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Abstract
Remarkable experimental advances in quantum computing are exemplified by recent announcements
of impressive average gatefidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit
gates. Although these high numbers engender optimism that fault-tolerant quantum computing is
within reach, the connection of average gatefidelity with fault-tolerance requirements is not direct.
Herewe use reported average gatefidelity to determine an upper bound on the quantum-gate error
rate, which is the appropriatemetric for assessing progress towards fault-tolerant quantum
computation, andwe demonstrate that this bound is asymptotically tight for general noise. Although
this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples
that the bound indicates a realistic deviation between the true error rate and the reported average
fidelity.We introduce the Pauli distance as ameasure of this deviation, andwe show that knowledge of
the Pauli distance enables tighter estimates of the error rate of quantumgates.

1. Introduction

An ideal quantum computer could outperform any classical computer for certain computational problems in
the sense that resource costs such as time or space scale better than for the best-known classical algorithm [1].
Famous examples include the provable quadratic speedup for search [2], the presumed exponential speedup for
the abelian hidden subgroup problem [3, 4], and the possible speedup for stoquasticHamiltonians using
adiabatic quantum computing [5]. If a problem instancewith an ℓ-bit input is solvedwithin bounded error ε by
an algorithm employing n bits or qubits (space cost) and νBoolean or unitary gates (time cost), the algorithm is
considered efficient if n, polyn Î ℓ( ) [6] and, if ε is treated as an asymptotic variable and not as a constant,
n, polylog 1n eÎ ( ) [7].

In practice, preparation, processing andmeasurement are faulty, but the threshold theorem for fault-
tolerant quantum computation (‘threshold theorem’) [8–12] guarantees that a noisy device can perform scalable
fault-tolerant quantum computations under certain conditions. Specifically, the threshold theorem guarantees
the existence of a threshold error rate η0 (0<η0<1) such that a faulty computer whose error rate η satisfies
η<η0 can performuniversal quantum computations efficiently, namelywith polylog (n, ν) additional
overhead. The threshold theorem is the key to establishing that faulty quantum computers can be as efficient as
ideal quantum computers. A key drawback of the threshold theorem is that η0 is established existentially, not
constructively [11]; consequently, this scalability figure ofmerit is elusive in practice. A practical approach to
assessing fault-tolerance is to establish a lower bound 0

lb
0h h by devising a code that is robust against errors

that occur at a rate lower than ;0
lbh theC4/C6 code, for example, is known to have a threshold of 3%0

lb h [13].
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Current experimental characterizations of quantumgates do not report η. Instead the average gatefidelityj
[14] is the typicalfigure ofmerit for gate performance because it can be reliably and scalably estimated using a
procedure called randomized benchmarking [15]. Recent reports ofj exceeding 99.9% for one-qubit gates and
99% for two-qubit gates [16] generate strong optimism about the feasibility of scalable quantum computing. But
despite its experimental convenience,j is not the correct quantity to assess scalability via the threshold theorem.

Our aim is to convert reportedj to an upper boundηub forη. This upper bound provides a sufficient
condition for fault-tolerant quantum computing: errors can be efficiently corrected if

. 1ub
0
lb

0 h h h h< ( )

Thus, a code-derived 0
lbh can be used to determinewhether the fidelity-derived ubh suffices for scalability. The

quantity ηub can therefore be used to assess scalability based upon the experimentally convenient average
fidelityj.

Given thefidelityj, the best knownupper bound ηub is

d d1 1 , 2ub 1h j+ --( )≔ ( ) ( )

where d is the dimension of the systembeing acted on [17–19]. This bound is unfortunate because the square-
root ensures that superficially impressive gatefidelities do not, by themselves, guarantee high-quality gate
performance. A two-qubit gate with 99%fidelity is, for example, only guaranteed to have an error rate below
45%. Indeed, we have an explicit example (example 3) of a two-qubit gate withfidelity 99%but an error rate
slightly under 13%. Furthermore, we demonstrate (example 1) that assessments of gate performance based on
fidelity canmislead about the relative importance of different noise sources.

Ourmain claim is that ηub is an asymptotically tight approximation to the least upper bound to η in terms of
j and d. The least upper bound is a function ηlub (j, d) satisfying the following twoproperties:

(i) for any noise channel acting on a d-dimensional system with average fidelity j and error rate η,
d, ;lubh h j( ) and

(ii) d f d, ,lub h j j( ) ( ) for any function f(j, d) satisfying the first property.

We show that ηlubmust scale as 1 j- forfixed d (proposition 1) andmust scale as d forfixedj
(proposition 2).We conjecture that ub lubh h= .

We suggest one potentially useful kind of additional information about gate performance: a quantity we call
the ‘Pauli distance’ δPauli. This quantity ismotivated by the fact that Pauli channels with average fidelityf have an
error rate of d1 1Pauli 1h j= + --( )( ), saturating a lower bound on the error rate in terms of the fidelity and
dimension [19, 20].We show that an arbitrary noise channel satisfies Pauli Paulih h d+ (proposition 3), so that
smaller upper bounds ηub to the error rate η of a quantumgate that avoid the 1 j- scaling can be found if the
noise is promised to be nearly Pauli.

Ourmessage is not that impressive reported average gatefidelities fail to demonstrate real progress towards
fault-tolerant quantum computing, but that these reports are insufficient to claim that fault tolerance is now
within reach.Our argument is that reportedfidelity alone implies only loose bounds on the quantumgate error
rate, and that tighter bounds on error rate are possible only if performancemetrics other than average fidelity are
also considered. In addition to our suggestion of the Pauli distance as a useful additional figure-of-merit, an
intriguing quantity known as ‘unitarity’ [21–23]may also prove to be useful for assessing the performance of
quantumgates.

Our paper proceeds as follows.We establish the definition of error rate in section 2.We give a brief review of
the average gatefidelity and its relationship to the error rate in section 3.Our asymptotic tightness result is
presented in section 4, andwe introduce the Pauli distance in section 5.We use our results in section 6 to assess
reported progress towards fault-tolerance, andwe conclude in section 7.

2. Error rates and the threshold theorem

The threshold theorem is currently our only rigorous guarantee that fault-tolerant quantum computing is viable
if threshold operating conditions aremet. The threshold operating conditions take two forms: noisemust be
restricted to a promised form andmeasurable errorsmust occur at a low enough rate.Wefirst define the error
rate of quantum gates by extension from the error rate of randomprocesses (section 2.1).We then explain the
threshold theorem and its connection to our definition of error rate and to numerical estimates of code-specific
threshold bounds (section 2.2).

2
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2.1. The error rate of a quantum logic gate
Our definition of the error rate of a quantum logic gate builds naturally on the concept of error rate for a random
process, that is, amap from input to output states. For deterministic processes, we can say that an error has
occurred if the process produces the ‘wrong’ output.However, no single output of a randomprocess can be
treated unambiguously as ‘correct’.We therefore define the rate of error for a process by comparing the actual
statistics of the process to its ideal statistics.

The statistics for an ideal process is governed by a probability distribution pid over the set of possible outputs
X; the ideal probability of output xä X is pid(x). An error-prone process produces a different distribution pac,
governing the actual statistics over the set of possible outcomesX. The total variation distance

d x x,
1

2
3

x X
TV åm n m nº -

Î

( ) ∣ ( ) ( )∣ ( )

is a naturalmeasure of the distance between two probability distributionsμ and ν over a set of outcomesX.
The total variation distance d p p,TV ac id( ) can be interpreted as the error rate of the process as follows.We can

estimate pac by sampling the actual randomprocessN times and counting the number n(x) of occurrences of
each possible output x; the fraction n(x)/N approaches pac(x) as N  ¥. By altering some fraction r of the
samples so that the number of occurrences of each outcome x becomes n′ (x), we can ensure that
n x N p xid
¢ »( ) ( ) rather than pac(x). The fraction r is not unique, but theminimumpossible value rmin of rmust
be greater than zero for largeN if p pac id¹ . By proposition4.7 of [24], r d p p,min TV ac id ( ) as N  ¥. Thus,
d p p,TV ac id( ) approximates the fraction of a large sample thatmust be altered to ensure that the relative
frequencies of each outcomematch the ideal distribution pid; each alteration can be interpreted as the correction
of an error.

We claim that the total variation distance induces the diamond distance dà on the space of quantum
channels. Our argument follows from thework of Fuchs and van deGraaf [25], which shows that the error rate
of quantum states is given by the trace distance between the quantum states, and thework of Kitaev [26], which
shows that the diamondnorm extends the trace norm to quantum channels.We begin by defining some
terminology.

Quantum logic gates act reversibly on some fixed quantum register. Ideally, the state of this register can be
represented by a unit vector in afixed d-dimensionalHilbert spaceH. The register is typically treated as a
collection of n qubits, inwhich caseH is canonically isomorphic with the n-fold tensor product of theHilbert
space 2Q @ of a single qubit: nH Q@ Ä . In this case, d=2n.

Whereas ideal register states are represented by unit vectors Hyñ Î∣ , realistic states aremodeled by density
operators ρ onH. Ameasurement of a quantum state is described by a positive operator-valuedmeasure
(POVM), which is a set of positive operators E{ }ℓ acting onH such that E Iå =ℓ ℓ , the identity operator. The
probability of observing the outcome labeled ℓ is ETr r( )ℓ . Thus, the actual output ρac of a gate acting on a
specified input can be compared to the ideal output ρid bymeasuring with respect to somePOVM.The error rate
of thismeasurement is d p p,TV ac id( ), where p ETrac acr= ( )ℓ( ) ℓ and p ETrid idr= ( )ℓ( ) ℓ .Maximizing
d p p,TV ac id( ) over all possible choices ofmeasurements yields [25]

d ,
1

2
, 4Tr ac id ac id Trr r r r-( ) ≔ ( )

where A A ATrTr ≔ † for any linear operatorA. Thus, the error rate of ρac with respect to ρid is d ,Tr ac idr r( ).
Now that we have defined the error rate of the output of a quantum logic gate, we can define the error rate of

the gate itself.Wefirst present somemathematical notation for evaluating the difference between an ideal and
real implementation of a quantum logic gate.

An ideal quantum logic gate, represented byG, acts as a unitary operator onH.Whereas the operation on a
pure state can be treated as direct (i.e. Gy yñ ñ∣ ∣ ), the gate can act upon amixed state ρ. In this instance, the
gate performs the action G Gr r †. This action is represented by a quantum channel ;id explicitly

G G . 5id r r( ) ≔ ( )†

This channel is comparedwith a non-ideal implementation ac that is in general not represented by unitary
conjugation but is a completely positive, trace preserving linear operator on the space of density operators
overH.

We have established in equation (4) that the error rate for a quantum logic gate acting on a specified input
state ρ is given by d ,Tr ac id r r( ( ) ( )). The error rate of ac with respect to id involvesmaximization over
inputs.Whereas the error rate could be defined as dmax ,Tr ac id r rr ( ( ) ( )), such a definition is undesirable
because, in general, the error rate of ac Ä  (where  acts on some ancillary spaceH¢) differs from that of ac
[26, 27].We therefore amend this definition bymaximizing over inputs and ancillary spaces using a construction
called the diamondnorm [26]:

3
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sup sup , 6
dens

TrH
H H

  rÄ
r

à ¢
Î Ä ¢


( )

≔ ( ) ( )

where is any superoperator overH and dens H HÄ ¢( ) is the set of density operators over the jointHilbert
space of the original register and some ancilla.We therefore define

d ,
1

2
7ac id ac id   -à à( ) ≔ ( )

to be the error rate η of ac with respect to id : d ,ac id h = à ( ). However, we shall use amodified but equivalent
formof this definition in the remainder of this paper. Ourmodification is purely formathematical convenience.

Definition 1. If ac is some implementation of a gateG, define

8G ac id
1  -≔ ◦ ( )

to be the discrepancy channel ofG, where the channel id defined in equation (5) is unitary and hence invertible.

Definition 2.The error rate of an implementation ofG is given by

d , , 9Gh = à ( ) ( )

where G is the discrepancy channel of the implementation.

2.2. The threshold theorem
Wenow explain the threshold theorem.We begin by elaborating on the promised formof noise; namely, noise
locality.We then identify a statement of the theorem that is appropriate for our needs. Finally, we review
commonly quoted estimates of fault-tolerance thresholds.

We elaborate on the assumption of noise locality because it is required for defining the error rate of logic
gates independent of the circuit inwhich they are employed. Briefly, a logic circuit is said to experience local
noise if the noise acts separately on individual logic gates. To be precise, recall that a logic circuit is defined as a
directed acyclic graphwith nodes labeled by elements of some set of logic gates, where arrows into a node
represent inputs and arrows out of a node represent outputs [28]. A quantum logic circuit can similarly be
represented by a directed acyclic graph. The noise of a logic circuit is local if it can be represented as the
composition of noise processes on individual nodes of the circuit graph.

As noise is assumed to affect each gate independently, wemodel noise by replacing the intended unitary gate
G by some imperfect implementation ac represented as a quantum channel (i.e.a completely positive, trace-
preserving linearmap on density operators over the state space of the input register). Such amodel is reasonable
for an imperfect gate subject to local noise if the interaction between the register space and its environment obeys
the Born–Markov approximation [29].We therefore assign an error rate η to each gate ac in a circuit Q¢, which
simulatesQ efficiently and accurately in the presence of local noise if 0h h< .

The various formulations of the threshold theorem are distinguished by assumptions concerning noise.We
prefer to employ the statement of Aharonov andBen-Or because of its directness with aminimumof jargon.

Threshold theorem ([11]).There exists a threshold η0>0 such that the following holds. Let ε>0. IfQ is a
quantum circuit operating on n input qubits for t time steps using s two- and one-qubit gates, there exists a
quantum circuitQ′with depth, size, andwidth overheadswhich are polylogarithmic in n, s, t, and 1/ε such that,
in the presence of local noise of error rate η<η0,Q′ computes a functionwhich is within ε total variation
distance from the function computed byQ.

This theorem guarantees that a value η0>0, called the ‘threshold’, exists such that a quantum circuitQ can
be efficiently simulated by another circuitQ′ towithin an arbitrary error tolerance ε>0 even ifQ′ is subject to
‘local noise’ at a rate η<η0. Inequivalent statements of ‘the’ threshold theorem are inequivalent because they
assume promises about noise that are different from that of noise locality.

There are two important limitations to the utility of the threshold η0. Firstly, surpassing the threshold is
sufficient but not necessary for fault-tolerance: error rates larger than η0 could be acceptable if stronger promises
can bemade about noise. Conversely, devices subject to noise that does not satisfy the assumptions of the
threshold theorem cannot be said to be fault-tolerant based on a demonstration that error rates fall below
threshold; a stronger threshold 0 0h h¢ < could apply. The second limitation is that the choice ofQ′ depends in
practice upon the specified quantum-error-correcting code. Based on the choice of code, the appropriate
performance target is 0

lbh , rather than η0. Aswith thefirst limitation, the validity of 0
lbh as a performance target

derives from the validity of the promisesmade about the noise affecting real devices.

4
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Whereas some threshold estimates are obtained through rigorous analysis of the performance of a code in
the presence of noise subject to promises of varying strength, others are obtained through numerical simulation
of performance in the presence of a parametrized family of noisemodels. Estimates based on numerical
simulation aremore optimistic and are often used as performance targets for experimental fault-tolerant
quantum computing research [16, 30].

Analytic estimates of the threshold can be produced based on details of the proof of the threshold theorem.
Aharonov andBen-Or, for example, can justify an estimate of 100

lb 6h » - [11] based on their choice of coding
strategy. They report a value of 100

lb 3h » - [31, 32] as being the largest rigorously established value. Numerical
estimates, by contrast, are produced by simulating the behavior of an error-correcting code in the presence of a
restricted class of noisemodels, typically depolarizing [13, 33]. The relationship of these estimates with
thresholds of the kind established by the threshold theorem is not clear [34, 35], but these simulations are
nonetheless often seen as indicative [36] of true threshold values. The surface code, in particular, is often believed
to have a threshold of around 1% [33, 36].

A direct comparison of the above threshold values is not justifiable because each valuemakes different
assumptions about the behavior of noise and the choice of code. Thus, the estimate of 1%0

lbh » for the surface
code under depolarizing noise does notmake the surface code less desirable thanKnillʼs C4/C6 code even
though theC4/C6 code could have a threshold as high as 3% [13] because there are other practical reasons to
prefer the surface code over theC4/C6 code. Similarly, actual gate performance should not be directly compared
with these threshold values because those gates are certainly subject to noise that is not well-approximated by the
depolarizing noisemodel. The connection between numerical simulations and fault-tolerance thresholds is a
matter of active research [37, 38].

Whereas there are important open questions regarding the interpretation of threshold estimates produced
by simulation, the term ‘threshold’ is unambiguously a reference to an upper bound of the error rate introduced
by any given logic gate in a quantum circuit. Themain point of this paper is to connect these theoretical
characterizations of error to the experimentally convenient average gatefidelity.

3. Average gatefidelity

Whereas η0, defined by the threshold theorem, and 0
lbh , defined in equation (1) and established by noisemodels

and coding strategies, are appropriate quantities for analyzing scalability, average gatefidelity is employed in
experimental studies because of its convenience. In this section, we define average gatefidelity and discuss the
connection between average gatefidelity and error rate, first by reviewing the literature and then by constructing
an example that shows that this connection is problematic: average gatefidelity and quantum gate error rate are
not directly connected. Instead, only lower and upper bounds to the error rate can be derived from fidelity; the
gap between these bounds is substantial in regimes of interest.

Thefidelity of a state ρ to a pure stateψ is Tr y y rñá(∣ ∣ ) [15, 39–41]. Thefidelity of the output of the actual
gate ac to the output of the ideal gate id for a given input state yñ∣ is therefore

Tr . 10Gid ac  y y y y y y y yñá ñá = á ñá ñ( )(∣ ∣) (∣ ∣) ∣ (∣ ∣)∣ ( )

Averaging over pure state inputs with respect to theHaarmeasure then gives the average gatefidelity

d , 11Gòj m y y y y yá ñá ñ≔ ( ) ∣ (∣ ∣)∣ ( )

wherewe have used the unitary invariance of theHaarmeasure and G ac id
1  = -◦ . The popular randomized

benchmarking protocol [15] produces an estimate of this quantity averaged over a gate-set, though proposed
extensions [42] produce estimates of the average gate fidelity for individual gates.

The state fidelity can be interpreted as the error rate of a particularmeasurement. If we define for each pure
state yñ∣ the POVM ,y y y yñá - ñá{∣ ∣ ∣ ∣}, the outcome of thismeasurement applied to a state ρwill be y yñá∣ ∣
with probability y r yá ñ∣ ∣ , which is the statefidelity of ρwith respect to yñ∣ . Thus, the total variation distance of
the actual statistics pac from the ideal statistics pid of thismeasurement upon the output G y yñá(∣ ∣) is the state
infidelity of G y yñá(∣ ∣)with respect to y yñá∣ ∣.

However, the average gate infidelity 1−j cannot be so easily interpreted as an average error rate (despite
the commonhabit [16, 30, 43]), as themeasurement basis is notfixed in the integral (and so the infidelity is not
an average error for afixedmeasurement), yet neither is it averaged independently from the state.

To clarify the relationship between average gatefidelity and error rate, we consider two noise processes on a
single qubit. Thefirst is given by depolarizing noise

r rI1 2, 12r
dep r r- +( ) ≔ ( ) ( )

5
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where I is the identity operator on Q, and the second is a unitary error

U U , 13U r rq ( ) ≔ ( )†

whereU is some unitary operator on Q with eigenvalues e iq for 0  q p. The average gate fidelity for
depolarizing noise is

r
r

1
2

14depj = -( ) ( )

whereas thefidelity of the unitary error is [14]

1

3

2

3
cos . 15U 2j q q= +( ) ( )

By contrast

r r
3

4
16deph =( ) ( )

for depolarizing noise, which follows from the fact that depolarizing noise is Pauli [20], and

sin 17Uh q q=( ) ( )

for unitary error [44]. Therefore

3

2
1 18dep deph j= -( ) ( )

for depolarizing noise but

3

2
1 19U Uh j= -( ) ( )

for unitary error whichmeans that there is no single function f such that f(j)=η for every possible noise
channel.

We demonstrate this difficulty in the following example.

Example 1.Consider a single-qubit gate that is subject to the two noise processes of equations (12) and(13):
depolarizing and unitary. The depolarizing rate is r=10−3, with corresponding fidelity

1 5.0 10 , 20dep 4j = - ´ - ( )

whereas the unitary error has angle θ=10−2, with corresponding fidelity

1 6.7 10 . 21U 5j = - ´ - ( )

The combination

r r1 22G r
U U

r
U

r
dep dep

1
dep      º º - +q q q =≔ ◦ ◦ ( ) ( )

hasfidelity

r
r

1
2

1 5.3 10 , 23Utot 4j j= - + = - ´ -( ) ( )

so thefidelity loss seems to arisemostly fromdepolarizing noise. Yet the error rate due to unitary error is

10 24U 2h = - ( )

whereas the error rate due to depolarizing noise is

7.5 10 . 25dep 4h = ´ - ( )

The triangle inequalities imply that the error rate of the combined noise process is

1 0.08 10 , 26tot 2h =  ´ -( ) ( )

so the unitary error is in fact dominating over depolarizing even though the fidelity appears to imply the reverse.

Thus, information beyondfidelity is needed to assess the relative importance of various noise processes
affecting the quantum computing device. Determination of the Pauli-distance (section 5) is one possible
approach to characterizing the influence of different noise sources; extending randomized benchmarking to
estimate unitarity [21, 22] is another.

Although no direct connection between average gatefidelity and error rate exists in general, average gate
fidelity is clearly of someworth: if the fidelity of a quantum logic gate is precisely one, we are certain that the gate
will always perform exactly as intended.More generally

6
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d d d1 1 1 1 , 27Pauli 1 1 ub h j h j h+ - + -- -( ) ( )≔ ( ) ( ) ≕ ( )

where d is the dimension ofH. Note that the upper bound can exceed unity if

d d1 , 282 1
j < - +

-( ) ( )

so afidelity less than 83% for single-qubit gates or less than 95% for two-qubit gates does not ensure that η<1;
it is possible that the gate is performing incorrectly all the time for at least one input. Ensuring that 1h < whenj
fails tomeet this threshold for non-trivialitymust involve additional promises about the formof noise.

To illustrate the gap between the above lower and upper bounds, consider a targetfidelity of 99%. Then for
one, two and three qubits, the above upper bound gives 25%, 45%and 85% respectively, whereas the lower
bound is essentially 1%. For targetfidelities of 99.9%, the upper bounds become 7.75%, 14.2% and 26.9%
respectively, whereas the lower bound is approximately 0.1% in each case. Hence, these upper and lower bounds
differ by orders ofmagnitude in regimes of experimental interest.

4. Tightness of the upper bound on the error rate

Wenowprove that the upper bound ηub on the error rate is asymptotically tight with respect tofidelity forfixed
dimension and asymptotically tight with respect to dimension forfixedfidelity. In addition, we prove by
example that this bound cannot be improved by better than a factor varying as the square-root of dimension. To
demonstrate these facts, wefirst define the variables and functions aboutwhichwemake asymptotic statements.

Definition 3.The least upper bound of error rate with respect to average gate fidelity d,lub lubh h j= ( ) is the unique
function ofj and d that satisfies the following. For any discrepancy channel G of dimension dwith average gate
fidelityj and error rate η, d,lub h j h( ) . Furthermore, suppose that d,ub ubh h j= ( ) is any other function
with the same property. Then d d, ,lub ubh j h j( ) ( ) for allj and d.

We shall establish the scaling of d,lubh j( ) as a function of each variable when the other is fixed.
Notationally, we distinguish fixed from variable quantities as follows. If the dimension d isfixed butj is variable,
wewrite ;d

lubh j( )∣ if vice versa, dlubh j( )∣ .We use similar notation for ηub.We seek to establish the scaling of
ηlub in the limit 1j  . Tomake asymptotic arguments about this scaling, we define two variables that go to
infinity as 1j  .

Definition 4.Define the inverse error rate of a quantum logic gate to be 1z h-≔ , where η is the error rate of the
gate. Thus, z  ¥ as 0h  .We alsowrite

, , 29lub lub 1 ub ub 1
z h z h

- -( ) ( )≔ ≔ ( )

which are lower bounds to ζ.

Definition 5.Define the inverse average infidelity of a quantum logic gate to be

1 . 301u j- -≔ ( ) ( )

Thus, u  ¥ as 1j  .

Thus, we canwrite d,lub lubz z u= ( ) and compare this function to

d

d
d

,

1
1

. 31ubz u
u

=
+

( ) ( )

We show that

32d
lubz u uÎ Q( )( )∣ ( )

and

d d ; 33lub 1z Î Qu
-( )( )∣ ( )

thus, ζub has optimal scalingwith respect tof and dwhen the the other isfixed.We shallmake use of a particular
unitary gate, defined below.
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Definition 6.Define the generalized controlled-phase gate by

U U U;

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 e

, 34id

i

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 r rq q q

q




    



( ) ≔ ≔ ( )†

whereUθ is expressed in the computational basis.

Proposition 1. For fixed dimension d,

. 35d
lubz u uÎ Q( )( )∣ ( )

Furthermore

d
1

2
1 . 36d d

lub 1
2 ubh u h j- -( )∣ ( ) ( )∣ ( )

Therefore

. 37d d
ub lubz u z uÎ Q( )( )∣ ( )∣ ( )

Proof. Supposewe have an implementation of the generalized controlled-phase gate given simply by

ac r r=( ) , the identity channel. The average gatefidelity is [14]

d U

d d

d

d d

Tr
1

2 1

1
1 cos . 38

2

2
j q=

+

+
= -

-
+

-
q-( ) ( )

( )
( ) ( )

By theorem 26 of [44],

1 cos

2
; 39h

q
=

- ( )

hence

d

d d

4 1

1
. 40z u=

-
+

´
( )
( )

( )

By contrast

d d

1

1
. 41ubz u=

+
´

( )
( )

Furthermore, ζlub is defined so that ;lub ub z z z thus

d

d d d d

4 1

1

1

1
. 42d

lub u z u u
-
+

´
+

´
( )
( )

( )∣
( )

( )

,

Example 2.All single-qubit unitary errors satisfy

1

2

3

2
1 . 43ubh h j= = -( ) ( )

If U UG r r=( ) † for some 2×2 unitary operatorU, then the eigenvalues ofU can bewritten as e i 2q for
some θ. The diamond distance dà and thefidelity are unitarily invariant, so the error rate of G depends only
on θ. Furthermore, G is equivalent to the generalized controlled-phase gate (definition 6) and hence η satisfies
equation (39). Equation (38) therefore implies that 2ubh h= .

Example 3.There exists a two-qubit gate with fidelity 99.0%but error rate 12.9%. Consider the generalized
controlled-phase gate (definition 6) acting on two qubits: one target qubit and one control qubit. Setting
θ=0.259, we havej=99.0%by equation (38) and η=12.9%by equation (39).

We nowdemonstrate that the generalized controlled-phase gate example used to prove proposition 1 does
not yield the true value of ηlub.We prove that d dlub 1z Î Qj

-( )∣ ( ), whereas the generalized controlled-phase

gate has d d
1
2z Î Qj

-( )( )∣ by equation (42).
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Proposition 2. For fixed fidelityj,

d d . 44lub 1z Î Qj
-( )( )∣ ( )

Therefore

d d . 45ub lubz zÎ Qj j( )( )∣ ( )∣ ( )

Proof.Weconsider a special case of the generalized controlled-phase gate inwhich θ=π, so the unitaryUπhas
an eigenvalue of−1. In this case, 2id - =à  by theorem26 of [44]. The implementationwe consider is

1 . 46ac id l l- + ≔ ( ) ( )

The error rate is

1

2

1

2
. 47ac id id  h l l= - = ´ - =à à ( )

Wecalculate the fidelity by applyingNielsenʼs formula [14] to theKraus decomposition

I U1 , 48l l- p{ } ( )

of the discrepancy channel U p:

d I U

d d

d

d d

1 Tr Tr
1

4 1

1
. 49

2
2

2
j

l l
l=

+ - +

+
= -

-
+

´
p( )( )∣ ( )∣ ( )

( )
( )

Combining equation (47)with equation (49) yields

d

d d

4 1

1
. 50z u=

-
+

( )
( )

( )

By definition, ub lub z z z , which implies

d

d

d d

1

1

4 1

1
. 51

d

1
lub u

z u
+

-
+

( )
( )

( )

Forfixed υ, we define the constants c 21
1
2= - and c 42 u= . Then
c

d
d

c

d
, 521 lub 2 z u( )∣ ( )

hence d dlub 1z Î Q -( ) ( ). ,

Wehave established that ηub is asymptotically tight with respect tofidelity (proposition 1) and dimension
(proposition 2) if the other isfixed. Furthermore, we showed that ηub differs from the tightest possible bound by
atmost a factor of d2 1- , where d is the dimension of the gate. Althoughwe conjecture that ηub is indeed the
tightest possible bound on error rate of a d-dimensional gate based only upon fidelity, important quantitative
statements are true (examples 2 and 3) even if our conjecture is false.

5.Newbounds for approximate Pauli channels

Herewe derive improved bounds based on an additional promise about noise. Specifically, we provide
alternative lower and upper bounds on error rate in terms of gatefidelity and a quantity we call the ‘Pauli
distance’.We show that the connection between error rate and gatefidelity is strongly improved if the Pauli
distance of the noise process is known.We give numerical examples for two important single-qubit noise
processes: amplitude damping and unitary error.

The Pauli distance is defined to be the diamond distance between a channel and its Pauli-twirl. To be precise,
we define the single-qubit Pauli operators as the unitarymatrices

I X Y i
i

Z1 0
0 1

, 0 1
1 0

, 0
0

, and 1 0
0 1

; 53-
-( )( ) ( ) ( )≔ ≔ ≔ ≔ ( )

amulti-qubit Pauli operator is a tensor-product of single-qubit Pauli operators. A Pauli channel is a quantum
channel that has a Kraus representation inwhich eachKraus operator is proportional to a Pauli operator.
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Definition 7.ThePauli-twirl of an n-qubit channel  (i.e.d=2n) is

P P P P•
1

4
• , 54

n
k

k k k k
PT

1

4n

 å
=

( )( ) ≔ ( )† †

where Pk represents a choice of n-qubit Pauli operator.

Definition 8.Wedefine the Pauli distance of a gate implementationwith discrepancy channel G to be

d , , 55G G
Pauli PT d à( )≔ ( )

where G
PT is the Pauli-twirl of G .

The Pauli-twirl of any channel is a Pauli channel, and the Pauli-twirl of a Pauli channel is the same channel.
For any channel  ,  and PT have the same average gatefidelity as the average gatefidelity is linear and invariant
under unitary conjugation. The diamond distance for channels of afixedfidelity isminimized by Pauli channels,
which satisfy 1 2 1nPaulih j= + --( )( )where n is the number of qubits [19, 20]. Several common sources of
noise, such as depolarizing error and dephasing (T2) processes, can be represented by Pauli channels [1]. Such
noise processes have δPauli=0.Other sources of noise, such as amplitude-damping processes and unitary
errors, cannot. In these cases, δPauli>0.

Proposition 3.The error rate η of an n-qubit gate with gate fidelityj and Pauli distance δ Pauli satisfies

. 56Pauli Pauli Pauli Pauli d h h d h- + ( )

Proof.By the triangle inequality

1

2

1

2

1

2

1

2
. 57G G G G G G G

PT PT PT PT      - = - + - - + -à à à à   ( )

The left-hand side equals η and the right-hand side equals Pauli Paulid h+ . Similarly, the reverse triangle inequality
implies Pauli Pauli d h h- . ,

Proposition 3 thus enables bounds to be placed on possible values of η in terms ofj and δPauli. Indeed, a
variation of this proposition can be applied to noise channels that have a known structure.

Proposition 4. Suppose G k k å= , where each k is some quantum channel. Let k
Paulid represent the Pauli

distance of k . Then the error rate η of G satisfies

. 58
k

k
Pauli Pauli åh h d+ ( )

Proof. If δPauli is the Pauli distance of G , proposition 3 implies that

, 59Pauli Paulih h d+ ( )

sowe only need to show that

. 60
k

k
Pauli Pauli åd d ( )

As the Pauli-twirl operation on quantum channels is linear, i.e.

, 61G
k

k
k

k
PT

PT
PT

⎛
⎝⎜

⎞
⎠⎟  å å= = ( )

we apply the triangle inequality repeatedly to obtain

1

2

1

2

1

2
. 62G G

k
k

k
k

k
k k

PT PT PT
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟     å å å- = - -à

à
à ( )

The left-hand side equals δPauli and the right-hand side equals
k k

Pauliå d . ,

Although proposition 4 yields weaker bounds than proposition 3 in general, itmight be easier in practice to
estimate δPauli for individual sources of noise rather than for the overall noise process.

We consider two examples of single-qubit noise processes inwhich δPauli is non-zero: unitary error, which
is amodel of control error, and an amplitude damping process, which is amodel of thermalizationwith a
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zero-temperature bath. The unitary error can be entirely specified by the eigenvalues e±i θ of the unitary
operator, and the amplitude damping processmay be specified by a rate parameter r. Both r and θmay be
expressed in terms of the observed average gate fidelityj and thus the error rate of each can be numerically
evaluated as a function ofj. The results of this numerical evaluation are displayed infigure 1.

Themost important observation aboutfigure 1 is that the Pauli-distance-based bounds on η yield excellent
estimates of the error rate of a noise process asfidelity increases. In fact, fidelity indicates confidence interval if
δPauli is considered as an estimate of η. Therefore, the Pauli distance can be interpreted as ameasure of the
‘badness’ of noise in the sense that it indicates the size of the gap between fidelity and error rate.

6. Assessing progress towards fault-tolerant quantum computing

The threshold theorem guarantees the possibility of fault-tolerant quantum computation in the presence of local
errors that occur at a rate η below a threshold value η0. Our aimhas therefore been to convert gatefidelityj, a
commonly reportedfigure-of-merit for quantum logic operations, into an upper bound ηub that can be
compared, in principle, to η0. Of course the noise assumptions underlying the threshold theorem could be either
weaker or stronger than reasonable assumptions about the noise of real devices, but this subtlety is often
overlooked: numerical simulations such as those of Knill [13] andRaussendorf andHarrington [33] are often
considered to be indicative of a code-specific threshold value 0

lbh even though both papers are clear that only one
well-behaved noisemodel is being simulated.

The proper interpretation of these results is, in thewords of Knill, as ‘evidence that accurate quantum
computing is possible for [error rates] as high as three per cent’. Thus, Knill claims not that 3% is an estimate of

0
lbh for theC4/C6 code, but that it is an upper bound. The results of Raussendorf andHarrington can be

interpreted similarly. Aswe stated at the end of section 2.2, the connection between such simulations and the
estimation of threshold values for actual devices is the subject of ongoing research [34, 37, 38].

Whatever its actual value, the threshold error rate that is guaranteed to exist by the threshold theorem is
often treated as a performance target for research efforts towards fault-tolerant quantum computing [16, 30, 43].
However, these authors quote the threshold not as a target error rate but as a target average gatefidelity. Aswe
have shown in this paper, the error rate of a quantumgate cannot, in general, be computed as a function of
fidelity. Therefore, the kind of threshold demonstrated to exist by the threshold theorem is not afidelity
threshold.

Of course we have agreed that bounds on the error rate of a quantumgate can be derived from the average
gatefidelity [19, 20].Whereas the lower boundwas already known to be tight, we showed in section 4 that the
upper bound is an asymptotically tight approximation to the tightest possible upper bound.We also agreed that
the quantumgate error rate can be computed as a function offidelity if the noise is guaranteed to be Pauli;
indeed, we showed in section 5 that this relationship is approximately true if the noise can be represented by an
approximate-Pauli channel. But noise is demonstrably non-Pauli in experiments [46–49] so the observed

Figure 1.An illustration of the dichotomy between average gatefidelity and the error rate for single-qubit noise channels. The gray
curves illustrate the generally applicable lower (dashed) and upper (dotted) bounds. The red curves pertain to unitary errors and the
blue curves pertain to an amplitude damping (‘a.d.’)process. The solid red/blue curves are the numerical values of the error rate
(vertical axis) given the average gate fidelity (horizontal axis) of the unitary/a.d.model. The dotted red/blue curves are the values of
the Pauli-distance-based upper bound ηPauli+δPauli calculated for the unitary/a.d.model; the dashed are values for the lower bound

Pauli Paulih d- . The red/blue shading indicates region estimates for error rate based uponfidelity and Pauli distance; as
Pauli Paulih d- falls below ηPauli for the a.d. process, the blue region uses ηPauli rather than Pauli Paulih d- as a lower bound for η. The

calculations were performed using theQETLABproject [45].
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average gatefidelity is not necessarily indicative of the true error rate. Existing threshold results do not imply a
practical performance target in terms of gatefidelity.

Thewide-spread conflation of average gatefidelity with error rate has led to assertions that threshold
fidelities for Pauli noise correspond tofidelity targets for general noise. One group [30], for example, claims that
gatefidelities of 90%–99.5% (‘depending onmeasurement errors’) suffice for fault-tolerant quantum
computation using the surface code. This is only known to be true if the relevant noisemodel is Pauli, which it is
not. Another group [16] goes further by asserting that device performance has surpassed the fault-tolerance
threshold for surface-code-based quantum computing. Their stated threshold value is 99% fidelity, which is
derived from simulations of the code in the presence of depolarizing noise [50]. Yet depolarizing noise is Pauli
and therefore saturates the lower bound on error rate as a function offidelity, and the appendix of [16]makes it
clear that there are non-Pauli sources of noise. Even if the quoted threshold value of 1% is trustworthy, it is a
threshold error rate and not a threshold infidelity.

If the threshold error rate is indeed 1%, then ηub yields rigorous, but relatively pessimistic, fidelity targets. If

0
esth is the error rate to be surpassed, a gatefidelity satisfying

d d
1

1
, 63

0
est 2

j
h

> -
+

( )
( )

( )

where d is the dimension of the gate, is required to guarantee an error rate η below 0
esth without additional

information. So if we assume that 1%0
esth = , two-qubit gates (d=4)need to have afidelity greater than

1−5×10−6=99.9995% to ensure that the error rate falls below 1%. It is of course possible that lowerfidelities
suffice, but such a claimmust be defendedwith information such as the Pauli distance (section 5) or unitarity
[21] about gate performance additional tofidelity; themain point of our paper is that such additional
information is required.

7. Conclusion

Reports of extremely high average gatefidelities engender optimism that current technology is near the
threshold required for fault-tolerant quantum computation. Yet, although the average gatefidelityj is an
experimentally convenient figure ofmerit, it is not the propermetric, i.e.theworst-case quantum gate error rate
η, for assessing progress towards fault-tolerance.

We have shown that d d 1 1ubh j= + -( )( ) is an asymptotically tight estimate of the tightest possible
upper bound to η in terms ofj alone, andwe conjecture that this is optimal.We have demonstrated that it is
possible for a two-qubit gate with 99% fidelity to have an error rate of nearly 13%, andwe have demonstrated
thatfidelity-based assessments of gate performance underestimate especially important noise sources such as
unitary error.We have derived an alternative bound that can yield tighter estimates of gate performance if an
additional piece of informationwe call the ‘Pauli distance’ of the noise channel is known, though other kinds of
information can also be used to derive alternative bounds [21–23].

We have given a sobering assessment of reported progress towards fault-tolerant quantum computation by
converting reported average gate fidelity to theworst-case quantumgate-error rate. Based on the best theoretical
results currently available, we have shown that two-qubit gatesmust surpass 99.9995%gatefidelity to ensure
that gates experience an error rate lower than 1%.Wehave used the Pauli distance to show that information
additional tofidelity can be employed to justify tighter bounds on gate performance, andwe argue that future
attempts to verify quantumgate performance should include estimates offigures ofmerit additional tofidelity in
order to circumvent the looseness of fidelity-based bounds.
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