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In this study, Imperialistic Competitive Algorithm (ICA) is utilized for locating the critical failure surface
and computing the factor of safety (FOS) in a slope stability analysis based on the limit equilibrium
approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm
of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General
slip surface is considered non-circular in this study that is constituted by linking random straight lines.
To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The
results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for
locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the
present algorithm could reach the lower value of FOS and reached more exact solutions.

� 2014, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
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1. Introduction

Slope stability analysis and determination of critical slip surface
are significant problems in embankment dams or road besides
slopes. For the slope stability analysis, a wide variety of variables
such as external forces (Earthquake loads and existing of structures
above slope), pore water pressure, soil parameters and site condi-
tion shall be considered.

The calculation of safety factor is the first step in the slope sta-
bility analysis. A lot of methods may be applied in order to calculate
the factor of safety (FOS), i.e. limit equilibrium, finite element and
finite difference methods. The limit equilibrium methods are com-
mon practice for this way. This procedure follows as:

- Slippery mass divides into the specific numbers of slices;
- Then, the effective forces acting on each slice are computed;
- Finally, the moment and force equilibrium equation will be
extracted.

Because of indeterminacy of these equations, a lot of researchers
attempt to solve it by considering some simplifying assumptions
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(Khajehzadeh et al. 2012a). For example, Fellenius (1936) and
Bishop (1955) applied circular slip surface, Janbu (1973), Spencer
(1967) and Morgenstern-Price (1965) utilized both circular and
non-circular slip surface. As a unique aspect of the Morgenstern-
Price method, both the moment and the force equilibriums are
satisfied. The use of fewer simplifying assumption is the other
feature of this technique. Due to the non-linear nature of the
resulted equations from the Morgenstern-Price, a particular tech-
nique is needed to solve the mentioned equations simultaneously,
i.e. the classical optimization techniques (e.g. Newton-Raphson
method) and the metaheuristic optimization techniques (e.g. the
method utilized in Zolfaghari et al. (2005)).

However, the survey of literature reveals that this problem also
has been solved in direct way without using any optimization
techniques. Zhu et al. (2005) proposed an effective, step by step
procedurewhich leads to reasonable results in comparisonwith the
complex optimization based techniques. This adopting classical
optimization techniques on locating the critical slip surface may be
found in Baker and Garber (1978) variation method, Celestino and
Duncan (1981) and Li and White (1987) the alternating variable
method, Baker (1980) dynamic programming. The inconvenient
nature of these non-circular slip surface approaches has been
pointed by priors (i.e. Chen and Shao, 1983) demonstrated the
applied objective functions have a lot of local minimums within
solution domain. Therefore classical optimization algorithms face
ction and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-

Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:m-mousavi@araku.ac.ir
mailto:mehdimousavi61@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gsf.2014.11.005&domain=pdf
www.sciencedirect.com/science/journal/16749871
http://www.elsevier.com/locate/gsf
http://dx.doi.org/10.1016/j.gsf.2014.11.005
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.gsf.2014.11.005
http://dx.doi.org/10.1016/j.gsf.2014.11.005


A.R. Kashani et al. / Geoscience Frontiers 7 (2016) 83e8984
some troubles to converge to a valid solution unless a good initial
solution is selected.

In the recent years, by developing the meta-heuristic optimi-
zation methods, these kinds of problems are solved very well
(Gandomi and Alavi, 2012). These algorithms are also applied in
water, geotechnical, transportation, structural and earthquake en-
gineering (i.e. Gandomi et al., 2013; Yang et al., 2013; Fister et al.,
2014; Gandomi, 2014). The metaheuristic approaches have been
also employed in slope stability analysis. As examples, the Monte-
Carlo techniques by Greco (1996), harmony search, tabu search
and fish swarm optimization by Cheng et al. (2007a, 2008), simu-
late annealing by Cheng (2003), the genetic algorithm (GA) by
Zolfaghari et al. (2005), ant colony by Kahatadeniya et al. (2009)
and Rezaeean et al. (2011), GSA by Khajehzadeh et al. (2012a) and
particle swarm optimization (PSO) by Cheng et al. (2007b),
Khajehzadeh et al. (2012b) and three swarm intelligence tech-
niques (including PSO, firefly algorithm, cuckoo search and levy-
flight krill herd) by Gandomi et al. (2014).

As mentioned by Cheng et al. (2012), the cited metaheuristic
methods may be trapped on local minimum and don’t converge to a
proper solution. This phenomenon occurs due to the presence of a
band of weak soil layer. The objective function is non-convex and
discontinuous on solution domain and there are several strong local
minima in the search space. Therefore it is necessary to find a robust
algorithm that can evade from these local minimum and converge to
the globalminimum. In this way, Atashpaz-Gargari and Lucas (2007)
developed Imperialistic Competitive Algorithm (ICA) optimization
algorithm based on imperialistic competition. This algorithm starts
from a random initial solution to reach the final solution. The pop-
ulation divides into two major classifications named: colonies and
imperialist. Over times each imperialist try to expand its empire
based on some defined rules. Among all the new developed opti-
mization algorithms, the ICA is selected for optimization of slope
stability because of good performance on preliminary benchmark
tests (Atashpaz-Gargari and Lucas, 2007; Atashpaz-Gargari et al.,
2008). This algorithm is also adopted very well on the structural
problems (Kaveh and Talatahari, 2010a,b; Talatahari et al., 2012).

The main objective of this paper is to apply the ICA on the soil
slopes which contains a band of weak layer. According to the above
mentioned benefits of this algorithm it is expected to find satis-
factory results for this complex slope stability problem. It is worth
Figure 1. Generation of no
to emphasize that the Morgenstern-Price method for evaluating
the FOS and the Cheng’s (2003) method for producing the trial non-
circular slip surface are selected. Finally, Zhu et al.’s (2005)
approach is used to simplify the Morgenstern-Price method.
2. Generation of trial slip surface

A trial slip surface generation algorithm is required to find the
position of critical failure surface. In this paper, it is used a method
that proposed by Cheng (2003). The procedure of producing the
trial slip surface is shown in Fig. 1. In this figure, y ¼ T(x) presents
mathematical function of the slope geometry and y¼ R(x) describes
the bedrock line.

The first step to produce slip surface is dividing the failure soil
mass into n-vertical slices. The failure surface is represented by
vertices as follows:

V ¼ ½x1; y1; x2; y2; ::::; xn; yn; xnþ1; ynþ1� (1)

In order to reduce the number of variables, the width of all the
slices is considered to be equal that is obtained using the following
equation:

xiþ1 ¼ xi þ
xnþ1 � x1

n
� ði� 1Þ (2)

To determine the y-coordinates of each point the upper and
lower bounds (yi,max and yi,min) that are slope geometry and bedrock
orderly are considered.

Trial slip surfaces have to be concave upward; this fact is
formulated as follows:

a1 � a2 � / � ai (3)

where ai is the inclination of the base of the slice i.
For more details, refer to Cheng (2003).
3. Calculation of safety factor

The Morgenstern-Price method is one of the limit equilibrium
methods that satisfied both the moment and the force equilibrium
for any shape of slip surface. In this method, slippery mass is
n-circular slip surface.
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divided into the number of vertical slices. The forces applied to each
slice are shown in Fig. 2.

The original formulation of Morgenstern-Price method is very
complicated; hence a new approach of this method used in this
paper proposed by Zhu et al. (2005), and Khajehzadeh et al.
(2012a,b) implemented this method very well for calculating the
factor of safety in the slope stability analysis.

The procedure of this method is briefly described below.
All the effective forces on each slice including the self-weight,

the seismic force, shear and normal inter-slice forces and the wa-
ter pore pressure are shown in Fig. 2.

In Fig. 2, Wi is the weight of slice i; Ni is the effective normal
force at the base of slice i; Si is the mobilized shear strength at the
base of slice i (Si ¼ ðNi tan 4i þ cibi sec aiÞ=Fs); ci is the effective
cohesion intercept at the base of slice i; 4i is the effective internal
friction angle at the base of slice i; li is the length of the base of slice
i; Ui is the pore water pressure at the base of slice i; ai is the
inclination of the slice base; bi is the width of slice i; hi is the
average height of slice i; ah is the horizontal seismic coefficient; ha
is the height of the center of the slice; ui is inclination of surcharge
load and bi is the inclination of the slice at the top.

i. Compute Ri and Ti using following equations:

Ri ¼ ½Wi cos ai �Wiah sin ai þQi cosðui � aiÞ �Ui� � tan f0
i

0
þ cibi sec ai (4)

Ti ¼ Wi sin ai þWiah cos ai � Qi sinðui � aiÞ (5)

ii. Select inter slices forces function. In this study a constant
function is opt(f(x) ¼ 1).

iii. Choose initial values of Fs (FOS) and l (scaling factor) seen
following criteria:

Fs>� sin ai � lfi cos ai
cos ai þ lfi sin ai

tan f0 (6)
iv. Calculate fi and ji�1 using Eqs. (7) and (8).

Fi ¼
�
sin ai � lfi cos ai

�
tan f0

i þ
�
cos ai þ lfi sin ai

�
Fs (7)
Figure 2. Slope geometry and ith slice effective forces. (a) Gen
Ji�1 ¼ �ðsin ai � lfi cos aiÞtan f0
i þ ðcos ai þ lfi sin aiÞFs

��
Fi�1

(8)

v. Compute Fs using Eq. (9), then determine fi, ji�1 by repeating
step iv. Then compute Fs again.

Pn�1
i¼1

 
Ri
Yn�1

Jj

1
Aþ Rn
Fs ¼ j¼ i

Pn�1
i¼1

 
Ti
Yn�1

j¼ i

Jj

1
Aþ Tn

(9)

vi. Use Eqs. (10) and (11) to reach Ei and l respectively.

EiFi ¼ Ji�1Ei�1Fi�1 þ FsTi � Ri (10)
l ¼
P½biðEi þ Ei�1Þtan ai þWiahhi þ 2Q sin uihi�P½biðfiEi þ fi�1Ei�1Þ�

(11)

Iterate above procedure to the difference between the
computed Fs and l values in each iteration be within an acceptable
tolerance limit.
4. Imperialistic Competitive Algorithm’s review

Imperialistic Competitive Algorithm (ICA) is one of the recent
evolutionary algorithms (Atashpaz-Gargari and Lucas, 2007). This
algorithm mimics the imperialistic competition process. ICA works
by seven following steps:

i. Initializing empires

Like the other optimization algorithms, an array containing of
variables will be made as solution. For an Nvar-dimensional opti-
mization problem a 1 � Nvar dimensional vector considered as a
solution that is named country as Eq. (12).

country ¼ �
P1; P2; P3;.; PNvar

�
(12)

In this step Npop country will be generated, Nimp of the best
solution will be selected as the imperialist and the others will
eral failure surface; (b) inter-slice forces in slice number i.



Figure 3. Colony movement direction.

Figure 4. Slope geometry and critical slip surface for Example 1.
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form the colonies. The colonies divide among empires and
the country with better solution has greater portion of the
colonies.

ii. Imperialist moving the colonies toward the imperialist

Each colony will be made improve by means of its imperialist.
ICA simulates this fact by moving the colonies toward
imperialists along a vector from colony to imperialist. Fig. 3
shows movement direction with the distance equal to x as
follows:

xwUð0; b� dÞ (13)

where b is a number greater than 1, d is the distance between
colony and imperialist and x is a uniform random number.

In this algorithm q is defined to specify new direction inclination
respect to original direction. q is a random number with uniform
distribution as follows:

qwUð � g;gÞ (14)

where g is a parameter to adjust the deviation value. b and q force
algorithm to search the solution space around imperialist.

iii. Exchanging position of the imperialist and a colony

Similar to other optimization techniques, the best solution
should be selected to guide algorithm converge to the global
minimum. Throughmoving the colonies toward imperialist a better
solution may be found. In this case the colony and the imperialist
will exchange their position.

iv. Total power of an empires

Asmentioned the stronger imperialist has greater empires. Total
power of empires is relating to the power of imperialist and the
power of colonies. In the ICA, T.C.n is defined to index this fact by the
following equation:

T :C:n ¼ CostðimperialistnÞ þ xmeanfCostðcolonies of empirenÞg
(15)

in which, T.C.n is the total cost of nth empire and x is a positive
number which is considered to be less than 1.
Table 1
ICA parameters adjustment.

Parameters
name

Number of
countries

Number of
imperialists

Number of
decades

Revolution
rate

Value 300 8 500 0.3
v. Imperialist competition

In fact all empires try to develop their colonies and take control
of the colonies of other empires. It is equal to increase in the power
of more powerful empires and decrease in the power of weaker
ones. ICA models this rule by selecting some of the weakest col-
onies of the weakest empires and dividing among other empires.
Each empire takes possession of these colonies by a specific prob-
ability relating to their total power.

vi. Eliminating the powerless empires

In this step powerless empires will collapse in the imperialistic
competition. In ICA losing all of the colonies are considered as a
collapse criteria.

vii. Convergence

By doing mentioned steps continuously, the most powerful
imperialist will take possession of all the colonies. Finally all the
colonies will have the same position as imperialist. In this situation
the algorithm should be terminated and it can be defined as
termination criteria.

For more detail Atashpaz-Gargari and Lucas (2007) is referable.
5. Numerical examples

To investigate effectiveness and validity of ICA on slope stability
optimization problems, four benchmark examples are analyzed and
their results are reported. In each example location of critical slip
surface and relating FOS are reported, moreover all the previous
studies on slope stability analysis are reported in the tables and
compared to the present study. Because of chaotic performance of
heuristic algorithms, each examples 20 times ran and results re-
ported based on mean, best and standard deviation. The ICA pa-
rameters used in this study are exposed in Table 1.
b g z Damp
ratio

Uniting
threshold

Zarib a

2 0.5 0.02 0.99 0.02 1.05 0.1



Table 2
Values of safety factor for Example 1.

Optimization algorithm FOS

Yamagami and Ueta (1988) BFGS method 1.338
Yamagami and Ueta (1988) DFP method 1.338
Greco (1996) pattern search 1.326e1.330
Greco (1996) Monte Carlo 1.327e1.333
Malkawi et al. (2001) ordinary method of slice 1.238
Solati and Habibagahi (2006) janbu 1.380
Jianping et al. (2008) spline 1.321
Jianping et al. (2008) line 1.324
Kahatadeniya et al. (2009) 1.311
ICA (current study) 1.3206

Table 3
Soil layers parameters for Example 2.

Layer g (kN/m3) c (kPa) 4 (�)

1 18.82 29.4 12
2 18.82 9.8 5
3 18.82 294.0 40

Table 4
Values of safety factor for Example 2.

Optimization algorithm FOS

Conjugate gradient (Arai and Tagyo, 1986) 0.405
RST-2 (Sridevi and Deep, 1992) 0.401
Monte Carlo (Malkawi et al., 2001) 0.401
PSO (Khajehzadeh et al., 2012b) 0.393
MPSO (Khajehzadeh et al., 2012b) 0.391
ICA (current study) 0.392
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Example 1. The first example is a homogenous slope with an
effective friction angle 4 of 10�, an effective cohesion intercept c of
9.8 kPa, a unit weight g of 17.64 kN/m3 taken out from Yamagami
and Ueta (1988). Fig. 4 shows the geometry and the most critical
slip surface of the slope. In addition to Yamagami and Ueta (1988),
this example analyzed in the works of Greco (1996) by pattern
search and the Monte-Carlo methods and Kahatadeniya et al.
(2009) used the ant colony optimization (ACO). A comparative
summary of previous studies is tabulated as Table 2. The obtained
result by ICA (FOS of 1.3206 with SD of 0.00692) is found to be a
relatively good and satisfactory solution.

Example 2. This example is from the work by Arai and Tagyo
(1986). In this case, a layer of weak soil is sat between two stron-
ger soil layers. The geometrical characteristics and the critical slip
surfaces of the slope are shown in Fig. 5. Table 3 collected soil pa-
rameters for each layer. Arai and Tagyo (1986) solved this problem
using Janbu’s simplified method in combinationwith the conjugate
gradient method. Sridevi and Deep (1992) and Malkawi et al.
(2001) utilized the random search technique (RST-2) and Monte
Carlomethod, respectively. Khajehzadeh et al. (2012b) explored the
efficiency of PSO and MPSO optimization algorithms. In the present
study this problem is also solved using the ICA optimization tech-
nique. Table 4 shows a comparison among the resultant minimum
FOS obtained from the current study with previous studies. Mini-
mum FOS by ICA is equal to 0.392 with SD of 0.00133 that shows an
appropriate performance on the Example 2. However the achieved
FOS by ICA is not less than the one by MPSO, since the SD is not
reported in the work by Khajehzadeh et al. (2012b). It is not
possible to compare these algorithms proficiency on present
example exactly.
Figure 5. Slope geometry and critical slip surface for Example 2.
Example 3. This example is proposed by Fredlund and Krahn
(1977), which contained a soil slope consisting of a weak layer
sandwiched between two other strong ones. Some studies devoted
to analyze this example, such as Baker (1980), Kim and Salgado
(2002), and Zhu et al. (2003). The slope geometry, location of slip
surface is shown in Fig. 6. Moreover soil parameters are shown in
Table 5. Obtained FOS by ICA is equal to 1.3625 with SD of 0.05102
that shows using ICA is the most efficient method among all the
studies (summarized in Table 6).

Example 4. For the last complicated geotechnical, the example
proposed by Zolfaghari et al. (2005) is considered. The soil pa-
rameters and slope geometry are shown in Table 7 and Fig. 7,
respectively. This problem is analyzed in the works done by
Zolfaghari et al. (2005) using genetic algorithm, Cheng et al.
(2008) using the artificial fish swarm algorithm (AFSA),
Kahatadeniya et al. (2009) using the ant-colony method and
Cheng et al. (2012) using HSPSO. Table 8 provides a comparative
study on the current example based on previous studies. Because
of presence of thin weak soil layer between two strong ones
multiple strong local minima have occurred and ACO and GA failed
to converge to a very good solution. The computed FOS by ICA (FOS
of 1.0642 with SD of 0.08475) shows the present study provides a
good solution in this example that is able to compete with other
proposed method.
Figure 6. Slope geometry and critical slip surface for Example 3.



Table 5
Soil layers parameters for Example 3.

Layer g (kN/m3) c (kPa) 4 (�)

1 19.22 28.73 20
2 19.22 0 10

Table 6
Values of safety factor for Example 3.

Optimization algorithm FOS

Fredlund and Krahn Zhu 1.373
Lee and Jiang 1.381
ICA (current study) 1.3625

Table 7
Soil layers parameters for Example 4.

Layer g (kN/m3) c (kPa) 4 (�)

1 19.00 15.0 20
2 19.00 17.0 21
3 19.00 5.00 10
4 19.00 35.0 28

Table 8
Values of safety factor for Example 4.

Optimization algorithm FOS

Genetic algorithm (Zolfaghari et al., 2005) 1.24
Simulated annealing (Cheng et al., 2007) 1.2813
Genetic algorithm (Cheng et al., 2007) 1.1440
Particle swarm optimization (Cheng et al., 2007) 1.1095
Simple harmony search (Cheng et al., 2007) 1.2068
Modified harmony search (Cheng et al., 2007) 1.1385
Tabu search (Cheng et al., 2007) 1.4650
Ant colony optimization (Cheng et al., 2007) 1.5817
Gravitational search algorithm (Khajehzadeh et al., 2011) 1.0785
ICA (current study) 1.0642
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6. Conclusion

In this study locating the most critical slip surface of soil slopes
containing a weak soil layer is performed. An appropriate slip
surface, kinematically acceptable, should be concave upward. Thus,
some constraints should be considered to prevent unrealistic slip
surface such as zigzag curves. Cheng (2003) proposed method is
considered to produce trial non-circular slip surface. In this prob-
lem the objective function is considered non-polynomial hard type
(Cheng et al. 2012). Even though many new optimization algo-
rithms have developed, they have not been applied to geotechnical
problems yet. Therefore, a computer program based on the ICA and
the Morgenstern-Price method is written in MATLAB R2012a in
order to automate locating the critical failure surface. Four illus-
trative problems that are proposed in the previous studies by some
researchers are examined here again to benchmark the ICA algo-
rithm performance. The achieved results in this study are compared
with some reported results in the previous literature such as using
Monte Carlo random-walk type, GA, PSO, MPSO, AFSA, and HSPSO.
As a result, mentioned algorithms enhanced the accuracy of FOS
values and location of critical slip surface. This study proves the ICA
Figure 7. Slope geometry and critical slip surface for Example 4.
algorithm is the most proficient algorithm among the others
because of smaller FOS with low standard deviation.
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