete models encode the discrete network.
In the conversion from continuous to discrete, reciprocal
edges are added to make the discrete networks undirected.
This was done since not all compared GNN implementations
support directed edges. The number of times an edge occurs
in a snapshot is added as a weight to the snapshot’s edge.

All results are reported predictions on the discrete net-
works. For continuous models, this is achieved by splitting
the continuous parts of the continuous networks into snap-
shots corresponding to the snapshots in the discrete network.
We then let the continuous models encode the continuous
network before the target snapshot and then try to predict the
link occurrence in the discrete network.

Figure 4 is the dynamic network cube from our previous
survey [8]. Figure 4 and Table 2 show different types of
network families. The figure and table are color-coded to
indicate which type of dynamic network we run the compar-
ative experiments on. As seen from Figure 2 and Figure 3
the Autonomous dataset is of type 1, while all the other

64150 VOLUME 10, 2022



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

TABLE 2. Terminology of the dynamic network cube.

FIGURE 4. The dynamic network cube. Each node represents a dynamic
network family. The nodes covered in this work are colored in green. The
terminology is covered in Table 2.

datasets are of type 2 or 6 depending on which method (see
Table 3) they are prepared for. While many of the methods
compared support node dynamics, we opted to only compare
on datasets where new nodes did not appear in the test set
and we focus on the link prediction problem. This was done
due to the experiment being computationally expensive (see
Section III-G). We did not run any continuous models on
evolving networks as the continuousmodels we compared are
not suited for evolving data. In fact, we are unaware of any
continuous DGNN that is suited for such networks [8].

B. METHODS
For each of the three network categories, static, discrete,
and continuous, we select at least two GNNs to benchmark.
We select GCN [31] and GAT [32] as static models as
they are known to be fairly universal and representative.
To represent discrete models we select EGCN-H, EGCN-O
and GC-LSTM. The EGCN [9] models differ from other
DGNN models as they use RNNs to evolve the GCN weights
rather than evolve node embeddings. GC-LSTM is selected
as it is an integrated DGNN and the architecture was used
by [10] specifically for dynamic link prediction. The GC-
LSTM encoder integrates an LSTM and a spectral GCN [33],
it is very similar to the first DGNNs introduced by [34].
To represent continuous models we select two time embed-
ding based continuous DGNNs, TGAT [11] and TGN [12].

To represent link prediction heuristics we select three well-
established methods [24], [25], Common Neighbors (CN),
Adamic-Adar (AA) [35] and Jaccard. As well as two mod-
ern heuristics; Newton’s gravitational law (Newton) [26]

TABLE 3. Overview of compared methods.

and Common Neighbor and Centrality based Parameterized
Algorithm (CCPA) [27]. The modern methods use the short-
est path between nodes to get scores for missing links beyond
common neighbors, whereas the other methods give a simi-
larity score of 0 if there are no common neighbors. Unlike the
other heuristics, Newton does not rely on common neighbors,
but rather on the degree centrality of the compared nodes and
distance between them.

Table 3 is an overview of the methods, their temporal
granularity, and method type (architecture type in the case
of GNNs). The architecture types are categories of GNNs
identified by surveys [8], [15].

We use either standardized implementations or the origi-
nal authors’ code. For GCN and GAT, we use the PyTorch
Geometric implementation [36],9 for GC-LSTM we use the
PyTorch Geometric Temporal implementation [37]10 and
we use the original authors’ code for the EGCN models,11

TGAT12 and TGN.13

Unless otherwise stated, we do not modify any of the tested
models. Some minor modifications were made to GC-LSTM,
TGAT, and TGN to enable the comparison. The PyTorch
Geometric Temporal implementation of GC-LSTM [37] was
modified to enable sliding windows in the same manner as
originally used by EvolveGCN [9]. For TGAT and TGN we
leave the training unchanged, but add the functionality to

9https://github.com/rusty1s/pytorch_geometric
10https://github.com/benedekrozemberczki/pytorch_geometric_temporal
11https://github.com/IBM/EvolveGCN
12https://github.com/StatsDLMathsRecomSys/Inductive-representation-

learning-on-temporal-graphs
13https://github.com/twitter-research/tgn

VOLUME 10, 2022 64151



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

extract node embeddings to enable comparison to the discrete
models.

We attempted to add the static GNN, SEAL [38] to our
benchmark as it is a promisingGNN [39] specifically targeted
at link prediction. However, the model requires preprocessing
2-hop subgraphs for every node pair. We found this to not
scale well. This is particularly due to us not using negative
sampling (sampling of non-links) during validation and test-
ing. Not using negative sampling allows us to get a complete
and accurate picture of the performance of the methods.
Simply storing these preprocessed subgraphs for one of our
larger datasets would require several TB of disk space.

C. TASK & METRICS
The dynamic link prediction task is to give a probability score
for each node pair in the network that a link between the two
nodes will be created in the next snapshot. The prediction
problem is extremely unbalanced; in each selected network
(except for Enron) we see more than 10,000 non-links for
every link. This leads [40] to recommend using precision-
recall curves when evaluating link prediction. We use mean
average precision (mAP), which is equivalent to the area
under the precision-recall curve. We also report the Area
under the receiver operating characteristic curve (AUC) as
this is commonly done for link prediction methods.

The link prediction task becomes harder the more imbal-
anced the classes are. The class imbalance can be measured
through network density. Since we test on snapshots, the
mean snapshot density in Table 1 indicates how imbalanced
the prediction task on each dataset is. The mAP score was
selected in part because it is sensitive to this increased dif-
ficulty. We, therefore, expect mAP scores for networks with
lower snapshot density to be lower.

This extreme class imbalance makes it tempting to use
sampling of non-links (negative sampling) to balance the
datasets when reporting the metrics. However, according to
Yang et al. [40] the use of negative sampling has been shown
to cause a high variance in the reported AUC. This variance
may lead to incorrect ordering of models and would affect
hyperparameter optimization decisions; e.g. which epoch to
select when applying early stopping, and which hyperparam-
eter settings perform better.While this can be counteracted by
running multiple runs, we opted to minimize variance where
we could. Contrary to the recommendations by Yang et al.,
GNN link prediction works tend to use a negative sampling
ratio of 1 to 1 [11], [12], [38]. As far as we know there
is no explicit comment by these works on the validity of
Yang et al.’s recommendations for GNNs evaluation.

D. EVALUATION SCHEME
This subsection covers details of the experiment relevant to
how the final evaluation is done and aspects of the framework
that is common for all GNN models. We perform a chrono-
logical train-validation-test split. The snapshot size and split
sizes are shown in Table 1. All models use the same snapshot
sizes and the same train-validation-test splits. We report the

results of the test results of the best performing (highest mAP)
validation run.

We ensure that all models are trained in the same way
by using a common framework that supports models of the
three different temporal granularities (static, discrete, and
continuous). Our framework is an extension of the framework
used by EvolveGCN [9]. The EvolveGCN framework sup-
ports training of discrete DGNN models with snapshots and
sliding windows, the hyperparameter optimization supported
was random search. Major differences with that framework
and ours include adding: (i) two additional training pipelines,
one for static and one for continuous models (we use the
already existing pipeline for the discrete models), (ii) grid
search functionality, (iii) enabling the use of continuous
embeddings on discrete network representations, and (iv) link
prediction heuristics. The evaluation on the validation and test
set is however identical, thus our results are comparable to
Pareja et al. [9]. Details on the three training pipelines are
found in, Section III-E.

Figure 5 shows the architecture used by the framework.
All GNN models use the same decoder (a two-layered MLP)
and binary-cross entropy loss. Models are trained by predict-
ing the next snapshot in the training set. For each epoch, the
framework iterates through the dynamic network, snapshot by
snapshot. For each iteration, the framework feeds the GNN
with the network before the current time step and evaluates
the predictions of the GNN against the next snapshot. Pre-
vious snapshots may be aggregated, but the next snapshot
is always of the same size to ensure that the results are
comparable. The heuristics don’t require any training and are
thus run directly on the test set.

The loss function is weighted, giving non-existing links
a weight of 0.1 and existing ones a weight of 0.9. Neural
network weights are initialized using uniform random initial-
ization. Static and discrete models use a negative sampling
ratio of 1 to 100 during training, and continuous models a
ratio of 1 to 1. Importantly, we do not use negative sampling
when reporting validation and test scores. We use the one-
hot encoded node degree as initial node features for static
and discrete models. This was shown by Errica et al. [1] to
improve the performance of GNNs on graph classification.
This is a key design decision, as it dictates the size of the node
embedding. The continuous models are limited to using the
same dimensions on the node and edge features. Following
the original works, we use a node and edge feature size of 172.
The node features are randomly initialized and for datasets
without edge features (every dataset except forWikipedia and
Reddit) we also randomly initialize the edge features.

The use of node degree as node features means that static
and discrete models rely solely on the graph structure to
perform link prediction. In many cases, a dataset would have
informative node or edge features that can aid with prediction
tasks. The only cases where informative features are used
in this analysis are the edge features of the Wikipedia and
Reddit datasets. And these are only leveraged by the con-
tinuous DGNNs. If GNNs and DGNNs are able to leverage

64152 VOLUME 10, 2022



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

FIGURE 5. The architecture surrounding the GNNs and DGNNs. For each link we try to predict, the corresponding node embeddings are
passed to a two-layered multilayered perceptron (MLP). For a view of the framework surrounding the deep learning architecture see
Figure 6.

informative node or edge features we would expect to
see a significant performance increase. This is explored
in Section IV-B.

E. TRAINING PIPELINES
While the evaluation is identical for all methods, the training
procedure is different between the different kinds of methods.
This is a necessity due to the different network representa-
tions that the methods operate on. The static and discrete
pipelines are shown in Figure 6

1) STATIC
Static GNNs encode a graph. Since our training set includes
multiple snapshots, we convert these snapshots into one graph
to enable the training of the GNN. We can aggregate an
arbitrary number of snapshots into one snapshot by includ-
ing a link in the output snapshot if it occurs in any of the
input snapshots, thus turning a discrete network into a static
one. We do this in three different ways and consider these
approaches a hyperparameter.

Themost straightforward way to train a GNN on a dynamic
network is to combine all the snapshots in the training set into
one big snapshot. We call this approach ‘static’. This is the
approach taken by traditional link prediction and continuous
DGNNworks [11], [12]. This is the only approach not to train
in a ‘‘roll forward’’ manner.

It is presumably beneficial to exploit the temporal infor-
mation in the training set and roll forward during training.
One way to do this is to only encode the previous snapshot
when attempting to predict the next snapshot. This does
not require any snapshot aggregation. This can be seen as
a sliding window of size 1 and is the approach used by
Pareja et al. [9] for static GNNs.
Complex networks tend to be rather sparse. It might there-

fore be beneficial to use a sliding window.We explore sliding
windows of sizes 5 and 10. Size 10 is the default for EGCN,
we chose to additionally use size 5 to investigate whether the
size of the sliding window is influential. For the static mod-
els, these ‘‘sliding snapshot windows’’ are aggregated into

one snapshot. For even sparser networks it may be beneficial
to represent the dynamic network as an evolving network. For
this, we use an expanding window. We refer to this option as
‘expanding’.

2) DISCRETE
Most discrete models inherently support multiple snapshots,
but the number of snapshots cannot vary during training.
It is therefore necessary to use a sliding window that feeds a
consistent number of snapshots to the model. We use sliding
window sizes of 1, 5, and 10. While this is comparable to the
sliding window of the static models, it is also different since
the snapshots in these sliding windows are not aggregated
together.

3) CONTINUOUS
Continuous models have no notion of snapshots, and we are
unaware of anyone training continuous models on discrete
networks. As this is a comparative study we aim to train the
models the same way they were originally trained, yet also in
a way that allows us to compare the results fairly. Our solution
is to train in two steps. Firstly we train the encoder, secondly
the decoder.

Continuous models are trained edge-by-edge. Like other
time-series models the edges are batched. This hinders us
from training the continuous models end-to-end with our
decoder (recall that we want to use the same decoder for all
models) since the decoder backpropagates on each snapshot.

It is theoretically possible to train the continuous models
end-to-end with our decoder by changing the edge batch
size from snapshot to snapshot. This will however lead the
number of edges in the batches to change from batch to batch.
Whether the radical change in batch size throughout training
is a viable way to train is unknown. However, we deem it
as too different from the original way these networks were
trained to include this approach in our study. We plan as the
future work to explore end-to-end training on snapshots for
continuous models.

VOLUME 10, 2022 64153



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

FIGURE 6. The framework’s static and discrete pipelines. Along the top are 12 snapshots (each of them a graph). The snapshot training
window is in this example of size 5 and feeds the snapshots to the DGNN encoder, or if trained in a static fashion, aggregates the snapshots
in the sliding window, and feeds the resulting graph to a GNN. The predictions of which links will appear in the next snapshot (G7*) are
compared to the actual next snapshot (G7). Then the snapshot training window will slide forward one step and feed another set of
snapshots to the models. One epoch is one pass through all snapshots. For a detailed view of the encoder and decoder see Figure 5.

We opt to train the continuous models in two steps. First,
we train identically to how themodels were originally trained,
with a constant batch size (essentially pretending snapshots
do not exist), using contrastive learning, and a negative sam-
pling rate of 1 to 1. We then extract the node embeddings and
train our decoder separately with the encoder (the continuous
DGNN) frozen, this time with a batch size matching the
number of edges in the snapshot. Training with the same
decoder allows us to use the same class weights and negative
sampling rate (1 to 100) as the static and discrete models.

To speed up decoder training, we cache the node embed-
dings produced by the frozen encoder in the first epoch of
the decoder training. This speeds up training by a factor of at
least 10x.
Despite the effort to optimize training speed, we opted to

not test the continuous models on the Autonomous dataset.
A single (encoder) epoch took on average 16 hours to run
(wall-time) on our hardware (see Section III-G for the hard-
ware). The discrete evolving network could be preprocessed
into a more suitable format for continuous models, but doing
so is non-trivial and we consider that outside the scope of this
work.

F. HYPERPARAMETERS
We search for good hyperparameters by performing a grid
search. While being very time-consuming, this allows us to
analyze the impact that different time-windows have model
performance.We then run eachmodel four times with the best
found hyperparameters with different random seeds.

If the hyperparameter is not included in the grid search,
we use the values used by the original studies. We search
the learning rate on all models as it is recommended by
Goodfellow et al. [41] as an important hyperparameter to

optimize. For static GNNs and discrete DGNNs we chose
to search the hidden layer size to regulate the number of
parameters of the model as too few might lead to underfitting
and too many to overfitting.

For the static GNNs we search the parameters: learning
rate, snapshot training window, and hidden layer size. The
search for parameters on discrete DGNNs is identical to
the static except for the snapshot training window which
only searches sliding windows. The grid search is slightly
modified on the Enron dataset where we search smaller layer
sizes due to the dataset being very small. The parameters
searched in the grid search are shown in Table 4, the selected
hyperparameters are shown in Table 8.

Continuous models are trained with the original hyperpa-
rameters and we perform a grid search on the second training
stage where we train the decoder. The parameters optimized
are learning rate, decoder learning rate, and decoder weight
decay.

By default, link prediction heuristics don’t predict scores
for already existing edges. We choose to explore two options,
we refer to these as the different ways for existing edge
treatment in Table 4: (i) calculating a score as if the edge
didn’t exist; and (ii) the default option, simply assuming exist-
ing links will persist. We also search the snapshot training
window as shown in Table 4.

Some hyperparameters are common for all GNNs. The
maximum number of epochs is 500. We use early stopping
with an early stop patience of 100. The TGAT and TGN
encoders are trained as in their original works, with a max-
imum of 50 epochs (epochs on continuous models are sig-
nificantly longer than on static or discrete models. Training
using a high number of epochs is therefore impractical).
We evaluate the models on the validation set every 5 epochs.

64154 VOLUME 10, 2022



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

TABLE 4. Hyperparameters searched by the grid search.

Other hyperparameters are specific for models; we use
the original authors’ parameters and we keep them the same
across all datasets. For GAT we use 8 attention heads and a
dropout value of 0.5. GC-LSTM uses a spectral GCN [33]
which approximates the graph convolution and takes a hyper-
parameter K . It indicates the number of hops included in the
neighborhood convolution. We use K = 3. For continuous
models, we use a batch size of 200, 2 attention heads, and a
dropout of 0.1. For TGN we activate memory as that is its
major feature distinguishing it from TGAT.

G. RUNTIME & HARDWARE
The grid search consisted of searching 2910 different
parameter settings, each setting took on average approxi-
mately 3.9 hours to complete. The grid search took around
11, 270 hours. Getting the final results, including running
the best found hyperparameters with four different seeds
was 168 different runs. Each of these runs took on average
approximately 6.3 hours to complete, so in total those runs
took around 1, 050 hours. The parameter budget runs were
also time consuming (174 runs), both the grid search and
stability took 1260 hours. In total, running the experiments
took 13, 590 hours (566 days).
The runs were computed in parallel on HPC clusters. The

cluster nodes varied slightly in their architecture, but a typ-
ical node had a processor equivalent to an Intel Xeon Gold
6126 and a GPU equivalent to an NVIDIA Quadro P6000.
A singularity container was used to ensure a consistent run-
time environment [42].

IV. RESULTS AND DISCUSSION
In this section we show and discuss the results of the
experiments. This includes the comparison of the methods,
an exploration of the importance of edge features for contin-
uous DGNNs, the importance of a snapshot training window,
and an experiment that ensures that the compared models
have the same number of learnable parameters.

A. MODEL COMPARISON
We report the mAP and the AUC scores shown in Table 5
and Table 6 respectively. All results are the average scores
taken from four runs of the best parameter setting found by
the grid search. The selected parameter settings are reported
in Table 8.

1) HOW DO LINK PREDICTION HEURISTICS AND
GNNs COMPARE?
On all datasets the heuristic baselines outperformed the
GNNs. Among the GNNs, the discrete DGNNs performed
consistently better, with continuous DGNNs performing
poorly, except for on theWikipedia and Reddit datasets where
the continuous DGNNs performed relatively well.

These findings are similar to the findings of
Huang et al. [43] which determined that a simple method,
using label propagation followed by logistic regression, can
outperform GNNs. The link prediction heuristics are even
simpler, so it is still surprising that they perform this well.
Reasons for this may be that the heuristics, despite being
relatively simple, are based on observed phenomena in com-
plex networks. The GNNs seem to not be able to learn these
phenomena.

2) WHY DO SOME MODELS SCORE LOW IN ONE METRIC
AND HIGH IN ANOTHER?
An explanation for this disparity lies in the extreme class
imbalance inherent to link prediction [40]. The AUC score
relies on the false positive rate. Due to the large number of
non-existing links, the false positive rate may stay relatively
low despite the precision is also being low. In fact, the mAP
and AUC are shown to be approximately the same, except for
the precision of the highest ranked links [44]. Our results thus
indicate that the link prediction heuristics are better at ranking
links initially, but later links are ranked better by the GNNs.

For applications focused on the highest ranked links, which
is common in information retrieval and recommender sys-
tems, our results indicate that link prediction heuristics will
typically outperform GNNs in the absence of informative
node or edge features.

3) HOW DO DIFFERENT GNNs COMPARE?
Among the GNN models, DGNNs performed better than
static GNNs. In terms of mAP, the discrete models performed
well, and in terms of AUC, the continuous models did well.
With the exception of Enron, a DGNN always outperformed
the static GNNs across all reported metrics. Particularly
GC-LSTM performs comparatively well. Static GNNs are on
some datasets, e.g. Wikipedia, closer to the performance of
random predictions.

VOLUME 10, 2022 64155



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

TABLE 5. Dynamic link prediction mAP scores. The scores reported are the mean and standard deviation (in parenthesis) of mAP scores averaged across
four runs with different random seeds. The heuristics are deterministic and thus they all have a standard deviation of 0. The best performances are
highlighted in bold, and the highest scoring GNN performances are underlined. Cells marked by † were not run (see Section III-E3). Random is completely
random predictions. R-embed is predictions when the decoder is given random embeddings.

TABLE 6. Dynamic link prediction AUC scores. Formatted identically to Table 5.

Even in terms of mAP, the continuous models do com-
paratively well on Wikipedia and Reddit where they have
informative edge features. However, their performance is
lacking on other datasets. This implies that they may rely on
edge features for good performance; we explore this further
in Section IV-B. Their performance in terms of AUC is com-
pared to other GNNs, good. This performance gap, and as
explained earlier, difficulty with ranking initial links, may be
caused by the choice of negative sampling when training the
encoders. During training only one randomly chosen negative
sample is used per link. Increasing the quality or quantity of
negative samples will possibly improve their performance.

4) WHY DID GC-LSTM OUTPERFORM THE OTHER DGNNs?
In terms of mAP the GC-LSTM model outperformed the
other DGNNs on all datasets except Enron.

GC-LSTM is a fairly simple DGNN architecture where
each snapshot in the snapshot window is first encoded

by a GNN and the resulting node embeddings are then
encoded by an LSTM. The EGCN models focus on evolv-
ing the GNN weights rather than the node embeddings.
The EGCN-O model does not take node embeddings as an
input, while EGCN-H only takes the top-k node embed-
dings as input. We hypothesize that the performance differ-
ence is caused by the EGCN models deemphasizing node
embeddings.

Another difference in our comparison of GC-LSTM and
the EGCN models is the GNNs and their implementa-
tion. GC-LSTM uses a GNN from PyTorch geometric [36],
while the EGCN models use the original author’s GCN [9]
implementation.14

14We attempted to use the PyTorch Geometric Temporal implementa-
tion of the EGCN models [37], but the original author’s code outper-
formed the PyTorch Geometric Temporal implementation. We believe this
was due to a bug in PyTorch Geometric Temporal that has since been
fixed.

64156 VOLUME 10, 2022



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

TABLE 7. Continuous DGNNs with randomized edge features. ‘-RE’ indicate random edge features.

FIGURE 7. Grid search mAP scores against the size of the snapshot training window. The snapshot training window is explained in
Section III-E1. Each color represents the five GNNs. All figures show different y-axes for the separate datasets due to large differences in
scores between datasets.

5) WHY ARE THE mAP SCORES SO DIFFERENT
BETWEEN DATASETS?
The scores vary notably between datasets. Datasets with low
snapshot density have lower mAP scores than those with
high snapshot density. This reflects the increased difficulty of
the classification problem which comes with increased class
imbalance [40].

The Autonomous dataset does however not appear to fol-
low this pattern. The methods can perform well despite the
network being rather sparse. We speculate that this might be
due to Autonomous being an evolving network rather than
an interaction network (Section II-A). In slowly evolving
networks there is less change between snapshots, and meth-
ods only need to predict gradual changes to the network as
fewer links disappear. It is shown that network characteris-
tics, such as the clustering coefficient and average shortest
path, influence heuristic performance [45]. It is plausible that
link duration influences performance as well, further work is
needed to confirm this.

When evaluating all possible links, the number of possible
self links (links between the same nodes) are comparable to

the number of links in the network. Non existing self-links are
challenging for GNNs to predict, as they rely on proximity of
node embeddings in embedding space and a self link would
be predicted from two identical node embeddings. If negative
sampling is used in the evaluation the number of self links
evaluated would be negligible and the thus bad evaluation of
them would not the noticeable in the mAP or AUC score.

B. EXPLORING THE PERFORMANCE OF
CONTINUOUS DGNNs
In Section IV-Awe hypothesized that the continuous DGNNs
relied on informative edge features to achieve good results on
the Wikipedia and Reddit datasets. To check this hypothesis,
we run TGAT and TGN on these datasets with randomized
edge features. The results, shown in Table 7, show a substan-
tial decrease in performance when edge features are random-
ized, particularly on the Wikipedia dataset. The performance
on Reddit has decreased, but not as drastically. This shows
that the edge features are an important, but not always critical,
asset to aid encoding.

VOLUME 10, 2022 64157



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

TABLE 8. Hyperparameters selected by the grid search.

Overall, the continuous DGNNs performed relatively
poorly compared to discrete DGNNs in terms of mAP.
We suspect this is caused by: (i) reliance on edge features;
(ii) transferring from a continuous setting to a discrete setting
takes the embeddings to some extent out of their element
and (iii) the hyperparameters of the continuous DGNNs were
optimized by the original authors on Wikipedia and Reddit.
The performance of the continuous DGNNs can probably
be significantly improved by exploring other ways to apply
continuous DGNNs to the discrete network representation
and by further optimizing the hyperparameters.

C. SNAPSHOT TRAINING WINDOW ANALYSIS
Figure 7 shows the mAP scores found during the grid search
on the static and discrete models. One datapoint is one param-
eter setting in the search. A sliding time-window of size
5 or 10 consistently produces the best results, particularly

for the discrete models. This indicates that it is beneficial to
use a sliding window when training DGNNs. Most models
are spread across a large spectrum of scores, implying that
optimizing the hyperparameters is essential for obtaining a
representative and good score for both GNNs and DGNNs.

Table 8 shows the hyperparameters selected by the grid
search as the best performing. Link prediction heuristic meth-
ods have all the same or very similar optimal hyperparam-
eters. It is especially interesting that the heuristics always
performed best with a sliding window of size 1. The hyperpa-
rameters for the graph neural network models have no obvi-
ous commonalities beyond the sliding time-windows shown
in Figure 7.

D. USING A PARAMETER BUDGET
The grid search explored different layer sizes. However,
this did not take into account the total number of

64158 VOLUME 10, 2022



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

TABLE 9. Layer size and total number of learnable parameters for the equal parameter budget runs. The number of learnable parameters of the encoder
is in parenthesis.

TABLE 10. mAP scores of GCN and GC-LSTM compared on a parameter budget. GCN+P is the GCN model with the same number of learnable parameters
as the GC-LSTM.

learnable parameters. The DGNNs, therefore, ended up with
much more learnable parameters than the static GNNs.
To explore whether the discrete models can fit the data
better simply due to having more parameters, we run GCN
with the same number of parameters as the best performing
GC-LSTM setting. For the exact change in layer size and the
resulting total number of parameters, see Table 9.We perform
a full grid search to locate good values for learning rate and
snapshot training window given these new layer sizes.

The mAP scores for the GCN with more parameters are
compared to the original scores of GCN and GC-LSTM in
Table 10. In general, the additional parameters enabled the
GCN to achieve a marginally higher score on the larger
datasets, but not enough to outperform GC-LSTM, except for
on the bitcoin dataset. With the higher number of parameters
the GNNs gained more modeling power and they should
then be able to fit more patterns in the data which leads to
improved performance.

V. CONCLUSION AND FUTURE WORK
In this study, we introduce theDISCO framework that enables
the comparison of discrete and continuous DGNNs. We use
this framework to perform a comprehensive comparison of
link prediction heuristics and three types of GNNs on the
dynamic link prediction task. Comparing these different mod-
els and these different types of models provides crucial con-
text for understanding DGNNs. This extends our previous
theoretical comparison of DGNNs by adding an empirical
comparative analysis.

Link prediction heuristics performed better in terms of
mAP and AUC. We believe the mAP metric is more
indicative of link prediction performance, due to most appli-
cations being most interested in the highly ranking links [40].

Despite heuristics being simple, they prove to be strong
baselines. Future work on GNNs and DGNNs which are
applied to link prediction should be compared to at least one
link prediction heuristic and ideally, a variety of different
heuristics, note that there are many more heuristics than
what we have compared in this study [25]. However, while
heuristics currently outperform GNNs, the heuristics cannot

leverage informative node or edge features, nor do they lever-
age temporal patterns. Therefore, GNNs and DGNNs have
a lot of potential to improve their performance beyond the
heuristics. Not only do the deep models have the potential
to outperform heurstics given informative features, but with
the rapid progress in this space, they are likely to improve at
utilizing graph structure to a point where they would rival or
surpass heuristics even without the use of features.

We find that the snapshot training window greatly affects
performance. Future work should explore multiple snapshot
training window sizes. Despite searching multiple different
static network representations, the discrete DGNNs con-
sistently outperformed static GNNs. Our results also indi-
cate that network characteristics, such as the link duration
(temporal vs evolving networks) influence prediction perfor-
mance. Also, continuous DGNNs performed comparatively
well when they had informative edge features, but not without
them.

Exciting directions for future work include (i) incorporat-
ing link prediction heuristics and recent advances in GNNs
into DGNNs; (ii) exploring effective ways of training con-
tinuous DGNNs on discrete networks; (iii) exploring the
influence of dynamic network characteristics on link pre-
diction performance and (iv) expanding this benchmark to
include additional methods and datasets. Interesting addi-
tional models to compare include other discrete DGNNs [46],
approaches using auto-encoder loss functions [47], generative
adversarial network based approaches [48], [49] and temporal
point process based continuous DGNNs [21], [22]. Most of
these methods were excluded from this experiment due to not
having available implementations in PyTorch.

Improving the performance of both discrete and continuous
DGNNs remains an exciting research avenue. We consider
this work a first step towards improving dynamic link predic-
tions and an important foundation for future work.

REFERENCES

[1] F. Errica, M. Podda, D. Bacciu, and A. Micheli, ‘‘A fair comparison of
graph neural networks for graph classification,’’ in Proc. Int. Conf. Learn.
Represent., 2020, pp. 1–16.

VOLUME 10, 2022 64159



J. Skarding et al.: Robust Comparative Analysis of GNNs on Dynamic Link Prediction

[2] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio,
and X. Bresson, ‘‘Benchmarking graph neural networks,’’ 2020,
arXiv:2003.00982.

[3] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, ‘‘Open graph benchmark: Datasets for machine learning on
graphs,’’ 2020, arXiv:2005.00687.

[4] Z. C. Lipton and J. Steinhardt, ‘‘Troubling trends in machine learning
scholarship: Some ML papers suffer from flaws that could mislead the
public and stymie future research,’’ Queue, vol. 17, no. 1, pp. 45–77,
Feb. 2019.

[5] T. Liao, R. Taori, I. D. Raji, and L. Schmidt, ‘‘Are we learning yet? A meta
review of evaluation failures across machine learning,’’ in Proc. 35th Conf.
Neural Inf. Process. Syst. Datasets Benchmarks Track, Round 2, 2021,
pp. 1–10.

[6] Reproducibility and Replicability in Science, National Academies of
Sciences, Engineering, Medicine, and others, Nat. Academies Press,
Washington, DC, USA, 2019.

[7] P. Holme, ‘‘Modern temporal network theory: A colloquium,’’ Eur. Phys.
J. B, vol. 88, no. 9, pp. 1–30, Sep. 2015.

[8] J. Skarding, B. Gabrys, and K. Musial, ‘‘Foundations and modeling of
dynamic networks using dynamic graph neural networks: A survey,’’ IEEE
Access, vol. 9, pp. 79143–79168, 2021.

[9] A. Pareja, ‘‘EvolveGCN: Evolving graph convolutional networks for
dynamic graphs,’’ in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 4,
pp. 5363–5370.

[10] J. Chen, X. Wang, and X. Xu, ‘‘GC-LSTM: Graph convolution embed-
ded LSTM for dynamic network link prediction,’’ Appl. Intell., vol. 52,
pp. 7513–7528, Sep. 2021.

[11] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, ‘‘Inductive
representation learning on temporal graphs,’’ in Proc. Int. Conf. Learn.
Represent., 2020, pp. 1–19.

[12] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and
M. Bronstein, ‘‘Temporal graph networks for deep learning on dynamic
graphs,’’ 2020, arXiv:2006.10637.

[13] P. Holme and J. Saramäki, ‘‘Temporal networks,’’ Phys. Rep., vol. 519,
no. 3, pp. 97–125, 2012.

[14] J. Zhang, ‘‘A survey on streaming algorithms for massive graphs,’’ in
Managing and Mining Graph Data. Boston, MA, USA: Springer, 2010,
pp. 393–420.

[15] Z.Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, ‘‘A comprehensive
survey on graph neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 1, pp. 4–24, Jan. 2021.

[16] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and
M. Sun, ‘‘Graph neural networks: A review of methods and applications,’’
AI Open, vol. 1, pp. 57–81, Jan. 2020.

[17] Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin, ‘‘Streaming graph neural
networks,’’ in Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr.
New York, NY, USA: ACM, Jul. 2020, pp. 719–728.

[18] S. Kumar, X. Zhang, and J. Leskovec, ‘‘Predicting dynamic embedding
trajectory in temporal interaction networks,’’ in Proc. 25th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Jul. 2019, pp. 1269–1278.

[19] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou, ‘‘Patient
subtyping via time-aware LSTM networks,’’ in Proc. 23rd ACM SIGKDD
Int. Conf. Knowl. DiscoveryDataMining, Halifax, NS, Canada, Aug. 2017,
pp. 65–74.

[20] R. Trivedi, H. Dai, Y. Wang, and L. Song, ‘‘Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs,’’ 2017, arXiv:1705.05742.

[21] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, ‘‘DyRep: Learning rep-
resentations over dynamic graphs,’’ in Proc. Int. Conf. Learn. Represent.,
2019, pp. 1–25.

[22] B. Knyazev, C. Augusta, and G. W. Taylor, ‘‘Learning temporal attention
in dynamic graphs with bilinear interactions,’’ PLoS ONE, vol. 16, no. 3,
Mar. 2021, Art. no. e0247936.

[23] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur,
S. Wu, C. Smyth, P. Poupart, and M. Brubaker, ‘‘Time2Vec: Learning a
vector representation of time,’’ 2019, arXiv:1907.05321.

[24] D. Liben-Nowell and J. Kleinberg, ‘‘The link-prediction problem for social
networks,’’ J. Amer. Soc. Inf. Sci. Technol., vol. 58, no. 7, pp. 1019–1031,
2007.

[25] V. Martínez, F. Berzal, and J.-C. Cubero, ‘‘A survey of link prediction in
complex networks,’’ ACM Comput. Surv., vol. 49, no. 4, pp. 69:1–69:33,
Dec. 2016.

[26] A. Wahid-Ul-Ashraf, M. Budka, and K. Musial-Gabrys, ‘‘Newton’s grav-
itational law for link prediction in social networks,’’ in Proc. Int. Conf.
Complex Netw. Appl. Cham, Switzerland: Springer, 2017, pp. 93–104.

[27] I. Ahmad,M.U. Akhtar, S. Noor, andA. Shahnaz, ‘‘Missing link prediction
using common neighbor and centrality based parameterized algorithm,’’
Sci. Rep., vol. 10, no. 1, pp. 1–9, Dec. 2020.

[28] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and
P. Poupart, ‘‘Representation learning for dynamic graphs: A survey,’’
J. Mach. Learn. Res., vol. 21, no. 70, pp. 1–73, 2020.

[29] ‘‘The difficulty of a fair comparison,’’ Nature Methods, vol. 12, p. 273,
Apr. 2015.

[30] K. Greff, R. K. Srivastava, J. Koutnìk, B. R. Steunebrink, and
J. Schmidhuber, ‘‘LSTM: A search space Odyssey,’’ IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[31] N. T. Kipf and M. Welling, ‘‘Semi-supervised classification with graph
convolutional networks,’’ in Proc. 5th Int. Conf. Learn. Represent. (ICLR),
Toulon, France, Apr. 2017, pp. 1–14.

[32] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
‘‘Graph attention networks,’’ in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–12.

[33] M. Defferrard, X. Bresson, and P. Vandergheynst, ‘‘Convolutional neural
networks on graphs with fast localized spectral filtering,’’ in Advances
in Neural Information Processing Systems, D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, R. Garnett, Eds. Red Hook, NY, USA: Curran
Associates, 2016, pp. 3844–3852.

[34] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, ‘‘Structured
sequence modeling with graph convolutional recurrent networks,’’ in
Advances in Neural Information Processing Systems (Lecture Notes in
Computer Science), L. Cheng, A. C. S. Leung, S. Ozawa, Eds. Cham,
Switzerland: Springer, 2018, pp. 362–373.

[35] L. A. Adamic and E. Adar, ‘‘Friends and neighbors on the web,’’ Soc.
Netw., vol. 25, no. 3, pp. 211–230, 2003.

[36] M. Fey and E. J. Lenssen, ‘‘Fast graph representation learning with
PyTorch geometric,’’ in Proc. ICLR, 2019, pp. 1–9.

[37] B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel,
M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon, and R. Sarkar,
‘‘PyTorch geometric temporal: Spatiotemporal signal processing with neu-
ral machine learning models,’’ 2021, arXiv:2104.07788.

[38] M. Zhang and Y. Chen, ‘‘Link prediction based on graph neural networks,’’
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 5165–5175.

[39] M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin, ‘‘Labeling trick: A theory
of using graph neural networks for multi-node representation learning,’’
2020, arXiv:2010.16103.

[40] Y. Yang, R. N. Lichtenwalter, and N. V. Chawla, ‘‘Evaluating link predic-
tion methods,’’ Knowl. Inf. Syst., vol. 45, no. 3, pp. 751–782, Dec. 2015.

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

[42] G. M. Kurtzer, V. Sochat, and M. W. Bauer, ‘‘Singularity: Scientific
containers for mobility of compute,’’ PLoS ONE, vol. 12, no. 5, May 2017,
Art. no. e0177459.

[43] Q. Huang, H. He, A. Singh, S.-N. Lim, and A. R. Benson, ‘‘Combining
label propagation and simplemodels out-performs graph neural networks,’’
2020, arXiv:2010.13993.

[44] W. Su, Y. Yuan, andM. Zhu, ‘‘A relationship between the average precision
and the area under the ROC curve,’’ in Proc. Int. Conf. Theory Inf. Retr.,
Sep. 2015, pp. 349–352.

[45] F. Gao, K. Musial, C. Cooper, and S. Tsoka, ‘‘Link prediction methods
and their accuracy for different social networks and network metrics,’’ Sci.
Program., vol. 2015, pp. 1–14, Jun. 2015.

[46] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, ‘‘DySAT: Deep neural
representation learning on dynamic graphs via self-attention networks,’’
in Proc. 13th Int. Conf. Web Search Data Mining. New York, NY, USA:
ACM, Jan. 2020, pp. 519–527.

[47] J. Chen, J. Zhang, X. Xu, C. Fu, D. Zhang, Q. Zhang, and Q. Xuan,
‘‘E-LSTM-D: A deep learning framework for dynamic network link pre-
diction,’’ 2019, arXiv:1902.08329.

[48] K. Lei, M. Qin, B. Bai, G. Zhang, andM. Yang, ‘‘GCN-GAN: A non-linear
temporal link prediction model for weighted dynamic networks,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2019, pp. 388–396.

[49] Y. Xiong, Y. Zhang, H. Fu, W. Wang, Y. Zhu, and S. Y. Philip,
‘‘DynGraphGAN: Dynamic graph embedding via generative adversarial
networks,’’ in Proc. Int. Conf. Database Syst. Adv. Appl. Cham, Switzer-
land: Springer, 2019, pp. 536–552.

64160 VOLUME 10, 2022


