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ABSTRACT 

Tuberculosis (TB) is reported as one of the most prevailing life-threatening health problems, 

affecting almost one third of the population globally. It is one of a major reason of death with an 

imposing amplified socio-economic impact. Tuberculosis patients have infrequent endocrine and 

metabolic derangements, but they are important when they occur. Multiple drug regimen, poor 

patient compliance, and stiff administration schedule are factors that are answerable for the 

development of and extensive drug resistance (XDR) and multi drug resistance (MDR) instances 

in TB along with poor drug targeting effects. The emerging resistance strains and high 

transmittance rate of the disease have prompted the need for studies in advanced drug delivery, 

particularly nanotechnology for the management of TB. Nanocarriers offer unique 

physicochemical properties that provide beneficial outcomes such as targeted effects and better 

patient compliance as drug delivery, thereby presenting as a promising solution to the constraints 

linked with conventional treatment strategy for TB. Both in vitro and in vivo studies have been 

reported to access release behavior of antitubercular agents with a view to being interpreted in 

clinical practice in the future. The present review highlights contemporary trends and 

advancements in drug delivery systems employed for the effective management of TB. This 

communication will be useful to the researchers working in the field of drug delivery systems for 

effective management of TB. 
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1. INTRODUCTION 

Tuberculosis (TB) is a serious transmissible disease caused by Mycobacterium tuberculosis 

(MTb), a rod-shaped bacterium, that not only causes pulmonary TB in the lungs but can also affect 

other organs regarded as extra pulmonary TB [1, 2]. The highest number of deaths worldwide are 

caused by TB rather than human immunodeficiency virus (HIV) induced AIDS [3]. One-third of 

the population worldwide is contagion with MTb as reported by WHO. MTb resistance has made 

it extremely difficult to treat TB due to very low cure rates and high death rates [3-5]. The infection 

is transmitted by a diseased person in the form of droplets in the air during speaking, coughing, 

and sneezing (Figure 1). Pulmonary TB consist of 80% of overall cases of TB infection [6]. After 

inhalation of MTb through the droplet, they reach bronchioles and alveoli (Figure 1A). The 

bacteria initially provoke polymorph nuclear leukocyte reaction followed by their phagocytosis by 

pulmonary macrophages (Figure 1B). Bacteria likely proliferate inside macrophages if they are 

virulent or if inhaled in a large population. The resulting inflammatory cascade/ lesion may 

exacerbate due to infiltration of more monocytes/ macrophages, NK cells, neutrophils, dendritic 

cells (DC), and lymphocytes from the systemic circulation. In this condition, an immune reaction 

is primarily mediated by tissue-damaging delayed hypersensitivity response that kills MTb-laden 

macrophages and generates a solid caseating centre containing extracellular MTb. These immune 

cells form a spherical structure with the outermost layer of collagen and fibrinogen (Figure 1C). 

The nature of lesion depends on quality and intensity of cell-mediated immunity leading to 

granuloma formation. In a latent/asymptomatic state, MTb can survive inside the granuloma 

(Figure 1D). If only poor cell-mediated immune response develops, the granuloma disintegrates 

and the bacilli escapes from the periphery of the caseating center. This results in an active disease 

state (symptomatic disease) and can spread to other individuals (Figure 1E) [7].  

 

TB is generally classified as latent or active TB [8]. The three types of pathogenic strains of TB 

are drug susceptible, MDR, and XDR strain. The drug-susceptible TB strain is treated by first-line 

drugs namely ethambutol (EMB), isoniazid (INH), pyrazinamide (PZA), and rifampicin (RIF). 

MDR-TB strain resistant to the INH and RIF is difficult to manage [9]. XDR-TB develops when 

the microbial strain is resistant to first-line drugs (INH and RIF) and second line drugs like some 

fluoroquinolones. Resistance in XDR strain possesses a major challenge in the treatment of TB 

[10]. 
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In this review, we first recapitulated recent global statistics and burden of TB and limitations of 

existing anti-TB drug delivery systems. Second, we discussed an overview of new anti-TB drugs 

and vaccines. Finally, we outlined novel drug delivery systems investigated and ongoing or 

completed clinical trials for the effective management of tuberculosis. 

 

 

Figure 1 Schematic presentation of basic mechanism of infection of Mycobacterium tuberculosis. 

(A) M. tuberculosis-containing aerosols are inhaled. These bacilli may bypass goblet cells and 

move to the lungs. (B) Macrophage recognition and bacterial engulfment trigger innate immune 

cascades (provoking a host immune response), which leads to recruitment of other immune cells 

(more macrophages, NK cells, monocytes, neutrophils, dendritic cells (DC), lymphocytes, etc.) to 

the infection site. (C) Immune cells organize in a spherical structure, surrounded by collagen and 

fibrinogen. This in turn leads to granuloma formation. (D) Bacteria can survive inside the 

granuloma in a latent state (asymptomatic disease state) and (E) Due to genetic or environmental 

factors (malnutrition, HIV, etc.), the granuloma disintegrates, allowing the bacilli to spread and 
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form more lesions, resulting in an active disease state (symptomatic disease) in which the disease 

can spread to other individuals. 

 

1.1. Global statistics and burden 

The World Health Organization (WHO) has reported 1.5 million deaths from TB in 2020 

(including 214000 deaths with HIV). According to the recent TB statistics report of WHO, 

HIV/TB is the 13th leading cause of death and the second leading infectious killer after COVID-

19. In 2020, an estimated 10 million people globally diagnosed with 1.1 million children, TB. 5.6 

million males, and 3.3 million females. TB has affected all age group peoples globally. 

Approximately 86% of all estimated cases worldwide were accounted from the 30 high TB burden 

countries. Eight countries account for 2/3rd of the total TB cases, with India leading the count 

(26%), followed China (8.5%), Indonesia (8.4%), the Philippines (6%), Pakistan (5.7%), Nigeria 

(4.4%), Bangladesh (3.6%), and South Africa (3.6%). Drug-resistance is the main cause of death 

in TB and nearly more than 2 million deaths occur annually. Life of about 66 million people was 

saved between 2000 and 2020 through timely diagnosis and treatment of TB. United Nations 

Sustainable Development Goals have targeted the year 2030 for ending TB epidemic [11]. In terms 

of TB occurrence, Southeast Asia has been reported for 39% of the global burden and 3.4 million 

new cases of TB have been estimated to occur each year in Bangladesh, India, Indonesia, Thailand, 

and Myanmar [11]. TB is a social disease. Various social factors involved in the transmission of 

TB are poor housing, poor quality of life, population explosion, overcrowding, under-nutrition, 

alcohol abuse, smoking, lack of awareness regarding cause, and lack of education [12]. 

Tuberculous meningitis or disseminated diseases are responsible for childhood death [13]. 

 

TB has become an all-time challenge for researchers due to its long-term treatment and drug 

resistance. Despite extensive research, in past 2-3 decades, no promising outcome is available yet 

for the effective management of this deadly disease and its prevalence [14]. In case of first-line 

and second-line treatment, drug resistance is the typically evolving issue in the management of 

TB. Drug resistance or the ability of strains to survive for a longer duration in the host cell or its 

dissemination to other surrounding cells makes it more vulnerable and challenging for health 

professionals to combat the disease [15,16]. Poor drug targeting and high dose of drugs lead to 

dose-dependent toxicity. Undoubtedly, with the advancement of healthcare system along with the 
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oral administration, various new routes of drug administration such as parenteral, nasal, and 

implants have been investigated [17]. 

 

1.2. Limitations of current anti-TB drug delivery systems 

Pharmacokinetic and pharmacodynamic characteristics of a drug have presented reasonable 

approach for the development of an optimal drug delivery system [18]. A more efficacious and 

better drug delivery system may offer opportunities to the pharmaceutical companies for the 

treatment of disease [19–22]. Conventional dosage forms are not competent to target drugs at 

specific sites, but the novel drug delivery systems (NDDS) are much efficient to maintain drug 

concentration to the site of action for an extended period of action [23, 24]. Treatment of TB with 

a conventional therapeutic system has an increased risk of multi-drug resistant-TB (MDR-TB). 

Drug resistance result in poor patient compliance due to the drug-related side effects from high 

doses, dosing frequency, and lengthy treatment [25]. 

 

Moreover, the drawbacks like inefficient efficacy, poor tolerability of second-line anti-TB drugs 

(ATDs) leads to the withdrawal from treatment. This may result in further resistance like extremely 

drug-resistant TB (XDR-TB) which leads to an increased death rate [26]. This indicates the need 

for new drug delivery technology such as the use of novel controlled release nanoparticulate 

systems containing existing ATDs. These nanocarriers will overcome the limitations of 

conventional drug delivery system in the treatment of MDR-TB [27]. Nanocarrier systems can be 

exercised to distribute drugs through the parenteral, oral, nasal, and pulmonary routes. Moreover, 

pulmonary drug delivery of ATD loaded nanocarriers increases drug deposition at target site and 

reduces systemic side effects. [28]. ATDs loaded nanocarriers together with site-specific targeting 

holds the potential to treat intermittent therapy of drug susceptible and resistant TB. An advanced 

drug delivery systems can effectively overcome patient noncompliance and avoid limitations of 

current conventional chemotherapy [29]. 

 

2. OVERVIEW OF NEW ANTI-TB DRUGS 

2.1. Bedaquiline 

Bedaquiline, marketed under the name Sirturo, received approval by the FDA for treating MDR‐

TB [30]. Bedaquiline, associated with the diarylquinolines group of chemical compounds, is a 
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newly emerging class of anti-TB drugs [31]. The implication of bedaquiline against MDR‐TB is 

cost-effective. Contrasting with other anti-TB drugs, Bedaquiline aims at targeting the energy 

metabolism of mycobacterium [32]. Nevertheless, mycobacterium may thrive in stress conditions 

such as hypoxia. ATP production is necessary for continued existence of all kinds of 

mycobacterium either extracellular or intracellular, replicating, or non-replicating, active or 

dormant, and fermenting or non-fermenting [33,34]. The most common side effects of bedaquiline 

are arthralgia, anorexia, chest pain, hemoptysis, headache, and nausea [35]. 

 

Mechanism of action of bedaquiline 

Bedaquiline hampers the enzyme responsible for the synthesis of ATP by ATP synthase that 

transforms ADP to ATP by employing the transmembrane electrochemical ion (H+ or Na+) [36]. 

ATP synthase has sites for the binding ions at c-subunit which produce power for ATP synthesis 

by carrying ions across the membrane. Bedaquiline inhibits these ion‐binding sites resulting in 

diminishing intracellular ATP concentrations [37]. Besides c subunit, bedaquiline also aims to 

target the ε subunit of F‐ATP synthase by binding with Trp16 residue. ATP synthase generates 

ATP through oxidative phosphorylation and is significantly preserved in both prokaryotes and 

eukaryotes [37, 38]. 

 

2.2. Delamanid 

Delamanid is a drug of group nitroimidazole that is employed for the treatment of MDR‐TB [39]. 

Delamanid demonstrates least minimum inhibitory concentration as compared to other TB drugs 

and acts against resistant M. tuberculosis strains. The drug also hinders the replication process [40, 

41]. However, it is not advisable to use Delamanid and Bedaquiline due to their cardiotoxic effect 

[49]. Delamanid has oral bioavailability of 35%-60%, which increases with food containing high 

fat [35]. 

 

Mechanism of action of delamanid 

Delamanid acts by blocking the production of keto mycolic and methoxy mycolic acid (main 

elements of mycolic acids). The activity of delamanid is specific against mycobacteria as the cell 

wall is made up of mycolic acids, it disrupts the cell wall promoting enhanced drug penetration 

[42- 45].  
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2.3. Pretomanid 

Pretomanid is a nitroimidazole category of drugs and is powerful against M. tuberculosis in 

comparison to Delamanid [46, 47]. Pretomanid is a prodrug that goes through bioreductive 

activation through Ddn enzyme; generating several metabolites that secretes nitric oxide, which 

destroys cell wall lipids, intracellular proteins, and other macromolecules, which in turn create it 

bactericidal for anaerobic bacteria [48]. Pretomanid is readily absorbed, well tolerated, and shows 

good bioavailability. Pretomanid prescribed as a single daily dose as it has a long half‐life of 16‐

20 h [49]. Studies have revealed that the main mechanism of action of pretomanid is cell wall 

disruption that in turn reduces ketomycolates and builds hydroxymycolate [50]. 

 

2.4. Linezolid  

Linezolid (an oxazolidinone class drug) is approved for treating infections induced by Gram‐

positive bacteria such as vancomycin‐resistant Enterococcus and methicillin‐resistant 

Staphylococcus [51]. However, now it is not recommended due to safety matters, particularly 

hepatotoxicity. Soon after 1990, the oxazolidinones were developed with better safety profiles 

[52]. The drug is proficient against Gram‐positive bacteria with improved antimycobacterial 

activity [53]. Linezolid exhibits bacteriostatic activity against Mycobacterium tuberculosis, 

extensively drug-resistant (XDR) and including multidrug-resistant (MDR) strains (MIC < 1 

μg/mL) [54, 55]. WHO has recommended a daily dose of 600 mg for drug-resistant tuberculosis 

patients. The toxicity of linezolid is due to structural homology between 16S rRNA in human 

mitochondria and target 23S rRNA in Mycobacterium tuberculosis [56]. It shows a very high oral 

bioavailability of approximately 100% and therefore its oral and injectable dosage is the same. The 

most common side effects of linezolid are myelosuppression, peripheral neuropathy, 

thrombocytopenia, gastrointestinal disorders, and optic neuritis [49]. 

 

Mechanism of action of linezolid 

Linezolid inhibits protein production in bacterial ribosomes (small (30S) and a large (50S) 

subunits). Each subunit is formed of ribosomal RNA (rRNA) and numerous amino acids function 

mutually to generate proteins for the cell [52, 53, 57-60]. 
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2.5. Sutezolid 

Sutezolid is a promising drug belonging to the oxazolidinone class. It is active against M. 

tuberculosis. Sutezolid displays favorable pharmacokinetics, well-tolerated and safer in humans 

and rat models of TB. Sutezolid has an improved safety profile than Linezolid and has effective 

antimycobacterial activity [61-64]. Half‐life of sutezolid is approximately 4 h [49]. 

 

Mechanism of action of Sutezolid 

Sutezolid possesses similar mechanism as that of Linezolid. It acts on 23S rRNA of 50S ribosomal 

subunit and inhibits protein production. Sutezolid is transformed into an active Sulfoxide (an active 

metabolite of Sutezolid) that has a relatively short plasma half‐life. Sutezolid can act against drug-

resistant TB, and it has shown additive effects with other new TB drugs [65-71].  

 

2.6. Fluoroquinolones 

Fluoroquinolones are the broad‐spectrum antimicrobial agents prescribed for the treatment of TB 

[67]. In the United States, Fluoroquinolone ranks top in antibiotic expenditure with one‐fourth of 

the $10 billion market of antibiotics [68]. Nalidixic acid is the first quinolone licensed for the 

treatment of human urinary tract infection [69]. At present, fluoroquinolones such as ofloxacin, 

levofloxacin, and ciprofloxacin are recommended drugs for second‐line treatment of TB whereas 

moxifloxacin and gatifloxacin are under investigation for anti‐TB action [70, 71]. Apart from the 

better efficacy, moxifloxacin shows cardiovascular risks [72, 73]. Gatifloxacin causes 

hypoglycemia/ hyperglycemia [49]. 

 

2.7. Moxifloxacin  

Moxifloxacin is an antibiotic of fluoroquinolone class prescribed for treating MDR‐TB [74]. 

Currently, the drug is being evaluated in combination with pretomanid, bedaquiline, and 

rifapentine or pyrazinamide. Moxifloxacin is used in the patients who are resistant to isoniazid or 

first‐line TB drugs. Moxifloxacin displays different pharmacokinetic profiles in different 

individuals. Also, it has bactericidal action against bacterial strains both Gram positive and 

negative [75, 76]. Besides its efficacy, moxifloxacin shows cardiovascular risks [49]. 

  

Mechanism of action of moxifloxacin 
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Moxifloxacin act by DNA gyrase inhibition that ultimately inhibits replication of bacterial DNA 

[77, 78]. Moxifloxacin combines with enzyme‐DNA complex formed by DNA gyrase during 

replication process and forms stabilized drug‐enzyme‐DNA complex [79, 80].  

 

2.8. Clofazimine  

Clofazimine is an antibiotic of class riminophenazine employed for treating MDR‐TB. 

Clofazimine displayed remarkable in vitro antimycobacterial action. However, it was terminated 

because its side‐effects like mental disturbances and discoloration of skin [81]. WHO has 

recommended clofazimine for multidrug‐resistant leprosy treatment. The increasing incidence of 

drug resistant‐TB has again drawn special attention on clofazimine that is a key element of newer 

TB treatment options owing to its anti‐inflammatory properties [82]. Clofazimine is a highly 

lipophilic drug. Irrespective of its poor aqueous solubility, clofazimine is orally bioavailable. It 

has a large volume of distribution and an extremely long half-life (~70 days). Thus, it needs to 

formulate as an oil‐wax base microcrystalline suspension for better absorption. Highly lipophilic 

nature leads to its accumulation in fat tissue-rich organs and caused its most common side effect 

i.e. skin discoloration starts. However, once the drug administration is discontinued, this side‐

effect disappears [49].  

 

Mechanism of action of clofazimine  

Clofazimine hampers respiratory chain of bacteria by generating an excess ROS as it first goes via 

reduction of type 2 NADH‐quinone oxidoreductase (NDH‐2) and generates reactive oxygen 

species when gets reoxidized (ROS) [81]. Clofazimine compete for electrons with menaquinone 

(the substrate for type NDH‐2) which is the initial event in the mycobacterial respiratory chain  

[81]. The buildup of excess ROS radicals destroys the bacteria by damaging lipids, proteins, 

nucleic acids, and other biomolecules [83]. 

 

2.9. SQ109  

SQ109 (1, 2‐ethylenediamine) is at present in clinical phase II for drug resistant‐TB [84]. SQ109 

structural design is derived from ethambutol, a recognized drug of first‐line treatment of TB [85]. 

SQ109 is active against both XDR‐TB and MDR‐TB [79]. Due to the presence of diamine groups 

Jo
urn

al 
Pre-

pro
of



 11 

and hydrophobic nature, SQ109 has a high volume of distribution. However, it has low 

bioavailability [49]. 

 

Mechanism of action of SQ109 

SQ109 displayed combined effects with rifampicin and isoniazid and cumulative effects with 

streptomycin and ethambutol [86]. This drug mainly works by cell wall targeting [87]. 

 

2.10. PBTZ169 

PBTZ169 is a drug of class benzothiazinone (BTZ) and presently is under phase II study [88]. 

BTZ043 (the lead compound of BTZ) is utilized for the development of PBTZ169 [89]. PBTZ169 

is stable among other BTZ against nitroreductase attack due to the presence of cyclohexyl group 

[90]. BTZ043 and PBTZ169 showed noteworthy bactericidal action against strains MDR‐TB 

strains [91]. 

 

Mode of action of PBTZ169 

Irreversible covalent adducts are formed by PBTZ169 with DprE1 [91, 92]. Inhibition of DprE1 

hampers decaprenyl phosphoryl arabinose synthesis, which is the main component for 

mycobacterium cell wall synthesis [93]. 

 

2.11. Q203 

Q203 is an imidazopyridine amide which is presently in clinical phase II. The drug is vigorous 

against strains of M. tuberculosis such as XDR and MDR and it has displayed potential effect in 

mice induced with TB [94]. The bioavailability of Q203 is 90%. It has a moderate volume of 

distribution with a terminal half‐life of 23.4 h. It has a low systemic clearance [49]. 

 

Mechanism of action of Q203  

Q203 hampers M. tuberculosis energy metabolism by inhibiting respiratory b-subunit of 

cytochrome bcc complex that is important in the respiratory chain as it catalyzes transport of 

electrons from ubiquinol to Cytochrome C [95, 96]. Hence, Q203 displays a bacteriostatic effect. 

The mode of actions of all above discussed drugs is illustrated in Figure 2. 
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Figure 2. Schematic presentation showing possible mechanisms of new anti-TB drugs. 

 

3. OVERVIEW OF NEW ANTI-TB VACCINES 

Various strategies such as preventive pre-exposure, preventive post-exposure, and therapeutic 

have been reported for vaccine delivery [97]. Pre-exposure vaccines focus on an inducing 

protective immune response than BCG against disease [98] whereas; post-exposure vaccine 

stimulates a long-lasting response to eradicate TB. 

 

3.1. Live Attenuated Vaccines 
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Live attenuated vaccines are composed of either containing whole MTb either in its weaker or 

changed form [99]. MTBVAC (live attenuated vaccine) has been developed for BCG replacement 

is currently undergoing phase 3 clinical trials (NCT03767946; NCT03152903) [99, 100]. 

MTBVAC is a clinical isolate of M. tuberculosis Mt103 developed after removal of two virulence-

related genes phoP and fadD26. Safety studies revealed that MTBVAC is more attenuated form of 

vaccine than BCG and have been tested in mice with severe combined immunodeficiency (SCID) 

[101]. Further study has demonstrated that MTBVAC-L2 and MTBVAC-L3 provided 

considerable protection as compared to BCG in immunocompetent mice, treated with these three 

representative strains. MTBVAC has also been utilized as a vector for TB-HIV vaccine known as 

MTBVAC.HIVA2auxo [102]. TB-HIV vaccine offered similar effects as provided by parenteral 

strain against MTb challenge in mice. In addition, MTBVAC.HIVA2auxo has increased safety 

profile in comparison with BCG and MTBVAC showing a ray of hope for individuals who are 

immunocompromised and are at risk of serious infection [103, 104]. 

 

3.2. Inactivated Vaccines 

Inactivated vaccines do not carry infectious particles, therefore, are safer than live vaccines. 

However, they have weak immunogenicity as compared to live vaccines therefore multiple doses 

are required [105, 106]. RUTI is the inactivated vaccine containing liposomes with detoxified and 

are fragmented M. tuberculosis cells. In phase 2b, RUTI showed considerable humoral and cellular 

immune responses against bacilli [107]. It has efficiently managed latent TB in animal models and 

being in use for treating active TB in patients with reduced treatment duration [107, 108].  A study 

showed that RUTI reduced mycobacterial counts with a considerable shift towards Ly6C- and 

Ly6C+ monocyte phenotype in the spleens of immunized mice. Ly6C- monocytes have an anti-

inflammatory role [109], whereas Ly6C+ monocytes have proinflammatory effects [110].  

 

3.3. Subunit/Adjuvanted Vaccines 

Subunit vaccines are reliable as they contain a specific pathogen that brings less robust immune 

response [111]. For inducing a protective immune response, adjuvants are commonly used for the 

administration of vaccines. Frequently used subunit vaccine includes MPT64, ESAT6, Ag85A, 

and Ag85B [112]. H56: CAF01 vaccine induces both adaptive and innate immunity in mice [113]. 

Despite of humoral response, aluminum-based adjuvants are not protective against MTb because 
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of their intracellular pathogenic property [114]. Thus, novel adjuvants need to be developed to 

stimulate protective Th1 responses [115]. Recent adjuvants used in MTb vaccines include IC31, 

GLA-SE, AS01E, QS21, CFA01, and DPC [116]. The efficacy of subunit vaccine H4: IC31 has 

been evaluated in high-risk TB individuals at reduced M. tuberculosis-specific immune response. 

The results showed a negative response for M. tuberculosis-specific immune response as 

determined by using Quanti FERON-TB Gold In-tube assay (QFT) that determined the 

concentration of IFN-γ [117]. Further, in the phase 2b clinical trial study, the subunit vaccine 

M72/AS01E prohibited pulmonary TB in MTb infected adults with an efficacy of 54% [118]. 

M72/AS01E stimulated higher memory Th1-cytokine expressing CD4+ T-cell memory responses, 

thereby demonstrated itself as the best vaccine giving protective immunity in TB [119, 120]. 

 

3.4. Recombinant Vaccines  

The preparation of recombinant vaccines is done through engineering techniques by inserting 

DNA encoded with MTb antigen into an appropriate vector [121]. The recombinant vaccines are 

categorized based on the kind of organism expressing MTb antigens. For the preparation of live 

mycobacterial vaccines, BCG, Mycobacterium vaccae and Mycobacterium smegmatis are used as 

a vector. Out of these BCG is cost-effective, stable, and it stimulates non-specific immune [122]. 

Lactococcus lactis is used as a vector for Pnz8149-ag85a/NZ3900 which is another bacterial 

recombinant that induced antibody responses in mucosal immunized mice [123]. Currently, the 

only approved vaccine is BCG which is works based on preventative pre-exposure strategy. Some 

vaccines have exceptional methods of administration to boost immune response [124, 125]. 

Presently, vaccine development mainly focuses on live inactivated or attenuated and recombinant 

vaccines. MVA85A is currently under phase 2a clinical evaluation [126].  

 

4. NOVEL DRUG DELIVERY SYSTEMS FOR THE MANAGEMENT OF 

TUBERCULOSIS 

Successful treatment of TB is all-time challenging area for the formulation scientists [127]. In the 

recent few decades, extensive research has been made for the effective management of this deadly 

disease and its prevalence across the globe. However, still no promising outcome is achieved in 

overcoming the limitations of available treatment options. When we talk about the first-line and 

second-line treatments for the management of TB, the typically evolving issue is drug resistance 
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which can be further considered as multidrug and extensive drug resistance [128]. Drug resistance 

or the ability of strains to survive for a longer duration in host cell or its dissemination to other 

surrounding cells makes it more vulnerable and challenging for health professionals to combat TB 

[127]. A high dose of standard drugs lead to dose-dependent toxicity due to the poor drug targeting. 

Table 1 highlights the limitations of conventional delivery system for the treatment of TB. 

Undoubtedly with the advancement of drug delivery technologies, various novel formulations and 

administration routes other than the oral route have been investigated. 

 

Applications of nanotechnological advancements in the delivery of anti-tubercular drugs have 

contributed significant outcomes encompassing effective delivery, better drug distribution and 

availability, and hence better patient compliance [129]. Nanotechnology has several advantages in 

the treatment of tuberculosis like targeted delivery, reduced dose, better penetration, increased 

bioavailability, better distribution, lesser side effects, and better patient compliance.  This simply 

reveals that this transformation from conventional to novel technology can be a promising solution 

to overcome limitations of conventional therapeutics in the management of TB [130–133]. Various 

vesicular and non-vesicular nanocarriers have been discussed below: 

 

Table 1: Limitations of conventional delivery system for the treatment of tuberculosis [129]. 

Route of drug 

administration 

Limitations/challenges 

Oral Sub-therapeutic levels and poor distribution 

Parenteral High dosing load and poor patient compliance 

Inhalants Critical delivery and narrow window for drug selection 

Implants Need of surgical procedures 

 

4.1 Vesicular Carrier Systems: Liposomes and Niosomes 

The nano-particles size range and the vesicular structure of liposomes demonstrated their efficacy 

in effective management of TB. Liposomes and niosomes have advantages like high drug loading 

efficacy, ease of administration, and cost-effectiveness [134]. The nanocarriers have flexibility of 

utilization of alternative routes of administration, achieving the high concentration of drugs in the 

target cell and/or the microbial flora (Mycobacterium), which significantly proves its efficacy at 
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lower drug concentrations and shorter drug regimen frequency, as compared to that of the 

conventional drug delivery approaches [135]. Liposomes have merits like biodegradability, 

biocompatibility, and tailored formulation designing using phospholipids. These advantages of 

vesicular nanocarriers make them versatile and prove them the suitable drug carrier for exhaustive 

research in the effective management of TB [136,137]. Various liposomal approaches for 

efficacious delivery of drug candidates are summarized in Table 2. 

 

Table 2: Studies related to liposomal drug delivery for the treatment of tuberculosis. 

Type of 

nanocarrier 

Drug 

incorporated 

Advantage Ref. 

Thermo-responsive 

hydrogel 

Isoniazid Target site delivery with least 

systemic exposure; used for bone 

tuberculosis. 

[138] 

Spray dried nano 

liposomes 

Moxifloxacin Improved drug uptake by alveolar 

macrophages; biphasic drug release 

mechanism. 

[139] 

Inhalation 

liposomes 

Licorice In vivo lung deposition studies in 

mice revealed that 46% of the drug 

reaches the lungs. 

[140] 

pH dependent 

liposomes 

Isoniazid pH dependent drug release; 100% 

release at pH 4.4. 

 [141] 

Natural 

polysaccharide-

based liposomes 

Isoniazid Pulmonary and macrophage-

targeted delivery of anti-TB drugs. 

 [142] 

 

4.2. Solid lipid nanoparticles for delivery of ATDs 

Solid lipid nanoparticles (SLNs) are surfactants and solid lipids based nanocarriers used for 

controlled release and site-specific drug delivery. The key characteristics of SLNs are inhibition 

of drug degradation, improved pharmacokinetic profile of drugs, improved physical stability of 

drugs, and modified drug release [143]. Various successful investigations have been made in the 
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field of design and development of SLNs, representing their promising results in efficacious drug 

delivery system. SLNs investigated to deliver ATDs are presented in Table 3. 

 

Table 3: Studies related to solid lipid nanoparticles drug delivery for the therapy of tuberculosis. 

Type of nanocarrier Incorporated 

drug 

Advantages Ref. 

Mannose 

functionalized SLNs 

Isoniazid Reduced toxicity in human lung 

epithelial cell line (NCI-H441) and 

differentiated THP-1. 

[144] 

Glyceryl dibehenate 

and glyceryl tri-

stearate SLNs 

Rifabutin In vitro studies using THP1 cells showed 

an uptake of 46 ± 3% for glyceryl 

dibehenate and 26 ± 9% for glyceryl 

tristearatein the macrophagic system. 

[145] 

Ocular SLNs Isoniazid Reported 1.6 times increased corneal 

permeability and about 4.6-fold higher 

ocular bioavailability. 

[146] 

Inhalation SLNs Ethambutol 

hydrochloride 

Insignificant cytotoxicity in A549 cells 

with 37% sustained release. 

[147] 

 

Double drug SLN Rifampicin & 

Isoniazid 

In-vitro studies revealed sustained 

release and in-vivo studies demonstrated 

7.5 times higher bioavailability as 

compared to drug suspension. 

[148] 

Stearic acid and 

compritol SLNs 

Rifampicin, 

Isoniazid and 

Pyrazinamide 

SLNs (3.125% solution) at a 

concentration of RIF (2.16 μg/mL), INH 

(2.55 μg/mL) and PYZ (5.04 μg/mL) 

effectively inhibited the growth of M. 

marinum. In vitro studies using 

RAW264.7 cells showed RIF, INH and 

PYZ were not cytotoxic at a 

concentration of 12.5 μg/mL, 50 μg/mL 

and 100 μg/mL, respectively. 

[149] 
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4.3. Nano-structured lipid carriers 

The drawbacks of SLNs are overcome by nanostructured lipid carriers (NLCs), which are the 

combination product of solid lipid and liquid lipid. Thus, possessing a reduction in crystallinity 

with a loosely packed matrix. These characteristics of NLCs lead to the overall increased capability 

of drug entrapment and better stability [150]. Successful research studies have been carried out so 

far demonstrating the potential of NLCs as the most promising nano-carrier (Table 4).  

 

Table 4: Research studies related to nano-structure lipid carriers. 

Type of 

Nanocarrier 

Incorporated 

drug  

Advantages Ref. 

Copper complex 

NLCs 

Copper(II) In vitro studies using H37Rv cells showed a 

remarkable increase in activity. 

[151] 

Tuftsin modified 

peptide 

functionalized 

NLCs 

Rifampicin Reported initial bulk release, followed by 

controlled release with an improved 

cellular intake and activity. 

[152] 

 

4.4. Nanoemulsion 

Nanoemulsion bears some remarkable attributes like enhanced drug loading, better stability, 

superior bioavailability, and controlled release. These characteristics make them robust nano-

carriers for effective drug delivery. These nanostructures have demonstrated remarkable outcomes 

when administered orally. Orally administered nanoemulsions led to enhanced solubility of the 

lipophilic drugs with a prolonged residence time in the GIT and an expanded lymphatic uptake. 

Thus, nanoemulsions avoiding first-pass metabolism of the drug candidate [153]. Few potential 

research studies performed in the field of nanoemulsions for the delivery of ATDs are discussed 

in Table 5. 

 

Table 5: Nanoemulsions investigated for the delivery of anti-tuberculosis drugs. 

Type of 

Nanocarrier 

Incorporated drug Advantages Ref. 
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Conventional 

nanoemulsion 

Rifampicin Significant decrease in drug 

degradation, leading to better 

pharmacological profile. 

[154] 

Intranasal 

nanoemulsion 

Pretomanid Significant rise in drug 

concentration in brain. 

[155] 

CS-folate 

nanoemulsion 

Rifampicin Better inhalation efficiency and 

declined cytotoxicity. 

[156] 

 

4.5. Micelles 

Micelles are commonly preferred choice of delivery system for hydrophobic drug candidates. 

Micelles have hydrophobic core and hydrophilic outer covering with a particle size of less than 20 

nm, which is the characteristic feature that differentiate these carriers from other nanocarriers. 

Micelles allows better circulation time through escape from renal infiltration. These can be flexibly 

designed using either lipids or other polymer-based amphiphilic molecules like PEG, methacrylate, 

poly (amidoamine), poly (L-aspartic acid), and many more [157]. Micelles investigated to deliver 

ATDs are discussed in Table 6. 

 

Table 6: Research studies related to micelles for delivery of anti-tuberculosis drugs. 

Type of 

nanocarrier 

Drug 

incorporated 

Advantage Ref. 

Insulin and 

vitamin E micelles 

Rifampicin Cytocompatibility on human 

alveolar macrophages demonstrated 

a value of more than 60%. 

[158] 

Pulmonary 

micelles 

Rifampicin Aerodynamic study demonstrated 

the suitability of alveolar delivery 

and in-vitro antibacterial study 

reported 2.5 times higher activity in 

Mycobacterium tuberculosis-

infected THP-1 macrophages; as 

compared to rifampicin solution. 

[159] 
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Polymeric micelles Rifampicin and 

Isoniazid 

Significant inhibition of 

Mycobacterium tuberculosis H37Rv 

by the formulation. 

[160] 

 

4.6 Magnetic Nanoparticle 

Lipoamino acid-coated magnetic nanoparticles isoniazid have been accessed for antibacterial 

activities against M. tuberculosis and Gram-positive and Gram-negative non-mycobacterial 

strains. The effective concentration of the drug against M. tuberculosis decreased to 44.8% and 

16.7%, respectively in conjugation with naked and surface-modified nanoparticles [161]. 

Magnetic nanoparticle-based colorimetric bio-sensing assay increased acid-fast bacilli count 

compared to sputum smear microscopy, improving the grade from “1+” (in SSM) to “2+” [162]. 

Zhanying et al detected M. tuberculosis via magnetic nanoparticle combined with polymerase 

chain reaction technology with the highest capture rate of 71% at OD500 value of 0.4. Synthesized 

nanoparticles were positively charged with a pH value of 2-8. At 900 °C, the thermal weight loss 

of M. tuberculosis was ~85% without addition of magnetic nanoparticles. It was ~45% from 

magnetic nanoparticle-captured M. tuberculosis and 71% from uncaptured M. tuberculosis. 

Polyethyleneimine could enhance the adsorption of magnetic nanoparticles to M. tuberculosis 

[163]. Minero et al reported a novel on-chip DNA analysis technique for tuberculosis detection 

using magnetic nanoparticles [164]. 

 

5. Monoclonal antibodies in the treatment of tuberculosis 

Monoclonal antibodies can interfere with the natural immunity that may predispose for 

tuberculosis infection [165]. Human antibody responses to the polysacharide arabinomannan/ 

glycolipid lipoarabinomannan are heterogenous. However, the information related to the reactivity 

to specific glycan epitopes at the monoclonal level is limited in individuals controlling M. 

tuberculosis infection. Ishida et al, generated human IgG monoclonal antibodies to polysacharide 

arabinomannan/ glycolipid lipoarabinomannan from B cells of two asymptomatic individuals 

infected with M. tuberculosis. These monoclonal antibodies recognized virulent M. tuberculosis 

and nontuberculous mycobacteria. It can detect detect M. tuberculosis and lipoarabinomannan in 

infected lungs [166]. Anti-TNF-α monoclonal antibodies (adalimumab, infliximab), thalidomide, 

and soluble TNF-α receptor (etanercept) play an important role in tuberculous meningitis treatment 
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[167]. Hoel et al, screened antibodies in immunohistochemistry and validated the antibody (anti-

MPT64 antibody) in humans. However, the authors could not generated functional monoclonal 

antibodies. They obtained multiple functional polyclonal antibodies pre-immune sera and antisera 

samples [168]. 

 

6. CLINICAL TRIALS OF NDDS  

Despite numerous pre-clinical studies conducted with regards to the use of nanotechnology in the 

management of TB, there is limited safety and efficacy data of nanotechnology-based drug 

delivery carriers is available for human use. Pre-clinical studies may provide researchers with basic 

information regarding the pharmacokinetic profiles of NDDS, however, such studies are not 

sufficient to explain how these drug carriers will interact and behave within the human biological 

environment. Hence, clinical trials are crucial in the development of novel therapeutics as these 

studies may reveal results that deviate drastically from those obtained from animal models and cell 

lines, attributed to the complex host interactions as well as human metabolic responses [132, 169]. 

Inhalable nanoparticles have shown promising results in several preliminary laboratory 

investigations and preclinical trials. However, these have uncertainties regarding their safety 

profile in the human body. Inhalable nanoparticles are actively underway in clinical trials with an 

understanding of the efficacy, safety, and toxicity of pulmonary tuberculosis. Arikayce® 

(Liposomal amikacin) for the treatment of M. tuberculosis infection, and Ambisome® (liposomal 

amphotericin B) for the treatment of various lung diseases are under clinical trials [170]. Inhaled 

capreomycin has shown well toleration in Phase I clinical trial [171]. 

 

An open phase 1 clinical trial was conducted in 2011 (NCT00922363) to evaluate the safety profile 

of a novel liposomal adjuvant, CAF01, when used with the TB vaccine Ag85B-ESAT-6. The 

clinical trial disclosed a novel liposome-based adjuvant formulation that is safe for human use. 

Long-lasting T-cell immunity was induced when Ag85B-ESAT-6 vaccine was adjuvanted with 

CAF01, suggesting that the liposomal system is relevant for the development of future TB vaccines 

[172, 173]. Table 7 summarizes a list of anti-TB drugs under the clinical pipeline in various 

academic institutions and pharmaceutical industries [174]. 
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Table 7: Anti-tuberculosis drugs under clinical pipeline [174]. 

Phase 1 Phase 2 Phase 3 

TBAJ-587, Diarylquinoline 

TB Alliance, ERA4TB (European 

Regimen Accelerator for 

Tuberculosis), University of 

Auckland, Merck & Co., Inc. 

Sudapyridine (WX-081) 

Shanghai Jiatan Biotech Ltd., 

subsidiary of Guangzhou 

JOYO Pharma Ltd., 

Shanghai, China 

Bedaquiline 

Janssen Research & 

Development, LLC 

GSK-286 

GlaxoSmithKline, TB Drug 

Accelerator, Bill & Melinda Gates 

Foundation 

Sutezolid 

Sequella, Inc, TB Alliance 

Sutezolid Dose-finding and 

Combination Evaluation 

(SUDOCU) 

Delamanid 

Otsuka 

Pharmaceutical 

Development & 

Commercialization, 

Inc. 

Macozinone (MCZ, PBTZ-169) 

iM4TB - Innovative Medicines for 

Tuberculosis, Bill & Melinda Gates 

Foundation 

SPR720 (Fobrepodacin) 

Spero Therapeutics, LLC, 

Bill & Melinda Gates 

Medical Research Institute 

Rifapentine 

CDC TBTC, Sanofi 

GSK-286 

GlaxoSmithKline, TB Drug 

Accelerator, Bill & Melinda Gates 

Foundation 

Delpazolid (LCB01-0371) 

LegoChem Biosciences, Inc. 

Pretomanid 

TB Alliance 

TBAJ-876 Diarylquinoline 

TB Alliance, University of 

Auckland 

Telacebec (Q203) 

Qurient Co., Ltd, Qurient Co. 

Ltd. / LLC "Infectex", a 

portfolio firm of Maxwell 

Biotech Venture Fund 

Clofazimine 

Novartis 

BVL-GSK098 

BioVersys AG, GlaxoSmithKline 

Linezolid 

TB Alliance 

Rifampicin 

St. George's Hospital 

University of London 
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TB may cause adrenal insufficiency due to the extra-adrenal infection or direct glandular 

involvement. Thyroid gland is uncommonly involved in TB due to certain intrinsic properties of 

thyroid gland, high blood-flow with excess bactericidal iodine, the presence of colloid, increased 

phagocytosis associated with hyperthyroidism, and extensive lymphatic and vascular supply to the 

thyroid have all been postulated as mechanisms [175]. Regardless of the studies representing the 

advantages of respiratory administration of the drug, there is a lack of uniform and effective 

techniques of drug administration in preclinical models resulting in poor translational success. 

Accurate delivery of dose to the lungs is challenging due to drug loss in the reservoir, delivery 

accessories, tubing of the aerosol generator, along with the nasopharyngeal region of the animal 

that may constitute a risk factor for the development of drug resistance. For combating these 

invasive techniques like intratracheal instillation are considered to attain precise drug dosing to 

lungs. Encapsulating the drugs may improve the efficacy of antimicrobial drugs by enhancing 

solubility, preventing rapid clearance with lesser side effects. Nanoparticles exhibit a high loading 

capacity and minimizes the amount of material administered. Sequential nanoprecipitation and 

microfluidics techniques lead to high loading capacity [176]. Better encapsulation can be done by 

chemical conjugation via hydrolysable or responsive chemical bonds [177] or by employing an 

appropriate system for hydrophilic drugs, such as niosomes, liposomes, or polymeric 

nanocapsules. Second-line anti-TB drugs cannot effectively penetrate cells leading to affect their 

efficacy and increased dose. Therefore, encapsulation of second-line anti-TB drugs in nanocarriers 

may allow selective distribution and uptake of encapsulated drug by target cells. Selective drug 

delivery can be obtained by the surface modification or surface functionalization of nanoparticles 

that may improve biocompatibility and stability [178].  Lack of knowledge towards the regulatory 

guidelines regarding characterization, statistical analyses, and study design corresponds to a 

common barrier in the clinical translation of nanoformulations. Optimizing the practices may 

promote the conversion of nanotechnology from experimental achievement into clinical practice. 

 

The effectiveness of a dosage form to treat TB depends on its capacity to provide large local 

therapeutic dosage to the lungs without exposing the normal cells of the body to the bioactive at a 

level that leads to the emergence of drug-resistant microorganisms. Targeting alveolar 

macrophages using inhalable nano-based therapeutics has two basic objectives (i) uptake of 

particles by macrophages has the potential to activate infected macrophages, and (ii) targeting can 
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deliver extremely large amounts of the anti-TB drugs to the macrophage cytosol. However, have 

been very few studies, and those that have been done have mostly dealt with tolerability. Thus, 

there is an urgent need that provide innovative inhalation formulation available commercially with 

the regulatory approval. Inhalable nano-based therapeutics are not subjected to the first-pass 

metabolism. 

 

Conclusions 

The current paper presented information related to the most innovative and ground-breaking drug 

delivery strategies for the treatment of TB with improving therapeutic efficacy and reducing toxic 

effects of anti-TB drugs. The promising therapeutic effects of novel drug delivery systems in TB, 

including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and 

micelles have proven in multiple pre-clinical studies to date. Nonetheless, limited clinical trials 

have been performed, prompting the need to conduct more clinical studies for elucidating clear, 

in-depth efficacy and safety profiles of these novel drug delivery systems in humans to pave the 

path towards successful clinical translation in the future. 

 

List of Abbreviations 

ADP Adenosine diphosphate 

ATDs Anti-tubercular drugs  

ATP Adenosine triphosphate  

B Cells B lymphocytes 

BCG Bacille Calmette-Guerin 

DC Dendritic cells  

DNA Deoxyribonucleic acid  

DprE1 Decaprenylphosphoryl-β-D-ribose oxidase 

DR-TB Drug-resistance tuberculosis 

DS-TB Drug-susceptible tuberculosis 

F-ATP F type Adenosine triphosphate/Fo domain 

HIV Human Immunodeficiency Virus 

INH  Isoniazid 

MDR Multi drug resistance 
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MTb Mycobacterium tuberculosis 

MTBVAC First and only live attenuated vaccine based on a 

human isolate of Mycobacterium tuberculosis 

developed as BCG-replacement strategy 

NADH Nicotinamide adenine dinucleotide 

NDDS Novel drug delivery systems 

NDH-2 Type II NADH: quinone oxidoreductase 

NK cells Natural Killer cells 

PZA Pyrazinamide 

RIF Rifampicin  

RNA Ribonucleic acid 

ROS Reactive oxygen species 

rRNA Ribosomal Ribonucleic acid 

RUTI a therapeutic liposomal vaccine containing detoxified 

fragmented M. tuberculosis cells  

TB Tuberculosis 

Th1 T helper cells 

Treg Regulatory T cells 

Trp16 N-Acetyl-[D-Trp16]-Endothelin 1 fragment 16-21 

WHO World Health Organization 

XDR  Extensive drug resistance 
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Recent developments, challenges and future prospects in advanced drug delivery systems 

in the management of tuberculosis 

 

Highlights 

• TB is a life-threatening health issue leading to amplified socio-economic impact 

• Conventional therapeutics are not competent to target drugs at specific sites 

• Nanocarriers can overcome limitations of conventional systems in treating MDR-TB 

• Contemporary trends and advancements for TB management are highlighted 
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