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Abstract

In liability lawsuits (e.g., patent infringement) a plaintiff demands compensation from a

defendant and the parties often negotiate a settlement to avoid a costly trial. Liability

insurance creates bargaining leverage for the defendant in this settlement negotiation.

We study the characteristics of monopoly and equilibrium contracts in settings where

this leverage effect is a substantial source of value for insurance. Our results show that

under adverse selection, a monopolist offers at most two contracts, which under-insure

low-risk types and may inefficiently induce high-risk types to litigate. In a competitive

market, only a pooling equilibrium with under-insurance may exist.
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1 Introduction

Third-party liability insurance protects against liability for harm caused to a third party,

whereas first-party insurance protects against own losses (e.g. health or life insurance).

Under third-party insurance, claims for damages require a court trial to determine whether

the insured agent is liable for the loss incurred by the third party. Most liability lawsuits,

however, are settled out of court, to avoid litigation costs. Liability insurance is valuable

in part because it gives the insured agent leverage when bargaining with the third party

over settlement. Insurance raises the agent’s payoff from litigation, making the agent more

willing to litigate, and lowers the payment to the third party if there is a settlement. This

leverage effect makes third-party insurance valuable even for risk-neutral agents, in contrast

to first-party insurance where there is no possibility to bargain over the potential loss.

This paper is the first to study the economics of such leverage under adverse selection. We

study equilibrium contracts under different information and market structures, modeling a

negotiation framework with endogenous payoffs determined in a rich contracting environment

for third-party insurance.1 In our setting, a risk neutral agent buys an insurance contract

that covers a portion of the litigation costs and/or damages, if the agent goes to litigation,

and a portion of the settlement transfer, if the agent and the third party settle. At the time

of contracting, the agent may or may not know her type, which is the probability of being

found liable in court. If and when a third party subsequently sues the agent for damages, the

agent and third party bargain over a settlement under the threat of litigation. By covering

litigation expenses, insurance reduces the agent’s pressure to settle, so parties either settle at

a lower settlement fee (relative to no insurance) or they litigate. The contract offered by the

insurer must balance two effects: a more generous policy increases the agent’s willingness to

pay for the contract, but may incentivize costly litigation.

In our setting, the agent’s willingness to pay for insurance is generally non-differentiable

and the cost of providing insurance is generally discontinuous. The non-differentiability and

discontinuity properties arise because the agent has a non-contractible ex-post action—to

settle or litigate—that introduces ex-post moral hazard; these features do not appear in first-
1The effect of insurance on the agent’s ability to negotiate a settlement also relates to the literature on

third-party funding of plaintiffs and its effect on settlement (Daughety and Reinganum, 2014).
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party insurance because there is no effect of insurance on negotiation incentives. Our findings

show that the canonical model for insurance applies only to first-party insurance; third-party

liability insurance requires a richer model that also considers the effect of insurance on an

agent’s ex post bargaining incentives. As a result, we find that equilibrium liability contracts

differ strongly from standard results on first-party insurance contracts for both monopoly

and perfect competition.

First, with a single seller and regular type distributions, we find that the optimal menu only

partially covers the damage payments of high-risk types, generally features distortions at

the top, in addition to distortion at the bottom, and it does not necessarily allocate perfect

insurance to the highest type. These findings contrast with standard results on first-party

insurance (see, e.g., Stiglitz (1977), Chade and Schlee (2012)). We find that in any optimal

mechanism at most two classes of contracts are offered in equilibrium—one that does not

cover damages, targeting low-risk types, and one that partially covers damage payments,

aimed at high-risk types; the optimal contracts always cover legal costs and do not cover

settlements (a policy known as “legal expenses insurance” in practice).2 Insurance covering

settlements directly is not optimal because it weakens the agent’s leverage in bargaining.

Insurance does add value to settlements indirectly, through an off-path equilibrium leverage

effect: by covering litigation expenses, the insurance improves the agent’s bargaining position

and reduces the equilibrium settlement fee. In some cases, the optimal contract may induce

inefficient litigation in equilibrium, whereas in the absence of insurance there would not have

been litigation. This points to novel potentially negative welfare effects of liability insurance.

Second, in a competitive market under asymmetric information, we find that for any dis-

tribution of types there can only be pooling equilibria. Any such equilibrium never induces

litigation and features under-insurance. These results contrast with the seminal work of

Rothschild and Stiglitz (1976), where only separating contracts are offered in a competitive

equilibrium with discrete type distributions, and no equilibrium exist with a continuum of

types (Riley, 1979). In Rothschild and Stiglitz (1976), in a candidate pooling equilibrium,

an insurer is able to profitably deviate by offering a contract that only attracts types who

generate positive surplus, which undermines the cross-subsidization needed to sustain the
2Chade and Schlee (2019) show that provision costs can generate pooling in first-party insurance.
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pooling equilibrium.

With third-party insurance, the cost discontinuity facing the insurer, driven by the agent’s

decision to settle or to litigate, plays a crucial role in the equilibrium analysis. We show that

the insurer’s costs are zero when the agent settles, and strictly positive and increasing with the

agent’s type when the agent litigates. As a consequence, cross-subsidization is not necessary

as long as insurance does not induce litigation. Each type that settles costs the insurer

the same, which enables pooling to survive in equilibrium for both discrete and continuous

distributions. A separating equilibrium requires that contracts be sold at different prices,

because otherwise types would pool on the more generous insurance. But for two contracts

to yield zero profit, at least one contract must attract types that settle and types that litigate.

Such a contract cannot survive in equilibrium, because insurers incur a loss on types that

litigate so it requires cross-subsidization between types that settle and types that litigate. It

is therefore “cream-skimmed” by another contract that only attracts types that settle. This

implies that a separating equilibrium does not exist. Similar to Rothschild and Stiglitz (1976),

however, we find that adverse selection destroys the possibility of equilibrium altogether when

there are too few high-risk agents. Subsequent work—e.g., Wilson (1977); Miyazaki (1977);

Riley (1979); Crocker and Snow (1985); Azevedo and Gottlieb (2017); Farinha Luz (2017)—

shows that alternative equilibrium concepts change both the set of equilibrium contracts and

welfare implications. Pooling can arise in equilibrium in first-party insurance by incorporating

economies of scale (Allard et al., 1997) or transaction costs (Ramsay et al., 2013).

We also provide results on the effect of liability insurance on litigation: under incomplete

information, optimal and equilibrium insurance policies induce more litigation when infor-

mation is asymmetric; under complete information, insurance never induces litigation.

To focus on the leverage effect of liability insurance, our core model assumes risk neutrality

and allocates to the agent control over the decision to litigate or settle. These assumptions

closely capture defensive patent litigation insurance, where the policy holder often has such

control.3 For instance, in the United States, the patent litigation insurance industry has
3E.g., see marketing materials of IPISC “[...] the Named Insured is in control of the lawsuit.”

https://keh4ins.com/wp-content/uploads/2014/04/defense-insurance-product-packet-ipisc.pdf;
Blue Iron, “With either patent enforcement or patent defense policies, you control the litigation.”
https://blueironip.com/ip-insurance-by-blueiron/; or Upcounsel “As the policy holder, you will control the
lawsuit.” https://www.upcounsel.com/patent-infringement-insurance-cost. (Visited on November 2019)
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been led by Intellectual Property Insurance Services Corporation (IPISC), an insurer that

has marketed its insurance products specifically to firms wishing to make themselves more

formidable in litigation.4 The worldwide market for patent infringement lawsuit insurance

has grown to include at least eight carriers, all of which sell infringement defense coverage

and many of which sell multiple products (Gauntlett 2019, Appendix J).5

In the broader liability insurance market, most policies cover legal costs and some cover

damages/settlements. Past liability claims are usually excluded from coverage. Schwarcz

and Siegelman (2017) presents additional examples of liability insurance contracts in different

industries. In some types of liability insurance, the insurer controls settlement (e.g., medical

malpractice). Meurer (1992) and Sykes (1994), among others, have shown that this creates a

potential conflict of interest between the insurer and insured. The leverage effect of insurance

also emerges with insurer control (Meurer, 1992), so our results have implications for such

policies as well. Moreover, many policies where settlement is delegated to the insurer feature

a “consent to settle” clause that effectively gives the agent control over the decision to litigate

or settle (e.g. in professional liability, errors and omissions liability and executive liability).

Finally, we discuss additional economic forces at play when risk-averse agents purchase in-

surance. Risk-averse agents value damages coverage more than risk-neutral agents because,

apart from the leverage effect, they value the risk protection against the uncertain litigation

outcome. Although increasing coverage for damages increases risk-averse agents’ willingness

to pay for insurance, it also incentivizes them to litigate, which may be costly for the in-

surer. To balance these opposing effects, the insurer may require to cover settlements, which

breaks up monotonicity properties of the risk-neutral setting. Despite our model being ana-

lytically intractable in a general framework, we show that for mean-variance preferences and

low levels of risk aversion our main results under perfect competition hold; under monopoly,

the contracting space expands because risk aversion introduces more curvature in the utility

function. It remains true that low-risk agents are sold a policy that only covers legal costs,

high-risk agents are sold a policy that covers legal costs and damages, and no agents receive
4IPISC’s Defense Insurance Program Summary (see Footnote 3) highlights how the product is marketed,

including such advantages as “Reduces the pressure of entering into an undesirable license agreement or the
risk of incurring burdensome royalty payments” and “Reduces the pressure to settle Infringement cases.”

5This appendix lists twenty-six products sold by AIG, CFC, IPISC, Liberty Specialty Markets, OPUS,
RPX, Safeonline, and Tokio Marine Kiln. It also highlights differences across policies with respect to coverage
for pre-existing infringement, dishonest acts, damages coverage, and breach of contract by licensees.

5



settlement coverage. Hence the leverage value of insurance remains the dominant factor for

low levels of risk aversion.6

Related Literature

A large literature on equilibrium contracts for first party insurance, pioneered by Rothschild

and Stiglitz (1976) and Stiglitz (1977), includes Wilson (1977); Miyazaki (1977); Riley (1979);

Crocker and Snow (1985); Azevedo and Gottlieb (2017); Farinha Luz (2017); Allard et al.

(1997); Ramsay et al. (2013); Chade and Schlee (2012). None of these articles, however,

study third-party insurance, where bargaining leverage plays a prominent role.

Several articles focus on how liability insurance affects the incentives to invest in prevention

(e.g., Shavell, 1982, 2005; Chen and Hua, 2012), ignoring the ex-post bargaining stage between

the insured agent and a third party. Another part of the literature incorporates the ex-post

bargaining stage between the insured agent and a third party, but focuses on the insurer’s

incentives to control the litigation process, in the absence of adverse selection (Meurer, 1992;

Sykes, 1994). We advance the literature by studying how the bargaining leverage gained by

an insured agent affect equilibrium contracts for liability insurance.

The driving economic force in our paper relates to the literature on third-party funding of

plaintiffs and its effect on settlement. For example, Daughety and Reinganum (2014) adapt

the signaling model of Reinganum and Wilde (1986) to show that optimal loans to privately-

informed plaintiffs may both eliminate the possibility of litigation and extract favorable

settlement terms. Also related, the literature on offensive patent insurance shows that some

litigation threats become credible under insurance, which increases the entry deterrence value

of patents. Llobet and Suarez (2012) and Buzzacchi and Scellato (2008) study insurance that

covers a fraction of the patentee’s litigation costs. Duchene (2015) shows that with private

information, patent holders may opt not to buy insurance because of an inability to signal

and avoid pooling equilibria. In our setting, our assumption of risk-neutrality helps to isolate

and highlight the leverage effect of third-party insurance. Shavell (2005), among others, also

study liability insurance in a setting where parties are risk-neutral—which is also justified
6Our Online Appendix presents more details on the issues of risk aversion, endogenous lawsuit control,

bargaining under asymmetric information, and supplementary technical results for the baseline model.
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by the fact that in many markets liability insurance is primarily bought by firms.

Our paper is also related to the literature on optimal contracting under adverse selection and

moral hazard (Picard, 1987; Guesnerie et al., 1989). The key driving force in our model is the

improved bargaining position of an insured agent. Kirstein (2000), Van Velthoven and van

Wijck (2001), Kirstein and Rickman (2004), and Llobet and Suarez (2012) have shown that

risk-neutral buyers may value insurance because it makes litigation credible or it improves

the policy holder’s bargaining position. However, none of these papers study equilibrium

under adverse selection or the optimal monopoly contract. Townsend (1979) also shows that

contracts change when it is costly to verify an agent’s private information. In our setting, the

agent does not know the true state of liability and its verification requires costly litigation.

Finally, our work also relates to the literature on lawyers’ contingent fees, where lawyers

charge lower upfront fees but keep part of any payments awarded. Dana and Spier (1993)

show that contingency fees help solve an agency problem. Rubinfeld and Scotchmer (1993)

study a Rothschild-Stiglitz-style model and show that clients with high-quality cases can

signal their cases’ strength by selecting hourly fees, while attorneys can signal their ability

by requesting contingency fees. Gravelle and Waterson (1993) make similar points. Finally,

Hay and Spier (1998) and Spier (2007) review the large literature on litigation and settlement.

2 Model

A risk-neutral agent (A) sells a product or provides a service that may harm a risk-neutral

third party (TP ), thereby creating a legal liability. Only a costly trial can verify if TP was

harmed by A’s product. A and TP trial costs are cA and c, respectively. The probability that

A is found liable (A’s type) is p ∈ [0, 1] drawn from a distribution F with density f . If the

court rules that TP was harmed, A must compensate TP with a payment of d. The agent

can purchase a third-party liability insurance contract from a profit-maximizing risk-neutral

insurer (I). Under contract α = (αS, αL, αD), I pays A up to αS to cover any settlement

transfer (if A and TP settle), αL to cover the litigation costs, and αD to cover damages (if

the trial finds A is liable). Our goal is to derive the equilibrium contracts offered by I, from
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the set of contracts A = {α = (αS, αL, αD) : αS ≥ 0, αL ≤ cA, αD ≤ d},7 for different

market and information structures.

Figure 1 describes the timing of the model. At t = 1, I offers an insurance contract to A. A’s

type may be known or unknown by A or I at the time of contracting. Even when p is known

to the agent, this may or may not be verifiable information for the insurer. If p is known to

the agent and verifiable by the insurer, then A and I contract under complete information

(Proposition 2). When p is known to the agent but it is non-verifiable for the insurer, A and

I contract under adverse selection (Section 3.2). Finally, both A and I may only know that

p ∼ F at the time of contracting (Section 3.3).8

I offers liability
insurance to A

TP sues A if pd ≥ c

(p publicly revealed)
A and TP negotiate to
avoid trial and to settle

If there is no settlement,
A and TP go to trial

t = 1 t = 2 t = 3 t = 4

Figure 1: Timing of the events in the model.

We assume that A’s type is known by TP , and it becomes public when the lawsuit is filed.

Thus, A and TP bargain under complete information in a litigation game that starts at t = 2.

At t = 2, TP has a credible litigation threat if and only if pd ≥ c. If pd < c, the game ends.

If and when a lawsuit is filed, A and TP bargain under complete information (at t = 3) over

a settlement fee under the Nash bargaining protocol. A’s bargaining skill in this negotiation

is θ ∈ (0, 1). If a settlement is not reached, then a trial ensues (t = 4).9

Importantly, A’s disagreement payoff (i.e., A’s expected litigation payoff) depends both on

the probability of liability p and on the insurance contract α bought by the agent: VL(p, α) ≡

−cA−pd+αL+pαD. Insurance improves A’s disagreement payoff by αL+pαD, strengthening

A’s bargaining position in the settlement negotiation. This bargaining leverage distinguishes

third-party insurance from first-party insurance.

We analyze both the optimal liability-insurance contracts offered by a monopolist and the
7The restriction αL ≤ cA and αD ≤ d precludes over-insurance. In practice many insurance contracts are

implemented as a reimbursement policy, so over-insurance is indeed impossible.
8In this case, the insurer cannot renegotiate the contract signed at t = 1 (e.g. renegotiation is expensive).

If contracts were renegotiable, then the solution is equivalent to selling insurance under complete information
(if p is verifiable) or under adverse selection (if p is non-verifiable).

9Note that in principle, A and TP could collude in sham litigation that would defraud the insurer. We
assume that such fraudulent action is deterred by large expected penalties (e.g., fines, costs, or jail time).
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equilibrium liability-insurance contracts offered by a competitive market under adverse se-

lection. Before we proceed with this analysis, we first present some preliminary analysis and

derive by backward induction A’s willingness to pay and I’s cost of providing insurance.

Note that when A is uninsured, then A and TP always settle because their net joint surplus

from a settlement is positive (cA + c > 0). When A is insured, however, settlement does not

necessarily occur. If A is covered by insurance policy α ∈ A, and TP receives a transfer T

to settle, then A and TP ’s net joint surplus from settling is

SB = min{−T + αS, 0}︸ ︷︷ ︸
A’s settlement

payoff

+ T︸︷︷︸
TP ’s settlement

payoff

−[ VL(p, α)︸ ︷︷ ︸
A’s litigation

payoff

+ pd− c︸ ︷︷ ︸
TP ’s litigation

payoff

],

= min{αS, T}+ c+ cA − αL − pαD. (1)

The bargaining surplus in Equation 1 could be negative, depending on the insurance policy

and A’s type: αL and αD reduce it and αS increases it. Any contract α determines two

threshold types that are relevant for our analysis. Denote p∗(α) as the litigation-threshold

type: types p ≤ p∗(α) settle (SB ≥ 0) and types p > p∗(α) litigate (SB < 0). Denote p∗∗(α)

as the full-settlement-coverage-threshold type: types p ≤ p∗∗(α) have their settlement offer

fully covered by I. For types in [p∗∗(α), p∗(α)] the settlement offer is not entirely covered by

insurance.10, 11

Proposition 1. The willingness to pay of an agent of type p for insurance policy α ∈ A is

W (p, α) =



pd− c+ (1− θ)(c+ cA) if c
d
≤ p < max{p∗∗(α), c

d
}

θαS + (1− θ)(αDp+ αL) if max{p∗∗(α), c
d
} ≤ p ≤ p∗(α)

αDp+ αL − θ(c+ cA) if p > p∗(α)

. (2)

10To avoid confusion with notation, note that the asterisks in p∗ and p∗∗ denote threshold types as a
function of contract features, not optimality. Whereas in subsequent sections, when we characterize contracts
in various settings, optimal contract features will be denoted with p∗i,j , where i ∈ {M,C} distinguishes the
monopoly and competition settings while j ∈ {AI, SI} denotes asymmetric and symmetric information.

11All omitted proofs are in Appendix A.
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The insurer’s expected cost for providing insurance policy α to an agent of type p is

K(p, α) =


αS if p ≤ p∗(α)

αDp+ αL if p > p∗(α)
, (3)

where p∗(α) ≡ αS + c+ cA − αL
αD

, and p∗∗(α) ≡ θ(αS + c)− (1− θ)(cA − αL)
d− αD(1− θ) .

Figure 2 illustrates Proposition 1 for the case where c
d
< p∗∗(α) < p∗(α). The willingness to

pay W (p, α) is monotone increasing, continuous, and piecewise linear in p. The cost K(p, α)

has a discontinuity at the litigation threshold p∗(α), and jumps from a value strictly below

W (p∗(α), α) to a value strictly above it, i.e., K(p∗(α), α) < W (p∗(α), α) < K(p∗(α)+, α).

$

αS

αS + (1− θ)(c+ cA)

αS + c+ cA

c
d p∗(α)p∗∗(α)

p

W (p, α)

K(p, α)

Figure 2: The solid line is type p’s willingness to pay for insurance policy α, W (p, α). The dashed
line is the insurer’s cost of providing policy α for type p, K(p, α). Types above p∗(α) litigate and
types below p∗(α) settle. The settlement fee is fully paid by the insurer for types below p∗∗(α).

Subtracting Equation 3 from Equation 2, we find A and I’s net joint surplus,

W (p, α)−K(p, α) =



pd− c+ (1− θ)(c+ cA)− αS if c
d
≤ p ≤ p∗∗(α),

(1− θ)(αDp+ αL)− (1− θ)αS if p∗∗(α) < p ≤ p∗(α),

−θ(c+ cA) if p > p∗(α).

(4)

Equation 4 highlights how the value of third-party insurance depends upon bargaining and

settlement. First, insurance does not improve the bargaining ability of agents whose settle-

ment payment is fully-covered by I: For p ∈ [ c
d
, p∗∗(α)], TP fully extracts A’s settlement
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coverage αS; A’s willingness to pay for insurance is what A would have paid had A nego-

tiated uninsured. Second, insurance makes agents better negotiators when they settle and

have to pay part of the settlement fee out of pocket: For p ∈ (p∗∗(α), p∗(α)], by improving A’s

outside option, the leverage effect of insurance avoids TP from collecting (1− θ)(pαD +αL).

The settlement coverage (paid by I) increases the bargaining surplus by αS, from which A

recovers a fraction θ. Third, A and I jointly lose the share of bargaining surplus that an

uninsured agent extracts from TP in a settlement negotiation.

Note that insuring an agent with perfect bargaining skill (θ = 1) is unprofitable because

W (p, α) ≤ K(p, α) for all p and for any α. Such an agent extracts all the surplus from the

settlement negotiation and hence does not need leverage. On the other hand, insuring agents

with imperfect bargaining skill (θ < 1) who settle litigation is profitable. The leverage effect

of third-party insurance is valuable even if the agents are risk-neutral.12

3 Contracting at t = 1

We consider both monopoly and competitive insurance markets, as well as different infor-

mation structures. The motivation for multiple information environments is differences in

the types of risks firms may face. For example, firms that face a small set of specific and

known risks may have better information than the insurer. On the other hand, when firms

face a large set of unknown risks, information may be close to symmetric between agent

and insurer.13 Before we proceed, we first characterize the optimal contract under complete

information: For each p, we look for a contract α(p) that maximizesW (p, α(p))−K(p, α(p)).

Proposition 2 (Complete Information). For a monopoly or under perfect competition, if p

is observable at the time of contracting, then any contract α such that p∗(α) = p is optimal.

Proof. Any contract α such that p∗(α) = p maximizes the difference W (p, α)−K(p, α).
12In extensions of our basic model, we show that the leverage effect of insurance remains the dominant

force when the agent is moderately risk averse (see Section 4 and Online Appendix Section B.1).
13Within defensive patent litigation insurance, the known-risks (informed A) case more closely captures

risks of lawsuits by direct competitors, while the unknown-risks case more closely captures risks of lawsuits
by “patent trolls.”
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Proposition 2 shows that under complete information any contract α ∈ A such that pαD =

αS+c+cA−αL is optimal. For any such contract, A and TP settle, and TP earns exactly its

disagreement payoff, pd − c. This is the same outcome of a settlement negotiation between

TP and an uninsured agent with perfect bargaining skill (θ = 1). Thus, under complete

information, the equilibrium insurance contract extracts all the bargaining surplus from TP ,

and it transfers rents from TP to I (in the case of monopoly) or to A (in the case of perfect

competition). We refer to any contract α such that p∗(α) = p as perfect insurance for type

p, because its leverage effect generates the most joint surplus to be shared by A and I.

3.1 Contracting under Adverse Selection and Monopoly

Consider a profit-maximizing monopolist who offers a mechanism to an agent who holds

private information about her type. By the revelation principle we restrict attention to

direct mechanisms that are incentive compatible.

A mechanism consists of a menu of contracts α(p̃) = (αS(p̃), αL(p̃), αD(p̃)) and prices T (p̃),

which are functions of the agent’s reported type p̃. The monopoly insurer chooses the func-

tions α :
[
c
d
, 1
]
→ [0,∞)× [0, cA]× [0, d] and T :

[
c
d
, 1
]
→ [0,∞) to maximize:

max
α(·),T (·)

∫ 1

c
d

[T (p)−K(p, α(p))]f(p)dp

subject to incentive compatibility (IC) and individual rationality (IR). The IC constraint

is p ∈ arg maxp̃∈[ c
d
,1]W (p, α(p̃)) − T (p̃). Let U(p) ≡ maxp̃∈[ c

d
,1]W (p, α(p̃)) − T (p̃). The IR

constraint corresponds to U(p) ≥ 0 for all p.

Recall that the agent’s willingness to pay (Equation 2) is piecewise linear and therefore

not differentiable, and that the insurer’s cost function is discontinuous. These issues can

in principle invalidate the usual mechanism design approach, because the mechanism may

assign a non-zero measure of types to contracts that make them indifferent between settling

and litigating. If so, the envelope theorem approach would fail.14 However, Lemma 4 (in the

Appendix) shows that any incentive compatible mechanism in our setting in fact allocates a
14Carbajal and Ely (2013) show that in quasi-linear settings with non-differentiable valuations the envelope

theorem characterization may lead to a range of possible payoffs as a function of the allocation rule.
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measure-zero set of types to this non-differentiable point where p = p∗(α(p)), which allow us

to apply the envelope theorem to derive the optimal mechanism. We have,

T (p) = W (p, α(p))−
∫ p

c
d

∂W (s, α(s))
∂p

ds− U
(
c

d

)
. (5)

Replacing this expression in the objective function, noting that the monopolist sets U
(
c
d

)
= 0,

and using the standard change of variables to re-write the information rents term, we obtain:

max
α(·)

∫ 1

c
d

[
W (p, α(p))−K(p, α(p))− ∂W (p, α(p))

∂p

(
1− F (p)
f(p)

)]
f(p)dp. (6)

In the standard mechanism design problem, incentive compatibility requires an increasing

allocation. Although we have a 3-dimensional allocation α, the agent’s private information

is single-dimensional. Lemma 5 (in the Appendix) shows that IC is equivalent to a single

monotonicity condition: αD(p) must be non-decreasing.

In solving the insurer’s problem, we make the following assumption to restrict attention to

cases where types below a certain level are excluded from damage insurance.

Assumption 1. p− 1−F (p)
f(p) satisfies single-crossing and crosses zero from below.

Under Assumption 1 we define p̄ as the unique solution of

p̄ = 1− F (p̄)
f(p̄) . (7)

With our characterization of incentive compatibility, we can follow the usual mechanism

design approach. We first maximize the insurer’s objective pointwise, for each type, ignoring

the monotonicity constraint on α. The solution to this pointwise maximization is α(p) =

(0, cA, 0) for p ≤ p̄ and α(p) = (0, cA, c/p) for p > p̄. Note, however, that this solution does

not satisfy the monotonicity condition. Thus, we need to “iron” the pointwise solution to

ensure this constraint is satisfied. The following theorem characterizes the optimal menu of

contracts offered by a monopolist facing a privately informed agent.
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Theorem 1. Assume the distribution F satisfies Assumption 1 and define

p∗M,AI ∈ arg max
p̂∗∈[p̄,1]

ΨAI(p̂∗) ≡ (1− θ)cAF (p̄) + (1− θ)
∫ p̂∗

p̄

[
cA + c

p̂∗

(
p− 1− F (p)

f(p)

)]
f(p)dp

−
∫ 1

p̂∗

[
θ(c+ cA) + c

p̂∗

(
1− F (p)
f(p)

)]
f(p)dp.

The optimal menu of contracts offered by a monopolist insurer consists of two contracts:

1) α(p) = (0, cA, 0) sold at price T (p) = (1− θ)cA to types p ≤ p̄;

2) α(p) =
(

0, cA, c
p∗

M,AI

)
sold at price T (p) = (1− θ)

(
cA + c p̄

p∗
M,AI

)
to types p > p̄.

Theorem 1 shows that low-risk types (p < p̄) purchase a contract that covers only litigation

costs. In practice, such contracts are common and are called “legal expenses insurance.” All

higher-risk types (p > p̄) purchase zero coverage for settlements, full coverage for litigation

costs, and a single level of damages coverage. The particular level of damages coverage trades

off improved bargaining leverage (for types that buy damages coverage and settle litigation)

versus litigation expenses (for types that litigate).15 In practice, some carriers offer contracts

that do not cover settlements, while others offer contracts that cover settlements but are

subject to a deductible. Although we do not model deductibles explicitly, we can interpret

contract α as offering coverage αD of both damages and settlement payments, but with a

deductible d − αD. Under this interpretation, the equilibrium settlement transfer is always

lower than the deductible, so the insurer effectively does not cover settlements.16

To see the intuition behind the condition in Theorem 1, consider each term in ΨAI(p̂∗). First,

type p̄ partitions types into those with positive and with negative virtual surplus. Unlike the

standard setting, where the mechanism excludes types with negative surplus, in our setting

‘exclusion’ refers to exclusion from covering damages. Covering litigation costs gives agents

a type-independent bargaining leverage for which low-risk (p < p̄) agents are willing to pay

(1 − θ)cA. Thus, the monopolist sells the contract α(p) = (0, cA, 0) to these types at price

(1−θ)cA, and receives an aggregate profit of (1−θ)cAF (p̄). This is the first term in ΨAI(p̂∗).

For high-risk types (types above p̄), the insurer offers a contract with the same levels of
15As we discuss in Section 4, these features of the optimal menu hinge on the risk-neutrality assumption.
16For any contract α with corresponding litigation threshold p∗(α), the settlement transfer is lower than

d− c
p∗(α) , for all p ≤ p

∗(α), iff 0 ≤ (dp∗(α)− c)(1− p) + cθ(p∗(α)− p), which holds for c
d ≤ p ≤ p

∗(α).
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coverage for litigation costs and settlement than the contract sold to low-risk types, but

it also partially covers damages. Conditional on αS = 0 and αL = cA, setting αD = c
p

corresponds to perfect insurance for type p (see Proposition 2), but offering perfect insurance

to these types is not incentive compatible (Lemma 5): αD(·) would be strictly decreasing in

p. Ironing this solution allocates to all types p > p̄ the same level of damages insurance. We

can write this coverage as αD = c
p̂∗ , which corresponds to perfect insurance for type p̂∗. The

second term in ΨAI(p̂∗) captures profits from types in [p̄, p̂∗), who purchase this contract and

settle litigation. The insurance contract does not extract all the bargaining surplus from the

third party, because for p < p̂∗, damages insurance is below the perfect level. The third term

in ΨAI(p̂∗) captures losses from types in (p̂∗, 1], who litigate. Each of these types generates

a loss of θ(c+ cA) in joint surplus between the insurer and the agent.

In optimizing ΨAI(p̂∗), the monopolist chooses a litigation threshold. Figure 3 illustrates this

trade-off. Area A represents the monopolist’s profit from selling “legal expenses insurance,”

i.e. not damages insurance, to types below p̄. Area B represents the deadweight loss from

excluding these types from damages insurance. Area C represents the insurer’s revenue from

contract p̂∗ sold to types in [p̄, p̂∗]. Area D represents the information rents these types obtain.

Types in [ c
d
, p̂∗] settle, and are under-insured, except for p̂∗ who receives perfect insurance.

Types above p̂∗ are over-insured. Areas E+F represent the total net loss incurred by the

insurer, net of the revenue from the price paid by types in [p̂∗, 1]: E is forgone revenue from

the information rents; F is an efficiency loss from litigation. The optimal litigation threshold

p∗M,AI in Theorem 1 optimizes this tradeoff accounting for the distribution of types.

W (p, α)

K(p, α)

(1− θ)(c+ cA)

(1− θ)cA

(1− θ)
[
cA + c p̄p̂

]
c+ cA

$

c
d p̂∗p̄

p

C

F

E
D

A

B

Figure 3: Insurer’s gains (solid area) and losses (dashed area) from a two-contract menu. Low-risk
types (p ∈ [ cd , p̄]) buy contract (0, cA, 0) and high-risk types (p ∈ [p̄, 1]) buy contract (0, cA, c/p̂∗).
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3.2 Contracting under Adverse Selection and Perfect Competition

Now suppose agents are privately informed about the probability of liability, and the market

for insurance is perfectly competitive. There is a perfectly elastic supply of potential insurers

capable of freely entering and selling insurance. We follow Rothschild and Stiglitz (1976)

in specifying that equilibrium contracts require insurers’ profit to be zero, that no entrant

could earn a strictly positive profit by offering an alternative contract, and that contracts

are exclusive.17

We begin the analysis with some useful preliminary results. We first show that the contracting

space can be reduced to a single dimension without loss of generality. We then show that the

agent’s willingness to pay can be re-written in a more compact way, which highlights some

analytical properties of this function.

For any contract α ∈ A, only type p = p∗(α) receives perfect insurance. Types p > p∗(α) are

over-insured and prefer litigation instead of reaching a settlement, which generates losses for

the insurer. Types p < p∗(α) are under-insured, so they settle, but their bargaining position

is not perfectly improved by the insurance policy so the TP extracts bargaining surplus.

Definition 1. Consider α ∈ A and α′ ∈ A. We say that α′ dominates α (denoted α′ � α)

if W (p, α′)−K(p, α′) ≥ W (p, α)−K(p, α) for all p ≥ c
d
.

Our next result shows that for each litigation threshold ρ ∈
[
c
d
,∞

]
there exists a contract

α∗(ρ) that dominates all other contracts α that generate the same litigation threshold, i.e.,

such that p∗(α) = ρ. This result allows us to reduce the dimensionality of the problem.

Proposition 3 (Undominated Contracts). Let α∗(ρ) = (α∗S, α∗L, α∗D) ≡
(
0, cA, cρ

)
for any

ρ ∈
[
c
d
,∞

]
. Then, α∗(ρ) � α for all α ∈ A such that p∗(α) = ρ. Even more, if α̂ � α for all

α ∈ A, with p∗(α̂) = p∗(α) = ρ, then α̂ = α∗(ρ).

Proposition 3 shows that for each litigation threshold ρ ∈
[
c
d
,∞

]
there is a unique contract

α∗ that maximizes (pointwise) A and I’s joint surplus and satisfies p∗(α∗) = ρ. In this

contract, litigation costs are fully covered, damages are partially covered, and settlements
17The set of equilibria may expand with non-exclusive contracts (see, e.g., Attar et al., 2011)
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are not (directly) covered. By restricting attention to an undominated contract α∗ it also

follows that p∗∗(α∗) ≤ c
d
.18 By using an undominated contract, an insurer improves A′s

disagreement payoff, enabling A to negotiate a lower settlement fee. Note that contracts that

generate a litigation threshold ρ > 1 are dominated by the contract that generates litigation

threshold ρ = 1. Therefore, we can simply identify undominated contracts with the type

that is indifferent between settlement and litigation under that contract. For exposition, we

henceforth drop the dependence of p∗(·) on α∗, denoting p∗ = p∗(α∗), and we ignore p∗∗(α∗).

We can then write the willingness to pay and the insurer’s expected cost as functions of the

agent’s type and the threshold type p∗ induced by any undominated contract:

W (p, p∗) ≡ W (p, α∗(p∗)) =


(1− θ)

[
cA + c

p

p∗

]
if p ≤ p∗[

cA + c
p

p∗

]
− θ(c+ cA) if p > p∗

, (8)

K(p, p∗) ≡ W (p, α∗(p∗)) =


0 if p ≤ p∗

cA + c
p

p∗
if p > p∗

. (9)

Figure 4 highlights thresholds p∗1 and p∗2, with p∗2 > p∗1. The contract α∗1 associated to p∗1
covers a larger portion of damages than α∗2 associated to p∗2. For any p, W (p, p∗1) > W (p, p∗2).

Moreover, W (p, p∗1)−W (p, p∗2) is increasing in p and W (p, 1− p∗) is supermodular.

$

(1− θ)(c+ cA)

c
d p∗1 p∗2 1

p

W (p, p∗2)

W (p, p∗1)

Figure 4: Willingness to pay for two undominated insurance policy contracts, α∗1 = (0, cA, c/p∗1)
and α∗2 = (0, cA, c/p∗2), indexed by their induced litigation thresholds, p∗1 and p∗2, respectively.

18For any α ∈ A, p∗∗ ≤ p∗, and p∗∗ > c
d if and only if θdαS > (1− θ)[(d− αD)c+ (cA − αL)d.
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The equilibrium price depends on how much litigation is induced by the insurance contracts.

If an insurance policy induces all types that buy it to settle, its equilibrium price must be

equal to the marginal cost of providing insurance (which we normalize to zero), because the

insurer providing the policy bears no additional cost. In contrast, if the insurance induces

litigation for some types, the insurer incurs losses on the group of agents who litigate. Hence,

to break even, the insurer must earn a strictly positive profit on the other group of agents,

so any pooling contract that induces litigation requires cross-subsidization.

Lemma 1. For any distribution of types F , a single pooling contract that induces litigation

cannot be offered in equilibrium in a perfectly competitive market.

Intuitively, due to the supermodularity ofW (p, 1−p∗), a slightly less generous contract could

be offered to attract only types that settle (which does not impose any cost on the insurer)

and could be sold at a slightly lower, but positive price. This intuition is similar to the cream

skimming argument in Rothschild and Stiglitz (1976). Cream-skimming also precludes the

possibility of any separating equilibrium.

Lemma 2. For any distribution of types F , a separating equilibrium does not exist in a

perfectly competitive market.

To separate types in equilibrium, an insurer must sell contracts with different damage cover-

age at different prices. With common prices, all types would buy the more generous coverage.

This rules out two contracts that preclude litigation and are sold for a price of zero. Indeed,

to earn zero profit with two contracts that each generate trade, some types must litigate,

some types must settle, and the types that settle must pay strictly positive prices (while

generating no costs). The reason is that the willingness to pay of types that litigate is be-

low the insurer’s cost, so the insurer inevitably loses money on these types. The insurer

must therefore earn money from types that settle. But given these requirements, and the

supermodularity of W (p, 1 − p∗), an alternative insurer can then attract some types that

settle, by offering a slightly less generous contract at a slightly lower price. This generates

positive profits because all switching types settle. This cream-skimming intuition therefore

undermines any such separating equilibrium.

The result in Lemma 2 contrasts with Rothschild and Stiglitz (1976), where a separating
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equilibrium does exist provided there are a sufficiently high number of high-risk types. Also

in contrast to Rothschild and Stiglitz (1976), we now show that a simple pooling equilibrium

may exist in this market. From Lemma 1 and Lemma 2, the only possible equilibrium is a

pooling equilibrium that does not induce litigation.

Theorem 2. If an equilibrium exists, it is a pooling equilibrium with litigation threshold p∗C,AI
s.t. F (p∗C,AI) = 1, sold at price zero (marginal cost). An equilibrium exists if and only if

max
p̂∗∈[ c

d
,p∗

C,AI)

(1− θ)c · (p∗C,AI − p̂∗)
p̂∗ · p∗C,AI

· max
p̄∈[ c

d
,p̂∗]

p̄[1− F (p̄)]−
∫ p∗

C,AI

p̂∗+

[
cA + cp

p̂∗

]
dF (p)

 ≤ 0.

Theorem 2 shows that in a perfectly competitive market for liability insurance, only a pooling

equilibrium can exist, and its existence depends on the distribution of types. Intuitively, the

condition in Theorem 2 says that a pooling equilibrium exists if the distribution of high-risk

types is large enough so that an alternative contract that induces litigation is unprofitable.

Consider a two-types distribution, with p ∈ {pL, pH} and Pr(p = pH) = λ. The candidate

for a pooling equilibrium is a contract that targets p̂∗ = pH , sold to all types at price zero,

because no type litigates. The only deviation to consider is contract p̂∗ = p̄ = pL. Applying

the condition in Theorem 2, this deviation is not profitable if

λ ≥ λPoolAI ≡
(1− θ)c(pH − pL)pL
pH(cApL + cpH) .

In other words, when the population has enough pH types, a free contract targeting them

is an equilibrium. The pL types also buy this contract, but there is no way to cream skim,

because any better contract offered to pL also attracts too many pH types who litigate.

As in the Rothschild and Stiglitz (1976) setting, the equilibrium exists only when the mass of

high-risk types is large enough. Under alternative equilibrium concepts, we can also obtain

existence when the mass of high-risk types is low.19 Finally, note that equilibrium is possible

here with a continuum of types, in contrast to first-party insurance, e.g., Riley (1979).20

19In Section B.4 in the Online Appendix, we discuss alternative equilibrium concepts and show that there
is an equilibrium under the Wilson anticipatory equilibrium concept (Wilson, 1977).

20We provide more details about this point in Section 3.3 (Proposition 5).
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3.3 Contracting under Symmetric Information

Consider the problem of selling insurance when the insurer and the agent are both uninformed

about p but they know its distribution F .21 In this instance, because every agent is ex-

ante identical and there are no externalities among them, there is a single insurance policy

offer, which maximizes A and I’s joint surplus. By Proposition 3 we restrict attention to

undominated contracts. The expected willingness to pay for an undominated contract p̂∗

is Ep[W (p, p̂∗)]. A monopolist prices this policy at PM = Ep[W (p, p̂∗)] and extracts all the

ex-ante value from the uninformed agents. Hence, the profit maximizing contract for the

monopolist targets a type p∗M,SI that solves:

max
c
d
≤p̂∗≤∞

ΨSI(p̂∗) ≡ Ep[W (p, p̂∗)−K(p, p̂∗)]. (10)

In a perfectly competitive market there is free entry, so any active insurer must break even

in equilibrium. If insurance contract p̂∗ is offered in equilibrium its price must be PC(p̂∗) =

Ep[K(p, p̂∗)]. Agents buy this contract as long as Ep[W (p, p̂∗)] ≥ PC(p̂∗). Thus, the contract

that is offered in equilibrium targets the same type p∗C,SI = p∗M,SI = p∗SI , that solves (10). A

perfectly competitive market and a monopolist offer the same contract at different prices.

Proposition 4. Let both the agent and the insurer know F (·) but be uninformed about p.

Then, the liability insurance policy offered by a monopolist or a perfectly competitive market

has litigation threshold p∗M,SI = p∗C,SI = p∗SI , characterized by the solution to:22

maxp̂∈[ c
d
,∞] ΨSI(p̂∗) ≡ (1− θ)

p̂∗∫
c/d

[
cA + cp

p̂∗

]
dF (p)− θ(c+ cA)[1− F (p̂∗)]. (11)

The price of the contract under perfect competition is PC(p∗C,SI) = Ep[K(p, p∗SI)] and under

monopoly is PM(p∗M,SI) = Ep[W (p, p∗SI)].

Proof. Plug Equation 8 and Equation 9 into Equation 10 take the expectation over p.
21For instance, in the context of defensive patent insurance, a firm and an insurer know that the firm

potentially infringes on some patents, but they do not know the scope of the threat, as in facing many
potential lawsuits from patent “trolls” or when encountering a patent “thicket.”

22ΨSI(·) is upper semi-continuous and decreasing for p̂∗ > 1, so a solution must lie in the compact interval[
c
d , 1
]
. This guarantees the existence of a solution.
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Equation 11 in Proposition 4 shows that the optimal contract balances out two forces: prof-

iting from types that settle versus incurring losses for types that litigate. Under contract p̂∗,

type p̂∗ receives perfect insurance, type p < p̂∗ is under-insured and settles, and type p > p̂∗

litigates. Types that litigate create a loss for the insurance, because the marginal cost of

insurance is positive for them, and exceeds willingness to pay by θ(c+ cA), which is what the

agent would have captured in a settlement negotiation without insurance. Figure 5a illus-

trates this tradeoff: Area A is the gain in joint surplus from types that settle and corresponds

to the term (1 − θ)
p̂∗∫
c/d

[
cA + cp

p̂∗

]
dF (p) in equation (11); Area B is the loss in joint surplus

from types that litigate and corresponds to the term −θ(c+ cA)[1− F (p̂∗)] in equation (11).

W (p, p̂∗)

K(p, p̂∗)

(1− θ)(c+ cA)

c+ cA

$

c
d p̂∗

p

A

B

(a) Contract p̂∗’s expected joint-surplus gain (solid
Area A) and joint-surplus loss (dashed Area B).

K(p, p̂∗)

W (p, p̂∗)

W (p, 1)(1− θ)(c+ cA)

c+ cA

$

c
d p̂∗ 1

p

Gain

Loss

(b) Contract p̂∗’s expected joint-surplus gain and loss
relative to a contract with p̂∗ = 1.

Figure 5: Trade offs when choosing different insurance contracts.

Figure 5b shows the gains and losses of a contract that targets some p̂∗ < 1, relative to one

that targets p̂∗ = 1. The main changes are that the willingness to pay function W (p, p̂∗) is

higher (and includes a kink) when p̂∗ < 1 is targeted, and types p > p̂∗ now litigate instead of

settling. The gain from this alternative contract comes from making insurance more generous

for types that settle in either case—i.e., every type below p̂∗ is willing to pay more for this

contract and generates no costs for the insurer. The losses from this alternative contract

come from two sources. First, the cost of providing insurance is larger than the willingness

to pay for types above p̂∗, thus the insurer incurs a net loss for types above p̂∗. Second, there

is an opportunity cost of offering p̂∗ < 1 instead of p̂∗ = 1. With p̂∗ = 1 all types settle

and the insurer does not incur costs. The balance, of course, depends on the distribution of

types. It is immediate from the figure that if the density of types in a neighborhood of p = 1

is small enough, then the gain is larger than the loss, and hence we would have an interior

solution, p∗SI < 1.
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In Online Appendix B.5 we provide sufficient conditions for uniqueness of the solution to

Equation 11 and provide conditions to characterize when the equilibrium threshold p∗SI is

strictly less than one or equal to one. We find that p∗SI = 1 for distributions that allocate

high probability mass to the highest-risk types (see, e.g., Figure 6a) and for any convex

F (p). In contrast, p∗SI < 1 obtains for distributions that allocate low probability mass to the

highest-risk types (see, e.g., Figure 6b).

p
1

f(p) = βpβ−1

β = 0.65

β = 1

β = 3

β = 2

(a) Family F (p) = pβ .

p
1

f(p) = β(1− p)β−1

β = 4

β = 1

β = 2

(b) Family F (p) = 1− (1− p)β .

Figure 6: The optimal contract targets the “densest” part of the distribution. When F (p) = pβ,
the optimal contract is p∗SI = 1. When F (p) = 1− (1− p)β, the optimal contract is p∗SI < 1.

Consider a two-types distribution, with p ∈ {pL, pH} and Pr(p = pH) = λ. From Proposi-

tion 4, the optimal contract is either p∗SI = pL or p∗SI = pH . When λ > (1−θ)c(pH−pL)
pH(c+cA)+(1−θ)c(pH−pL) ,

i.e., when the proportion of high-risk types is relatively large, the optimal contract is p∗SI =

pH . Otherwise, the optimal contract is p∗SI = pL. That is, the insurer targets the densest

part of the distribution with perfect insurance.

The following result shows that whenever the highest-risk type receives perfect insurance

under symmetric information, there exists a pooling equilibrium in a competitive market

under adverse selection.

Proposition 5. If the optimal contract with symmetric information has F (p∗SI) = 1, then a

pooling equilibrium with F (p∗C,AI) = 1 exists in the competitive market with adverse selection.

The intuition for Proposition 5 can be seen in Figure 5b. The joint gains from a contract

that targets p̂∗ < 1 relative to one that targets p̂∗ = 1 are higher for a monopoly under

symmetric information than for a deviating insurer in a competitive market. This is because
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the monopolist offers only one contract, so the agent’s outside option is to not buy liability

insurance. In contrast, when a contract with p̂∗ = 1 is offered in a competitive market, any

deviation must take into account that only types that prefer the deviating contract ˆ̂p∗ over

p̂∗ = 1 will buy it. Therefore, the gain from deviating from p̂∗ = 1 in a competitive market

is weakly lower than in the case of monopoly. However, the losses are the same and equal to

θ(cA + c)[1− F (ˆ̂p∗)]. Hence, whenever p∗SI = 1 is optimal for a monopolist under symmetric

information, no insurer would find it profitable to deviate from a candidate competitive

equilibrium contract with p∗C,AI = 1. This result implies, for example, that equilibrium under

adverse selection holds for the family of densities in Figure 6a, as well as any convex F (p).

3.4 Comparison Across Market and Information Structures

In all environments we have considered, the prospect of litigation shapes equilibrium contract-

ing. However, its effects differ across market and information structures. Under complete

information, insurance is set to guarantee settlement and hold the third party to its litigation

payoff. In essence, the agent’s threat to litigate is maximized, so the third party gets none of

the bargaining surplus. Under imperfect information, by contrast, insurance is not perfectly

tailored to each agent, and litigation may occur. Generally, litigation is more frequent when

information is symmetric.

Proposition 6. In a perfectly competitive market, any equilibrium with symmetric informa-

tion induces weakly more litigation than any equilibrium with asymmetric information. Under

Assumption 1, the monopoly contract with symmetric information induces weakly more liti-

gation than the contract under asymmetric information, i.e., p∗M,SI ≤ p∗M,AI .23

The result for a perfectly competitive market is simple to understand: Theorem 2 shows that

every type settles in an equilibrium under adverse (when it exists); whereas Proposition 4

shows that with symmetric information, the some types may litigate. For the case of a

single seller, consider the monopolist’s trade-off when choosing p∗M,AI in Theorem 1. Figure 7

compares the choice of p∗M,AI = p̂∗ < 1 versus p∗M,AI = 1. Note that the gain is lower and

the losses are higher for a monopolist facing adverse selection, relative to the symmetric
23This inequality is in the strong set order when the solutions fail to be unique.
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information case (Figure 5b). The gain from deviating to p̂∗ < 1 is lower under adverse

selection because only types above p̄ receive damages insurance, and also for all p > p̄ we

have that W (p, p∗M,AI) − W (p, 1) > W (p̄, p∗M,AI) − W (p̄, 1). The losses from deviating are

higher because of the information rents given to types that litigate.

(1− θ)(c+ cA)

(1− θ)
[
cA + c p̄p̂

]
(1− θ) [cA + cp̄]

c
d p̂∗p̄

Gain

Loss

Figure 7: Gain (solid area in blue) and losses (dashed area in red) from offering contract p̂∗ < 1
instead of contract p̂∗ = 1.

From Proposition 6, the ranking of the equilibrium level of litigation across different in-

formational environments is the same under perfect competition and monopoly. Figure 8

summarizes the results and shows the amount of litigation in equilibrium increases as the

insurer and the agent become less informed.

A and I informed A Informed (Adverse Selection) A and I uninformed More litigation

Figure 8: Equilibrium amount of litigation depending on the information structure.

4 Risk Aversion

Risk aversion increases the agent’s value for risk protection in the case of litigation. In-

tuitively, the insurer could offer higher damages coverage, which is valuable for risk-averse

agents, but in doing so the agent would be more prone to litigate. Under risk neutrality, it is

possible to balance the trade-off between improving the agent’s bargaining position and in-

ducing litigation, by choosing an appropriate level of damages coverage. Under risk aversion,

however, the insurer may need multiple levers to balance these effects out.
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Generally, the case of risk aversion is more technically challenging. First, the agent’s wealth

may determine the agent’s level of risk aversion, which affects bargaining. Second, there is no

separability between the agent’s cost of insurance and the settlement payoff, in general. So

even in the absence of wealth effects, the price of insurance may alter the bargaining outcome.

Third, the equilibrium settlement fee T , as well as the willingness to pay for insurance, do

not generally have closed-form solutions. As a result, the model under risk aversion is not

analytically tractable.

We can gain some insights for the case of mean-variance preferences. An agent with these

preferences evaluates lottery X according to U(X) = E(X) − σVar(X)
2 . Under insurance

policy α = (αS, αL, αD), the certainty equivalent under litigation is

CE(p, α) = w − (cA − αL)− p(d− αD)− σp(1− p)(d− αD)2

2 .

The only difference with the risk neutral case is the last term, RP (p, αD) ≡ σp(1−p)(d−αD)2

2 .

This term corresponds to the agent’s risk-premium, which increases both the bargaining sur-

plus and the litigation threshold-type p∗(α). The agent’s willingness to pay for insurance is

non-linear in both p and αD, rather than piecewise linear (Proposition 1). Under complete

information, however, we show that Proposition 2 still holds—any contract α that maximizes

leverage, by setting p∗(α) = p, is optimal. Under incomplete information, however, contract-

ing becomes more complicated. Proposition 3’s conclusion that α∗(p) ≡
(
0, cA, cp

)
dominates

any contract α′ such that p∗(α′) = p no longer holds. The reason is that for fixed litigation

threshold p∗, a lower αD increases A and I’s joint surplus (i.e., W −K) when p < p∗ but αD
decreases it when p > p∗. Thus, the multidimensionality of the allocation cannot be reduced.

This adds technical challenges to the analysis of competition under adverse selection and to

the case of symmetric information.

In Online Appendix Section B.1 we show that the leverage effect remains of primary impor-

tance with small risk aversion (σ ≤ 1
d
). The agent’s willingness to pay remains monotone in

p and supermodular in p and αD. Any candidate equilibrium that permits cream-skimming

under risk neutrality also permits cream skimming for risk aversion. Thus, the results un-

der perfect competition with adverse selection hold, and the only possible equilibrium pools

agents on a no-litigation contract. Under monopoly, the non-linearity of the agent’s utility
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function enables the monopolist to sell a more complex incentive-compatible menu of con-

tracts. This also makes the problem analytically intractable. Numerical simulations indicate

that, similar to the risk neutral case, low-risk agents buy no damages insurance and high-risk

agents pool on a common level of damages coverage. In contrast, though, risk aversion yields

a small range of medium-risk types that purchase damages insurance whose level is monoton-

ically increasing in p. The case of symmetric uncertainty is also not analytically tractable,

but simulations show that for low levels of risk aversion the optimal contract is qualitatively

similar to the case of risk neutrality. For larger level of risk aversion, however, the optimal

contract under symmetric information features settlement coverage. This shows that in gen-

eral the leverage effect and risk aversion interact, but for lower levels of risk aversion the

leverage effect is the dominant force.

5 Conclusion

Third-party liability insurance provides leverage in negotiating a settlement, which creates

a distinct source of insurance value that is not present in first-party insurance. This paper

is the first to consider this aspect of insurance under adverse selection. We provide a frame-

work in which third-party equilibrium insurance contracts are quite different from first-party

insurance contracts, both under monopoly and perfect competition. First, with a monopolist

insurer, the optimal contract is qualitatively different from first party insurance studied by

Stiglitz (1977) and Chade and Schlee (2012): it may distort types “at the top” (high-risk

types) who pursue inefficient litigation, while low-risk types are under-insured. Second, in

a perfectly competitive market for third-party insurance only a pooling equilibrium can ex-

ist, in contrast to Rothschild and Stiglitz (1976) where only a separating equilibrium can

exist. Separating equilibria do not exist in our setting because in such an equilibrium at

least one contract would attract both types that settle and types that litigate. Types that

settle impose no cost to the insurer and can be “cream skimmed” by offering an alternative

contract. A pooling equilibrium, when it exists, delivers imperfect insurance to all but the

highest type. The results under monopoly and competition are driven by a discontinuity in

the insurer’s cost function, which is induced by the agent’s choice to settle or to litigate.
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Intuitively, an optimal contract must balance the leverage effect (i.e., improving the agent’s

bargaining position) and the litigation incentive (i.e., an insured agent is less afraid of liti-

gation). Balancing this trade-off is subtle when the agent holds private information at the

time of contracting. Our results suggests that in industries where the leverage effect is a pri-

mary motive for buying insurance (e.g., in the patent litigation industry) the insurer should

not cover settlements and should use a “litigation cost/damages policy” only. In practice,

some companies already offer such insurance, so our results provide an economic rationale

for when/why using these policies is optimal. Our model also predicts that coverage for

litigation costs is complete, coverage for damages coverage is incomplete and payments for

settlement are entirely uncovered. Consistent with this, some existing damages policies in-

clude deductibles or “self-insurance retention” clauses, whereby insurance kicks in above a

certain level. It would be interesting to study empirically, in policies where insurance covers

settlements, how frequently settlement payments occur in excess of deductibles.

In addition to highlighting the negotiating leverage created by liability insurance, we show

a potential negative welfare effect of liability insurance: an insured agent could litigate.

We show that in both competition and monopoly, equilibria with symmetrically uninformed

parties feature more generous coverage and induce more litigation, compared to equilibria

where the agent is privately informed about the probability of liability.

Finally, we view our analysis of leverage effects as an important step towards a broader

characterization of liability insurance. Our core model abstracts from multiple forces (e.g.,

risk aversion, bargaining under incomplete information, and alternative control structures)

whose influence may vary, in important ways, across types of insurance markets, and elements

of liability insurance contracts (e.g. who controls the lawsuit) differ across types of coverage.

In our Online Appendix we lay some ground work for studying these forces. We hope our

initial insights will stimulate future research.
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A Appendix: Proofs

Proof of Proposition 1

Proof. For any contract α ∈ A we first characterize the endogenous settlement fee T . The

difficulty is that T depends on the bargaining surplus SB, which itself depends on T through

the min{αS, T} term. To organize the exposition of the proof, we have the following result.

Lemma 3. Let SNBB = αS + c+ cA − αL − pαD and TNB = pd− c+ (1− θ)SNBB .

1. If SNBB < 0, then A and TP go to litigation.
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2. If SNBB ≥ 0, then A and TP settle and TP receives a transfer T given by

T =


αS , if TNB ≤ αS,

TNB , if TNB ≥ αS.

Proof. We consider two cases. First, suppose αS ≤ pd − c. TP ’s outside option is pd − c,

so the Nash bargaining transfer must satisfy T ≥ pd − c for any θ. Hence T ≥ αS and

SB = SNBB . In this case, the Nash bargaining transfer is T = TNB.

Second, suppose αS > pd − c. In this case, any transfer T ∈ [pd − c, αS] gives A a payoff

of 0 and TP a payoff of uTP = T . Thus, settlement agreements with T < αS are Pareto

dominated by T = αS, so the Nash bargaining solution must have T ≥ αS. We can now

maximize the Nash bargaining product subject to this additional constraint. When θ is

sufficiently large, we get a corner solution. In particular, there exists θ̄ that solves

pd− c+ (1− θ)[αS + c+ cA − αL − pαD] = αS,

and for any θ > θ̄ we have T = αS, while for θ < θ̄ we have T = TNB. Finally, note that we

can re-write

θ̄ = pd− c− αS + SB
SB

= p(d− αD) + cA − αL
αS + c+ cA − αL − pαD

.

To explain the result in Lemma 3, consider the frontier of A and TP’s bargaining set, for any

α, illustrated in Figure 9. When αS ≤ pd−c, shown in Figure 9(a), the settlement transfer is

larger than TP’s outside so T ≥ pd− c ≥ αS. The solution is the standard Nash bargaining

solution, so SB = SNBB , T = TNB and the agent’s payoff is −T + αS ≤ 0.

When αS > pd − c, shown in Figure 9(b), the agent’s payoff is constant and equal to zero

whenever T ≤ αS, which corresponds to the horizontal segment in Figure 9(b). Any set-

tlement agreement with T < αS is Pareto dominated by one where T = αS, so any Pareto

efficient solution has T ≥ αS. When TNB ≤ αS, the Nash bargaining solution is exactly at

the kink, (αS, 0). Otherwise, the Nash bargaining solution is on the interior of the downward

sloping region of the frontier, and T = TNB.
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uTP

uA

u0
TP + SB

u0
A − (pd− c) + αS

0

(u0
TP , u

0
A)

(a) αS ≤ pd− c.

uTP

uA

u0
TP + SBαS

0

(u0
TP , u

0
A)

(b) αS > pd− c.

Figure 9: Frontier of the bargaining set for different values of αS , where the disagreement payoffs
are at the origin, with u0

TP = pd− c and u0
A = VL(p, α).

Lemma 3 implies that litigation occurs for agents of type p larger than

p∗ ≡ αS + c+ cA − αL
αD

, (12)

and when p ≤ p∗ there is settlement and the agent’s settlement payoff is:

VS(p, α) = −max{0, TNB − αS} = min{0, αS − TNB} (13)

The agent’s net payoff from settling is negative when T > αS, which occurs when the Nash

bargaining solution is on the downward-sloping part of the frontier. Otherwise, when the

Nash bargaining solution is at the kink, insurance fully covers the settlement fee and the

agent’s payoff is 0. Equation (13) defines a threshold type p∗∗ such that for any type p ≤ p∗∗

the agent’s settlement payoff is zero, where

p∗∗ ≡ θ(αS + c)− (1− θ)(cA − αL)
d− αD(1− θ) . (14)

Consider an insurance policy α = (αS, αL, αD) ∈ A that generates thresholds p∗ and p∗∗ as

defined in equations (12) and (14). The payoff of settlement for an agent of type p covered

by insurance policy α is VS(p, α) = 0 when p ∈ [ c
d
, p∗∗] and VS(p, α) = θ[αs − (pd − c)] −

(1 − θ)[p(d − αD) + (cA − αL)] p ∈ (max{ c
d
, p∗∗}, p∗]; whereas the payoff of litigation is

VL(p, α) = −cA − pd + αL + pαD. Without insurance (α = 0) the agent settles and gets a

payoff of VS(p, 0) ≡ −pd − cA + θ(c + cA). The willingness to pay for insurance is then the

difference in the agent’s payoff with and without insurance, which is given by Equation (2).

It’s easy to see that the expected cost of the insurer is given by Equation (3).

32



Lemma 4

Lemma 4. For any IC mechanism, {p : p = p∗(α(p))} has measure zero.

Proof. We proceed in two steps: (i) we show that IC implies that within a particular region

of nearby types, at most a finite set of types can receive perfect insurance; (ii) we show that

the type space consists of finitely many such regions. As a consequence, only finitely many

types can receive perfect insurance in any IC mechanism.

Consider an IC mechanism and suppose two types p1 and p2 receive contracts α1 ≡ α(p1)

and α2 ≡ α(p2) such that p1 = p∗(α1) and p2 = p∗(α2), i.e. p1 and p2 both receive perfect

insurance. WLOG, suppose p1 < p2.

Step 1: Suppose p1 ≥ p∗∗(α2). IC requires:24

W (p1, α
1)− T (p1) ≥ W (p1, α

2)− T (p2),

W (p2, α
2)− T (p2) ≥ W (p2, α

1)− T (p1).

Adding up these conditions we have W (p2, α
2)−W (p1, α

2) ≥ W (p2, α
1)−W (p1, α

1). Given

that p2 > p1, if type p2 reports p1 and receives the contract α1 with litigation threshold p1,

then it would litigate. Using Equation 2, we have: W (p2, α
1)−W (p1, α

1) = α1
D(p2− p1). On

the other hand, if type p1 reports p2 and receives the contract α2 with litigation threshold

p2, then it would settle. Since p1 ≥ p∗∗(α2), this would yield partial settlement coverage for

p1. Using Equation 2, we therefore have W (p2, α2)−W (p1, α2) = α2
D(p2 − p1)(1− θ). With

these expressions above, we can write α2
D(1 − θ) ≥ α1

D. Therefore, IC implies that if both

p1 and p2 get perfect insurance, the higher type must get higher damages coverage in an IC

mechanism. Now suppose, for the sake of a contradiction, that there is an infinite set of types

p1 < p2 < ...pn < ..., with pi ≥ p∗∗(pi+1) for all i. Then the above argument implies that

αn−1
D (1− θ)n ≥ α1

D, for all n ≥ 2. Given that θ > 0, we have (1− θ)n → 0, so there exists

k ≥ 2 large enough such that αkD > d. This contradicts the assumption αD ≤ d. Therefore

IC implies that for any type p who receives perfect insurance, i.e. p = p∗(α(p)), there are at

most finitely many types above p∗∗(α(p)) who also receive perfect insurance.
24To simplify notation, we index contracts by the litigation thresholds that they generate, i.e. p1 and p2.
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Step 2: Now suppose, for the sake of a contradiction, that there are infinitely many regions

of the type space within which at least one type gets perfect insurance. That is, there are

infinitely many types p1 < p2 < ... < pn < ..., with pi < p∗∗(α(pi+1)), such that pi = p∗(α(pi)).

Consider the region [p∗∗(α(p)), p∗(α(p))] for any type p. Using the definitions of p∗∗ and p∗,

p∗(α(p))− p∗∗(α(p)) = (αS + c)(d− αD) + d(cA − αL)
αD(d− αD(1− θ)) .

If d− αD ≥ mD > 0 or cA − αL ≥ mL > 0 for infinitely many types, then pi+1 − pi > M for

an infinite number of types, for some uniform bound M > 0. Therefore we have infinitely

many disjoint intervals [pi, pi+1] in [0, 1] with length of at least M , which is a contradiction.

Hence we have at most finitely many regions of the form [p∗∗(α(p)), p∗(α(p))] where type p

gets perfect insurance, and within each region there are at most finitely many types who

receive perfect insurance, from step 1. Thus the set of types at the kink, {p : p = p∗(α(p))},

who receive perfect insurance, has measure zero.

Lemma 5

Lemma 5. Incentive compatibility requires αD(p) to be non-decreasing.

Proof. For any p, p̃ incentive compatibility requires:

W (p, α(p))− T (p) ≥ W (p, α(p̃))− T (p̃).

Let ∆(p, p̃) = W (p, α(p))− T (p)− [W (p, α(p̃))− T (p̃)]. We have

∆(p, p̃) =
∫ p

p̃

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̃))

∂p

]
ds

Therefore, ∆(p, p̃) ≥ 0⇔
∫ p

p̃

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̃))

∂p

]
ds ≥ 0. A more compact form of

the same IC condition is

∫ p

p̃

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̃))

∂p

]
ds ≥ 0⇔

∫ p

p̃

[∫ s

p̃

d

dt

[
∂W (s, α(t))

∂p

]
t=u

du

]
ds ≥ 0.
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The term inside the integral must be weakly positive, because the inequality must hold for any

p, p′. When α(t) = (αS(t), αL(t), αD(t)), we have d

dt

[
∂W (s, α(t))

∂p

]
=
∑
i

∂W (s, α(t))
∂p∂αi

dαi(t)
dt

.

Therefore IC implies

N∑
i=1

∂W (s, α(t))
∂p∂αi

dαi(t)
dt

= ∂W (s, α(t))
∂p∂αS

dαS(t)
dt

+∂W (s, α(t))
∂p∂αL

dαL(t)
dt

+∂W (s, α(t))
∂p∂αD

dαD(t)
dt

≥ 0,

∀s, t. By Equation 2, we have ∂W (s,α(t))
∂p∂αS

= 0 and ∂W (s,α(t))
∂p∂αL

= 0, so the condition above

simplifies to ∂W (s,α(t))
∂p∂αD

dαD(t)
dt
≥ 0, ∀s, t. Since ∂W (s,α(t))

∂p∂αD
≥ 0, this implies αD(p) is increasing.

Proof of Theorem 1

Proof. The insurer’s objective can be written as max
α

∫
G(p, α)dF (p), subject to αS ≥ 0, αL ∈

[0, cA] and αD ∈ [0, d], and where

G(p, α) = W (p, α)−K(p, α)− ∂W (p, α)
∂p

(
1− F (p)
f(p)

)
,

and h(p) ≡ 1−F (p)
f(p) is the inverse hazard rate.

Rather than solving this problem directly, we fix p ∈ [c/d, 1] and we look for a contract that

maximizes G(p, α) pointwise. Any such α must be such that p ∈ (p∗∗(α), p∗(α)], because

G(p, α) is increasing in p for p ≤ p∗(α) and negative above p∗(α). Then we have

θαS − (pd− c) < (1− θ)[c+ cA − αL − pαD], (15)

pαD ≤ αS + c+ cA − αL. (16)

So the point-wise maximization reduces to maximizing G(p, α) subject to (15) and (16). We

solve this problem in two steps.

Step 1: Define p̄ as the solution to p = h(p), which exists under Assumption 1.

When p ≤ p̄, the insurer wants to set αD(p) = 0, αL as large as possible, and αS as small as

possible, in the region where (15) and (16) hold. It is easy so see that contract α(p) = (0, cA, 0)
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satisfies all of these objectives. Thus, this is the optimal menu in the region p ≤ p̄.

Step 2: When p > p̄, we solve the following linear optimization problem

max
αS ,αL,αD

αL − αS + (p− h(p))αD,

subject to the linear constraints (15) and (16). In general, the solution to this problem is

contract α = (0, cA, c/p), where (16) binds and (15) does not bind.

The problem with this unconstrained solution is that αD(p) = c
p
violates the monotonicity

constraint from Lemma 5. Thus we need to use ironing to obtain the constrained solution.

In our environment this is simple: the unconstrained solution is one where αD is 0 up to p̄

and strictly decreasing above p̄. The ironed solution requires αD(p) to be constant for p > p̄.

For any αD, it follows that type p̂∗ = c
αD

is indifferent between settling and litigating. We

can then substitute in αS = 0, αL = cA and αD = c
p̂∗ into the objective function, and find the

optimal threshold type, p∗M,AI , that solves the problem in the statement of the theorem.

Proof of Proposition 3

Proof. Fix ρ ∈
[
c
d
,∞

]
. First, consider a contract α = (αS, αL, αD) such that p∗(α) = ρ

and p∗∗(α) > c
d
. Then, we must have αS > 0, because p∗∗ > c

d
if an only if θdαS >

(1−θ)[(d−αD)c+(cA−αL)d]. It is possible to find an alternative contract α′ = (α′S, α′L, α′D),

with α′S = 0 and α′D ≤ αD, such that p∗(α′) = ρ and p∗∗(α′) < c
d
. From Equation (4) it

is easy to see that: (a) W (p, α) − K(p, α) < W (p, α′) − K(p, α′) for p ∈
[
c
d
, p∗∗(α)

]
; (b)

W (p, α) − K(p, α) ≤ W (p, α′) − K(p, α′) for p ∈ [p∗∗(α), ρ]; and (c) W (p, α) − K(p, α) =

W (p, α′)−K(p, α′) for p ∈ [ρ, 1]. Then α′ � α.

Next, consider a contract with αD > 0, p∗(α) = ρ and p∗∗(α) ≤ c
d
, so the first region in

Equation 4 disappears and αS influences W −K only through p∗(α). When θ < 1 and p 6= ρ,

αD multiplies the negative term when p < p∗, so it is weakly dominant to set αD as small as

possible. This can be accomplished by finding a contract α that minimizes αD = αS+c+cA−αL

ρ

subject to p∗∗(α) ≤ c
d
⇔ αS ≤ θ(c+cA−αL)

θc+(1−θ)ρ

(
ρ− c

d

)
. The solution to this problem is to set

α∗S = cA − α∗L = 0, and α∗D = c
ρ
.
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Next, consider a contract with αD = 0 (or the case where θ = 1). Then, it is clear that a

contract with αS > 0 is dominated by one with αS = 0.

Finally, suppose that α′ � α for all α ∈ A with p∗(α) = p̄. We must have p∗∗(α′) < c
d
.

Because α′ � α∗ and α∗ � α′, we must have α′D = α∗D. But given that α∗S = 0 and α∗L = cA,

we have α∗Dp∗ = c. This implies that c = α′S + c+ cA − α′L, implying α′S = cA − α′L = 0.

Proof of Lemma 1

Proof. Consider a distribution of types F ∼ [0, 1], and an insurance contract α with associ-

ated litigation threshold p∗(α). Suppose for a contradiction that p∗ is offered in equilibrium

at price P and F (p∗) < 1. Since F (p∗) < 1, then there is a positive mass of types that

litigate, for which the insurer incur losses. To break even in equilibrium, it must be that

price P > 0. Consider an alternative contract p̂∗ = p∗ + ε sold at price P̂ < P , with

ε sufficiently small. This new contract offers a lower damages coverage, is cheaper, and

preferred by types p < p̂∗ over contract p∗ and not preferred for types p > p̂∗ as long as

W (p, p∗)−P < W (p, p̂∗)−P̂ , for all p < p̂∗ andW (p, p∗)−P > W (p, p̂∗)−P̂ , for all p > p̂∗.

These conditions are satisfied for P̂ = P +W (p̂∗, p̂∗)−W (p̂∗, p∗) = P − c
p∗ ε, which is positive

for ε small enough. Thus, contract p̂∗ only attracts types that settle and it is sold at a

positive price. Hence, there is a profitable deviation, which is a contradiction.

Proof of Lemma 2

Proof. For a contradiction letM be the set of contracts offered in equilibrium. In a separating

equilibrium, at least two of these contracts must attract a different set of types. Let p∗1 and

p∗2 with p∗1 < p∗2, sold at prices P1 and P2, respectively, be such a pair of contracts. Let

Di ⊆ [0, 1] the set of types that prefer contract p∗i ,

Di =
{
p ∈

[
c

d
, 1
]

: W (p, p∗i )− Pi ≥ W (p, p∗j)− Pj, for all p∗j ∈M
}
.

Let Di(S) = Di ∩ [0, p∗i ] and Di(L) = Di ∩ (p∗i , 1] be the set of types that buy contract p∗i
and that settle and litigate, respectively. If the measure of the set Di(L) is zero, then Pi = 0,
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since the insurer would not bear any costs by offering p∗i . But it cannot be that D1(L) and

D2(L) have both measure zero, since they would be sold at price zero types would pool at

p∗1 (see Figure 4). This rules out separating equilibrium with any pair of contracts such that

litigation is precluded under both, because such a pair would need to be priced at zero in

equilibrium and types would pool at the lowest p∗i . So, in any separating equilibrium we must

have a positive measure of Di(L) > 0 for some i ∈ {1, 2}. Without loss of generality, suppose

that µF (D1(L)) > 0. Notice that if µF (D1(S)) = 0, insurers incur in losses by selling this

contract. Thus, contract p∗1 must attract types that settle an must sell at a positive price

P1 > 0. We can construct a new contract p̂∗ = p∗1 + ε sold at price P̂ > 0 that is a profitable

deviation from p∗1. This implies that p∗1 cannot be offered in equilibrium, because then p∗1

would attract only types that litigate and lose money. This is a contradiction.

Proof of Theorem 2

Proof. By Proposition 1, there is no pooling equilibrium at p∗C,AI such that F (p∗C,AI) < 1.

Hence, the only candidate is p∗C,AI such that F (p∗C,AI) = 1.

To show existence of equilibrium, we first consider possible deviations whereby an insurer

offers a menu of contracts M that competes against the contract with p∗C,AI . First, notice

that M cannot contain any contracts that target types above p∗C,AI , as these would be dom-

inated by the p∗C,AI contract. Moreover, any contract in M that targets a type p̂∗ must

have W (p, p̂∗) > W (p, p∗C,AI). Furthermore, W (p, p̂∗)−W (p, p∗C,AI) is continuous, increasing,

piecewise linear, with a kink at p = p̂∗, and is supermodular, i.e. W (p, p̂∗)−W (p, p∗C,AI) has

the same features as W (p, p∗) from Equation 8 and Figure 4; specifically:

W (p, p̂∗)−W (p, p∗C,AI) =


(1− θ)

[
cp
pCAI − p̂∗

p∗C,AI p̂
∗

]
if p ≤ p̂∗

c
p

p̂∗
− θc− (1− θ)c p

p∗C,AI
if p > p̂∗

From the proof of Theorem 1, given this willingness-to-pay function, the optimal menu M

consists of at most 2 contracts. Here we have that W (0, p̂∗)−W (0, 1) = 0, which means that

the optimal deviation menu M in fact consists of a single contract, which targets some type

p̂∗. I.e. the optimal deviation menu given a candidate contract W (p, pCAI) is simpler than
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the optimal menu in the absence of such a candidate, because it excludes types below some

cutoff, and only features a single contract targeted at p̂∗. Therefore we can restrict attention

to deviations M consisting of a single contract.

Now consider a single deviation contract with p̂∗, sold at price P̂ . It is a profitable deviation

if it attracts enough low-risk types that settle, to compensate the losses from high-risk types

above p̂∗ that litigate. Let p̄ be the (unique by single crossing) type that is indifferent between

p̂∗ at price P̂ and p∗C,AI for free. Then,

W (p̄, p∗C,AI) = W (p̄, p̂∗)− P̂ ⇒ P̂ = p̄

[
(1− θ)c · (p∗C,AI − p̂∗)

p̂∗p∗C,AI

]
.

Next, we only consider contracts such that p̂∗ > p̄. In any other case, the insurer loses money

by offering the deviation. Then, the profit of contract p̂∗ at price P̂ is given by

P̂ [1− F (p̄)]−
∫ 1

p̂∗
K(p, p̂∗)dF (p) = P̂ [1− F (p̄)]−

∫ 1

p̂∗

[
cA + cp

p̂∗

]
dF (p)

We can choose the best cutoff point p̄ for a given p̂∗ and then choose the best deviation.

Hence, there is no profitable deviation when the condition in the Theorem holds.

Proof of Proposition 5

Proof. Without loss of generality, suppose that F (p∗) = 1 implies that p∗ = 1. If p∗ = 1 is

optimal under symmetric information, then for any p̃ ∈
(
c
d
, 1
)
, we have

∫ p̃

c
d

(1− θ)cp
(

1− p̃
p̃

)
dF (p)−

∫ 1

p̃
{cA + c [θ + (1− θ)p]} dF (p) < 0. (17)

To establish that a pooling equilibrium exists with p∗ = 1 under competition, we need to

show that there are no p̃ and p̄ such that alternative insurance p̃ sold for price P̃ (p̄) =

(1 − θ)cp̄
(

1−p̃
p̃

)
attracts all types p > p̄ and yields a profit. Hence, we must show that∫ 1

p̄ (1− θ)cp̄
(

1−p̃
p̃

)
dF (p)−

∫ 1
p̃

(
cA + cp

p̃

)
< 0 for all p̃ and p̄.
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Let p̄ maximize this expression conditional on p̃ and rewrite the expression as

∫ p̃

p̄
(1− θ)cp̄

(
1− p̃
p̃

)
dF (p)−

∫ 1

p̃

{
cA + c

[
p− (1− θ)p̄(1− p̃)

p̃

]}
dF (p) < 0. (18)

Because c
d
≤ p̄ ≤ p̃ < 1, we have

∫ p̃

p̄
(1 − θ)cp̄

(
1− p̃
p̃

)
dF (p) ≤

∫ p̃

c
d

(1 − θ)cp
(

1− p̃
p̃

)
dF (p)

for any p̄ and p̃. Thus, the first term in (18) is smaller than the first term in (17). It remains

to show that
∫ 1

p̃

{
cA + c

[
p− (1− θ)p̄(1− p̃)

p̃

]}
dF (p) ≥

∫ 1

p̃
{cA + c [θ + (1− θ)p]} dF (p).

This holds as long as p−(1−θ)p̄(1−p̃)
p̃

≥ (1 − θ)p + θ for all p > p̃ ≥ p̄. This inequality is

equivalent to p > (1 − θ)[p̂∗p + (1 − p̃)p̄] + θp̃. The RHS is a convex combination of points

strictly lower than p, so this inequality always hold. Hence, for any p̃, the LHS of (18) is lower

than the LHS of (17). Thus, whenever p∗ = 1 in the problem with symmetric information,

there is no profitable deviation from p∗ = 1 and a pooling equilibrium exists.

Proof of Proposition 6

Proof. Denote by p∗M,SI the optimal litigation threshold in Proposition 4 and let p∗M,AI the

optimal threshold in Theorem 1.25 Denote by p̄ the solution to p̄ = 1−F (p̄)
f(p̄) . Note that

p∗M,SI ∈ [ c
d
, 1] and under Assumption 1 p̄ ≤ p∗M,AI . Thus, whenever p∗M,SI ≤ p̄ we have

p∗M,SI ≤ p∗M,AI . Consider first the case p∗M,SI ≥ p̄. Then, p∗M,SI ∈ arg maxp̂∗∈[ c
d
,∞] ΨSI(p̂∗) =

arg maxp̂∗∈[p̄,∞] ΨSI(p̂∗). It is easy to see that the objective function in Theorem 1 can be

written as ΨAI(p̂∗) = ΨSI(p̂∗)−∆(p̂∗), where

∆(p̂∗) = (1− θ)c
p̂∗

∫ p̄

c/d
pf(p)dp+ (1− θ)c

p̂∗

∫ p̂∗

p̄
(1− F (p))dp+ c

p̂∗

∫ 1

p̂∗
(1− F (p))dp.

Consider the problem p∗(β) = arg maxp̂∗∈[p̄,∞] ΨSI(p̂∗)−β∆(p̂∗), so p∗(0) = p∗M,SI and p∗(1) =

p∗M,AI . By Topkis theorem, when ∆′(p̂∗) < 0 for all p̂∗ we have p∗(0) ≤ p∗(1). Note that

∆(p̂∗) = (1− θ)c
p̂∗

[∫ p̄

c/d
pf(p)dp+

∫ 1

p̄
(1− F (p))

]
+ θ

c

p̂∗

∫ 1

p̂∗
(1− F (p))dp.

25For simplicity, we can assume that the solution of each of these problems is unique. If not, our conclusion
holds under the notion of strong set order.
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Let A be the term in the bracket, which is independent of p̂∗. Taking the derivative we get

∆′(p̂∗) = − c
(p̂∗)2

[
(1− θ)A+ θ

∫ 1
p̂∗(1− F (p))dp

]
− θ c

p̂∗ (1− F (p̂∗)) < 0.
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B Online Appendix

B.1 Insurance for a Risk-Averse Agent

Risk aversion introduces novel elements that are absent in the baseline case. First, insur-

ance reduces the risk of going to litigation. Second, the agent’s wealth may determine the

agent’s level of risk aversion, which affects the equilibrium transfer under bargaining. In

addition, generally there is no separability between the cost of insurance for the agent and

the settlement payoff. So even in the absence of wealth effects (e.g., CARA utility), the price

of insurance may alter the bargaining core. Third, the settlement fee paid by the agent,

as well as the willingness to pay for insurance, do not generally have closed-form solutions.

As a result, in general, the main analysis the model under risk aversion is not analytically

tractable.

Consider a risk-averse agent with initial wealth w covered by an insurance policy α =

(αS, αL αD), bought at some price Q, and with preferences over lotteries represented by

an increasing and concave Bernouilli utility function u(·). If the third party and the agent

go to litigation, the expected payoff of the agent is

u(CE(p, α,Q)) ≡ pu(w − cA + αL − d+ αD −Q) + (1− p)u(w − cA + αL −Q), (19)

where CE(p, α,Q) denotes the certainty equivalent of the risky litigation outcome under

insurance policy α bought at price Q. Under risk neutrality, we showed that an uninformed

insurer fully cover litigation costs, i.e., αL = cA. However, under risk aversion this is not

necessarily true. The reason is that αL increases the payoff in both states of the world, which

reduces the value of a larger αD to decrease the variance of the lottery.26 Additionally, the

certainty equivalent of going to litigation is affected by the price of the insurance and the

level of wealth of the agent, whereas in the risk-neutral case the agent’s wealth and the price

of insurance do not affect the decision to litigate.

Under risk aversion parties are also better off by avoiding litigation: they save on litigation
26We have ∂2

∂αL∂αD
u(CE(p, α,Q)) < 0. Under risk-neutrality this cross-derivative is zero.
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cost, and the agent avoids the risky litigation outcome. This means that risk aversion provides

stronger settlement incentives to the parties. A feasible settlement agreement is a transfer

T from the agent to the third party such that 0 < pd − c ≤ T and u(CE(p, α,Q)) ≤

u(w −Q−max{T − αS, 0}) or, equivalently,

Tmin(p) ≡ pd− c ≤ T ≤ w −Q− CE(p, α,Q) + min{αS, T}.

If w − Q − CE(p, α,Q) < 0, the agent will not accept a settlement agreement and parties

litigate. If w − Q − CE(p, α,Q) ≥ 0, the agent accepts a settlement agreement as long as

T ≤ Tmax(p, α,Q) ≡ w − Q − CE(p, α,Q) + αS. Without insurance parties always settle

because u(CE(p, 0, 0)) ≤ u(w − T ) for any transfer T ≥ pd− c.27

When w − Q − CE(p, α,Q) ≥ 0 and Tmin(p) ≤ Tmax(p, α,Q) the agent and the third party

settle. In this case, the settlement fee is given by the solution to the maximization of the

Nash-product. As in the case of risk neutrality, efficiency of Nash Bargaining implies that

settlement transfer must be larger than αS, so we can write the problem as:

Tα(p,Q) ∈ arg max
T

(u(w −Q− T + αS)− u(CE(p, α,Q)))θ(T − (pd− c))1−θ

subject to max{αS, pd− c} ≤ T ≤ w −Q− CE(p, α,Q) + αS. (20)

Under risk neutrality, we showed that any contract such that Tmin(p) = Tmax(p, α,Q) is

optimal, and under imperfect information the insurer sets αL = cA and αS = 0. Under risk

aversion, however, this result may no longer hold given the non-linearity of Q+CE(p, α,Q),

as a function of Q (in the risk neutral case, Q+CE(p, α,Q) is independent of Q). The price

of insurance could increase by reducing the litigation cost coverage (αL < cA), reducing the

payment of the litigation lottery in each state of nature, which increases the value of damage

coverage (αD), which decreases risk. In addition, to increase incentives to settle, the insurer

may set a positive αS. Covering settlements has two effects. First, increasing αS increases

the settlement transfer, which lowers the agent’s willingness to pay. Second, increasing αS
may provide incentives to settle.

27To see this, note that u(CE(p, 0, 0)) ≤ u(w − τ), where τ = pd+ cA > pd− c.
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For the general class of risk-averse preferences, the outcome of bargaining may depend upon

wealth w and the price of insurance Q. Our model is then not analytically tractable for

analysis beyond the complete information case. We can simulate outcomes for certain classes

of utility functions, but this introduces a taxonomy of possible cases to consider (e.g., in-

creasing risk aversion, decreasing risk aversion, etc.). Analyzing all these cases for a class of

distributions of types is beyond the scope of this paper. For this reason, in the next section

we focus on one class of risk-preferences that allow us to gain some analytical tractability.

B.1.1 Mean-Variance Preferences

For mean-variance preferences we can obtain some analytic results. An agent with these

preferences evaluates lottery X according to

U(X) = E(X)− σVar(X)
2 .

Under insurance policy α = (αS, αL, αD), the certainty equivalent under litigation is28

CE(p, α) = w − (cA − αL)− p(d− αD)− σp(1− p)(d− αD)2

2 .

The only difference with the risk neutral case is the last term RP (p, αD) ≡ σp(1−p)(d−αD)2

2 ,

which corresponds to the agent’s risk-premium. The bargaining surplus is

SB = min{T, αS}+ c+ cA − αL − pαD +RP (p, αD).

Mirroring the proof of the risk neutral case, it can be shown that T ≥ αS. Then, the

bargaining surplus for type p is simply

SB(p) = αS + c+ cA − αL − pαD +RP (p, αD).

When SB(p) ≥ 0 the agent of type p and the third party settle, otherwise they litigate. In

the risk-neutral case, the bargaining surplus SRN(p) = αS + c+ cA − αL − pαD is linear and

strictly decreasing in p. Under risk aversion, the bargaining surplus is concave and may be
28The price Q is paid up-front, so under these preferences the term Q+ CE(p, α,Q) is independent of Q.
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non-monotone in p, so in principle it is not clear that we can define a threshold type p∗.29

Figure 10 illustrates the bargaining surplus as a function of the agent’s type for the cases of

risk neutrality and risk aversion.

c+ cA − αL

Bargaining
Surplus

p∗0 p∗σ 1
p

S0(p)

Sσ(p)

Figure 10: Bargaining surplus as a function of the agent’s type for the case of risk neutrality
(σ = 0) and risk aversion (σ > 0). The thresholds p∗0 (and p∗σ) correspond to the type that is
indifferent between settlement and litigation under risk neutrality (and under risk aversion).

The next lemma guarantees the existence of a unique threshold type p∗ such that SB(p∗) = 0.

Lemma 6. There is a unique positive value that solves the equation SB(p) = 0.

Proof. SB(0) = αS + c+ cA − αL > 0. By concavity, SB(p) has a unique positive root.

Lemma 6 allows us to define a litigation-threshold type p∗ such that types p ≤ p∗ settle and

types p > p∗ litigate, where p∗ is the unique positive solution to the equation

p∗ = c+ cA − αL + αS
αD

+ RP (p∗, αD)
αD

.

When RP (p∗, αD) > 0, the threshold p∗ is larger than this threshold for a risk neutral agent.

This is shown in Figure 10 (for the case αS = 0, where the threshold for a risk-averse agent

p∗σ is larger than this threshold for a risk neutral agent p∗0. This is, a risk-averse agent covered

by contract α has weakly larger incentives to settle than a risk-neutral agent covered by the
29By concavity, the bargaining surplus is strictly decreasing for σ < 2αD

(d−αD)2 .

4



same contract. Intuitively, risk aversion pushes the agent to settle to avoid the risky litigation

outcome. Only under full insurance (αD = d) this force disappears, i.e., RP (p∗, αD) = 0.

The next result study how a contract α affects the bargaining surplus.

Lemma 7. SB(·) is strictly decreasing in αD and αL, and strictly increasing in αS. Also,
∂SB(p∗)

∂p
< 0, and sign ∂p∗

∂αj
= sign ∂SB

∂αj
for j ∈ {S, L,D}.

Proof. We have ∂SB(p∗)
∂p

= σ
2 (d − αD)2(1 − 2p∗) − αD. From the definition of p∗ we have

σ
2 (d− αD)2 = p∗αD−(αS+c+cA−αL)

p∗(1−p∗) . Replacing we get

∂SB(p∗)
∂p

=
[
p∗αD − (αS + c+ cA − αL)

p∗(1− p∗)

]
(1− 2p∗)− αD

= −
[
αS + c+ cA − αL

p∗
+ RP (p∗, αD)

1− p∗

]
< 0.

To compute the partial derivative with respect to the contract parameters we use that

SB(p∗) = 0⇒ ∂SB(p∗)
∂αj

+ ∂SB(p∗)
∂p

∂p∗

∂αj
= 0.

Given that ∂SB(p∗)
∂p

< 0, we have sign ∂p∗

∂αj
= sign ∂SB

∂αj
for j ∈ {S, L,D}.

Lemma 7 shows that increasing αD or αL, or decreasing αS reduces the bargaining surplus.

Given that the agent’s payment to the third party is proportional to the bargaining surplus,

the insurer would like to make the bargaining surplus as small as possible. But this presents

a tradeoff for the insurer: decreasing the bargaining will also induce more litigation (by

decreasing p∗). The insurer faces this tradeoff when selling insurance agents that are risk

neutral or risk averse. The main difference is that damages insurance (αD) reduces the

bargaining surplus and the litigation threshold at a faster rate under risk aversion.

Let Tα(p) = pd−c+(1−θ)SB(p) be the Nash bargaining transfer for contract α. An agent of

type p pays a settlement transfer equal to T (p) = min{Tα(p)− αS, 0}, i.e., the agent is fully

covered by the insurer if Tα(p) < αS. In the risk-neutral case, the Nash bargaining transfer

is strictly increasing in p, but under risk aversion this transfer may be non-monotone. The

reason is that types around p = 1/2 value insurance more than types closer to p = 0 or
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p = 1. We need to impose a condition over σ to guarantee that the Nash bargaining transfer

is increasing in p.

Lemma 8. When σ < 2
d(1−θ) , the Nash bargaining transfer is increasing, and there is a

unique threshold type p∗∗ is defined by the condition pd − c + (1 − θ)S(p∗∗) = αS such that

agents p ≤ p∗∗ settle and their settlement offer is fully covered by the insurance.

Proof. We have T ′α(p) = d − αD(1 − θ) + (1 − θ)σ(d−αD)2

2 (1 − 2p). It’s clear that for any p

such that 2p ≤ 1 we have T ′α(p) > 0. Consider then p such that 2p > 1, so

T ′α(p) = d− (1− θ)
[
αD + σ(d− αD)2

2 (2p− 1)
]
.

A sufficient condition for this to hold is d > (1 − θ)
[
αD + σ(d− αD)2

2

]
. The RHS of this

inequality as a function of αD is convex, so the maximum is either αD = 0 or αD = d. When

αD = d, this holds. When αD = 0, this holds as long as σ < 2
d(1−θ) .

For σ sufficiently small, T (p) is weakly increasing, which allow us to find a unique solution

to the equation Tα(p) = αS. We will impose this condition for the remainder of the analysis.

Assumption 2. σ < 2
d(1−θ) .

This expression states that willingness to pay is monotone increasing provided the risk aver-

sion parameter σ is less than an amount proportional to the inverse of the damages. Hence,

when damages are higher, we need a stronger assumption on the risk parameter σ.

How do p∗ and p∗∗ compare? We have that p∗ solves the equation S(p∗) = 0 and p∗∗ solves

the equation (1− θ)S(p∗∗) = αS − (p∗∗d− c) with αS > pd− c, so S(p∗∗) = αS−(p∗∗d−c)
1−θ > 0.

Given that S(0) > 0, and S is concave, it is clear that p∗∗ must be smaller than p∗. Therefore,

we can write,

W (p, α) =



T0(p) c
d
≤ p ≤ p∗∗

T0(p) + αS − Tα(p) if p∗∗ < p ≤ p∗

T0(p)− p(d− αD)− (cA − αL)−RP (p, αD) if p > p∗

(21)
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Lemma 9. W (p, α) is continuous for any level of risk aversion.

Proof. First, it is easy to verify that W (p, α) is continuous for p 6= p∗∗ or p 6= p∗. Second, by

definition p∗∗ is such that Tα(p∗∗) = αS, so W (p, α) is continuous at p = p∗∗. Third, from

the definition of p∗ we have that Tα(p∗) = p∗d− c and p∗αD = αS + c+ cA−αL +R(p∗, αD).

Thus, −p∗(d− αD)− (cA − αL)−RP (p∗, αD) = αS − Tα(p∗).

Type p’s willingness to pay for contract α is

W (p, α) =



pd− c+ (1− θ)
(
c+ cA + σd2

2 p(1− p)
)

if c
d
≤ p ≤ p∗∗,

θαS + (1− θ)
[
αL + pαD + σαD(2d−αD)

2 p(1− p)
]

if p∗∗ < p ≤ p∗,

αL + pαD + σp(1−p)
2 (αD(2d− αD)− θd2)− θ (c+ cA) if p > p∗.

(22)

When c
d
< p ≤ p∗∗ the agent settles and pays nothing—the insurer fully covers the agent’s

settlement transfer. Thus, the agent’s willingness to pay for insurance in this case is T0(p),

the amount that an agent without insurance would have paid to TP under a settlement

agreement. An agent of type p∗∗ < p ≤ p∗ settles litigation. The willingness to pay of this

agent is the sum of the direct lump-sum transfer to cover settlement αS plus the TP’s share of

the bargaining surplus not captured in the negotiation due to insurance (1−θ)[αL−αS+pαD+

0.5σαD(2d−αD)p(1− p)]. The first component in the term inside the bracket is the value of

insurance αL−αS + pαD realized with or without risk aversion. Intuitively, insurance allows

the agent to extract additional surplus by improving its own threat point and reducing TP’s

payoff towards its own threat point. The second component is the risk-premium reduction

effect of insurance:

σp(1− p)αD(2d− αD)
2 = σp(1− p)d2

2 − σp(1− p)(d− αD)2

2 . (23)

With damages insurance αD, the agent faces a loss of just d−αD instead of d when TP wins

the case. Because the agent ultimately settles with or without insurance, this gain enters the

bargaining surplus directly, and the agent captures share 1− θ of it.

An agent of type p > p∗ litigates. The term αL+pαD is the direct value of insurance. Because
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the agent litigates, there is no bargaining surplus and it does not share this benefit with the

third party.

The second term is the risk-premium reduction:

p(1− p)σ
2

[
(αD(2d− αD))− θd2

]
= (1− θ)σp(1− p)d

2

2 − σp(1− p)(d− αD)2

2 . (24)

This is lower under litigation than under settlement, by θ
(
σp(1−p)(d−αD)2

2

)
, because the agent

endures the entire variance when it owns insurance (and litigates). When θ = 0, the variance-

reduction effect is the same under settlement and litigation. Intuitively, the variance part of

the agent’s utility under insurance is the same (for θ = 0) when the agent settles and when it

litigates. As θ increases, the variance part of the agent’s utility under insurance (which enters

negatively) stays the same under litigation, but declines under settlement. For sufficiently

high θ > d2

αD(2d−αD) , the variance-reduction effect is negative.

The third term is the litigation cost effect. This is the part of the agent’s payoff under no

insurance that accrues from settling and avoiding litigation costs. This is surrendered under

litigation.

In contrast to the risk neutral case, W (p, α) may not be increasing in p the region [p∗, p∗∗].

The reason is that agents whose types are around p = 1/2 value insurance more than agents

whose types are closer to p = 0 or p = 1. Figure 11 shows the shape of the willingness to pay

when risk aversion is relatively low (left panel) and high (right panel). Differentiating with

respect to p, we have

W (p, α)
dp

=



d+ (1− θ)σd
2(1−2p)

2 if c
d
≤ p ≤ p∗∗,

(1− θ)
[
αD + σ(1−2p)

2 (αD(2d− αD))
]

if p∗∗ < p ≤ p∗,

αD + σ(1−2p)
2 (αD(2d− αD)− θd2) if p > p∗.

(25)

Lemma 10. W (p, α) is strictly increasing in p for σ ≤ 1
d
.

Proof. It can be shown that W (p,α)
dp
|p∗∗<p≤p∗ > 0 is the hardest condition to satisfy. Using

that αD ≤ d, it is easy to see that this term is positive when σ ≤ 1
d
.
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Note that Assumption 2 does not guarantee the condition in Lemma 10.

Figure 11: W (p, α) for contract αS = 1, αL = 1, and αD = 3 and model parameters: c = cA = 1,
d = 5, θ = 0.8.

The net surplus from serving type p with policy α is

(W −K)(p, α) =



pd− c+ (1− θ)
(
c+ cA + σd2

2 p(1− p)
)
− αS if c

d
≤ p ≤ p∗∗

(1− θ)
[
αL − αS + pαD + σαD(2d−αD)

2 p(1− p)
]

if p∗∗ < p ≤ p∗

−θ (c+ cA) + σp(1−p)
2 (αD(2d− αD)− θd2) if p > p∗

(26)

In contrast to the risk neutral case, it is not always true that the net surplus is negative for

types that litigate (p > p∗); for instance, this term will be positive when θ is small. Using

the definition of p∗, we can write

(W−K)(p, α) =


pd− c+ (1− θ)(c+ cA +RP (p, 0))− αS if c

d ≤ p ≤ p
∗∗

(1− θ) [c+ cA +RP (p, 0) + (p− p∗)αD +RP (p∗, αD)−RP (p, αD)] if p∗∗ < p ≤ p∗

−θ(c+ cA) + (1− θ)RP (p, 0)−RP (p, αD) if p > p∗

(27)

Equation 27 describes the willingness to pay as a function of the threshold types p∗ and p∗∗

generated by contract α.

Lemma 11. Consider two contracts: α = (αS, αL, αD) that generates threshold p∗ and p∗∗,
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and α̂ = (α̂S, α̂L, αD) that generates threshold p̂∗ = p∗ and p̂∗∗ < p∗∗. If α̂S < αS, then

(W −K)(p, α) = (W −K)(p, α̂) for all p ∈ [p∗∗, 1] and (W −K)(p, α) < (W −K)(p, α̂) for

all p < p∗∗.

Proof. Both contracts generate the same litigation threshold p∗ and both contracts cover

the same amount in damages αD. Thus, we have that (W −K)(p, α) = (W −K)(p, α̂) for

all p ∈ [p∗∗, 1]. For any p ≤ p̂∗∗ we have that (W − K)(p, α) < (W − K)(p, α̂) because

α̂S < αS. Finally, consider any p ∈ (p̂∗∗, p∗∗). In this region, (W −K)(p, α) < (W −K)(p, α̂)

is equivalent to

pd− c− αS < (1− θ) [(p− p∗)αD +RP (p∗, αD)−RP (p, αD)] .

It is easy to see that this inequality corresponds to T (p) < αS, which holds for any p < p∗∗.

Lemma 11 implies that given to contracts that induce the same threshold p∗ and cover the

same amount for damages αD, the insurer will prefer the contract with the smallest p∗∗.30

Thus, we can show that some contracts are dominated.

Proposition 7. For a given contract α = (αS, αL, αD) define the contract α̂ = (max{αS −

αL, 0},max{αL − αS, 0}, αD). Then, (W −K)(p, α) ≤ (W −K)(p, α̂) for any p.

Proof. First, note that both contracts α and α̂ generate the same threshold p∗ because

αS − αL = max{αS − αL, 0} −max{αL − αS, 0}. Second, note that max{αS − αL, 0} ≤ αS.

Thus, by Lemma 11 we have (W −K)(p, α) ≤ (W −K)(p, α̂) for any p.

Proposition 7 implies that, if the goal is to maximize W − K pointwise, the insurer will

never offer contracts that cover simultaneously settlements and litigation costs, because these

contracts are pointwise dominated. Thus, we can focus on contracts of the form (αS, 0, αD)

or (0, αL, αD).

Under risk neutrality, Proposition 3 (in the main text) shows that we can go one step further:

To maximize (W−K) pointwise in p we can restrict to contracts of the form α = (0, cA, c/p∗),
30Given that T ′(p) > 0 we have ∂p∗∗

∂αS
= θ

T ′(p∗∗) > 0, so lowering αS will also lower p∗∗.
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for some p∗ > c/d. The reason is that for any fixed p∗ and any contract that satisfy p∗αD =

c + cA − αL + αS we have: ∂(W−K)
∂αD

< 0 for p ∈ (p∗∗, p∗) and zero otherwise; ∂(W−K)
∂αS

< 0 for

p < p∗∗ and zero otherwise; and, ∂(W−K)
∂αL

= 0 for all p. Thus, the insurer has a preference

for reducing αS and αD as much as possible, as long as the contract parameters satisfy

αL = cA + c− p∗αD + αS with αL ≤ cA. Therefore, the insurer sets αS = 0 and αD = c
p∗ .

Under risk aversion, for any fixed p∗ and any contract that satisfy p∗αD = c + cA − αL +

αS + RP (αD, p∗) we still have that: ∂(W−K)
∂αS

< 0 for p < p∗∗ and zero otherwise; and that
∂(W−K)
∂αL

= 0 for all p. However, the partial derivative with respect to αD is no longer weakly

negative:

∂(W −K)
∂αD

(p, α) =



0 if c
d
≤ c

d
≤ p ≤ p∗∗

(1− θ) [(p− p∗)αD − σ(d− αD)(p∗(1− p∗)− p(1− p))] if p∗∗ < p ≤ p∗

σ(d− αD)p(1− p) if p > p∗

We have ∂(W−K)
∂αD

(p, α) < 0 for p ∈ [p∗, p∗∗] and, when αD < d, ∂(W−K)
∂αD

(p, α) > 0for p > p∗.

Thus, in contrast to the risk neutral case, it is not true that the insurer wants to reduce

αD as much as possible. This implies that even under Assumption 2 there may not exist a

contract that maximizes W −K pointwise in p.

The insurer’s cost of serving type p with policy α depends on the agent’s level of risk aversion

through the threshold p∗.

K(p, α) =


αS if p ≤ p∗,

αL + pαD if p > p∗.

(28)

In contrast to the risk neutral case, the contract that maximizes W −K at p for a risk-averse

agent, for a fixed litigation threshold p∗, in some cases depends on p; this also explains why

under risk aversion it is impossible to find a contract that maximizes W −K pointwise for

all p. To further hone the contrast between risk neutrality and risk aversion we present an

example. In the example, we explain intuitively how to find the contract that maximizes

(W −K) at p for a fixed litigation threshold p∗.
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Figure 12: Maximization of W −K for p < p∗ in the case of risk neutrality.

Example. Consider the set of contracts that generate a fixed litigation threshold p∗. Within

that set of contracts let us find the contract that maximizes (W −K) at some point p. Let

z ≡ αL − αS ∈ (∞, cA].

1. Risk neutrality. This case is easily illustrated using a simple consumer choice framework,

where the “consumer” is the agent+insurer (A+I) and whose utility is W − K and must

choose over the “budget set” z = cA + c − αDp
∗ subject to z ≤ cA. This constraint is

represented by the two-piece black line in Figure 12. When p < p∗, A+I’s willingness to pay

(W − K)(p) = (1 − θ)(z + pαD) is represented by the red indifference curves, which have

slope p. As a result, the optimal mix of z and αD is always at the corner where z = cA, which

implies that αL = cA and αS = 0. Intuitively, (A+I)’s marginal rate of substitution p is lower

than p∗. As a result, litigation costs insurance is more valuable given the tradeoff implied by

p∗, and the optimal mix of z and αD is always at the corner where αL = cA. Finally, when

p > p∗ (i.e., types that litigate) we have that (W −K)(p) is always negative and is constant,

so it is affected by the choice of p∗ but is otherwise unaffected by the choices of z and αD.

2. Risk aversion. Fixing p∗ yields a non-linear constraint illustrated in Figure 13. The

z−axis intercept of the formula for the S(p∗) = 0 constraint is higher because of the risk

premium. The additional constraint z ≤ cA still must hold, and it binds at an αD > c
p∗

because of the risk premium. In addition, the risk premium makes the constraint a convex

function of αD. The slope of this constraint is −p∗[1 + (1− p∗)σ(d− αD)].

Indifference curves for an agent of type p—where p < p∗—similarly have a convex shape,
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Figure 13: Maximization of W −K for p < p∗ in the case of risk aversion.

with slope −p[1 + (1− p)σ(d− αD)]. The indifference curve is tangent to the constraint at

α̂D = d−
[

p− p∗

σ (p∗(1− p∗)− p(1− p))

]
. (29)

If this tangency occurs for z < cA, as in Figure 13, then the α̂D given in (29) optimizes W

conditional on p∗. Otherwise the optimal coverage obtains at the upper boundary. Now, it is

impossible for α̂D to be negative. When this condition implies a negative α̂D, then we know

that the αL = cA kink binds. We can use this condition to determine a restriction on σ that

guarantees that this kink binds:

σ <
1
d

(
1

p∗ + p− 1

)
. (30)

Because we restrict attention to cases where the second fraction yields a positive number (p

closer to .5 than p∗), and to cases where p ≤ p∗, the lowest that the second fraction can be

is 1. Hence, we need only restrict attention to σ < 1
d
to guarantee that z = αC = cA is

pointwise optimal for types that settle.

For higher σ, of course, this is not the case. To see the intuition for that case most clearly,

let p∗ > .5. First, note that the difference in the slopes of the curves in Figure 13 depend

both on p and p(1− p). If p < 1− p∗, then p is so low that it is farther from p = .5 than p∗.

Then both terms in the slope are of lower magnitude for the indifference curves than for the

constraint. The indifference curves are then shallower than the constraint everywhere, so the

optimal insurance occurs at the αL = cA kink. As p increases, it eventually reaches a point

where it is closer to .5 than p∗. Then, the second term in the slope is of greater magnitude
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for the indifference curve than for the constraint. It is then possible for the red indifference

curve to be steeper than the constraint at low αD and shallower at high αD.

For types that litigate, a lower αD exposes the agent to more risk when it litigates, which

reduces W −K for p > p∗. Recall total A+I profit for types that litigate is

W −K = −θ (c+ cA) + σp(1− p)
2

(
αD(2d− αD)− θd2

)
. (31)

Obviously, this is maximized for the highest level of damages, αD = d, and this is independent

of p∗ because αS is not bounded above. The particular value of p∗ does matter for z through

the S(p∗) = 0 constraint, which implies z = c+ cA − p∗d.

Table 2 shows the optimal policy for type p within the set of contracts that generate a

litigation threshold p∗ (in the table, p∗ = 0.8). Under risk neutrality (σ = 0), each type p

optimally is allocated the same insurance, αL = cA and αD = c
p∗ . This is strictly optimal for

types that settle, and weakly optimal for types that litigate.

For low σ = 0.1, each type that settles optimally receives the same level of litigation costs

insurance as under risk neutrality. Because of the risk premium, the implied level of damages

insurance is higher. And, more importantly, each type that litigates now optimally receives

maximum damages coverage αD = 5, and the implied z = −2 for all p > .8. Hence, even for

the low-σ case, there is no contract that maximizes W −K pointwise in p.

For high σ = 1.25, the lack of pointwise maximization is even more pronounced. There

are essentially three different regions of p. For low p ≤ .4875, the αL = cA kink binds.

For p ∈ (.4875, p∗], the optimal level of z is below cA. It is positive for p ∈ (.4875, .6], and

negative for p ∈ (.6, p∗]. For p > p∗, types litigate. Essentially, the ability to sell coverage

for settlements slacks the constraint on how big αD can be, which is valuable when σ and p

are high. As in the σ = 0.1 case, each type that litigates now receives maximum damages

coverage αD = 5, and the implied z = −2 for all p > .8. Note that damages coverage strictly

increases for p ∈ [.4875, p∗].

It turns out that the function in (29) is generally monotone increasing in p for p ∈ [1−p∗, p∗].
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After some algebra, we find
dα̂D
dp

= 1
σ (p∗ + p− 1)2 (32)

The implication is that there is no peak in α̂D at p = .5. Intuitively, increases in p above

.5 increase the direct value of insurance and decrease the risk-premium reduction. But the

former effect dominates.

σ = 0 σ = 0.1 σ = 1.25
p z αD z αD z αD

0.3 1.00 1.25 1.00 1.38 1.00 2.22
0.4 1.00 1.25 1.00 1.38 1.00 2.22
0.5 1.00 1.25 1.00 1.38 0.85 2.33
0.6 1.00 1.25 1.00 1.38 0.00 3.00
0.7 1.00 1.25 1.00 1.38 -0.46 3.40
0.8 1.00 1.25 1.00 1.38 -0.75 3.67
0.9 1.00 1.25 -2.00 5.00 -2.00 5.00
1.0 1.00 1.25 -2.00 5.00 -2.00 5.00

Table 1: Contract that maximizes W −K for type p, conditional on p∗ = .8, σ = 1.25, c = cA = 1,
θ = 0.8, d = 5.

To summarize, pointwise maximization obtains under risk neutrality but not under risk

aversion. With low levels of σ, litigation costs coverage remains more valuable than damages

insurance for types that settle. But not for types that litigate. With higher levels of σ,

litigation costs coverage is not necessarily more valuable than damages insurance for types

that settle.

B.1.2 Complete Information

If the insurer is informed about the agent’s type, then it will offer a contract that targets

that type. This is the same result under risk neutrality.

Proposition 8. The optimal contract for type p under complete information is any contract

such that p∗(α) = p.

Proof. We say that contract α targets p if S(p) = 0, i.e., the litigation threshold implied by

this contract is p∗ = p.
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First, by Lemma 11 we can restrict to contracts such that p > p∗∗. If not, we can always

reduce αS to achieve this condition. Second, the value of (W −K)(p, α) for a contract α that

targets p is independent of the contract parameters and equal to

πT ≡ (1− θ)
[
c+ cA + σd2

2 p(1− p)
]
. (33)

Third, under complete information, the optimal contract for type p does not induce type p to

litigate. If type p litigates, it means the insurer offers some contract targets p∗ with p∗ < p.

The value of W −K for this contract at type p is then

πL = −θ(c+ cA) + (1− θ)RP (p, 0)−RP (p, αD),

while Equation 33 is the value of W −K at p for a contract that targets type p. Note that

πT − πL = (1− θ)(c+ cA) + (1− θ)RP (p, 0) + θ(c+ cA)− (1− θ)RP (p, 0) +RP (p, αD)

= (c+ cA) +RP (p, αD) > 0.

Therefore, it is never optimal to induce type p to litigate under complete information, so the

optimal contract for type p should be such that p∗∗ < p ≤ p∗.

Fourth, (W −K)(p, α̂) is higher for a contract α̂ that targets type p̂ > p, than for a contract

α that targets p iff

(p− p̂)α̂D +RP (p̂, α̂D)−RP (p, α̂D) > 0,

where α̂D is the contract parameter associated to contract p̂. This can be written as

(p̂− p)α̂D <
σ

2 (d− α̂D)2[p̂(1− p̂)− p(1− p)].

Note that p̂(1− p̂)− p(1− p) = (p̂− p)(1− (p̂+ p)), and given that p < p̂ we have

α̂D <
σ

2 (d− α̂D)2(1− (p̂+ p))

Thus, for any p > 0.5, this condition never holds because the RHS is negative. Consider
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p ≤ 0.5. The RHS of the inequality is

σ

2 (d− α̂D)2(1− (p̂+ p∗)) ≤ σ

2 (d− α̂D)2(1− p̂).

By the definition of p̂ we have:

σ

2 (d− α̂D)2p̂(1− p̂) = p̂α̂D − (α̂S + c+ cA − α̂L) < p̂α̂D.

This implies that
σ

2 (d− α̂D)2(1− p̂) < α̂D.

Therefore, there is no contract α̂ that generates a litigation threshold p̂, with p̂ > p, such

that (W −K)(p, α̂) > W −K(p, α), where α is any contract that targets type p.

Just like in the case of risk neutrality, Proposition 8 shows that the optimal contract under

complete information for type p is any the contracts that targets this type. We have multiple

contracts that are optimal, in fact, any contract such that S(p) = 0.

B.1.3 Symmetric Information

Proposition 7 implies that we need to search for contracts where either αS = 0 or αD = 0.

The problem solved be the insurer(s) is to find a contract α solution to

max
{α=(αS ,αL,αD)}

∫ 1

c/d
[W (p, α)−K(p, α)]dF (p)

subject to αL · αS = 0. Table 2 shows a numerical simulation for the optimal contract

under symmetric information. The table shows that for low values of risk aversion the

optimal contract shares similar characteristics with the optimal contract under risk neutrality:

αS = 0, αL = cA and αD ≥ c/p∗. Note, however, that in general αD > c/p∗. The reason

for the insurer to increase αD when the agent is risk averse—relative to the case where the

agent is risk neutral—is to protect the agent against the uncertain litigation outcome, which

makes the agent tougher in the negotiation with the third party. However, increasing αD
too much also induces more litigation. To counteract the increase in litigation, the insurer
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does not cover all the litigation costs; and when not covering litigation costs is not enough

to deter the agent from going to litigation, the insurer begins to cover settlements (αS > 0).

F (p) = 1− (1− p)2

σ αS αL αD p∗

10−8 0 1 1.01 0.995
0.1 0 1 1.03 0.983
0.5 0 1 1.245 0.947
0.6 0 1 1.315 0.939
0.7 0 1 1.385 0.932
0.8 0 1 1.460 0.925
0.9 0 0.97 1.550 0.920
1 0 0.63 1.880 0.921

1.5 0.23 0 2.750 0.917
2 0.26 0 2.910 0.905

F (p) = p0.5

σ αS αL αD p∗

10−8 0 1 1 1
0.1 0 1 1 1
0.5 0 1 1 1
0.6 0 0.88 1.12 1
0.7 0 0.33 1.68 1
0.8 0.09 0 2.09 1
0.9 0.24 0 2.24 1
1 0.26 0 2.26 1

1.5 0.36 0 2.36 1
2 0.44 0 2.44 1

Table 2: Optimal contract under symmetric information for different values of σ and different
distribution of types. Parameters c = cA = 1, θ = 0.8, d = 5.

B.1.4 Optimal menu of contracts under adverse selection – Monopoly

We restrict our attention to direct revelation mechanisms: the insurer allocates contract

α(p̂) = (αS(p̂), αL(p̂), αD(p̂)) at cost T (p̂) to an agent reveals a type p̂. The insurer chooses

functions α : [c/d, 1]→ [0,∞)× [0, cA]× [0, d] and T : [c/d, 1]→ [0,∞)to solve

max
α(·),T (·)

∫ 1

c/d
[T (p)−K(p, α(p))]f(p)dp

subject to truthful revelation (incentive compatibility)

U(p) = max
p̂∈[c/d,1]

W (p, α(p̂))− T (p̂)

and participation U(p) ≥ 0. By the envelop theorem we have U(p)−U(c/p) =
∫ p

c/d

∂W (s, α(s))
∂p

ds,

which is equivalent to

T (p) = W (p, α(p))−
∫ p

c/d

∂W (s, α(s))
∂p

ds+ U(c/p). (34)
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Replacing in the objective function we obtain

max
α(·)

∫ 1

c/d

[
W (p, α(p))−K(p, α(p))−

∫ p

c/d

∂W (s, α(s))
∂p

ds− U(c/d)
]
f(p)dp

It is clear that the monopolist sets U(c/d) = 0. Using the standard change of variables we

get the following problem:

max
α(·)

∫ 1

c/d

[
W (p, α(p))−K(p, α(p))− ∂W (p, α(p))

∂p

(
1− F (p)
f(p)

)]
f(p)dp. (35)

In a “standard problem” of mechanism design, incentive compatibility requires an increasing

allocation. Our problem differs from the standard case because the allocation is multi-

dimensional, although the private information is single-dimensional.

Lemma 12. Incentive compatibility requires

N∑
i=1

∂W (s, α(t))
∂p∂αi

α′i(t) = ∂W (s, α(t))
∂p∂αS

α′S(t)+∂W (s, α(t))
∂p∂αL

α′L(t)+∂W (s, α(t))
∂p∂αD

α′D(t) ≥ 0, ∀s, t.

(36)

Proof. For any p, p̂ for incentive compatibility requires:

W (p, α(p))− T (p) ≥ W (p, α(p̂))− T (p̂).

Let ∆(p, p̂) = W (p, α(p))− T (p)− [W (p, α(p̂))− T (p̂)]. We have

∆(p, p̂) = W (p, α(p))− T (p)− [W (p̂, α(p̂))− T (p̂) +W (p, α(p̂))−W (p̂, α(p̂))].

= W (p, α(p))− T (p)− [W (p̂, α(p̂))− T (p̂)]− [W (p, α(p̂))−W (p̂, α(p̂))]

=
∫ p

c/d

∂W (s, α(s))
∂p

ds−
∫ p̂

c/d

∂W (s, α(s))
∂p

ds− [W (p, α(p̂))−W (p̂, α(p̂))]︸ ︷︷ ︸∫ p

p̂

∂W (s, α(p̂))
∂p

ds

=
∫ p

p̂

∂W (s, α(s))
∂p

ds−
∫ p

p̂

∂W (s, α(p̂))
∂p

ds

=
∫ p

p̂

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̂))

∂p

]
ds
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Therefore, ∆(p, p̂) ≥ 0⇔
∫ p

p̂

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̂))

∂p

]
ds ≥ 0. A more compact form of

the same IC condition is

∫ p

p̂

[
∂W (s, α(s))

∂p
− ∂W (s, α(p̂))

∂p

]
ds ≥ 0⇔

∫ p

p̂

[∫ s

p̂

d

dt

[
∂W (s, α(t))

∂p

]
t=u

du

]
ds ≥ 0.

The term inside the integral must be weakly positive, because the inequality must hold for

any p̂, p. When α(t) = (α1(t), ..., αN(t)), we have d

dt

[
∂W (s, α(t))

∂p

]
=

N∑
i=1

∂W (s, α(t))
∂p∂αi

α′i(t).

Therefore, the condition implied by IC (analogous to Lemma 3 in the paper) is

N∑
i=1

∂W (s, α(t))
∂p∂αi

α′i(t) = ∂W (s, α(t))
∂p∂αS

α′S(t)+∂W (s, α(t))
∂p∂αL

α′L(t)+∂W (s, α(t))
∂p∂αD

α′D(t) ≥ 0, for all s, t.

Thus, the monopolist solves problem (35) subject to condition (36). Once we find the allo-

cation, we use (34) to compute the transfer.

Risk Neutrality. To contrast the problem under risk aversion with our baseline results

under risk neutrality, consider first σ = 0. In this case, condition (36) reduces simply to

αD(p) weakly increasing, and problem (35) reduces to max
∫
G(p, α)dF (p), where

G(p, α) = W (p, α)−K(p, α)− ∂W (p, α)
∂p

(
1− F (p)
f(p)

)
,

and h(p) = 1−F (p)
f(p) . Rather than solving this problem directly, we fix p ∈ [c/d, 1] and we look

for a contract that maximizes G(p, α) pointwise. It can be shown that any such contract

satisfies p ∈ (p∗∗, p∗] or, equivalently,

θαS − (pd− c) < (1− θ)[c+ cA − αL − pαD]. (37)

and

pαD ≤ αS + c+ cA − αL. (38)

So the point-wise maximization reduces to maximize G(p, α) subject to (37) and (38).

We solve this problem in two steps:
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1. Define p̄ as the solution to p = h(p). 1. When p ≤ p̄, the insurer sets αD(p) = 0, αL
as large as possible, and αS as small as possible, in the region where (38) and (37) are

satisfied. It is easy so see that contract α(p) = (0, cA, 0) satisfies all of this. Thus, this

is the optimal menu in the region p ≤ p̄.

2. When p > p̄, we solve the following linear optimization problem with linear constraints:

max
αS ,αL,αD

αL − αS + (p− h(p))αD

subject to

αL + pαD ≤ c+ cA + pd− c− θαS
1− θ (39)

αL + pαD ≤ c+ cA + αS (40)

It can be shown that the solution to this problem is contract α = (0, cA, c/p).

The problem with this solution is that it violates the monotonicity constraint of αD(p). Thus,

we need to use ironing. Each types p > p̄ will get the same allocation (0, cA, c/p∗), where p∗

is defined in Theorem 2 in the main text. 31

Risk Aversion. We can follow similar steps in the case of risk aversion. Let GR(p, α) be the

analogous to G(p, α). First, from Proposition 7, we know that we want to push p∗∗ as low as

possible to maximizeW−K pointwise. This argument is still true for GR(p, α) because in the

region where p ≤ p∗ we have GR(p, α) = W (p, α)−K(p, α)−αSh(p). Therefore, a contract α

is dominated by α̂ if p̂∗∗ < p∗∗, p̂∗ = p∗ and α̂D = αD, in the sense that GR(p, α) ≤ GR(p, α̂)

for any p. This implies again that we can look for contracts where αS = 0 or αL = 0.

We proceed to maximize to find a contract α∗(p) such that GR(p, α(p)) ≥ GR(p, α) for any

other contract α. This solution is the optimal menu of contracts when incentive compatibility

is not violated. It is not hard to see that for small values of σ, Equation 36 is equivalent to

αD(p) non-decreasing. We can understand qualitatively the shape of the optimal contract by

looking at the contract α∗(p). Given that the problem is not analytically tractable, we solve

it numerically.
31This is precisely the solution to the ironing problem.
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Figure 14: Damages coverage of contracts such that GR(p, α(p)) ≥ GR(p, α) for any other contract
α, for different distributions of types. The distribution of types in the plot at the top is F (p) = p0.1,
in the plot at middle is F (p) = p, and at the bottom is F (p) = p5.

We simulated contracts for the parameters c = cA = 1, d = 5, θ = 0.8, σ = 0.076, and

different distributions of types. The contract such that GR(p, α(p)) ≥ GR(p, α) features no

settlement coverage and full litigation cost coverage, i.e., αS(p) = 0 and αL(p) = cA for all

p. However, the level of damages coverage changes with the distribution of types. Figure 14

shows the value of αD(p) in the simulation of three scenarios.

Under risk-neutrality the highest type that is excluded is p̄, which is the solution to p = 1−F (p)
f(p) .

When F (p) = pa, this threshold corresponds to p̄ =
( 1

1 + a

) 1
a

. In Figure 14, from top to

bottom we have: p̄ = 0.37, p̄ = 0.5, and p̄ = 0.7. The first observation is that risk aversion

reduces the set of types that are excluded from damages insurance, i.e., p̄risk averse ≤ p̄risk neutral.

Second, when types are not excluded, αD(p) increases in a small region and decreases there-

after. Because incentive compatibility requires αD(p) to be non-decreasing, there will be

some threshold type pIron, with pIron ≥ p̄risk aversion such that any type p ≥ pIron receives the

same damages coverage. Under risk neutrality, pIron = p̄risk neutral, so the optimal menu en-
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tailed only two contracts. Under risk aversion, however, we have more than two contracts:

Low types do not get damages coverage; types that are a little bit higher than the highest

excluded type buy small amount of damages coverage, specific to their types; high types,

receive the same damages coverage, and it is not specific to their types.

Thus, qualitatively, the optimal contract under risk aversion features:

1. A contract that does not cover damages for types p ≤ p̄risk averse.

2. A type-dependent contract that cover both damages and litigation costs for p ∈ [p̄risk averse, pIron].

3. A type-independent contract that cover both damages and litigation costs for p > pIron.

The main qualitative differences between this contract and the case of risk neutrality is that

there are fewer types excluded from damages insurance, and that the optimal menu features

more than just two contracts. Finally, for larger levels of risk aversion, as in the case of

symmetric information, the optimal contract may also cover settlements. This case is more

complicated because the agent’s willingness to pay may not be supermodular (see Figure 11).

B.1.5 Perfect Competition Under Adverse Selection with Risk Aversion

Proofs of the main results under risk neutrality rely on monotonicity of W in p and super-

modularity of W in p and αD, as well as the unprofitability of insurance sold to types that

litigate. The assumption σ < 1
d
ensures the monotonicity and supermodularity conditions,

but does not guarantee unprofitability of insurance sold to types that litigate. For the latter,

we need additional assumptions. For p > p∗, we can write

W −K =
(
σp(1− p)

2

) [
αD(2d− αD)− θd2

]
− θ(c+ cA).

This is never positive for all p, and may be negative for all p. Note that W −K is increasing

in αD, so imposing that W −K is negative for all p > p∗ and αD = d provides a sufficient

condition for the insurer to lose money when the agent litigates. This condition corresponds

to

σ <
8θ(c+ cA)
d2(1− θ)
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Note that this condition does not imply, and is not implied by, the assumption of σ < 1
d
. The

simplest way to see this is to note that the constraint is impossible to meet for θ = 0 and is

always met for θ = 1.

Under the assumption σ < min
{

1
d
, 8θ(c+cA)
d2(1−θ)

}
our proofs (Lemma 1, Lemma 2, and Theorem

2 in the main text) go through essentially unchanged.

Lemma 1. This lemma states that no pooling equilibrium exists with a contract that yields

p∗ < 1. In the risk-neutral analysis, we can restrict attention to the contract αL = cA and

αD = c
p∗ . The result holds because there is always a profitable alternative contract. Because

p∗ < 1, the insurer incurs some costs on the types that litigate p > p∗. Hence, for this contract

to earn zero profit for the insurer, it must be sold at a positive price. Let the break-even

price, if all types buy this contract, equal P̃. Because of the supermodularity of W in p and

αD, there exists an alternative contract with slightly lower αD sold at a price slightly below

P̃ that attracts just types that settle. Because the insurer would incur no costs from these

types, the contract is profitable.

In the case of risk aversion, the analog to Lemma 1 holds easily if σ < 1
d
so that the

supermodularity of W in p and αD continues to hold. While the basic logic is the same, a

couple of things are different. First, we can still focus on the p∗ < 1 condition implied by

a pooling contract, but note that we cannot restrict attention to the contract αL = cA and

αD = c
p∗ . The reason is that we lose pointwise maximization of W—the contract αL = cA

and αD = c
p∗ maximizes W conditional on p∗ for types that settle, but αD = d insurance

maximizes W conditional on p∗ for types that litigate. So with that change, it is necessary

to consider any contract that yields p∗. But note that it remains true that the insurer incurs

no costs on types that settle and incurs positive costs on types that litigate. Hence, for

any αL and αD that yield cutoff p∗, the insurer must charge a positive price to break even.

Because there is cross-subsidization, this price is less than the average cost from the types

that litigate. And because of the supermodularity of W in p and αD, it remains possible to

skim off the types that settle profitably.

Lemma 2. This lemma states that no separating equilibrium exists at all. Restrict attention

to low-σ, where W is monotone increasing in p and αL = cA contracts dominate for types
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that settle. Also, consider the two-type case, p ∈ {pL, pH}.

To start, it is still true that there is no equilibrium with two contracts where the prices

are both zero and all types settle, because types would not sort in that case. Under risk

neutrality, the intuition is two-fold. First, because of pointwise maximization, any contract

without αL = cA is dominated and cannot be part of an equilibrium. Second, because of

single crossing, whichever αL = cA contract is preferred by one type will also be preferred by

the other. With σ < 1
d
, pointwise maximization holds for types that settle and single-crossing

holds generally. So with low σ, there is no separating equilibrium with two contracts at price

0 sold to types that settle.

So the remaining possibility includes at least one contract where types litigate. Let one such

contract be αLit, and let it be sold to type p for K(p, αLit) > 0. From Proposition 2, we

know that W − K is maximized for insurance αI such that p∗(αI) = p. Hence, type p will

always strictly prefer to pay ε for αI insurance as long as ε is sufficiently close to 0. And this

is profitable if it attracts only type p agents or if it attracts other less-costly agents. This

rules out any candidate equilibrium where type pH litigates, because αI that is such that

p∗(αI) = pH surely attracts type pH agents, and any other agents that purchase αI are of type

pL and also would not litigate. So now the remaining possibility includes a contract where

the type pL agent litigates, and another contract preferred by agent pH . By our standard

cream-skimming argument (which holds for σ < 1
d
), it is possible to alter the components

of insurance and the price in such a way that attracts the pL types, induces settlement by

them, and does not attract the pH agents.

With insurance possibly being profitable for types that litigate, the change is that such an

insurance contract must be sold for K(p, α). But other than that, nothing really changes.

Now consider the continuous-density case. It remains true that two contracts that induce

only settlement cannot form a separating equilibrium. It also remains true that any con-

tract that induces some litigation is subject to cream-skimming. What would change is

the cream-skimming need not necessarily just induce settlement. Candidate contracts that

induce litigation must charge break-even average prices. That means lower-p types may lit-

igate but be less costly. They can be cream-skimmed. Any deviation that attracts lower-p
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types attracts still-cheaper (on average) types, so altering the less-generous coverage down to

cream skim cannot be made unprofitable by inducing selection away from the more-generous

coverage. We can use the old proof until we reach the case where µF (D1(S)) = 0. We cannot

rule out such contracts with unprofitability. However, the same cream-skimming argument

that the proof of Lemma 2 uses to rule out contracts that attract both types that litigate

and types that settle can be used in the RA case. The reason is that K(p, α) is increasing

in p. So any contract that attracts some measure of types that litigate, and no measure of

types that settle, must sell at an average cost. If the types that buy the contract are p and

p, then the price would need to be
∫ p
p K(p, α)df(p). But then the low-p types can be sold less

generous insurance for a lower price and be cream-skimmed away. For example, the p type

could be sold perfect insurance for a positive price.

Theorem 2 follows from Lemmas 1 and 2, but the exact condition that guarantees that there

is no profitable deviation from p∗ will now change. Thus, the qualitative result is the same,

but the precise conditions to sustain an equilibrium are now different.

B.2 Control over the Settlement Decision

In this extension we consider the optimal assignment of control over the settlement process.

In our main model we assumed that in general the agent decides whether to settle or litigate

and negotiates the settlement, which is motivated by the features of actual liability insurance

contracts that we observe in some industries, such as in patent litigation. In this framework

the agent benefits from the ability to negotiate a better settlement with the third party, but

the option to litigate gives rise to an ex post moral hazard problem. Instead, the agent and

insurer may in some settings prefer an insurance contract whereby the insurer negotiates the

settlement and controls the decision whether to settle or litigate, to avoid the problem of ex

post moral hazard.

To study this problem, analogously to our main model, suppose that the insurer contracts

with the agent, then observes p and negotiates a settlement with the third party, under the

threat of litigation. The insurer offers a contract αD ∈ [0, d] to cover the possible damages

that the agent may have to pay if found liable, as in the main body of the paper. Since the
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insurer controls the litigation process, it pays the settlement transfer and the litigation cost

cA; alternatively, this can also be modeled analogously as the agent paying the litigation cost,

and the insurance contract covering (some part of) the litigation cost.

We assume, as in the literature on litigation insurance (Meurer (1992)), that the insurer

must negotiate “in good faith,” a restriction which in practice is interpreted to mean that

the insurer must negotiate a settlement which maximizes I and A’s joint payoff. Equivalently,

this can also be seen as a requirement that the insurer must leave the agent no-worse-off than

if it had not bought insurance. Under both of these interpretations, since αD is a transfer

between the agent and the insurer, the parties are indifferent over all αD. For generality,

we also allow for the possibility that the insurer is better than the agent at negotiating a

settlement: suppose the insurer has bargaining skill θI , rather than θ.

First, notice that this model of settlement is in fact analogous to our baseline model with no

insurance: one party (in this case the insurer) negotiates a settlement to maximize I and A’s

joint payoff, which is equivalent to a model without insurance where the agent negotiates a

settlement to maximize its own payoff, though possibly with different bargaining skill.

In this extension, the agent’s payoff without insurance is

V̄ = −cA − pd+ θ(c+ cA).

The agent’s payoff with insurance (where the insurer bargains) is

V = −cA − pd+ θI(c+ cA).

So the agent and insurer’s net joint surplus from insurance (relative to no insurance) is

W = (θI − θ)(cA + c).

It is clear that such insurance cannot be profitable if θ > θI , so we will focus on the case

where θI ≥ θ. Also, notice that this surplus is independent of p: all types value this kind

of insurance contract by the same amount. With a monopolist insurer, the optimal price
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of this insurance is W , whereas with competition it is 0. In both settings the bargaining

surplus is always positive, so there is never any litigation in equilibrium. Moreover, because

this surplus is independent of p, the joint surplus from such insurance is the same across

different market and information structures. Whether p is the agent’s private information or

not at the time of contracting with the insurer is in fact irrelevant in this case—both parties

anticipate that at the time of bargaining, I knows p and bargains to maximize A and I’s

joint payoff (which is analogous to our baseline model where A bargains without insurance).

A receives no information rents, since the net joint surplus from this insurance contract is

independent of p.

For each market structure and information structure, we can now compare the insurer’s

overall profit in our main model against its profit from selling insurer-controlled insurance.

We mainly focus on the cases where setting p∗ = 1 is optimal, although analogous comparisons

and intuitions emerge in all cases, where p∗ < 1 may be optimal.

Monopoly and competition under symmetric information

To begin, consider the setting with symmetric information. We show that under both

monopoly and perfect competition, there exists a threshold bargaining parameter θ̃I such

that it is optimal to assign the right to settle to the agent for any θI ≤ θ̃I , and to assign it

to the insurer when θI > θ̃I . Moreover, for θI = θ, agent-controlled settlement is optimal,

confirming that the results in our main model are robust.

From Proposition 4, we can compare a monopolist insurer’s profit from agent-controlled

contracts, as well as a perfectly competitive insurer’s profit from agent-controlled contracts–

both of these relate to the net joint surplus of insurance. In the case where p∗ = 1 is optimal,

we have

PM(1) = JSC(1) = Ep(W (p, 1)) =
∫ 1

c
d

(1− θ)(cA + cp)dF (p).

We compare this to the I’s profit and the net joint surplus from insurer-controlled contracts:

P̃M = WC ≡
∫ 1

c
d

(θI − θ)(cA + c)dF (p).
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With some rearranging, we have that

P̃M ≥ PM(1) = JSC(1) ⇔
∫ 1

c
d

(1− θ)c(1− p)dF (p) ≥
∫ 1

c
d

(1− θI)(cA + c)dF (p)

Notice that for θI sufficiently high (e.g. θI = 1), the right-hand side is 0 and the left-hand

side is positive (independent of θI), so insurer-controlled insurance is optimal. On the other

hand, for θI low enough (e.g. θI = θ), we have c(1−p) < c+ cA, so the inequality is reversed,

hence agent-controlled insurance is optimal. There exists a unique threshold θ̃I given by

∫ 1

c
d

(1− θ)c(1− p)dF (p) =
∫ 1

c
d

(1− θ̃I)(cA + c)dF (p),

such that for θI > θ̃I , insurer-controlled contracts are optimal, whereas for θI ≤ θ̃I , agent-

controlled contracts are optimal. Moreover, when the agent and insurer are equally good at

bargaining, i.e. θ = θI , agent-controlled insurance contracts are optimal. Our equilibrium

results from the main model continue to hold when θI and θ are similar enough.

Competition under private information

Now consider a competitive market where the agent is privately informed about its type.

To see whether agent-controlled or insurer-controlled insurance will be sustained as an equi-

librium, we must again compare the insurer and agent’s net joint surplus from each type

of contract. From Lemma 2 and Theorem 2, the only possible agent-controlled equilibrium

contract is a pooling contract with p∗ = 1. I and A’s joint surplus is

JSC(1) ≡ Ep(W (p, 1)) =
∫ 1

c
d

(1− θ)(cA + cp)dF (p).

With an insurer-controlled insurance contract, I and A’s joint surplus is

P̃M = WC =
∫ 1

c
d

(θI − θ)(cA + c)dF (p).

Both of these are identical to the case of symmetric information, and thus our conclusions

coincide: for θI > θ̃I , insurer-controlled contracts are offered in equilibrium, whereas for

θI ≤ θ̃I , agent-controlled contracts are offered in equilibrium. When the agent and insurer
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have equal (or similar enough) bargaining skill, our equilibrium results from the main model

continue to hold.

Monopoly under private information

Finally, consider the monopoly setting with private information. In the case where p∗ = 1 is

optimal, from Theorem 1, the insurer offers a menu of two contracts: a contract with αD = 0

sold at price (1− θ)cA, for types p ≤ p̄, and one with αD = c
p∗ sold at price (1− θ)(cA + c p̄

p∗ ),

for types p > p̄. The insurer’s total revenue here is

RM(1) ≡
∫ p̄

c
d

(1− θ)cAdF (p) +
∫ 1

p̄
(1− θ)(cA + c

p̄

p∗
)dF (p)

We compare this against the insurer’s profit in this extension:

P̃M =
∫ 1

c
d

(θI − θ)(cA + c)dF (p).

So we have

P̃M ≥ RM(1)⇔
∫ p̄

c
d

(θI − θ)cdF (p) +
∫ 1

p̄
(θI − θ)c(1−

p̄

p∗
)dF (p) ≥

≥
∫ p̄

c
d

(1− θI)cAdF (p) +
∫ 1

p̄
(1− θI)(cA + c

p̄

p∗
)dF (p)

As before, for θI sufficiently high (e.g. θI = 1), the right-hand side is 0 and the left-hand side

is positive, so insurer-controlled insurance is optimal. On the other hand, for θI low enough

(e.g. θI = θ), the left-hand side is 0 while the right-hand side is positive, so the inequality is

reversed, hence agent-controlled insurance is optimal. There exists a threshold θ̄I given by

the expression

∫ p̄

c
d

(θ̄I−θ)cdF (p)+
∫ 1

p̄
(θ̄I−θ)c(1−

p̄

p∗
)dF (p) =

∫ p̄

c
d

(1−θ̄I)cAdF (p)+
∫ 1

p̄
(1−θ̄I)(cA+c p̄

p∗
)dF (p)

such that for θI > θ̄I , insurer-controlled contracts are optimal, whereas for θI ≤ θ̄I , agent-

controlled contracts are optimal. As in the setting with symmetric information, the results

from our main model continue to hold as long as θI and θ are similar enough.
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B.3 Bargaining under Incomplete Information

When parties bargain under incomplete information, generically litigation arises in equilib-

rium. In the main text, when parties bargain under complete information, litigation never

occurs in equilibrium. This is a well-known difference between these two models of bargain-

ing, independent of the issue of insurance. In our baseline setting, insurance has the potential

of inducing litigation in an environment that otherwise would never feature litigation.

For illustrative purposes, we consider the two-type case: A fraction λ of agents are type pH
and a fraction 1 − λ are type pL, with 0 ≤ pL < pH ≤ 1. Assume the agent is protected

by the liability insurance policy α = (αS, αL, αD). Following the literature, we assume

the uninformed party makes a take-it-or-leave it offer to the informed party. Consider the

following two offers:

SL = αS + (cA − αL) + pL(d− αD)

SH = αS + (cA − αL) + pH(d− αD)

The low-risk type is indifferent between paying SL and litigating, while the high-risk agent

is strictly better off by accepting SL. The settlement offer SH leaves the high-risk type

indifferent between accepting the offer or litigation but low-risk type rejects the offer and

litigate. The third party’s outside option is E[p]d − c because it can always make a ‘bad

faith’ settlement offer (S∞ = +∞) that forces both types to litigate. We have three cases:

1. TP makes offer SL, both types of agents settle, and TP’s payoff is

πTP (SL) = αS + (cA − αL) + pL(d− αD)

2. TP makes offer SH , high-risk types settle but low-risk type litigate, and TP’s payoff is

πTP (SH) = λ[αS + (cA − αL) + pH(d− αD)] + (1− λ)[pLd− c]
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3. TP forces litigation by offering S∞ and TP’s payoff in this case is

πTP (S∞) = (λpH + (1− λ)pL)d− c

It can be shown that

πTP (SH) = πTP (S∞) + λ(c+ cA − αL − pHαD + αS)︸ ︷︷ ︸
≡Y (α)

(41)

πTP (SH) = πTP (SL) + λ(pH − pL)(d− αD)− (1− λ)[c+ cA − αL − pLαD + αS]︸ ︷︷ ︸
≡Z(α)

(42)

πTP (SL) = πTP (S∞) + Y (α)− Z(α)︸ ︷︷ ︸
≡W (α)

(43)

The optimal offer, is determined by Y (α), Z(α), and W (α), because SH � SL is equivalent

to Y (α) ≥ 0; SH � S∞ is equivalent to Z(α) ≥ 0; and SL � S∞ is equivalent to W (α) ≥ 0.

In fact, the optimal offer is:

1. SL(α) if and only if α ∈ CL = {α : Z(α) ≤ 0 and Y (α) ≥ Z(α)}.

2. SH(α) if and only if α ∈ CH = {α : Z(α) ≥ 0 and Y (α) ≥ 0}.

3. S∞ if and only if α ∈ C∞ = {α : Y (α) ≤ 0 and Y (α) ≤ Z(α)}.

Without insurance (by setting αS = αL = αD = 0) we have Y (0) = λ(c + cA) > 0 and

Z(0) = λ(pH − pL)d− (1− λ)(c+ cA), so it is optimal to offer SL(0) if Z(0) < 0, or to offer

SH if Z(0) > 0. Thus, it is possible to obtain litigation in equilibrium without insurance.

We now derive the agent’s willingness to pay for insurance policy α. We first consider the

case Z(0) < 0 or, equivalently,
(

λ
1−λ

)
(pH−pL)d < c+cA. In this case, the optimal settlement

offer for an agent without insurance is SL(0). Hence, every agent gets the same outside option

from not buying insurance, which is to pay SL(0) as a settlement fee.

The willingness to pay of an agent of type pL pay for insurance contract α is:

• SL(0)− (SL(α)− αS) = αL + pLαD if α ∈ CL.
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• SL(0)− [(cA − αL) + pL(d− αD)] = αL + pLαD if α 6∈ CL.

This is because the low-type agent only accepts SL(α) and rejects (and goes to litigation)

with any other offer.

The willingness to pay of an agent of type pH pay for insurance contract α is:

• SL(0)− (SL(α)− αS) = αL + pLαD if α ∈ CL.

• SL(0)− (SH(α)− αS) = αL + pHαD − d(pH − pL) if α ∈ CH .

• SL(0)− [(cA − αL) + pH(d− αD)] = αL + pHαD − d(pH − pL) otherwise.

Conditional on having bought insurance policy α, the high-type agent accepts both offers

SL(α) and SH(α), and rejects S∞.

Complete Information between the insurer and the agent

If the agent’s type is pL, the insurer would offer a policy α ∈ CL such that maximizes

αL + pLαD−αS. This is because under this policy the agent settles so the insurer has to pay

αS, but the insurer does not pay αL + pLαD (this is the gain from an improved bargaining

position). In contrast, if the agent litigates, the insurer pays all the cost so the net surplus

between the insurer and the agent is zero.

Thus, the optimal contract solves

max
(αS ,αL,αD)

αL + pLαD − αS

subject to

(1− λ)[αL − αS] + αD(pL − λpH) ≤ (1− λ)(c+ cA)− λd(pH − pL)

αL − αS + αD ≤ c+ cA − λd(pH − pL)
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We can treat αL − αS as a new variable x ∈ (−∞, cA] and transform the problem to:

max
(x,αD)

x+ pLαD

subject to

(1− λ)x+ αD(pL − λpH) ≤ (1− λ)(c+ cA)− λd(pH − pL)

x+ αD ≤ c+ cA − λd(pH − pL)

The solution to this problem is easy to compute, although it depends on the parameters of

the problem. For example if pH < λ(1 − pH), the solution is αD = 0 and x∗ = c + cA −(
λ

1−λ

)
(pH − pL)d, which is positive by the assumption Z(0) < 0. In other words, under

some assumptions on the parameters, the optimal contract under complete information for

an agent of type pL is to set αL − αS = x∗.

Similar to the baseline case, under complete information the insurer sells a contract that

never induces litigation. In contrast to the baseline case, in this setting insurance improves

welfare by reducing the amount of litigation in equilibrium. Also, as in the baseline case,

there is multiplicity in the optimal contract.

Incomplete and Symmetric Information

Under incomplete and symmetric information between the agent and the insurer, the insurer

would induce litigation by offering α ∈ C∞, incurring in losses, so this cannot be optimal.

When α ∈ CH , the insurer induces litigation for the low-type. In this case, The net surplus

between the low-type agent and the insurer is zero, whereas the net surplus between the

high-type agent and the insurer is αL−αS + pHαD − d(pH − pL). Finally, when α ∈ CL, the

net surplus between both types of agents and the insurer is αL − αS + pLαD.

As in the case of complete information, we can see that only the difference between αL and

αS is relevant for the insurer’s problem. Thus, the optimal contract under incomplete and

34



symmetric information solves:

max
α=(αS ,αL,αD)

[x+ pLαD]1(α ∈ CL) + λ[x+ pHαD − d(pH − pL)]1(α ∈ CH)

where x = αL−αS. The solution to this optimization problem depends on the parameters of

the problem. In contrast to the baseline case in the main text, where αS = 0 and αL = cA,

when parties bargain under incomplete information we obtain multiple optimal contracts,

because αS and αL are “perfect substitutes.”

In this setting, the insurer may not want to minimize the difference αS − αL, which in the

main text leads to set αS = 0 and αL = cA, because the insurer chooses a contract to extract

rent from the third party, by inducing it to make a low offer that is accepted by the agent,

thus raising the agent’s willingness to pay for insurance.

B.4 Alternative Equilibrium Concepts

One of the criticisms of the results in Rothschild and Stiglitz (1976) is that, under some

conditions, equilibrium fails to exist. In our setting, when the mass of high-risk types is

sufficiently low equilibrium may also fail to exist. The literature following Rothschild and

Stiglitz (1976) has come up with alternative equilibrium notions under which an equilibrium

exists. Riley (1979) proposes a reactive equilibrium notion, which exists in the Rothschild

and Stiglitz (1976) setting. In our setting, in contrast, this equilibrium may not exist. First,

if there exists a Nash equilibrium set of contracts, it is a Riley equilibrium. Consider the

case where there is no Nash equilibrium. Then, there exists a contract p∗d < 1 that is a

profitable deviation from p∗ = 1. But then, this new contract can be cream-skimmed. And

the contract that cream-skims p∗d can never be “safe,” i.e., it can also be cream-skimmed by

another contract. Therefore in our setting Riley and Nash coincide, meaning that a Riley

equilibrium may not exist.

Azevedo and Gottlieb (2017) propose an equilibrium refinement of the free-entry equilibrium

(there is multiplicity of free-entry equilibria in the Rothschild and Stiglitz (1976) setting).

This equilibrium notion requires continuity in the costs. In our setting, however, the insurer
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costs are not continuous as a function of the agent’s type, so we cannot directly use this

equilibrium notion. Another alternative is to use mixed strategies. Farinha Luz (2017)

characterizes a mixed-strategy equilibrium in the Rothschild and Stiglitz (1976) setting. The

main assumption is that there is a finite number of firms, and most of the analysis is for the

case of two firms.32 We believe it may be possible to construct a mixed-strategy equilibrium

in our setting, but this is beyond the scope of this paper, as we focus on pure strategies,

which are more natural to interpret in our contracting environment.

Wilson (1977) proposes the notion of anticipatory equilibrium. A set of policies is a Wilson

equilibrium if each policy earns nonnegative profits and there is no other set of policies

which earn positive profits in the aggregate and nonnegative profits individually, after the

unprofitable policies in the original set have been withdrawn. When a Nash equilibrium

exists, this is also a Wilson equilibrium, because there are no profitable deviations. When

a Nash equilibrium does not exists, a Wilson equilibrium may exist, and consists of pooling

both types into a single contract: the contract that generates zero joint profits, and it is

the most preferred contract for the low-risk type, i.e., the contract that targets the low type

p∗ = pL, sold at price

Q = λ

(
cA + c

pH
pL

)
.

B.5 Characterization of the Symmetric Information Contract

To help characterize the solution to this problem, we consider smooth distributions for which

the density may equal zero only at the boundaries of the support.33

Assumption 3. Let F (·) be twice-continuously differentiable, with probability density f(p) >

0 for all p ∈ (0, 1).
32The paper also discusses the case of the number of firms going to infinity.
33These formulas also apply to the case where p has a discrete distribution with binary support, which is

available upon request.
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Consider the derivative of the objective function in equation (11):

Ψ′SI(p∗) = (1− θ)(c+ cA)f(p∗)︸ ︷︷ ︸
marginal type

− (1− θ) c

(p∗)2

p∗∫
c/d

pdF (p)

︸ ︷︷ ︸
infra-marginal types

+ θ(c+ cA)f(p∗)︸ ︷︷ ︸
marginal type

. (44)

Increasing coverage has an effect on the marginal type and infra-marginal types. First, the

marginal type p∗ gets perfect insurance and extracts the full bargaining surplus (c+ cA) from

the third party. The marginal gain of increasing p∗ is shown in equation (44) in two different

places: a gain of (1 − θ)(c + cA) from the leverage of types marginally below type p∗; and

a gain from avoiding a loss of θ(c + cA) in bargaining surplus for types marginally above p∗

who would settle instead of going to court. Second, the infra-marginal types p < p∗ receive

a level of insurance further away from their perfect level, inducing a loss in the joint surplus

of the insurer and agent.

The optimal contract either precludes litigation entirely (p∗ = 1) or balances the gain of

the marginal type versus the average loss of the infra-marginal types. To further understand

when it is optimal to offer a contract that induces litigation, we define the elasticity of density.

Definition 2. For distributions satisfying Assumption 3, the elasticity of density is

η(p) = pf ′(p)
f(p) .

It is easy to see that the following identity holds

Ψ′′SI(p)p2 + 2Ψ′SI(p)p = pf(p)
cA + c

[
η(p) + 1 + cA + θc

cA + c

]
.

Thus, if p∗ is an interior solution of problem (11), the first and second order conditions,

Ψ′SI(p∗) = 0 and Ψ′′SI(p∗) < 0, respectively, imply

η(p∗) < −
(

1 + cA + θc

cA + c

)
.

The elasticity of density provides us with a sufficient condition for a unique solution of

problem (11).
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Lemma 13. Under Assumption 3, the solution to problem (11) is unique and equal to p∗ = 1

if for all p ∈
[
c
d
, 1
]
we have

η(p) ≥ −
(

1 + cA + θc

cA + c

)
.

For any convex distribution F (·), η(p) ≥ 0 for all p. By Lemma 13, the unique optimal

contract precludes litigation by setting p∗ = 1. When the density function is increasing,

the marginal gain dominates the infra-marginal loss, i.e., it is suboptimal to sell insurance

generous enough to induce litigation by risky types. Intuitively, it is also optimal to preclude

litigation when F (p) is mildly concave.

There are many distributions where the solution to (11) induces litigation for some types. In

such cases, η(p) allows us to provide a sufficient condition for uniqueness.

Lemma 14. Under Assumption 3, let p∗ < 1 be such that Ψ′SI(p∗) = 0 and Ψ′′SI(p∗) < 0.

Then, p∗ is the unique interior solution if

η(p) ≤ −
(

1 + cA + θc

c+ cA

)
, for all p ∈ [p∗, 1]

When p∗ < 1, the insurer targets a particular type p∗ with perfect insurance and induces

litigation by types p > p∗ and imperfect insurance for types p < p∗. In targeting, the insurer

seeks a sufficiently low level of relative litigation risk associated with type p∗.34 When the

elasticity of density falls with p and the density of a high-risk type is low,35 intuitively, the

insurer prefers to induce some litigation. We have the following result.

Corollary 1. If η(p) is non-increasing and f(1) < (1− θ)c
cA + c

1∫
c/d

pdF (p), there exists a unique

p∗ ∈
(
c
d
, 1
)
that solves (11).

Proof. When Ψ′SI(1) < 0, there exists p∗ < 1 that solves (11). Since η(p∗) < −
(
1 + cA+θc

c+cA

)
and η(p) is non-increasing, the sufficient condition for uniqueness in Lemma 14 holds.

34η(·) is analogous to the Arrow-Pratt coefficient of relative risk aversion when the Bernoulli utility function
is u(x) ≡ F (x). A large coefficient of relative risk aversion implies that the decision-maker has very little to
gain by gambling. In our environment, a large negative η(p) means that the insurer wants a lower p, because
it has very little to lose from gambling on relatively unlikely litigation.

35Note that specifying η(p) as decreasing in p is a weaker assumption than specifying f(p) to have decreasing
density and to be log-concave in p.
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Next, we present comparative statics results.36

Lemma 15. p∗ is non-decreasing in cA and θ, and is non-increasing in d.

Lemma 15 follows from the Topkis monotonicity theorem. An increase in the agent’s litigation

cost cA increases the opportunity cost of litigation. The gain from increasing the number of

types that settle is unambiguously higher, so p∗ is non-decreasing in cA. An increase in the

agent’s bargaining skill decreases the insurer’s ability to profit from insurance: the willingness

to pay for insurance falls but the cost of insurance is the same. Thus p∗ is non-decreasing

in θ because an increase in the agent’s bargaining skill does not change the surplus gain of

the marginal type, but it reduces the surplus loss of the infra-marginal types. An increase

in damages d increases the number of agents exposed to credible liability claims. Thus the

number of infra-marginal types increases and therefore p∗ weakly decreases. The effect of the

third-party’s litigation cost c is ambiguous, because it increases both the surplus gain of the

marginal type and the loss in surplus of the infra-marginal types.

Proof of Lemma 13

Proof. p∗ 6= p̂′ > 1 and p∗ 6= c
d
because ΨSI(p̂′) < ΨSI(1) and ΨSI

(
c
d

)
< ΨSI(1). With a

continuous distribution F (·), the objective function is continuous, so a maximum exists (not

necessarily unique). With a continuous density, the derivative of the ΨSI(·) is also continuous.

If there are multiple solutions, then at least one must be an interior local maximum. The

density f(·) is differentiable because F is twice differentiable, so the first and second order

conditions imply

(c+ cA)f ′(p∗) + f(p∗)
p∗

[2cA + (1 + θ)c] < 0. (45)

Then, if for all p∗ condition (45) is violated, we can guarantee that the solution of the problem

is p∗ = 1 because in that case there is no interior local maximum of Ψ(·). Hence, since a

solution must exist, it must be that p∗ = 1.
36As the two-type case suggests, problem (11) may have multiple solutions, e.g. with a continuous distri-

bution with non-monotonic η(p). If so, the monotonicity of p∗ is in the strong set order.
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Proof of Lemma 14

Proof. Suppose p1 < p2 < 1 are two points satisfying the FOC, Ψ′SI(pi) = 0, and the SOC,

Ψ′′SI(pi) < 0. We have pi > c
d
because Ψ′SI

(
c
d

)
> 0. Then, by continuity of Ψ′, there exists

ξ ∈ (p1, p2) such that Ψ′SI(ξ) = 0 and Ψ′′SI(ξ) > 0, which implies

(c+ cA)f ′(ξ) + f(ξ)
ξ

[2cA + (1 + θ)c] > 0⇔ η(ξ) > −1− cA + θc

cA + c
.

If this condition does not hold, the existence of both p1 and p2 is a contradiction.

Proof of Lemma 15

Proof. By Topkis’ monotonicity theorem, ∂
2ΨSI

∂p̂∂η
≥ 0⇒ p∗(·) non-decreasing in η. It is easy

to show that ∂2ΨSI

∂p̂∂cA
> 0, ∂

2ΨSI

∂p̂∂θ
> 0, and ∂2ΨSI

∂p̂∂d
< 0. We have ∂2ΨSI

∂p̂∂c
(p∗) = f(p∗) −

(1− θ)
(p∗)2

 p∗∫
c/d

pf(p)dp−
(
c

d

)2
f
(
c

d

) . As p∗ → c
d
, ∂2ΨSI

∂p̂∂c
→ θf

(
c
d

)
> 0. Moreover, ∂2ΨSI

∂p̂∂c
is

increasing if η(p) ≥ −1.
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