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Abstract: Natural convection is intensively explored, especially in a valley-shaped trapezoidal
enclosure, because of its broad presence in both technical settings and nature. This study deals
with a trapezoidal cavity, which is initially filled with linearly stratified air. Although the sidewalls
remain adiabatic, the bottom wall is heated, and the top wall is cooled. For the stratified fluid
(air), the temperature of the fluid adjacent to the top and the bottom walls is the same as that
of the walls. Natural convection in the trapezoidal cavity is simulated in two dimensions using
numerical simulations, by varying Rayleigh numbers (Ra) from 100 to 108 with constant Prandtl
number, Pr = 0.71, and aspect ratio, A = 0.5. The numerical results demonstrate that the development
of natural convection from the beginning is dependent on the Rayleigh numbers. According to
numerical results, the development of transient flow within the enclosure owing to the predefined
conditions for the boundary may be categorized into three distinct stages: early, transitional, and
steady or unsteady. The flow characteristics at each of the three phases and the impact of the Rayleigh
number on the flow’s growth are quantified. Unsteady natural convection flows in the enclosure are
described and validated by numerical results. In addition, heat transfer through the bottom and the
top surfaces is described in this study.

Keywords: stratified air; trapezoidal cavity; natural convection; heat transfer; transient flow

1. Introduction

In an enclosure, natural convection has gained substantial interest among academics
since it can be found in a variety of applications and has a big impact on thermal charac-
teristics. Natural convection has been studied inside various shapes of enclosures with
numerous boundary conditions to investigate thermal behavior, as well as fluid flow, as
natural convection is used in an array of technical applications, ranging from geophysics,
geothermal reservoirs, and building insulation to industrial separation processes and so
forth. Unsteady natural convection in a differentially heated cavity has attracted exten-
sive attention in the scientific literature. Many researchers [1–6] provided comprehensive
investigations for regular enclosures (e.g., rectangular, square and triangular) using var-
ious numerical models, indicating that multiple investigations have been performed to
gain a fundamental understanding of unsteady natural convection flows and heat transfer
characteristics in an enclosure.

Due to the importance of attics for occupant thermal comfort in buildings and the re-
sulting energy costs for heating and air conditioning, increased research activities have been
carried out on subjects related to heat transfer in attics over the last 40 years. Saha et al. [7,8]
examined heat transport through attics under periodic thermal forcing and cooling inclined
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walls. Natural convection flows within V-shaped triangle enclosures with opposite bound-
ary conditions appeared to be well studied due to their natural presence. Transitions from
symmetric steady to asymmetric unsteady flow were studied by Bhowmick et al. [9,10] in a
V-shaped triangular enclosure heated from below and cooled from the top for both air and
water. Different flow mechanisms were found for the different fluids. Wang et al. [11] has
experimented with natural convection in a V-shaped enclosure with the same boundary
conditions of [10].

Any triangular, square, or rectangular cavity is inadequate for numerous engineering
systems, as well as geophysical circumstances where the enclosure geometry varies or
contains extra tending walls. Natural convection in a trapezoidal enclosure is far more
difficult to examine than in any regular enclosures because of the sloped walls. This com-
plicated geometry needs a precise and large effect in mesh creation and code development.
However, there were a number of studies on natural convection that focused on trapezoidal
enclosures. Iyican et al. [12,13] considered trapezoidal cavity with boundary conditions
of a heated base wall and parallel cylindrical cooled top wall to investigate natural con-
vection of the cavity, using experimental and computational methods. Lee [14] reported a
theoretical and experimental investigation of a nonrectangular enclosure, in which two 45◦

inclined sides of a trapezoidal cross-section were chosen, with different heating conditions.
Lam et al. [15] found analogous findings for a trapezoidal enclosure with cooled inclined
top wall, heated bottom wall, and insulated vertical sidewalls.

Lee [16] numerically examined the fluid flow and the heat transfer passed through
a cold chamber of a trapezoidal enclosure, where heated fluid was supposed to flow into
one end of the chamber from a depth below the surface and was removed from the other
end at a different depth. Lee [17] and Peri [18] showed numerical findings in the case
of laminar natural convection within a trapezoidal cavity with inclined sidewalls kept at
varying constant temperatures, and adiabatic top and base walls for Ra ≤ 106. Sadat and
Salagnac [19] used a finite element based on the control-volume approach to compute the
similar geometry for Rayleigh numbers from 103 to 2 × 105. Kuyper and Hoogendoorn [20]
examined laminar natural convection flow within a trapezoidal cavity in order to see the
effect of the flow by the inclination angle, as well as the relationship between the Ra and
the average Nu. Moukalled and Darwish [21] looked at how heat transfer was affected by
installing baffles upon the top inclined walls inside trapezoidal cavities. Boussaid et al. [22]
examined thermal heat transfer inside a trapezoidal chamber in which the base wall was
heated and the tending upper half was cooled. The influence of natural convection flow
within a trapezoidal cavity was examined by Natarajan et al. [23] under the conditions
of a heated base wall, as well as linearly heated and cooled vertical walls, but with no
insulation on the top wall. Hammami et al. [24] investigated the fixed heat and mass
transport processes within a trapezoidal enclosure using a binary air–water vapor mixture.
Later, Natarajan et al. [25] explored natural convection flow inside a trapezoidal cavity in
which, on the one hand, the base wall was both consistently and inconsistently warmed,
and the upward walls were, through a steady temperature shower, kept cool, where the
upper wall again remained insulated. Basak et al. [26] examined natural convection energy
fluxes in trapezoidal enclosures in which the top walls were insulated, whereas the bottom
walls were heated, and sidewalls were cooled.

For three vertex angles in trapezoidal isosceles, the advancement of natural convection
oscillatory flow patterns was examined by Noah and Daniel [27]. Mustafa and Ghani [28]
explored a natural convection flow inside a trapezoidal cavity with partially heated bottom
wall and cooled vertical walls through a constant temperature bath and a well-insulated top
wall. By means of the ‘element-based finite volume method’, Silva et al. [29] studied natural
convection inside trapezoidal enclosures. Gholizadeh et al. [30] explored the natural
convection inside a trapezoidal enclosure where the right inclined wall was partially
heated, by means of the finite difference method. In a porous trapezoidal enclosure
saturated through a power-law non-Newtonian fluid, Yazdani et al. [31] considered natural
convection, as well as entropy production. To better comprehend the effect of heating
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length on the active bottom wall, Gowda et al. [32] observed natural convection within the
cavity of a trapezoid under the condition that the base wall was partly heated, the upper
wall was adiabatic, and the inclined wall remained at a fixed cooled temperature.

Various boundary conditions were used in the trapezoidal cavity by various re-
searchers, according to the above literature studies. However, an initially stratified air-filled
trapezoidal enclosure with a cooled top horizontal wall and a heated bottom horizontal
wall, along with inclined walls that are kept adiabatic, is still ambiguous, which encouraged
this research. It has direct application to environmental fluid dynamics, which deals with
the heat transfer and airflow process in the thermal stratification environment. Thus, using
two-dimensional numerical simulations for Ra = 100 to 108, Pr = 0.71, and A = 0.5, the
transitional flow in the trapezoidal cavity is considered in this article. The influence of Ra
on fluid flow and heat transfer is thoroughly examined.

2. Problem Formulations

This study considers a trapezoidal enclosure of height H, as well as a horizontal length
of the top, 2L, where L = 2H, i.e., A = H/L = 0.5. Figure 1 illustrates a nondimensional
physical model with boundary conditions. A tiny percentage (4% of L) of each top corner
was sliced to dispense with the singularity around the position between inclination and
upper walls, and cutting walls were subject to an adiabatic thermal state. A fluid in the
cavity with Pr = 0.71 was considered, which was, in the beginning, linearly stratified as
having the highest T = Th temperature at the bottom and the lowest T = Tc temperature at
the top. The boundaries were non-slip.

Processes 2022, 10, x FOR PEER REVIEW 3 of 15 
 

 

[31] considered natural convection, as well as entropy production. To better comprehend 
the effect of heating length on the active bottom wall, Gowda et al. [32] observed natural 
convection within the cavity of a trapezoid under the condition that the base wall was 
partly heated, the upper wall was adiabatic, and the inclined wall remained at a fixed 
cooled temperature. 

Various boundary conditions were used in the trapezoidal cavity by various 
researchers, according to the above literature studies. However, an initially stratified air-
filled trapezoidal enclosure with a cooled top horizontal wall and a heated bottom 
horizontal wall, along with inclined walls that are kept adiabatic, is still ambiguous, which 
encouraged this research. It has direct application to environmental fluid dynamics, 
which deals with the heat transfer and airflow process in the thermal stratification 
environment. Thus, using two-dimensional numerical simulations for Ra = 100 to 108, Pr = 
0.71, and A = 0.5, the transitional flow in the trapezoidal cavity is considered in this article. 
The influence of Ra on fluid flow and heat transfer is thoroughly examined. 

2. Problem Formulations 
This study considers a trapezoidal enclosure of height H, as well as a horizontal 

length of the top, 2L, where L = 2H, i.e., A = H/L = 0.5. Figure 1 illustrates a nondimensional 
physical model with boundary conditions. A tiny percentage (4% of L) of each top corner 
was sliced to dispense with the singularity around the position between inclination and 
upper walls, and cutting walls were subject to an adiabatic thermal state. A fluid in the 
cavity with Pr = 0.71 was considered, which was, in the beginning, linearly stratified as 
having the highest T = Th temperature at the bottom and the lowest T = Tc temperature at 
the top. The boundaries were non-slip. 

 
Figure 1. Schematic of physical domain with nondimensional boundary conditions with the 
monitoring points P1 (0, 0.133), P2 (0, 0.4), P3 (0, 0.8), P4 (0.4, 0.51), and P5 (−0.4, 0.51), which are utilized 
in the resulting figures. 

In a trapezoidal enclosure, natural convection of stratified air is assumed. The below 
set of governing equations with the Boussinesq approximation regulates the progress of 
natural convection flows in the enclosure [7]. 𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑦 = 0, (1)𝜕𝑢𝜕𝑡 + 𝑢 𝜕𝑢𝜕𝑥 + 𝑣 𝜕𝑢𝜕𝑦 = −1𝜌 𝜕𝑝𝜕𝑥 + 𝜈 𝜕 𝑢𝜕𝑥 + 𝜕 𝑢𝜕𝑦 , (2)𝜕𝑣𝜕𝑡 + 𝑢 𝜕𝑣𝜕𝑥 + 𝑣 𝜕𝑣𝜕𝑦 = −1𝜌 𝜕𝑝𝜕𝑦 + 𝜈 𝜕 𝑣𝜕𝑥 + 𝜕 𝑣𝜕𝑦 + 𝑔𝛽 𝑇 − 𝑇 , (3)𝜕𝑇𝜕𝑡 + 𝑢 𝜕𝑇𝜕𝑥 + 𝑣 𝜕𝑇𝜕𝑦 = 𝜅 𝜕 𝑇𝜕𝑥 + 𝜕 𝑇𝜕𝑦 . (4)

Figure 1. Schematic of physical domain with nondimensional boundary conditions with the monitor-
ing points P1 (0, 0.133), P2 (0, 0.4), P3 (0, 0.8), P4 (0.4, 0.51), and P5 (−0.4, 0.51), which are utilized in
the resulting figures.

In a trapezoidal enclosure, natural convection of stratified air is assumed. The below
set of governing equations with the Boussinesq approximation regulates the progress of
natural convection flows in the enclosure [7].

∂u
∂x

+
∂v
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= 0, (1)
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The followings are the dimensionless variables that were used:

X = x
H ,

Y = y
H ,

U = uH
κRa1/2 ,

V = vH
κRa1/2 ,

P = pH2

ρκ2Ra ,

θ = T−T∞
Th−Tc

,

τ = tκRa1/2

H2 .

(5)

The three governing parameters, which are aspect ratio (A), Pr, and Ra (see Ref. [33]
for details), influence the natural convective flows in the enclosure that can be expressed
as follows:

Ra =
gβ(Th − Tc)H3

νκ
, Pr =

ν

κ
, A =

H
L

. (6)

After adding the aforementioned dimensionless variables, Equations (1)–(4) become
(for details see Ref. [10])

∂U
∂X

+
∂V
∂Y

= 0, (7)

∂U
∂τ

+ U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+
Pr

Ra1/2

(
∂2U
∂X2 +

∂2U
∂Y2

)
, (8)

∂V
∂τ

+ U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+
Pr

Ra1/2

(
∂2V
∂X2 +

∂2V
∂Y2

)
+ Prθ, (9)

∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
=

1
Ra1/2

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
. (10)

3. Timestep and Grid Dependency Tests

In this study, ANSYS FLUENT 17.0, a finite-volume-based fluid simulation software,
was used to enable the high Rayleigh number flows (Armfield and Street [34–36]). In order
to find solutions to the governing Equations (7)–(10) and other conditions, the SIMPLE
scheme was used. Using the QUICK scheme (see Leonard and Mokhtari [37]), the advection
term was discretized. Central differencing, along with second-order accuracy, was used to
discretize the diffusion terms. Moreover, a second-order implicit time-marching scheme
was employed for the unsteady term.

The grid and timestep dependency tests were also performed for the greatest Rayleigh
number, Ra = 108, used in this study. Three symmetrical meshes of 225 × 75, 300 × 100,
and 375 × 125 were created nonuniformly using the application ANSYS ICEM, by way of
coarser grids in the interior area and finer grids around the edges. From a width of at least
0.002 adjacent to the wall to the width of 0.02 in the interior, the mesh of 300 × 100 was
increased at a rate of 3%. At position P2 (0, 0.4), employing various grids together with
timesteps, the temperature timeseries was computed for Ra = 108 as depicted in Figure 2.
The results evidently show that temperatures predicted with various meshes and timesteps
were constant in the initial phases, but somewhat deviated in the fully developed stage.

Table 1 shows the maximum variation of the average temperature at the fully devel-
oped stage for the different meshes and timesteps. The highest contrast of the temperature
between the coarsest (225 × 75) and finest (300 × 100) meshes was around 1.42%, while the
highest difference between the finer meshes (300 × 100) and (375 × 125) was approximately
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0.34%. Therefore, considering the computational cost, a mesh of 300 × 100 and a timestep
of 0.01 were used in the numerical simulation.
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Table 1. Temperature at P2 (0, 0.4) employing various grids and timesteps.

Grids and Time Steps Average Value of the Temperature Percentage of the Variance

225 × 75 and ∆τ = 0.01 0.306495 1.42%
300 × 100 and ∆τ = 0.01 0.310895 -
300 × 100 and ∆τ = 0.005 0.313003 0.68%
375 × 125 and ∆τ = 0.01 0.309845 0.34%

4. Validation

Validation of a model is an integral part of a numerical study. Hence, the numerical
results of the present study were compared to those of Basak et al. [26], who used the
finite element method to solve the governing equations for laminar natural convection
heat transfer in a trapezoidal cavity heated isothermally from below, while maintaining
a fixed cold temperature on the other vertical walls and a well-insulated top wall. With
Ra = 105, Pr = 0.71, and an inclination angle of ϕ = 45◦, the dimensionless parameters
were used to conduct the comparison. The current findings and the numerical findings of
Basak et al. [26] for temperature contours in the trapezoidal enclosure exhibited excellent
agreement, as shown in Figure 3.
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5. Results and Discussions

For Ra = 100 to 108, Pr = 0.71, and A = 0.5, the transient evolution of the flow in an
initially stratified air-filled trapezoidal cavity is discussed below in response to consistent
heating through the base and similar cooling via the top surfaces using a computational
fluid dynamics approach.

5.1. Development of the Transient Flow

For Ra = 100 to 102, it was found that there was no ascending or descending plume in
the flow development, i.e., the flow was always steady under a conduction dominance for
those Rayleigh numbers. For the sake of brevity, results are not presented here for Ra = 100

to 102. Accordingly, for Ra = 103 to 108, the general characteristics of flow development in
a trapezoidal enclosure are presented (see Figures 4–6). The development of the flow for
these Rayleigh numbers, according to the numerical simulations, may be divided into the
following: early stage, transitional stage, and steady or unsteady stage.
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5.1.1. Flow at the Early Stage

In the trapezoidal enclosure, the air is at first stratified, as indicated in the preceding
sections. At the beginning of the numerical studies, the instant conditions for isotherms are
created across the surfaces that first cool the cavity via the upper surface and then make
it warm through the bottom. A thermal boundary layer forms along all internal surfaces
as a result. The cooling thermal boundary layer is near the top wall, whereas the heating
thermal boundary layer is alongside the bottom surface. The lower section produces the
heating thermal boundary layer, while the top section of the upper layer produces the
cooling thermal boundary layer. The progress of the thermal boundary layers through
time is depicted in Figure 4, exhibiting isotherms and streamlines (Figure 4a–e) at τ = 6
after startup.

At the early stage, the core’s fluid stays isothermal, as shown in Figure 4, in spite
of the expansion of the thermal boundary layer, at the initial temperature. Because the
bottom part of the enclosure is heated and the top section is cooled, the heated fluid from
the bottom travels via the boundary layer toward the upper parts. On the contrary, the
boundary layer transports cooled air to the bottom from the top. Both warm and cold
fluids meet in the middle of the top wall and release into the core. There remains another
heated boundary layer near the bottom section that begins to expand, as the thermal forcing
begins. At this moment, the isothermal difference reveals the thicknesses of the thermal
layer barrier to the center growing with time. The streamlines show that Ra = 103 to 105 has
two weak revolving cells, while Ra = 106 to 108 has four weak rotating cells. The isotherms
and streamlines for different Ra remain symmetric with regard to the cavity’s y-axis line at
this stage.

5.1.2. Transitional Stage

The formation of convective instabilities marks the flow in the form of ascending and
descending plumes at the transitional phase. Through the warming of the bottom portion,
the horizontal thermal boundary layer, which has warmed air under colder air and is
unstable due to ‘Rayleigh–Bénard instabilities’, is formed. When the critical conditions are
fulfilled, the hot thermal boundary layer becomes unsteady. In this regime, Figures 5 and 6
display the streamlines and isotherms at various periods. It has previously been noted
that when air of two different temperatures passes through the boundary layer around the
midpoint of inclined surfaces, it invariably travels downward. Subsequently, the heated
air plume then moves to the cavity’s core, while the cooled air plume goes to the lower
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portion from the upper layer. Figure 5a,b show that the flow becomes symmetric and
steady at τ = 20 for Ra = 103 to 104. The flow grows stronger and finally asymmetric as time
passes due to pitchfork bifurcation. The figures demonstrate the asymmetric isotherms
and streamlines for the higher Rayleigh numbers. It is without a doubt significant that,
with a greater Rayleigh number, the flow oscillates for quite a long period. The bifurcation
continues to rehash left and close to the symmetric focal line while oscillating. Figure 6c,d
depict that the flow becomes symmetric and steady at τ = 100 for Ra = 105 to 106. Because
of the presence of convective instabilities, the rotating cells that are at the beginning
of the growth of the flow are fragmented into several cells, which is demonstrated in
Figures 5 and 6 by the outlines of the isotherms and streamlines.

A pitchfork bifurcation starts to happen as a result of Rayleigh–Bénard instability.
The x-velocity at point P3 (0, 0.8) in the Ra-u plane is provided in Figure 7 to explain
such a pitchfork bifurcation from the symmetric to asymmetric state at the completely
developed stage (τ = 1000). Because the flow is symmetric around the y-axis and point
P3 is on the y-axis, the x-velocity for Ra < 105 is close to zero. When the Rayleigh number
surpasses or becomes equivalent to 105, the cell inclines to the right side with an increment
in the x-velocity, as set apart by the square line, whereas it inclines to the left side with the
reduction in x-velocity, as set apart by the blue line (circles) in Figure 7.
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5.1.3. Flow at the Steady or Unsteady Stage

In the late transitional phase, a pitchfork bifurcation occurs, resulting in the formation
of an asymmetric flow structure. The pitchfork bifurcation occurs early in the numerical
simulation, as previously mentioned.

The convective instabilities alternate on either side of the cavity, and the upward-
moving heated air plumes on the base side appear in the middle at different times, which
is a fascinating event as shown in the numerical simulation. During the transitional stage,
the flow, on the other hand, has multiple undershoots and overshoots prior to becoming
completely stable. Thermal energy travels from the boundary layer on either side of the
portion discharge fluid to the cavity’s center over time. At the fully developed phase, the
fluid inside the enclosure reaches a steady state for Ra = 103 to 106 (see Figure 8a–d). If
Ra ≤ 106, Figure 8a–d reveal that the flow becomes stable under various initial conditions.
Furthermore, for Ra ≥ 107, Figure 8e,f depict isotherms and streamlines. Figure 8e repre-
sents a few tiny cells forming on the top right and left sides of the larger cell. However,
when looking at the numerical data, it can be seen that the two tiny cells alternately emerge,
indicating that the flow arrives in an unsteady state at a fully advanced stage for Ra = 107.
With the increase in Ra, however, both cells develop in the center of the two biggest cells,
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as seen in Figure 8f. In Figure 8f, for Ra = 108, the biggest cell in the center also travels
between right and left. As a result, the unsteady flow becomes more complicated.
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To comprehend the unstable flow for greater Rayleigh numbers, a temperature–time
series is presented in Figure 9. It is apparent that, at the completely advanced stage, the
flow is stable, as shown in Figure 9a, and the flow pattern in Figure 9b concurs with the
finding of a Hopf bifurcation from a steady state to periodic condition. With the increase in
Ra, the periodic flow fluctuates, while the unstable flow becomes chaotic for Ra = 108. This
is illustrated in Figure 9c.
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(b) Ra = 107, and (c) Ra = 108.
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To comprehend the Hopf bifurcation, which occurs at the transition from steady to
periodic phase, the attractors (τ = 300 to 2000) for Ra = 106 and (τ = 1000 to 2000) for
Ra = 107 at the point P4 (0.4, 0.51) are depicted in Figure 10. In Figure 10a, the curve in
the u–θ plane clearly approaches a certain value with the passage of time for Ra = 106. In
contrast, Figure 10b shows a limit cycle for Ra = 107 (dense curve). Consequently, a Hopf
bifurcation occurs at Ra = 107 (referred to [38] for a full description of Hopf bifurcation).
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At point P3 (0, 0.8) for Ra = 107 and 108, the directions of the phase space of the u–θ
plane are depicted in Figure 11 with a view to demonstrating the transformation to chaotic
from the periodic condition in greater detail. In Figure 11a, the limit cycle can be seen,
indicating that the unsteady flow is periodic for Ra = 107, which is compatible with Figure 9.
In Figure 11b, the trajectory turns out to be chaotic for Ra = 108, indicating that the periodic
flow transforms into chaotic, which happens within Ra = 107 and 108. This is referred
to [39] for a full description of the phase-space trajectories.
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5.2. Impact of Rayleigh Numbers on the Progress of the Flow

An array of Rayleigh numbers, ranging from Ra = 103 to 108, was used in the simula-
tions. An observation was made in the different transient flow characteristics throughout
an array of Rayleigh numbers. For A = 0.5, the isotherms and accompanying streamlines
are depicted in Figures 4–7 for different Rayleigh numbers. The numerical findings for the
various Rayleigh numbers, as shown in Figure 12, reveal some differences. To begin with,
convective flow instabilities can be noticed at the lowermost Rayleigh number. However,
with a higher Rayleigh number, the unsteadiness becomes more pronounced, while the
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corresponding wave number rises. For Ra = 103 to 104, the flow is weaker and symmetric
behavior is visible, which is expected, i.e., the flow is symmetric and constant. The flow
becomes asymmetric for Ra = 105 and 106 in the transitional stage and becomes steady at
the fully developed stage. Lastly, for Ra = 107 and Ra = 108, the flow becomes periodic and
chaotic, respectively.
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6. Heat Transfer

The time series of the averaged Nusselt number (Nu) of the lower and upper surfaces
were calculated as demonstrated in Figure 13 in order to measure heat transfer through
the cavity’s wall. In this study, the Nusselt number was defined as follows (Bhowmick
et al. [40] and Cui et al. [41]):

Nu =
1
ln

∫ dθ
dn

ln
ds. (11)
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Figure 13. Time series of the Nusselt number for various Ra on (a) hot bottom wall and (b) cold
top wall.

The temperature in the internal cavity changes at various periods in the early stages
because the fluid in the cavity is initially stratified. As the upper and lower walls are cooled
and heated at the same time, due to the initially stratified fluid, no significant distinction in
temperature between the fluid observed, and the wall might lead to tiny heat transfer; as
a result, a small Nu value is predicted initially. The stratification breaks down with time,
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and the temperature differential in the interior cavity approaches zero. When the fluid’s
stratification becomes weaker, then the waviness of Nu is increased with increased Ra.
In the transitional period, for larger Ra, Nu is oscillatory. It is apparent that the Nusselt
number on the enclosure’s hot bottom wall (Figure 13a) is larger during the transition
stage. The cool top wall, however, illustrates the opposite situation (see Figure 13b). At the
completely developed stage, the Nusselt number is fixed for Ra ≤ 106 and oscillatory for
Ra ≥ 107. These findings are compatible with those in Figure 12.

7. Conclusions

This study was concerned with the transient thermal convection in a trapezoidal cavity
stuffed with linearly stratified air. Although the inclined walls remained adiabatic, the
base wall was warmed, and the top wall was cooled with a specified aspect ratio A = 0.5
with variation of Ra (100 to 108). The finite volume-based FLUENT software was used to
conduct the numerical simulation. The key findings of this study are described below.

According to numerical simulation, the development of transient flow within the
enclosure owing to the predefined boundary conditions could be categorized into three
separate stages: early, transitional, and steady or unsteady, all of which were shown in
Figures 4–7.

The flow at the beginning phase was portrayed through the arrangement of thermal
boundary layers close toward every internal surface and the commencement of primary
circulations. In the energy conditions, whenever the terms of convection and conduction
were adjusted, the flow went into the transitional state. In the transitional level, the
flow was depicted via the base of convective dangers through ascending and descending
thermal plumes, as well as the creation of the cellular flow formations. Furthermore,
symmetric flows regarding the geometrically symmetric plane for smaller Ra, as well as
for relatively higher Ra, were characterized by pitchfork bifurcation, representing the flow
from symmetry to asymmetry. With respect to the variance in Ra, the timescale for the flow
development was likewise computed. For the pitchfork bifurcation, the difference in the
behavior of symmetric and asymmetric flow was additionally examined.

For the stratified air, the temperatures of the fluid adjacent to the top and base walls
were the same as the temperature of the walls. Heat transmission was studied through
the enclosure, as well as at the base and top walls, and it was discovered that, initially,
the Nu was small for the stratified air, whereas, after stratification breakup, Nu gradually
increased in the transitional stage, and it was fixed for Ra ≤ 106 and oscillatory for Ra ≥ 107

at the completely developed stage. Moreover, on the basis of the numerical results, the heat
transmission was measured, and it was shown that the Nusselt number depends on the
Rayleigh number.

Author Contributions: Conceptualization, S.C.S. and S.B.; methodology, M.M.R. and S.B.; validation,
M.M.R. and S.B.; formal analysis, M.M.R., S.B., S.C.S.; investigation, M.M.R. and S.B.; writing—
original draft preparation, M.M.R.; writing—review and editing, S.C.S., S.B. and R.N.M.; visualization,
M.M.R.; supervision, S.B. and R.N.M.; project administration, S.B. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data produced from the simulations are used in this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Processes 2022, 10, 1383 13 of 14

Nomenclature
A aspect ratio
g gravitational force (m/s2)
L, H half-length and height of the enclosure (m)
ln dimensionless length of the horizontal wall
n dimensionless coordinate normal to the horizontal wall
s dimensionless coordinate along the horizontal wall
t time (s)
P Pressure (N/m2)
Nu Nusselt number
Pr Prandtl number
Ra Rayleigh number, gβ(Th − Tc)H3/νκ

T dimensional temperature (K)
T∞ dimensional ambient temperature (K)
Th dimensional temperature of the heated bottom wall (K)
Tc dimensional temperature of the cooled top wall (K)
∆T temperature difference, (Th − Tc)
u, v dimensional velocity components (m/s)
U, V dimensionless velocity components
x, y dimensional horizontal and vertical coordinates
X, Y dimensionless horizontal and vertical coordinates
β thermal expansion coefficient (1/K)
κ thermal diffusivity (m2/s)
ν kinematic viscosity (m2/s)
ρ density (kg/m3)
τ dimensionless time
∆τ dimensionless timestep
θ dimensionless temperature
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