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Abstract—For wireless networks under jamming attacks, sup-
pressing the jammer is essential to guarantee a reliable com-
munication link. However, it can be problematic to nullify
the jamming signal when the correlations between transmitted
jamming signals are deliberately varied over time. Specifically,
recent studies reveal that the time-varying correlations create
a “virtual change” in the jamming channel and thus their
nullspace, even when the physical channels remain unchanged.
Unlike existing studies that only consider unchanged correlations
or merely propose a heuristic adaptation to the changing correla-
tion problem by continuously monitoring the residual jamming
signal then updating the beam-forming matrix, we develop a
deep dueling Q-learning framework to minimize the magnitude of
the “virtual change” by tuning the duration for different phases
of each communication frame. Extensive simulations show that
the proposed techniques can suppress the jamming signal, even
when the correlations vary over time, and the correlations’ range
is unknown. It is worth noting that techniques do not require
frequent monitoring of the residual jamming signals (after the
nullification process) before updating the beam-forming matrix.
As such, the system is more spectral-efficient and has a reduced
outage probability.

Index Terms—Correlated jamming, jamming
suppression/nullification, deep dueling, Q-learning, frame
adaptation.

1. INTRODUCTION

The angle of arrival (AOA)-based beam-forming technique
is a conventional approach to suppress jamming signals. It is
accomplished by first estimating the AOAs of spatial streams
of jamming signals, and then forming receiving beam nulls
towards the estimated AOAs. However, at least one degree-
of-freedom is needed to nullify each propagation path of the
jamming signal [1]. Therefore, this method is only applicable
when the number of jammers is small, and the environment is
sparse scattering.

Another method to suppress the jamming signal is by
estimating jamming channels characteristics, such as their
nullspace [2], their projection [3], their ratios [4], and then
deriving filters to suppress the jamming signals. These tech-
niques require only a single degree-of-freedom to suppress
each jammer, thus are more efficient than the aforementioned
AOA-based approach. However, [2]-[4] do not evaluate the
impacts of the time-varying correlations between transmitted
jamming signals on the performance of their techniques. In [5]
and [6], it is shown that the jammers can dramatically escalate
the jamming impact by precisely choosing the correlations.
In [7], the authors prove that the time-varying correlations
create a “virtual change” in the jamming channel and hence
their nullspace, making the beam-forming matrix derived from
the estimated nullspace of the jamming channel incapable
of nullifying jamming signals. [7] also proposes a heuristic
solution to continuously monitor the residual jamming signals

(after applying the nullification technique) and then adjust the
beam-forming matrix when the residual surpasses a predefined
value. However, the jamming residual monitoring process
incurs additional overhead to the system, thus significantly
reducing the spectral efficiency.

This paper aims to improve the system’s spectral efficiency
by minimizing the amount of time spent updating the beam-
forming matrix, especially when the jammers use time-varying
correlations between transmitted jamming signals, and the
correlation values’ range is unknown at the BS and the UEs.
The jammers can even deliberately change the correlations
range, making jamming nullification even more challenging.
To deal with such uncertainty and incomplete information,
we design a deep dueling Q-learning algorithm to minimize
the magnitude of the “virtual change”, thereby ensuring the
effectiveness of the beam-forming matrix against this change.
To the best of our knowledge, this is the first study to resolve
the “virtual change” problem without constantly monitoring
the residual jamming signal and then updating the beam-
forming matrix. Our technique costs only a single degree-of-
freedom to nullify each jammer, while remaining capable of
nullifying jamming signals, even with an unknown and varying
jamming strategy. Simulation results show that our technique
achieves significantly higher system’s spectral efficiency and
a lower outage probability.

Notations: We use (.)" for Hermitian matrix transpose, and
|.| for complex number’s modulus, respectively.

II. SYSTEM MODEL
A. Network Model

We consider a multi-user multiple-input multiple-output
(MU-MIMO) downlink system with one BS and K user equip-
ment (UE). The number of antennas at the kth UE and the
BS are N;, and N, respectively. The BS-UEs communication
system is interfered by N; single-antenna proactive jammers.
Note that because a multi-antenna jammer can be treated
as multiple single-antenna jammers, our technique is readily
extendable to the case with multi-antenna jammer.

B. Signal Model
The received signals at the kth UE can be written as
K
yr = Hixy + Hy, Zx,-,+zkx,] +n, (1)

i#£k
where Hj, is the BS-kth UE channel, x;, is the transmitted
signal targeted to the kth UE, Zj; denotes the channel from
the N; jammers to the kth UE, x; denotes the transmitted
jamming signals, and n is the complex noise. We assume n ~
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Fig. 1: Frame structure.

CN (0,021, ), where Iy, is the identity matrix of size Ny,
and a% is the noise variance. Likewise, x; ~ CN(0, Xy, ),
where X, is the covariance matrices of xj. We assume
x; ~ CG(py,Xy) [7], where G is a complex distribution
function concealed from the UEs and the BS, py and Xy are
the transmitted jamming signals’ mean and covariance matrix,
respectively.

III. PROBLEM FORMULATION

A. Communication Protocol

To sustain the communication between the BS and kth UE
under jamming, one can either adapt to the jammer (e.g.,
using rate adaptation or frequency hopping [8]) or suppress
the jamming signals. In this paper, we focus on nullifying the
jamming signals. Fig. 1 illustrates the communication protocol
to deal with the jamming signals. The whole communication
process is divided into consecutive frames, each contains three
phases: estimation, preamble, and data transmission phases.

o During the estimation phase, which lasts for /N, samples,
the BS does not transmit any signal, and the beam-
forming matrix Wy, is estimated. The beam-forming
matrix Wy, is utilized to suppress the jamming signal, and
is designed by choosing By, rows of W, from (N, —N)
rows of G . Note that G 1 denotes the estimated value of
G, and G, is a matrix whose rows form an orthonormal
basis for the left nullspace [9] of the received jamming
signals. To exploit all of the remaining degree-of freedom
(after jamming suppression) for BS-UEs communication,
we use all the rows of Gk, letting W = Gk The

algorithm to estimate Gy, is presented below.
Let y§, be the received jamming signal at the kth UE

during the estimation phase when Gk is estimated. Let
Rﬁk e a sample covariance matrix of ygk, we have,

Y5, = ZkXj +n, @

Rj, = YJk(YJk) ) 3)
where Y§ is a set composed of N, samples of y§ . We

obtain G, by G, = (U,)H, where U, is extracted from
the singular value decomposition (SVD) of Rj_[2],

Cwofy [T o

« During the preamble phase, because the jamming signal
is nullified by multiplying the received signal in (1) with
Wi, BS-UE equivalent channel (i.e., W;H) can be
estimated using pilot signals and a channel estimator
such as least-square (LS) or minimum mean-square error
(MMSE) channel estimator.

o During the data transmission phase, which lasted for
Ny samples, BS-UE communication is performed. The
spectral efficiency of each BS-UE link is represented by

Ci[n] = logy (1 + dx[n]). )
where 0j[n] is the received signal-to-interference-plus-
noise ratio (SINR) at the kth UE during the nth frame.

B. Impact of Time-varying Correlations on Jamming Nullifi-
cation Effectiveness

The beam-forming matrix W, described in the previous
subsection is derived from the left nullspace of the jamming
channel. Therefore, under normal conditions, within jamming
channel nullspace coherence time [10], W, is capable of nul-
lifying the jamming signal. However, as demonstrated in [7],
when the correlations between transmitted jamming signals
vary over time, they create a “virtual change” in the jamming
channel, making W, unable to suppress the jamming signal,
even when the jamming channel does not physically changes.
For brevity, we summarize the most important findings in [7]
regarding the “virtual change” as follows.

Let p;; be the correlation between the transmitted jamming
signals from the th and the jth jammer. Let p7; and pfj be p;;
values in the estimation phase and data transmission phase,
respectively. Similarly, let 35 and 231 denote Xy values in
these two phases. The impact of the time-varying correlations
on jamming suppression is given in [7] and demonstrated by

Theorem 1 presented below.
Theorem 1: Let

25 = Vs (V)T and 3§ = visi(vHH
be the SVD of X and X¢, respectively. Let F denotes the
“virtual change” factor given by
F = V?,/Sd(Se)-1(v)H, (6)
Then, the change over time from p;; to p?j causes a “virtual
change” in the jamming channels from Z; to (ZF).
Proof: The proof is given in [7]. |
The interesting intuition of the impact of time-varying corre-
lation on the jamming suppression can be found by examining
the behavior of the “virtual change” factor F. First, when the
correlations are unchanged over time, we have Ef} = 3,
Sd = 8°,V? = V°, and hence F = I. Therefore, there is
no “virtual change” when the correlations are unchanged over
time. For that, within the jamming channel nullspace coher-
ence time, W), derived from G, can be utilized to suppress
the jamming signals when the correlations are unchanged over
time, regardless of the correlation values. Second, when the
correlations are time-varying, there is a non-identity “virtual
change” factor F, and the behavior of its element values are
described by Corollary 1.1 below.
Corollary 1.1: When [p¢;| — 1 and p{; # p§;, the “virtual
change” factor F’s elements approach infinity.
Proof: The proof is given in [7]. |
Therefore, from the UE receiver’s observation, when the
correlations vary over time, there is a “virtual change” F in the
jamming channels. Distinctively, the elements of F' approach
infinity when |pf;| — 1. As a result, G, becomes ineffective
when the correlatlons are large and vary. In this case, using



G, to create W, does not guarantee jamming nullification in
the data transmission phase.

C. Jamming Signal Model

Given the above two observations on the behavior of the
“virtual change” factor F', we consider proactive jammers with
the transmitted jamming signals designed to be resistant to
the jamming nullification protocol given in Subsection III-A.
Specifically, the correlations are time-varying and controlled
by the jammers using the formula

where J is a function unknown to the BS and the UEs. Note
that the jammers can deliberately adjust the function J to
make the jamming suppression even more challenging.

D. Problem Formulation

Given the BS-UEs communication system under jamming
strategy described by equation (7), our objective is to con-
tinually optimize the length of the estimation phase and the
data transmission phase (i.e., N, and N4, respectively) to
achieve optimal system’s spectral efficiency. Specifically, we
tune the N, and N, values at each frame to achieve the optimal
system’s spectral efficiency because of the following reasons.

o First, N, and N, are optimzed to guarantee W), being
estimated when none of pj; is closed to 1. As presented
in Corollary 1.1, when |pf;| — 1, the elements of the
“virtual change” factor F' approach infinity, resulting in
a significant “virtual change”, making the beam-forming
matrix W, to be unable to suppress the jamming signals.

« Second, by optimizing N, and N, the system can avoid
spending time monitoring the residual jamming signals
as in [7] to update the beam-forming matrix. Hence, the
system’s spectral efficiency can be improved.

o Third, by varying N4, the communication system can
adapt to the change in the BS-UE channel condition. For
example, when the channel coherence time decrease, the
Ty values should be decreased to maintain an acceptable
received SINR level. On the other hand, when the co-
herence time increases, the system can increase 7y to
improve the communication phase percentage over the
whole frame.

We mathematically formulate the problem as

N K
D ) Nafnlogy (1 + dk[n])

max
NelnNaln] 4= &
sit. N.[n] € N ®)
Na[n] € Na
Ok[n] > dmin

pi; controlled by (7),
where N is number of frames over a fix period of time, N, =
{N} N2 . NEe} and Ny £ {N}, N2, oy NI} are the set
of L, and L, candidates for N, and Ny, respectively, and
Omin 18 the required minimum SINR, below which the UE is
considered to be outage.

The problem in (8) is a non-convex optimization problem
because of the non-convexity of the first two constraints. More
importantly, the jamming strategy, demonstrated by equation
(2) is unknown to the BS and the UEs. To make the jamming
suppression even more challenging, the jammers can adjust
the function 7, making the old measurement data no longer
representative of the current jamming strategy. To deal with
such uncertainty and incomplete information, in the following,
we describe the deep dueling Q-learning technique to solve the
problem stated in (8).

IV. DEEP DUELING Q-LEARNING FOR JAMMING
SUPPRESSION

A. Semi-Markov Decision Process (SMDP)

To maximize the long-term spectral efficiency, we use the
semi-Markov decision process (SMDP) [11]. An SMDP is
defined by a tuple < t¢[n],S, A,r >, where ¢[n] is the nth
decision epoch length, S is the state space, A is the action
space, and r is the reward function. The SMDP allows the
state transition to take place at irregular time steps. There-
fore, the SMDP is more effective than the MDP in solving
the optimization problem in (8), because we are optimizing
the selections of N, and N4, which requires irregular state
transition time.

1) State: There are several essential factors to consider for
achieving the stated objective. The first factor is the received
SINR levels of the UEs during the previous data communica-
tion phase. This is because the received SINR implicitly cap-
tures the BS-UE channel condition that affects the selection of
Ny4. The second factor, as demonstrated in the previous section,
is the correlations between transmitted jamming signals during
the estimation phase. This is because the correlations pf; affect
the magnitude of the “virtual change” factor F, which directly
affect the jamming nullification capability of W,. Therefore,
the state space of the system can be defined as follows

S 2 {0y, ;] Yk € {1,2,..., K},
Vi#jii,j € {1,2,...,Ns}}. ©)

2) Observation: In fact, the correlation coefficients p;;
between the transmitted jamming signals are controlled by
the jammers (i.e., by formula (7)), and are unknown to the
BS and the UEs. Moreover, the pf; values are not directly
observable by the BS nor the UEs. The pf; values can merely
be indirectly observed by examining the SVD of K received
jamming signal covariance matrices RS at the K UEs.
In general, small correlations between transmitted jamming
signals result in relatively equal singular values of R , while
large correlations result in the massive difference between the
singular values.

Therefore, we formulate the problem as a partially observ-
able MDP (POMDP) [11], where the state in (9) is replaced
by the approximate state S derived from the observations from
the UEs. Specifically, the observation of the system is defined
as:

O 2 (8, A)) vk € {1,2, .. K},

vie{l,2,..,N;}}, (10)



where A; = % Z,}::l Ay, and Ay, is the [th largest singular
value of Rﬁk. To generate the observation, K received SINR
values and (K x N;) singular values Ay, are calculated. The
observation is then obtained by concatenating K received
SINR values and N; average singular value Ay

We use the last H observations and actions as the approxi-
mate state, i.e., §[n] = [o[n],aln —1],0[n — 1], ...,a[n — H]|.
This formalism, referred to as the Hth-order history approach
[11], generates a large but finite MDP in which each sequence
is a distinct state [12]. As a result, we can apply standard
reinforcement learning methods for MDPs to find the optimal
action given the current approximate state [11], [12].

3) Action: The action space is defined as A = {a:ac€
{1,2,...,Le x L4}}, where L, and L4 are the dimension of
Ne and Ny, respectively, and

1, N, =N/} and N;= N}

2, N, = N? and Ny = N}
a =

Le x Ly, N, = NEFe and Ny = NJ*.

4) Intermediate Reward: The intermediate reward is de-
fined as the maximum achievable data transmitted during the
data transmission phase, and zero if the received SINR during
the data transmission phase is smaller than the minimum
required received SINR. Specifically,

_ Zf:l Nd [n] 10g2(1 + 5k [n])7 5k [’I’L} 2 5min
= (11
0, 5;{[71} < 5mm.

5) Optimization Formulation: We target to obtain the op-
timal policy, denoted by 7*, that maximizes the average
long-term reward [}3] of the system, as represented in (8).
Specifically, 7* : S — A is a mapping from the observed
approximate states to the actions taken by the BS. The

optimization problem is then expressed as follows

r[n]

max R(r) = lim_ %ZE(T-[n])
N (12)
1 ) A

where R(m) is the long-term average reward of the system
under the policy 7.

B. Deep Dueling Q-learning Technique

The Q-learning [11] algorithm can help the BS transmitter
find the optimal policy (i.e., a mapping from the state to
the action) without requiring information about the jammers’
strategy or channels conditions. However, as mentioned in the
previous subsection, the state s is not fully observable by the
BS and the UEs. Therefore, we use the approximate state $ to
derive the optimal policy. Nevertheless, the approximate state
components (i.e., d and Al) are continuous values, resulting in
an infinite approximate state dimension. Quantization of the
components can reduce the dimension. However, a smaller
quantization step size (i.e., for better accuracy) results in a
larger approximate state space, making the Q-learning algo-
rithm to converges slowly. Moreover, the approximate state

is composed of H latest observations and actions, further
increases the approximate state dimension, and aggravates the
slow-convergence issue. Therefore, we adopt the deep dueling
Q-learning [14], which uses a neural network to efficiently
obtain the optimal policy.

In particular, instead of finding and storing the optimal state-
action value function Q*($, a) in a Q-table, a neural network is
used as a nonlinear function approximator to estimate Q*($, a)
value. Note that Q($,a) is the expected discounted reward
of the system starting from approximate state § selecting an
action a, and Q*(8,a) is the optimal value of Q(8,a). The
input to the neural network is the approximate state 3, and the
output of the neural network is the state-action values Q* (8, a).

Let @ be the parameters of the neural network, the problem
of finding Q* (3, a) becomes the problem of finding 8*, which
are the optimal values of 6. Accordingly, the state-action
values function is now denoted by Q(3, a; €), and its optimal is
denoted by Q*(§, a; 0*). The algorithm to iteratively optimize
0 is presented in Algorithm 1. It is based on the algorithm in
[12], and formed by the following techniques.

« c-greedy action selection policy: At each iteration in the
training process, the agent implements exploration (by
choosing a random action) with a probability of €, or
exploitation (by choosing the action that maximize the
state-action value Q($, a; @)) with a probability of 1 —e.

o Experience replay: Instead of using instant state-
action value, the algorithm stores the transitions
(8[i], ald], r[i], 8[i + 1]) in a memory pool D of size D.
The learning process is then performed based on random
samples from D. This technique allows the previous
transitions to be used more than once, which improves
training data efficiency. More importantly, by randomly
selecting the training data from D, the algorithm can
remove the correlation between the consecutive training
data.

o Target Q-network: This technique is performed by using
a separate network, named target Q-network Q for gen-
erating the target Q-values y[j], as demonstrated in step
9 in Alg. 1. The target Q-network Q is updated every
C steps. In this way, the primary Q-network is slowly
updated, which helps to reduce the correlations between
the target and estimated Q-values, thereby improving the
stability of the deep dueling Q-learning algorithm [12].

o Mini-batch gradient descent [15]: At each training iter-
ation of the Q-learning algorithm, instead of performing
gradient descent using the whole data memory D, we
randomly sample a mini-batch of size N,,; from D, and
then perform mini-batch gradient descent on the mini-
batch training data. By setting N,,, << D, the training
time can be reduced dramatically [15].

C. Deep Dueling Neural Network Structure

Unlike conventional recurrent neural networks (RNN) that
have difficulty learning long-term dependencies of the inputs
[16], the Long Short-Term Memory (LSTM) is capable of
learning those dependencies, even with inputs consisting of



Algorithm 1 Deep Q-learning Based Jamming Suppression.

Initialize replay memory D with capacity D.
Initialize Q-network Q WithArandom weights 0.
Initialize target Q-network Q with weights 8 = 6.
for iteration i = 1 to I do

Select action

L O S R

] = random action, with probability €

“ arg max, Q(8[i], a;0), otherwise.

6: Perform a[i], observe reward r[i] and the next approxi-
mate state §[i + 1].

7: Store transition (5[i], a[¢], r[¢], §[¢ + 1]) in D.

8:  Sample random mini-batch of
(sL],alj), r1j], [j + 1]) from D.

. Set y[j] = rlj) + il maxa(su QL + 1], alj + 1];

10:  Perform mini-batch gradien descent [15] on (y[j]
Q(3[4], alj];0))* with respect to 6.

11:  Set Q = Q every C steps.

12: end for

transitions

)

Feedback

Q(5,a,0)

| 1%

Approximate State  LSTM layer Hidden layers Optimal action

Fig. 2: LSTM-based deep dueling neural network.

more than 1000 discrete-time steps. That improvement is
because the LSTM resolves the “vanishing gradients” and
exploding gradients” [16], which are the main problems in
the training process of the RNN. By using the LSTM, the
network can capture the change in the correlations between
jamming signals (i.e., by observing the sequential average
singular values A;) and the change in channels condition
(i.e., by observing the sequential received SINR d;). Fig. 2
illustrates the LSTM-based deep dueling neural network used
in the proposed deep dueling Q-learning technique. First, the
approximate state is used as the input to the LSTM layer. The
LSTM layer learns the valuable information from the input
(e.g., the correlations between transmitted jamming signals
and the channels condition) and represents this information by
the output of the LSTM. The output from the LSTM is then
processed by two separated streams of fully connected hidden
layers to calculate the values of states and the advantages of
actions [17]. The values and the advantages are then used to
generate Q*(8, a; 0*) at the output layer.

V. SIMULATION RESULTS

To show the effectiveness of the proposed deep dueling Q-
learning technique in nullifying jamming signals, we compare
the following schemes, the history length is H = &, unless
otherwise specified.

o Fix action: The system uses a fixed pair of values for
N, and N4. The performance metrics are calculated by

T T
—HB— Proposed Deep Dueling Q-learning

«++=++ Technique in [7]

Spectral efficiency [bits/s/Hz]

Fig. 3: Throughput for different jamming power level.

averaging the performance of (N, x Ny) action choices;

o Technique in [7]: The system uses the jamming nulli-
fication technique in [7], in which the residual jamming
signals are measured, and the beam-forming matrix is up-
dated whenever the residual exceeds a predefined value;

o Proposed deep dueling Q-learning: The values of N, and
Ny are determined by the optimal policy obtained using
the proposed deep dueling Q-learning algorithm.

A. Spectral Efficiency Analysis

Fig. 3 shows the average spectral efficiency of each BS-
UE communication link for different jamming nullification
apg)roaches for different values of the jamming power. For
a fair comparison, the spectral efficiency of each technique is
averaged over the UEs and normalized, taking into account
the estimation phase time (because the system does not com-
municate during this phase) as

log, (1 + dx[n]). (13)

As can be seen, the proposed deep dueling Q-learning
achieved the highest spectral efficiency for all values of the
jamming power, thanks to its ability to effectively adjust the
N, and N, values according to the change in the correlations
and channel conditions. On the other hand, the other two
techniques have several limitations. While the technique in [7]
spends an excessive amount of time monitoring the residual
jamming signals and estimating the beam-forming matrix,
thus reducing transmission time, the fix action technique
cannot adapt to the change in the channel conditions, and
more importantly, that in the correlations between transmitted
jamming signals. Those limitations of [7] and fix action result
in lower spectral efficiencies of the communication system.

B. Outage Probability Analysis

Fig. 4 illustrates the outage probability of the systems using
three mentioned techniques for different values of the jamming
power. As can be seen, the proposed deep dueling Q-learning
technique and the techniques in [7] have very similar outage
probabilities, and are much lower than that of the fix action
technique. This is because both techniques effectively nullify
the jamming signals. However, as aforementioned, the tech-
nique in [7] spends an excessive amount of time monitoring
the residual jamming signals and estimating the beam-forming
matrix, resulting in a lower spectral efficiency as aforemen-
tioned. On the other hand, the fix action technique cannot



0.25] ‘ ) ) o7
—8— Proposed Deep Dueling Q-learning _,

g 0.2+ ++P=+- Technique in [7] 0-0/0

< =@ - Fix action P

—‘é 0.15

a

i

& 0.1

=

o

0.05 J
(
;: |
30 33 36 39 42
P, [dBm]
Fig. 4: Outage probability for different jamming power level.

N

T 7L ey

565 ? . 1

I ? ¥ Q A

15 AR 4 D O\ 4 ey S¢ e ¥ <

g pRDR\ od\ &/ ©), g by o\[§ P&/ e\ [§Oe

§ 6 o & ©0 (U] & ]

=

o

E55

3

o

a5 i

1 2 3 4 5 6 7 8
Iterations [x 105]

Fig. 5: Spectral efficiency convergence rate.

adapt to the change of the correlations between transmitted
jamming signals and channels condition, resulting in many
outage frames because of excessive residual jamming signals.
Therefore, the proposed deep dueling Q-learning technique
succeeds in increasing the system’s spectral efficiency while
keeping the outage probability at an acceptable level.

C. Impact of History Length H

Fig. 5 and Fig. 6 illustrate the impact of the historical length
H on the convergence of the proposed deep dueling Q-learning
technique. The jamming power used to generate these figures
is P; = 30 dBm. As can be seen, the deep dueling Q-learning
algorithm converges after around 10° iterations. Moreover, a
longer history length H results in a higher spectral efficiency
and a lower outage probability. However, increasing the value
of H also increases the computational complexity of the deep
dueling Q-learning approach. As can be seen, the spectral
efficiency and the outage probability do not dramatically
improve as H increases from 6 to 8. Therefore, using H = 6

VI. CONCLUSION

We have examined the impact of time-varying correlations
between transmitted jamming signals on jamming nullifica-
tion. We proposed the deep dueling Q-learning technique to
effectively nullify jamming signals. Simulation results show
that our techniques can achieve higher spectral efficiency and
lower outage probability compared to the existing techniques.

0.02

0.015

Outage probability

0.01 1}

Iterations [x 10°]

Fig. 6: Outage probability convergence rate.

can balance the technique’s performance and computational
complexity.
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