
“©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

Twin Variational Auto-Encoder for Representation
Learning in IoT Intrusion Detection

Phai Vu Dinh1,2, Nguyen Quang Uy3, Diep N. Nguyen1, Dinh Thai Hoang1, Son Pham Bao1,2, Eryk Dutkiewicz1
1 School of Electrical and Data Engineering, University of Technology Sydney, Australia

2 JTIRC, VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
3 Le Quy Don Technical University, Hanoi, Vietnam

Abstract—Intrusion detection systems (IDSs) play a pivotal
role in defending IoT systems. However, developing a robust
and efficient IDS is challenging due to the rapid and continuing
evolving of various forms of cyber-attacks as well as a massive
number of low-end IoT devices. In this paper, we introduce a
novel deep learning architecture based on auto-encoders that
allows to develop a robust intrusion detection system. Specifically,
we propose a novel neural network architecture called Twin
Variational Auto-Encoder (TVAE) for representation learning.
TVAE includes a variational Auto-Encoder (VAE) and an Auto-
Encoder (AE) that share a common stage where the decoder
of the VAE is used as the encoder of the AE. The TVAE is
trained in an unsupervised manner to effectively transform the
original representation of data at the input of the VAE into
a new representation at the output of the AE. In the new
representation space, the difference between normal and attack
data is more distinguishable. A variant of TVAE, namely Twin
Sparse Variational Auto-Encoder (TSVAE) is also introduced by
imposing a sparsity constraint on the representation units. The
effectiveness of TVAE and TSVAE is evaluated using popular
IDS and IoT botnet datasets. The simulation results show that
the accuracy of TVAE and TSVAE can achieve the best results
on six datasets, which is higher than those of state-of-the-art AE
and VAE variants. We also investigate various characteristics of
TVAE in the latent space as well as in the data extraction process.
Besides applications on the IoT IDS, TVAE can also be applicable
to all conventional network IDSs.

Index Terms—Deep Learning, representation learning, TVAE,
TSVAE, VAE, AE, IoT, IDS.

I. INTRODUCTION

The Intrusions Detection Systems (IDSs) can be categorized
into host-based IDS and network-based IDS [1]. The former
monitors and analyzes the data, collected from a specific host.
The data collection may consist of a vector of system calls,
unexpected users’ activities, and system logs [2]. The latter
focuses on the incoming network traffic to detect malicious
connections which many include DoS attacks, port scans,
malicious emails, phishing scams [3]. However, developing
a robust and efficient IDS is challenging due to the rapid
and continuing evolving of various forms of cyber-attacks as
well as a massive number of low-end IoT devices. Moreover,
IoT devices are often limited in computing and communi-
cations, energy resources. That makes more vulnerable to
cyber-threats, especially for low-end devices (e.g., sensors and
actuators).

Over the last decade, deep neural networks or deep learning
(DL) have been emerging as promising engines in IDSs.
Amongst DL techniques, auto-encoders (AEs) are widely
used for representation learning or feature learning [4]. AEs
aim to learn the best parameters required to reconstruct its
input at the output. The bottleneck layer of AEs is often
called as the latent vector or the latent space. The latent

vector is very helpful in IDSs since it transforms the original
representation into new representation where attack data is
often more distinguishable from the normal data. Variational
auto-encoder (VAE), a variant of AE, is one of the most
prevalent generative model frameworks [5]. However, when
applying VAE to representation learning, the effectiveness of
VAE is often not as good as that of AE [6]. The reason is that
the latent representation of VAE is sarcastically sampled from
a Gaussian distribution thus this representation is not stable to
be used as the input to a classifier. In this paper, we propose
a novel deep learning architecture based on AE and VAE,
referred to as Twin Variational Auto-Encoder (TVAE), for
representation learning. TVAE includes a VAE and an AE that
share a common stage where the decoder of the VAE is used as
the encoder of the AE. The objective of the AE in TAVE is to
reconstruct the latent representation of the VAE at its output.
Thus, the output of the AE in TAVE can be used as a new
representation for the original data. The new representation is
then used as the input to classification algorithms to detect
potential attacks. Moreover, a variant of TVAE, namely Twin
Sparse Variational Auto-Encoder (TSVAE) is introduced by
imposing a sparsity constraint on the representation units. The
experiments performed on IDS datasets named NSLKDD [7]
and five IoT botnet datasets [8] show the superior performance
of the TVAE and TSVAE over state-of-art AE and VAE
variants in IDSs. Our main contributions are summarized as
follows:

• We propose a novel neural network architecture, i.e.,
Twin Variational Auto-Encoder (TVAE) and a variant
of TVAE called Twin Sparse Variational Auto-Encoder
(TSVAE) for IDSs. TVAE and TSVAE provide an ef-
fective technique for representation learning that makes
attack data more distinguishable from normal data (in
the latent domain). This is thanks to stochastic model in
TVAE and TSVAE in the training process while they use
a non-probabilistic model in the testing process.

• We conduct intensive experiments using IDS datasets and
five IoT botnet datasets to evaluate the performance of
TVAE and TSVAE. The experimental results show that
the TVAE and TSVAE models can support the classifiers
to perform classification tasks much better than those of
VAEs and AE. For example, using the representation of
the TVAE and TSVAE, the tested classifiers can achieve
the best results on six datasets.

• We numerically study various characteristics of the latent
representation of TVAE and TSVAE in the latent space
as well as in the data extraction process to justify the
superior performance of TVAE and TSVAE over the AE

x1

x2

x3

x4

x5

x6

Input
xi

z1

z2

z3

Latent
Representation

zi

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Output
x̂i

encoder

zi = fφ(x
i)

decoder

x̂i = gθ(z
i)

Fig. 1: Autoencoder

and VAE variants.

II. RELATED WORK

This section brief reviews the previous research on repre-
sentation learning for IDSs based on AEs and VAEs.

AE is a well-known DL architecture for representation
learning in recent years. The authors in [9], [10] used AE as a
non-linear transformation to discover unknown data structure
compared to those of Principal Component Analysis (PCA).
Shone et al in [11] proposed non-symmetric deep-auto encoder
which only uses an encoder for both encoded and decoded
tasks. This architecture can extract data from the latent space to
enhance the performance of Random Forest (RF). Recently, the
authors in [12] proposed Convolutional Sparse Auto-Encoder
(CSAE), which leverages the structure of the convolutional AE
and incorporates the max-pooling to heuristically sparsify the
feature maps for representation learning. VAE is as common
as Generative Adversarial Networks (GAN) when commonly
using as a generative model [13]. The VAE model generates
adversarial examples which are used to improve performance
of deep-learning models in handling imbalanced datasets [14].
However, VAE is hardly used for representation learning as its
latent representation is stochastically sampled from a Gaussian
distribution, and thus it is unstable when using as the input to
classification algorithms [15]. To facilitate the robust learning
of disentangled representations in VAE, the authors in [16]
and [17] added an extra hyperparameter β to the VAE and a
quantization term in the bottleneck of VAE, respectively.

Note that the latent space of AE can be extremely irregular.
The reason is that the close points in latent space of AE
can be mixed together. VAE is seldom used for represen-
tation learning since it is unstable due to sampling process
to generate the latent space. In this paper, we propose a
novel deep learning architecture using unsupervised learning
based on the architectures of VAE and AE, called Twin
Variational Auto-Encoder (TVAE) for representation learning.
The TVAE allows to reconstruct the latent representation and
uses this reconstructed representation as a new representation
for classifiers. The TVAE is then trained with a probabilistic
function, whilst its extraction process for testing is non-
probabilistic. For that, TVAE is more stable than those of the
previous stochastic models, i.e., VAE, β-VAE and VQVAE. In
addition, to discover interesting structure in the representation,
a variant of TVAE, namely Twin Sparse Variational Auto-
Encoder (TSVAE) is also introduced by imposing a sparsity
constraint on the representation units.

III. BACKGROUND

This section presents AE and VAE in details. They are
the two key components of the proposed models in the next
section.

µi

σi

zi

x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

x6 x̂6

encoder

f(xi, φ)

qφ(z
i|xi) = q(zi; f(xi, φ))

decoder

g(zi, θ)

pθ(x
i|zi) = p(xi; g(zi, θ))

trick

zi,k = µi + σi ∗ εi,k

µi = f1{xi, φ}

σi = f2{xi, φ}

xi x̂i

Fig. 2: Variational Autoencoder

A. Auto-Encoder (AE)
An Auto-Encoder is a neural network trained by unsu-

pervised learning to learn the best parameters required to
reconstruct its output as close to its input as possible [4]. An
AE has two parts, an encoder and a decoder, as illustrated in
Fig. 1. Let W , b, W

′
, and b

′
be the weight matrix and biases

of the encoder and decoder, respectively. φ = (W , b) is the
parameter sets of the encoder function z = fφ(x), while θ =
(W

′
, b

′
) is the parameter sets of the decoder function x̂ =

gθ(z). We use a dataset x = {x1, x2, .., xn} to train the AE
model which has its loss function as follows:

`AE(x, φ, θ) =
1

n

n∑
i=1

(
xi − x̂i

)2
, (1)

where x̂i is the output of the AE corresponding with the input
xi. The latent representation of the encoder is usually referred
to as a bottleneck which is used as an input for classifiers.

B. Variational Auto-Encoder (VAE)
A Variational Auto-Encoder (Fig. 2) is another version of

AE [18]. The difference between a VAE and an AE is that
the latent representation (z) of the VAE is sampled from a
Gaussian distribution parameterized by mean (µ) and standard
devidation (σ). We define the encoder by qφ(z

i|xi) and the
decoder by pθ(x

i|zi), then the loss function of a VAE for a
datapoint xi includes two terms as follows:

`VAE = DKL
(
qφ(z

i|xi)|pθ(zi)
)
− Eqφ(zi|xi)[log pθ(xi|zi)]·

(2)
The first term in (2) is the KL divergence between the
approximation posterior (qφ(zi|xi)) and the prior distribution
(pθ(zi)). This divergence measures how close the posterior
is to the prior. The second term −Eqφ(zi|xi)[log pθ(xi|zi)] is
reconstruction error (RE) of the VAE. This term forces the
decoder to learn to reconstruct the input data.

Since, it is tricky to generate samples zi from qφ(z
i|xi), a

reparameterization trick in (3) is used to overcome the high
variance problem when applying the Monte Carlo method
[19]. In particular, instead of using a random variable from
the original distribution, the reparameterization trick uses a
random variable zi from a standard normal distribution as
follows:

zi,k = µi + σi ∗ εi,k; εi,k ≈ N(0, I), (3)

where µi and σi are mean and standard deviation of the
Gaussian distribution of an individual latent variable zi, re-
spectively. The values of µi and σi are obtained via the
encoder by using functions µi = f1(x

i, φ) and σi = f2(x
i, φ)

as illustrated in Fig. 2, respectively.

µi

σi

zi

x1 x̂1

x2 x̂2

x3 x̂3

x4 x̂4

x5 x̂5

x6 x̂6

z1

z2

z3

ẑ1

ẑ2

ẑ3

encoder

f(xi, φ)

qφ(z
i|xi) = q(zi; f(xi, φ))

hermaphrodite

g1(z
i, θ1)

pθ1(x
i|zi) = p(xi; g1(z

i, θ1))

DATA EXTRACTION PROCESS
put {xi} here after training

trick

zi,k = µi + σi ∗ εi,k

µi = f1{xi, φ}

σi = f2{xi, φ}

decoder

g2(x̂
i, θ2)

pθ1,θ2(t
i|zi) = p(xi; g1(z

i, θ1); g2(x̂
i, θ2))

xi x̂i

ẑi

Fig. 3: Twin Variational Autoencoder Architecture

IV. TWIN VARIATIONAL NEURAL NETWORK
In this section, we present our novel deep learning neural

network architecture: Twin Variational Auto-Encoder (TVAE).

A. Architecture of TVAE
The architecture of TVAE is shown in Fig. 3. The TVAE has

three components: an encoder, a hermaphrodite and a decoder.
First, the encoder attempts to map an input sample xi to two
hidden vectors µi and σi by using functions f1(xi, φ) and
f2(x

i, φ), respectively. A feasible reparameterization trick is
applied by using a deterministic function zi,k = µi + σi ∗
εi,k, which helps to transfer the input xi into a new latent
space zi. Second, the hermaphrodite performed by function
g1(z

i, θ1) has two roles. On the one hand, the hermaphrodite
is the decoder of the VAE in TVAE. On the other hand, the
hermaphrodite is the encoder of the AE. The third component
in TVAE is the decoder fed by x̂i that aims to reproduce zi by
performing the function g2(x̂

i, θ2). After training the TVAE
model with dataset {xi}ni=1, we can put a data point xi into
the decoder to obtain a new representation ẑi. That has the
same dimensionality as that of the latent variable zi.

B. TVAE Loss Function
The loss function `TVAE includes three terms in 4.

`TVAE = DKL[q(z|x)||p(z)]
−Eq(z|x) log p(x|z)− Eq(z|t) log p(t|z)·

(4)

The first term in 4 is the KL divergence between the ap-
proximation posterior q(z|x) and the prior distribution p(z).
The second term is the reconstruction error of the VAE
and the third term is the reconstruction error of the AE.
Assume that both target variables x̂i and ti = ẑi are given
by deterministic functions with additive Gaussian noise. The
values of −Eq(z|x) log p(x|z) and −Eq(z|t) log p(t|z) are thus
scaled with mean-squared-error function, as follows:

−Eq(z|x) log p(x|z) =
1

n

n∑
i=1

(xi − x̂i)2,

−Eq(z|t) log p(t|z) =
1

n

n∑
i=1

(zi − ẑi)2·
(5)

The KL divergence DKL[q(z|x)||p(z)] between the approxi-
mation posterior q(zi|xi) and the prior distribution p(zi) of
the latent variable zi can be measured by assuming both of

Algorithm 1: Training the TVAE model

Input: Training dataset x = {xi}ni=1, R0, φ, θ1, θ2,
n epoch

Output: TVAE model is trained.
for epoch = 1 to n epoch do

foreach xi in x do
zi = µi + σiεi,k

x̂i = g1(z
i, θ1)

if epoch % R0 == 0 then
g2(x

i, θ2)
end
else

g2(x̂
i, θ2)

end
Update (φ, θ1, θ2) by utilizing gradient descent.

end
end

them being normal Gaussian distribution. Thus, the `TVAE
can be written as:

`TVAE =
1

n

n∑
i=1

[
(xi − x̂i)2 + β1(z

i − ẑi)2

+β2

J∑
j=1

(
− 1− log(σij)

2 + (µij)
2 + (σij)

2
)]
,

(6)

where β1 and β2 are hyper-parameter settings to control the
trade-off amongst three terms in (6), J denotes the dimension
of zi.

C. TVAE Training Process

The objective of the decoder in TVAE is to transform the
input data (xi) to a new representation ẑi. However, in the
architecture of TVAE, the value of ẑi is calculated with the
input is x̂i. Thus, to construct a robust representation ẑi, we
propose the training process of TVAE as in Algorithm 1 in
which both xi and x̂i are used to construct both xi and x̂i

with a ratio R0.

V. TWIN SPARSE VARIATIONAL AUTO-ENCODER
(TSVAE)

TSVAE aims to improve the representation of TVAE by
imposing a sparsity constraint on its representation units like
[12]. Let afj (ẑ) be the activation of this representation unit
and ρj = 1

n

∑n
i=1(a

f
j (ẑ

i
j)) be the average activation of

representation unit jth over the training datasets. To enforce
the constraint, we set ρj = ρ where ρ is a sparsity parameter.
The ρ is set at small value close to 0, i.e., ρ = 0.05.
The difference between TSVAE and TVAE is a penalty term

∑|ẑ|
j=1KL(ρ||ρj) added to the loss function, as follows:

`TSVAE =
1

n

n∑
i=1

[
(xi − x̂i)2 + β1(z

i − ẑi)2

+β2

J∑
j=1

(
− 1− log(σij)

2 + (µij)
2 + (σij)

2
)]

+β3

|ẑ|∑
j=1

KL(ρ||ρj),

(7)

where |ẑ| is the number of neurons in the representation.
KL(ρ||ρj) is the Kullback-Leibler (KL) divergence between
a Bernoulli (Gaussian) random variable with mean ρ and a
Bernoulli (Gaussian) random variable with mean ρj .

VI. EXPERIMENT RESULTS

A. Performance Metrics
We use two popular metrics, i.e., Accuracy and F-score and

False Alarm Rate (FAR) [20], to evaluate the performance
the performance of TVAE and TSVAE in IoT IDSs. The
first metrics is Accuracy = TP+TN

TP+TN+FP+FN where TP,
TN, FP, FN are True Positive, True Negative, False Positive
and False Negative, respectively. The second metric is the
F-score that is the harmonic mean of the Precision and the
Recall. Precision is the proportion of positive prediction that
was actually correct, and Recall is the proportion of actual
positives was identified correctly. Based on that, F-score is
calculated by F-score = 2 × Precision×Recall

Precision+Recall and it is an
effective measurement for imbalanced datasets. In addition,
FAR = FP

FP+TN is measured by the proportion of benign
events incorrectly classified as malicious.

B. Datasets
In order to perform the evaluations, we use a popular IDS

datasets, namely NSLKDD, and four IoT botnet datasets, i.e.,
Danmini Doorbell (Dan), Ecobee Thermostat (Eco), Philips
B120N10 Baby Monitor (Phi), Provision PT 838 Security
Camera (838) [8]. The NSLKDD dataset was proposed in [7]
to surpass the inherent issues of the KDD Cup 99 dataset.
The NSLKDD has data from the normal traffic and four attack
types, i.e., DoS, Probe, R2L and U2L. The data points have
41 features, as shown in the Table II. The IoT botnet datasets
(Table III) also form into anomaly (binary) and multi-class
problems. For anomaly datasets, we randomly select 70% and
30% of normal traffic for training and testing sets, respectively.
For the attack data, the Gafgyt botnet is selected for training,
whilst the Mirai botnet is for testing. For multi-class IoT botnet
datasets, we select the normal traffic and five types of Gafgyt
attacks. For each scenario, 70% samples are for training and
30% are for testing. The number of features in the IoT botnet
datasets is 115.

C. Experimental Setting
The experiments are implemented in Python using two

frameworks Tensorflow and Scikit-learn [21]. Four classifiers
including SVM, LR, DT, and RF are applied on the new
representation. We conduct a grid search to tune the hyper-
parameters of four classifiers [21], as shown in Table IV. The
ADAM optimization algorithm [22] is used to train the neural
networks. The learning rate α is initially set at 10−4 for all

configurations. The weights are initialized using the methods
proposed in [23] to facilitate the convergence. The number
epochs is set at 2000 and the parameter batch size is set
at 100. The number of hidden layers of all representation
learning models, i.e., VAE, β-VAE, VQVAE, AE, TVAE, and
TSVAE are shown in Table V. To apply CSAE to IDS, we
implemented this model based on 1D convolution. The same
architecture in [24] is built using 1D convolution in Tensor-
flow. The pool size is 2, and the parameters kernel size
and feature maps are 3, and an array of 16, 1, respectively.
Finally, for the proposed models, we set all parameters for
trading-off the loss function, i.e., β1, β2, and β3 to be 1. We
also used the reduce mean function for each batch training
instead of the reduce sum function, making the TVAE and
TSVAE become more effectively. This is because the decoders
of TVAE and TSVAE are trained with both x̂ and x, however
the data ẑ from the extraction process only uses x. Therefore,
using of the reduce mean function likely generalizes both x
and x̂ better than using the reduce sum function. R0 is set
at 2 for TVAE and TSVAE during training process.

D. Result Analysis
In this subsection, we will evaluate the performances of

TVAE and TSVAE on both anomaly (binary) datasets and
multi-label datasets. The results are compared with the current
state-of-the-art methods in the same fields. We also investigate
various characteristics of TVAE and TSVAE in the latent space
as well as in the new representation. Table VI shows the per-
formance of TVAE and TSVAE compared to the other methods
including VAE [5], β-VAE [16], Vector Quantized-Variational
Auto-Encoder (VQVAE) [17], AE and Convolutional Sparse
Auto-Encoder (CSAE) [12] using two metrics, i.e., Accuracy
and F-score. In this table, the best results on each dataset are
printed boldface.

First, we compare TVAE and TSVAE with VAE and β-
VAE. It is clear that the performance of TVAE and TSVAE
are much greater than those of VAE and β-VAE on multi-
label datasets. For instance, on NSLKDD dataset, TVAE and
TSVAE achieve accuracies obtained by RF classifier of 84.9%
and 85.9%, respectively, whilst those values of VAE and β-
VAE are 50.1% and 50.4%. For both anomaly datasets, i.e.,
DanG-2 and EcoG-2, the results of TVAE and TSVAE are
slightly higher than those of VAE variants. The reason could be
that, these are two easy binary datasets and these four methods
achieve nearly 100% correct classification. This result shows
the benefit of using TVAE and TSVAE to represent the new
representation by using non-probabilistic function compared
to those of VAE and β-VAE using probabilistic function.

Second, comparing with representation learning methods,
i.e., AE, CSAE, and VQVAE. Table VI also shows the better
performance of TVAE and TSVAE. For example, TVAE and
TSVAE achieve the best results on all six datasets, while AE
achieves only one time on DanG-2 dataset. For the results
obtained by CSAE and VQVAE, Accruacy obtained by TVAE
and TSVAE are mostly greater than those of CSAE and
VQVAE. More specifically, on 838G-6 dataset, the accuracies
obtained by TVAE and TSVAE using RF classifier are 71.6%
and 72.7%, respectively, while the figures for CSAE and
VQVAE are 70.9% and 71.5%, respectively. This results show
the better representation of TVAE and TSVAE compared to the
representation of SCAE and VQVAE in classifying the attack
data from the normal data in IDS datasets. In addition, the
results of AE, SCAE, TVAE, TSVAE are more stable since

4a. Original Dataset 4b. Latent Space z 4c. Data Extraction Process (ẑ)

Fig. 4: Illustration of data representation on NSLKDD datasets utilizing TVAE.

TABLE II: NSLKDD DATASET
Attack Types Normal DoS Probe R2L U2R Total

No. Train 67343 45927 11656 995 52 125973
No.Test 9711 5741 1106 2199 37 18794

TABLE III: IoT DATASETS
Labels Dan Eco Phi 838
Benign 49548 13113 175240 98514
Gafgyt 316650 310630 312723 309040
Mirai 652100 512133 610714 429337

they are used the non-probabilistic function to transfer the
original representation into new representations.

To investigate/explain the domination of the TVAE com-
pared to the traditional methods, after training, we put data
into the encoder and the decoder of the TVAE and TSVAE
models to extract z and ẑ, respectively. If the ẑ dataset is easier
to classify than z dataset, it implies that the TVAE model is
better than the VAE and the β-VAE models. This is because if
the reconstruction error between z and ẑ in (6) is removed, the
TVAE has the same loss function as that of the VAE and the
β-VAE models. In fact, the accuracies of DT classifier using
ẑ are always by far greater than those using z in Table VII.
For example, Accuracy obtained by TVAE on the NSLKDD
dataset utilizing ẑ achieve 84.6% compared to 47.3% of z.
The similar results are observed by TSVAE.

Fig. 4 shows the change in distribution of the training data at
different stages under TVAE. First, after the training process,
the original training dataset in the Fig. 4a is pushed into the
TVAE through the encoder. Then, the latent space z shown in
the Fig. 4b is extracted. The Fig. 4c depicts data ẑ obtained
via data extraction process. It is apparent that the original
datasets are more difficult to classify since data points stacked
up. Thanks to the assumption that posterior distribution q(z|x)
being Gaussian, data points are separated in latent space z by
Gaussian distributions. As can be seen from the output layer ẑ
in Fig. 4c, it manages to copy the distribution of z as similar
as possible. After the training process, the data obtained via
the data extraction process, to some extent, retains as much
information of the Gaussian distribution like that of z. Thus,
Fig. 4 is an outstanding justification for why the performance
of TVAE is better than those of AE and variant VAE. On
the other hand, the Fig. 4 gives an example of experiments
to explain the worse results of data given by the z. This
is because the latent space z in Fig. 4b is mixed together
in a Gaussian, making classifiers to get difficult to classify.
Table VIII illustrates the performance of TVAE and TSVAE
compared to others using False Alarm Rate (FAE). It is clear

TABLE IV: Values of parameters used in the grid search for classifiers.

LR Default or solver={’lbfgs’, ’liblinear’};
C={0.1, 0.5, 1.0, 5.0, 10.0}

SVM LinearSVC: default or C={0.1, 0.2, 0.5, 1.0, 5.0, 10.0}
DT Default or criterion={’gini’, ’entropy’};

max depth={5, 10, 20, 50, 100}
RF Default or n estimators={5, 10, 20, 50, 100, 150}

TABLE V: Neural network architecture settings.
Datasets Input h1 µ, σ, z h2 x̂ h3 ẑ

NSLKDD 41 20 10 20 41 20 10
IoT Family 115 50 10 50 115 50 10

that FAE obtained by TVAE and TSVAE are lower than those
of AE variants and VAE variants. For instance, on 838G-6
dataset, TSVAE achieve 8.5% in terms of FAE while those of
AE and CSAE are similar at 8.7%.

Overall, the results in this subsection show the superior
performance of two proposed models, i.e., TVAE and TSVAE.
Both models are trained in an unsupervised manner and their
performances are often higher than those of the state-of-the-art
representation learning models including VQVAE and CSAE.
TVAE and TSVAE also achieve the superior performance
compared to VAE and β-VAE that using the probabilistic
function.

VII. CONCLUSIONS

In this paper, we have introduced novel deep neural net-
works named TVAE and TSVAE for repesentation learning
in IoT intrusion detection. The TVAE and TSVAE are trained
with a probabilistic function, whilst their extraction process for
testing are non-probabilistic. For that TVAE and TSVAE are
much more stable than those of the previous stochastic models
like VAE and β-VAE. The TVAE’s architecture projects data
into a new latent space where attack and normal data are
more separable. Intensive experiments have been conducted on
common datasets, i.e., NSLKDD and five IoT botnet datasets
with four common classifiers LR, SVM, DT and RF. The
results show that the accuracy of TVAE and TSVAE can
achieve the best results on six datasets, which is higher than
those of state-of-the-art AE and VAE variants.

REFERENCES

[1] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in internet of things,” Journal of Network
and Computer Applications, vol. 84, pp. 25–37, Apr. 2017.

[2] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, NY, United States, 2002, pp.
255–264.

TABLE VI: Performance of TVAE and TSVAE compared to others.

Datasets Cfs Accuracy (%) F-score (%)
VAE β-VAE VQVAE AE CSAE TVAE TSVAE VAE β-VAE VQVAE AE CSAE TVAE TSVAE

NSLKDD
LR 51.7 51.7 81.1 80.9 75.2 83.7 83.3 35.2 35.2 76.1 76.0 67.8 78.7 78.4

SVM 51.7 51.7 80.6 78.8 75.6 83.5 84.1 35.2 35.2 75.6 73.9 68.2 78.5 79.1
DT 51.6 51.6 84.3 84.0 84.4 84.6 85.9 35.3 35.3 81.0 79.9 80.0 80.6 82.9
RF 50.1 50.4 84.3 84.4 85.1 84.9 85.9 38.0 38.3 80.1 79.7 80.2 80.9 82.3

DanG-6
LR 28.9 28.9 28.9 66.8 63.7 53.3 65.4 13.0 13.0 13.0 54.9 52.4 41.7 54.0

SVM 28.9 28.9 28.9 66.7 66.8 62.6 66.6 13.0 13.0 13.0 54.8 55.2 51.0 54.7
DT 28.9 28.8 28.9 67.2 61.7 66.7 67.9 13.0 14.0 13.0 55.7 52.3 54.8 57.2
RF 27.0 27.1 28.9 67.3 66.9 66.8 67.4 19.6 19.8 13.0 55.9 55.5 55.2 56.0

PhiG-6
LR 35.9 35.9 35.9 75.1 69.5 58.8 74.0 19.0 19.0 19.0 66.2 58.3 45.0 65.3

SVM 35.9 35.9 35.9 75.0 73.2 75.1 74.9 19.0 19.0 19.0 66.1 64.5 66.2 66.0
DT 35.9 35.8 35.9 75.5 75.2 71.6 76.1 19.0 19.2 19.0 67.1 66.3 62.9 68.1
RF 34.8 34.8 35.9 72.9 75.2 72.1 75.8 21.0 21.1 19.0 64.2 66.3 63.5 67.5

838G-6
LR 25.7 25.7 69.2 70.7 64.4 48.8 68.7 10.5 10.5 59.0 60.2 51.8 34.3 58.5

SVM 25.7 25.7 64.5 70.7 67.8 59.3 69.8 10.5 10.5 52.5 60.2 57.3 47.3 59.5
DT 25.6 25.6 71.6 71.6 71.0 71.9 72.6 12.4 11.1 62.0 62.0 60.7 62.8 63.8
RF 24.1 24.2 71.5 71.5 70.9 71.6 72.7 20.6 20.8 61.8 61.6 60.4 62.0 63.8

DanG-2
LR 97.8 97.8 100 100 90.9 97.8 100 96.7 96.7 100 100 93.1 96.7 100

SVM 97.8 97.8 100 100 97.8 97.8 100 96.7 96.7 100 100 96.7 96.7 100
DT 97.8 97.7 97.5 100 73.1 96.5 100 96.7 96.7 97.9 100 82.5 97.2 100
RF 97.8 97.8 99.3 100 99.9 100 100 96.7 96.7 99.3 100 99.9 100 100

EcoG-2
LR 99.2 99.2 92.9 93.7 99.4 99.2 100 98.9 98.9 95.6 96.2 99.3 98.9 100

SVM 99.2 99.2 99.2 93.8 99.2 99.2 99.9 98.9 98.9 98.9 96.2 98.9 98.9 99.9
DT 99.2 99.0 81.8 99.2 99.4 94.8 99.6 98.8 98.7 89.3 99.4 99.5 96.7 99.6
RF 99.2 99.2 68.0 99.9 99.8 99.5 99.7 98.9 98.9 80.2 99.9 99.8 99.6 99.7

TABLE VII: Comparison of data extracted by z and ẑ obtained by DT
classifier (Accuracy %).

Datasets TVAE TSVAE
z ẑ z ẑ

NSLKDD 47.3 84.6 84.0 85.9
DanG-6 21.0 66.7 20.3 67.9
PhiG-6 23.3 71.6 23.2 76.1
838G-6 21.5 71.9 21.6 72.6
DanG-2 82.4 96.5 94.7 100.0
EcoG-2 92.9 94.8 91.9 99.6

TABLE VIII: False Alarm Rate (%) of TVAE and TSVAE compared to
others obtained by DT classifier.

Datasets False Alarm Rate
AE CSAE VAE β-VAE VQVAE TVAE TSVAE

NSLKDD 15.2 13.6 51.6 51.6 13.7 14.3 14.1
DanG-6 11.7 12.2 28.9 28.8 28.9 11.8 11.6
PhiG-6 6.0 6.1 35.9 35.8 35.9 8.3 6.7
838G-6 8.7 8.7 25.6 25.7 8.7 8.6 8.5
DanG-2 0.5 0.3 97.8 97.7 0.2 0.1 0.1
EcoG-2 0.4 5.2 99.2 99.0 13.0 0.2 0.7

[3] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A
survey of intrusion detection techniques in cloud,” Journal of Network
and Computer Applications, vol. 36, no. 1, pp. 42–57, 2013.

[4] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, Mar. 2013.

[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, 2014.

[6] J. M. Tomczak and M. Welling, “VAE with a vampprior,” CoRR, vol.
abs/1705.07120, 2017.

[7] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE Symposium on Com-
putational Intelligence for Security and Defense Applications, Ottawa,
ON, Canada, 2009, pp. 1–6.

[8] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-
bacher, and Y. Elovici, “N-baiot—network-based detection of iot botnet
attacks using deep autoencoders,” IEEE Pervasive Computing, vol. 17,
no. 3, pp. 12–22, Mar. 2018.

[9] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[10] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,

Jul. 2006.
[11] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach

to network intrusion detection,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 1, pp. 41–50, Feb. 2018.

[12] W. Luo, J. Li, J. Yang, W. Xu, and J. Zhang, “Convolutional sparse
autoencoders for image classification,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 7, pp. 3289–3294, Jul.
2018.

[13] J. Kos, I. Fischer, and D. Song, “Adversarial examples for generative
models,” in 2018 IEEE Security and Privacy Workshops (SPW), San
Francisco, 2018, pp. 36–42.

[14] R. Abdulhammed, M. Faezipour, A. Abuzneid, and A. AbuMallouh,
“Deep and machine learning approaches for anomaly-based intrusion
detection of imbalanced network traffic,” IEEE Sensors Letters, vol. 3,
no. 1, pp. 1–4, Nov. 2018.

[15] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” in International Conference on Learning Represen-
tations, Toulon, France, 2017, pp. 1–12.

[16] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, “Understanding disentangling in beta-vae,” arXiv
preprint arXiv:1804.03599, 2018.

[17] H. Wu and M. Flierl, “Vector quantization-based regularization for
autoencoders,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, New York, USA, 2020, pp. 6380–6387.

[18] D. P. Kingma and M. Welling, “An introduction to variational autoen-
coders,” Foundations and Trends® in Machine Learning, vol. 12, no. 4,
p. 307–392, Nov. 2019.

[19] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” Special Lecture on IE, vol. 2, no. 1,
pp. 1–18, Dec. 2015.

[20] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy,
f-score and roc: a family of discriminant measures for performance
evaluation,” in Australasian joint conference on artificial intelligence.
Berlin, Heidelberg: Springer, 2006, pp. 1015–1021.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, Feb. 2011.

[22] K. DP and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. of the 3rd International Conference for Learning Representations
(ICLR), San Diego, California, US, 2015, pp. 1–15.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, vol. 9,
Chia Laguna Resort, Sardinia, Italy, 2010, pp. 249–256.

[24] J. Park, J. Lee, and D. Sim, “Low-complexity cnn with 1d and 2d filters
for super-resolution,” Journal of Real-Time Image Processing, vol. 17,
no. 6, pp. 2065–2076, Jun. 2020.

	20xx IEEE
	document

