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A newmodel is derived to predict the peak ground acceleration (PGA) utilizing a hybrid method coupling
artificial neural network (ANN) and simulated annealing (SA), called SA-ANN. The proposed model re-
lates PGA to earthquake source to site distance, earthquake magnitude, average shear-wave velocity,
faulting mechanisms, and focal depth. A database of strong ground-motion recordings of 36 earthquakes,
which happened in Iran’s tectonic regions, is used to establish the model. For more validity verification,
the SA-ANN model is employed to predict the PGA of a part of the database beyond the training data
domain. The proposed SA-ANN model is compared with the simple ANN in addition to 10 well-known
models proposed in the literature. The proposed model performance is superior to the single ANN and
other existing attenuation models. The SA-ANN model is highly correlated to the actual records
(R ¼ 0.835 and r ¼ 0.0908) and it is subsequently converted into a tractable design equation.

� 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/3.0/).
1. Introduction and background

Peak ground acceleration (PGA) is a well-known engineering
parameter of an earthquake, which can be applied to seismic
structural analysis and risk assessment. This key element can be
predicted using different methods such as physical modeling and
on-site investigation (Alavi and Gandomi, 2011). However, imple-
menting such a method is extensive, cumbersome and costly and,
most of the time, is impossible (Gullu and Ercelebi, 2007; Gandomi
et al., 2011).

An approach to assess the PGA is to use attenuation relation-
ships which play a key role in seismic analysis. They usually
formulate the PGA with various independent variables such as
distance from the source to site, earthquake magnitude, local site
conditions, and earthquake source characteristics (Kramer, 1996;
Gullu and Ercelebi, 2007; Gandomi et al., 2011). Developing a cor-
relation between the PGA and the predictors is difficult due to high
complexity and nonlinearity.

Soft computing has been widely used to resolve a variety of
classification or prediction problems in science, medicine and
domi).
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engineering (e.g. Yaghouby et al., 2010a, 2012). Artificial neural
network (ANN) as a commonly used predictor in soft computing
mimics the network structure of actual human brain and has been
applied to several classification or prediction problems (Yaghouby
et al., 2009). This empirical modeling tool has a great capability of
adaptively learning from experience and extracting various corre-
lations. This soft computing technique, ANN, has been widely uti-
lized for geotechnical engineering modeling in the last two decades
(e.g. Goh, 1994; Azmathullah et al., 2005; Das and Basudhar, 2008;
Samui and Sitharam, 2010; Gandomi and Alavi, 2011; Guven et al.,
2012; Fister et al., 2014) and have recently been used to predict
groundmotion characteristics (e.g. Gullu and Ercelebi, 2007; Ahmed
et al., 2008; Cevik and Cabalar, 2009; Alavi and Gandomi, 2011; Alavi
et al., 2011; Gandomi et al., 2011). A major constraint in application
of ANN is the network’s tendency to become trapped in localminima
(Hamm et al., 2007). To obtain an optimal solution and avoiding this
problem, an ANN may be trained using global optimization algo-
rithms (e.g. Das et al., 2011). Ledesma et al. (2007) have recently
combined ANN and a well-known derivatively-free global optimi-
zation algorithm named simulated annealing (SA) to improve the
ANN efficiency. They used a new cooling schedule based on tem-
perature cycling for implementing SA. It was shown that the net-
works trained using temperature cycling outperformed those
trained by the conventional exponential or linear cooling schedules
(Ledesma et al., 2007; Alavi and Gandomi, 2011).
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Figure 1. A basic representation of an MLP neural network.
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In this study, the SA-ANN technique is used to derive an explicit
formula for the PGA. In the hybrid algorithm, SA strategy is used to
assign initial starting values to the weights and biases of the
network before performing ANN. The SA-ANN system can derive a
prediction model for PGA by directly extracting the knowledge
contained in the experimental data. An ANN model is usually
considered as a black-box system; therefore it cannot be used later.
To deal with this issue, the optimal SA-ANN-based model is con-
verted into an explicit equation. The results obtained by the
developed model are further compared with those provided by the
10 other models proposed in the literature. The proposed model is
developed based on a comprehensive database of strong ground-
motion recordings of 36 earthquakes.

2. Methodology

2.1. Artificial neural network

McCulloch and co-workers founded the ANN method in the
early 1940s (Perlovsky, 2001). ANNs is a predictive tool to build a
mathematical model for an unknown system. Multi-layer percep-
tron (MLP) ANN (Cybenko, 1989) is the most well-known class of
ANNs and usually has feed-forward architectures. The MLPs are
usually trained with back-propagation algorithm. TheMLP network
consists of one input and one output layer, and at least one hidden
layer. Each of these layers has a number of nodes and contains
processing unit(s) and each unit is fully interconnected with
weighted connections (wij) to subsequent layer units (Alavi et al.,
2010). The output (Y) is obtained by passing the sum of the prod-
uct through an activation function. Fig. 1 shows a basic represen-
tation of an MLP ANN. In this figure Xi shows the inputs and b/B
shows the biases between different layers.
Figure 2. Temperature cycling (
For complex and nonlinear problems, the hyperbolic tangent
function or sigmoid function (or log-sigmoid) can be adopted as the
activation function.

2.2. Simulated annealing

SA is a global search algorithm used for solving optimization
problems, which makes use of the Metropolis algorithm
(Metropolis et al., 1953) for computer simulation of annealing. This
algorithm was initially used for optimization problems by
Kirkpatrick et al. (1983). SA is very useful for solving nonlinear
problems with multiple local optima (Aarts, 1989). When a metal is
heated to a high temperature and thereafter it is gradually cooled to
relieve thermal stresses is called annealing. The cooling process is
simulated by SA to optimize a function in a certain design space.
The objective function relates the energy state and moving to any
different set of design variables corresponds to changing the crys-
talline structural state (Gandomi et al., 2013). The abilities and
shortcomings of SA are well summarized by Ingber (1993).

2.3. Hybrid artificial neural network-simulated annealing

A hybrid computational approach could be optimized by
combining more than one soft computing technique in an efficient
way so that the final model would outperform original one in a
specific problem (e.g. Yaghouby et al., 2010b; Gandomi and Alavi,
2013). An ANN can be trained from a set of data known as a
training set. During the training process, the network’s weights are
optimized until reaching the stop criteria. The training procedure
has two main steps including initialization and optimization (Alavi
and Gandomi, 2011). In the initialization process initial values to the
weights of the network are assigned. The initial weights can be
after Ledesma et al., 2007).



Table 1
Basic descriptive statistics and normalization values of the variables used in the
model development.

Parameter Mw REpi df Vs30 F PGA

Minimum 5 4 3 165 1 1.45
Average 5.88 56.74 15.33 701.74 1.51 3.8
Max 7.4 188 32 1961 2 6.88
Standard deviation 0.67 33.37 7.74 331.88 0.5 1.14
Normalization value 8 200 35 2200 3 8

Table 2
Parameters setting of the SA-ANN algorithm.

Parameter Value

SA setting Acceptance constant (k) 1500
Initial temperature (�C) 15
Final temperature (�C) 0.015
Number of levels 5, 10, 15
Iterations per temperature 25, 50, 100

ANN setting Activation function Purelin, log-sigmoid,
tan-hyperbolic

Optimization method Conjugate-Gradient,
LevenbergeMarquardt

Number of hidden nodes 10-Apr
Epochs 500, 1000
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assigned randomly or obtained using a powerful global optimiza-
tion method such as SA. The optimization process is usually a
gradient-based algorithm which is suitable for local search. This
shows the optimization process requires a starting point obtained
from a global search to be successful. Therefore a robust training
process needs both the initialization and optimization processes
(Ledesma et al., 2007). In contrast with other optimization
methods, SA is a global optimization method and does not fall
easily into local minima (Ledesma et al., 2007). For the initialization
step, SA randomly perturbs the weights of the network during the
iterations. When the weights are perturbed, the network perfor-
mance is evaluated based on the defined objective function. The
cooling schedule during iterations can be linear or exponential.
Additionally, the cooling schedule may increase the number of it-
erations at a specific temperature when objective function is
improved (Huang et al., 1986). Each time a new solution is gener-
ated, the algorithm decides whether the new solution is either
accepted or rejected. Metropolis et al. (1953) incorporated the
probability of accepting a new solution (Pa) as given below:

PaðDE; yÞ ¼

8><
>:

exp
�
�kDE

y

�
DE>0

1 DE � 0

(1)

where DE is error, y is current temperature and k is the acceptance
constant. As the temperature decreases, the algorithm is more se-
lective (Ledesma et al., 2007). When implementing SA for the
ANN’s initialization, the most important factor is adjusting the
acceptance constant which is dependent on the temperature range,
training set and weight allowed values (Alavi and Gandomi, 2011).
Generally cooling schedules start gradually from high temperatures
to until a specified low temperature is reached (Luke, 2007).
However, the hybrid SA-ANN method needs the temperature to
increase and decrease periodically. There are two cycling cooling
schedules, linear and temperature cycling. As presented in Ledesma
et al. (2007) and Gandomi and Alavi (2011), the temperature cycling
cooling schedule can outperform the linear one. Therefore, tem-
perature cycling is used in this study, which is presented in Fig. 2.
Figure 3. Distribution of the earthquake records of Iran’s tectonic regions.
3. Modeling of peak ground acceleration

The damage potential of an earthquake depends on the PGA and
local site conditions (Alavi and Gandomi, 2011). PGA is frequently
presented as functions of different seismic variables. The first two
parameters are distance from source to site and earthquake
magnitude. Advanced attenuation models (Abrahamson and Silva,
2008; Boore and Atkinson, 2008; Campbell and Bozorgnia, 2008)
are mainly considered the source to site distance, earthquake
magnitude, geotechnical site condition, and faulting mechanism
and stress drop, rupture propagation, directivity, and nonlinear soil
behavior are not considered as they notably reflect the un-
certainties (Cevik and Cabalar, 2009; Gandomi et al., 2011). Soft
computing approaches have already been employed in the litera-
ture to predict attenuation relationships. The study uses the SA-
ANN approach to derive alternative for PGA in Iran’s tectonic re-
gions. The most important factors representing the PGA behavior
are selected based on a literature review and trial study (Gullu and
Ercelebi, 2007; Abrahamson and Silva, 2008; Boore and Atkinson,
2008; Campbell and Bozorgnia, 2008; Cevik and Cabalar, 2009;
Alavi and Gandomi, 2011; Gandomi et al., 2011). Consequently,
the formulation of PGA (cm/s2) is considered to be as follows:

ln ðPGAÞ ¼ f
�
Mw;REpi; df ;Vs30; F

�
(2)

where,

Mw: Earthquake magnitude;
REpi (km): Epi-distance to the rupture;
df (km): Focal depth;
Vs30 (m/s): Average shear-wave velocity over the top 30mof site;
F: Fault indicator 1: Strike-slip (horizontal slip) and 2: Reverse
(dip slip with hanging-wall side up).

3.1. Strong-motion database and data preprocessing

A database compiled by Rahpeyma et al. (2013) is employed for
the model development. The database covers a broad range of
earthquake magnitude and distance. This database includes 179
ground motion datasets recorded from 36 different earthquakes
happened during 30 years (between 1978 and 2008). The pre-
dictors included in the current study areMw, REpi (km), Vs30 (m/s), df
(km), and F. The statistical parameters involved with the dependent
and independent variables are presented in Table 1. The distribu-
tion of the records used here is also visualized in Fig. 3.

For the analysis, the database is randomly divided into training
and testing subsets. The unseen testing sets are used to model
testing after training. To reach a consistent data division, different
combinations of the training and testing sets are considered. The
selection is such that the maximum, minimum, mean and standard



Table 3
Weight and bias values.

h Weights Biases

W1h W2h W3h W4h W5h Vh biash Bias

1 5.069 �42.351 7.472 �30.299 17.624 �1.182 3.6 �0.346
2 40.235 60.728 �12.307 �73.911 �26.781 1.053 �37.359
3 36.956 10.032 �2.599 �45.45 �15.714 �1.483 �14.567
4 247.34 �63.536 21.617 �27.215 �11.914 0.645 �159.332
5 �165.485 �190.407 �87.805 �121.142 10.431 0.889 215.38
6 140.906 �115.362 37.044 21.431 15.973 1.188 �120.482
7 153.973 �52.419 55.093 �147.993 5.037 1.06 �84.328
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deviations of the PGA are consistent in the both the training and the
testing datasets (Gandomi et al., 2011). Out of the 179 datasets, 144
datasets (80%) are taken for the training process and the remaining
35 datasets (20%) are used for the testing of the models.

Frank and Todeschini (1994) proposed a minimum ratio of the
number of datasets over the number of input variables for model
acceptability, which is equal to 3 and also recommended the ratio be
greater than. In the present study, this ratio of training and testing
are respectively 144/5 ¼ 28.8 and 35/5 ¼ 7. Therefore, both training
and testing datasets are much higher than the suggested ratio.

Before using the data in the modeling process, they are
normalized between 0 and 1. Therefore all the parameters should
be divided by a value, which is slightly more than the maximum
value of each parameter. The normalization value of each param-
eter is presented in the last row of Table 1.

3.2. Performance measures

The optimal SA-ANN model is chosen on the basis of a two-
objective strategy proposed in (Gandomi et al., 2010) as:
Figure 4. Variations of the MSE values with time during the SA-ANN training process.

Figure 5. Measured versus predicted Ln(P
(1) Providing the best fitness value on the training datasets;
(2) Providing the best fitness value on the testing datasets.

The following objective function (OBJ) is constructed to satisfy
these two objectives simultaneously. Then selections of the optimal
models are deduced by the minimization of following objective
function (Gandomi et al., 2010):
GA) values using the SA-ANN model.

Table 4
Defined range for the models in the literature.

Reference Mw REpi

Campbell and Bozorgnia (2008) 4e7.5 0e200
Boore and Atkinson (2008) 5e8 0e200
Abrahamson and Silva (2008) 5e8.5 0e200
Chiou and Youngs (2008) 4e8 0e200
Saffari et al. (2012) 5e7.3 15e135
Rahpeyma et al. (2013) 4e7.4 5e188
Ghodrati Amiri et al. (2007) 4.5e7.5 5e150
Akkar and Bommer (2009) 5e7.6 0e100
Kalkan and Gulkan (2004) 4e7.5 1e250
Bindi et al. (2010) 4e6.9 0e100
Current study 4e7.4 5e188

Figure 6. Residual distribution of the proposed SA-ANN model.



Figure 7. Measured versus predicted Ln(

Table 5
Comparison of the prediction results for all models.

Reference MAE (%) RMSE (%) R r2 r

Campbell and Bozorgnia (2008) 0.1997 0.2482 0.5596 0.9433 0.1592
Boore and Atkinson (2008) 0.2015 0.2562 0.5926 0.9397 0.1609
Abrahamson and Silva (2008) 0.2029 0.2501 0.5654 0.9425 0.1597
Chiou and Youngs (2008) 0.2148 0.2602 0.5735 0.9378 0.1654
Saffari et al. (2012) 0.2049 0.2526 0.4958 0.9399 0.1689
Rahpeyma et al. (2013) 0.1968 0.2439 0.5867 0.9453 0.1537
Ghodrati Amiri et al. (2007) 0.2068 0.2565 0.514 0.9393 0.1694
Akkar and Bommer (2009) 0.2243 0.2716 0.5845 0.934 0.1714
Kalkan and Gulkan (2004) 0.1992 0.2459 0.5864 0.9444 0.155
Bindi et al. (2010) 0.2261 0.2768 0.544 0.9311 0.1793
ANN 0.16 0.2089 0.7364 0.9599 0.1203
SA-ANN 0.128 0.1667 0.8352 0.9745 0.0908
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OBJ ¼
�
No:Train � No:Test

No:All

�
MAETrain
R2Train

þ 2No:Test
No:All

MAETest
R2Test

(3)

where No.All, and No.Test are respectively, the number of datasets
and testing datasets. MAE and R are respectively mean absolute
error and correlation coefficient.MAE and R functions can be found
in the Appendix.
3.3. Parameter settings of SA-ANN algorithm

To determine an efficient parameter setting, several runs are
conducted with different parameters. Then the best parameters are
PGA) values using different models.



Figure 8. The ratio between the predicted and actual PGA values using ANN and SA-
ANN with respect to compressive strength.
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selected after a trial and error approach and based on previously
suggested values (Ledesma et al., 2007; Alavi and Gandomi, 2011).
The parameters setting of SA-ANN algorithm are presented in
Table 2. The performance of an ANN model mainly depends on the
network architecture. Based on a universal approximation theorem
(Cybenko, 1989), a single hidden layer ANN is sufficient for uni-
formly approximating any nonlinear and continuous function.
Choosing the number of hidden nodes plays a very important role
in the model construction. Hecht-Nelson (1987) suggested a
maximum value for the number of hidden neurons based on Kol-
mogorov’s theorem as nh � 2niþ1, where nh is the number of
hidden neurons and ni is the number of inputs. As there are 5 inputs
for the current problem, the upper bound is 2 � 5 þ 1 ¼11 to avoid
overfitting. Therefore, hidden neurons are changed from 4 to 10 and
finally 7 nodes are chosen for the final model. Different training
algorithms are used here and finally conjugate gradient algorithm
is chosen. Several SA-ANNs with different settings are also trained
using this algorithm to reach the best configurations. The SA-ANN
algorithm is implemented by using the Neural Lab S/W for ANNs
(Ledesma, 2009).

3.4. SA-ANN-based PGA model

The best model architecture for the prediction of the PGA is
found with the OBJ ¼ 1.0234. To have an explicit model, first the
weights and biases are frozen after the SA-ANN were well trained.
The SA-ANN-based mathematical model of PGA is as follows:

Ln ðPGAÞ ¼ 8� Logsig

 
Biasþ

Xnh
h¼1

VhLogsig

 
biash

þ
Xni
i¼1

wihxi

!!
(4)

where nh is equal to 7 and ni is equal to 5. In this formula x1¼Mw/8,
x2 ¼ REpi/200, x3 ¼ df/35, x4 ¼ Vs30/2200, and x5 ¼ F/3. All weights
and biases are presented in Table 3.

Mean square error (MSE) of training as a function of time for the
normalized output data is presented in Fig. 4. As it is shown, MSE is
minimized during the initialization phase using the SA algorithm
which indicates SA has globally reached good initial weights for the
ANN. Thereafter, the training process switches to the optimization
phase using ANN. Results of the best ANN model (OBJ ¼ 1.4535)
without the initialization phase is also presented in Fig. 4. The re-
sults clearly show that ANN converged to a local minimum which
has more error than the point obtained by SA-ANN. A comparison
of the real and predicted Ln(PGA) values by SA-ANN is illustrated in
Fig. 5. The distribution of the residual is also presented in Fig. 6
which is almost Gaussian noise (zero-mean normal distribution)
and has a sharp autocorrelation peak at zero.

4. Comparison and discussion

There are many prediction models proposed for PGA in the
literature (Douglas, 2003). The results of the SA-ANN model are
compared with those provided by the well-known models of
Abrahamson and Silva (2008), Boore and Atkinson (2008),
Campbell and Bozorgnia (2008) and Chiou and Youngs (2008) for
PGA as well as some special PGA models for Iran such as Ghodrati
Amiri et al. (2007), Saffari et al. (2012) and Rahpeyma et al.
(2013). Three other models are also chosen for comparison which
may have some benefits to use for Iran’s tectonic regions as models
proposed for Middle-East, Turkey and Italy regions, respectively by
Kalkan and Gulkan (2004), Akkar and Bommer (2009), and Bindi
et al. (2010). The workability ranges of these well-known models
are presented in Table 4. For a fair comparison, these models are
only used within their defined range. We have also compared our
model with the simple ANNmodel as a benchmark of the proposed
method.

Results of the proposed SA-ANN, ANN and other models pro-
posed in the literature are presented in Table 5. The mathematical
formulation of all error functions (MAE and RMSE) and correlation
functions (R and r2) used in this table can be found in Appendix A.
In addition, another criterion called performance index is proposed
by (Gandomi and Roke, 2013) as r ¼ RMSE/(1þR) where RRMSE is
the relative RMSE is also presented in this Table for a general
comparison. The prediction results of all models are also visualized
in Fig. 7.

From the statistical results presented in Table 5, the SA-ANN
model has the lowest errors and the best correlations. The r of
the proposed model is also less than the other PGA models.
Therefore, it can be concluded that the hybrid model clearly
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outperform the simple ANN model and also the other models
proposed in the literature. According to a rational hypothesis
(Smith, 1986), if a model gives correlation coefficient (R) > 0.8, it
shows a strong correlation between the predicted and measured
values. Therefore, among all the models presented here only the
proposed SA-ANN model has good performance.

The ratios of the PGA using actual to predicted values using ANN
and SA-ANNalgorithmswith respect to theMw, REpi (km), Vs30 (m/s),
df (km), and F are shown in Fig. 8, respectively. It can be seen from
these figures that the PGA predictions using the proposed model
have good accuracy with no significant trend with respect to the
input parameters.

5. Conclusions

In this research, a hybrid soft computing method, combining SA
and ANN, is proposed to build a prediction model for PGA. The
proposed PGA model was developed based on an Iran tectonic
database containing 179 records. The main conclusions of this pa-
per is that the proposed SA-ANN relationship provides reliable
estimation of the PGA and has high degree of accuracy (r ¼ 0.0908)
and better than basic ANN and well-known methods proposed in
the literature. The parametric study also confirms that there is not
any trend with respect to the variables. The closed form of SA-ANN-
based design equation provides analysis tool for future research.
The explicit formula can be easily used in a spreadsheet or hand
calculations to give predictions of the PGAvalues especially in Iran’s
tectonic regions.

Appendix A. Error and Correlation functions

MAE ¼
Pn

i¼1jhi � tij
n

(A.1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðhi � tiÞ2
n

s
(A.2)

R ¼
Pn

i¼1

�
hi � hi

��
ti � ti

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

�
hi � hi

�2Pn
i¼1
�
ti � ti

�2r (A.3)

r2 ¼
Pn

i¼1 ðhiÞ2 �
Pn

i¼1 ðhi � tiÞ2Pn
i¼1 ðhiÞ2

(A.4)

r ¼ RMSE

hi

1
Rþ 1

(A.5)

where hi and ti are respectively the measured and predicted PGA
values for the ith output, hi and ti are the average of the measured
and predicted outputs, and n is the total number of earthquakes.
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