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Experimental test of nonlocal causality
Martin Ringbauer,1,2* Christina Giarmatzi,1,2 Rafael Chaves,3,4,5 Fabio Costa,1

Andrew G. White,1,2 Alessandro Fedrizzi1,2,6

Explaining observations in terms of causes and effects is central to empirical science. However, correlations be-
tween entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental
assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s
local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measure-
ments of remote parties. We use interventional data from a photonic experiment to bound the strength of this
causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the
considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of non-
local causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quan-
tum correlations thus requires an even more radical modification of our classical notion of cause and effect.

INTRODUCTION

Four decades after Freedman and Clauser (1) performed the first
Bell’s inequality test (2), a series of loophole-free experiments (3–5)
have now conclusively shown that the predictions of quantum me-
chanics are at odds with local realism. Scientific realism posits that
physical systems have real, objective properties—independent of
whether we observe them or not—that determine the outcomes of
measurements performed on the system. The idea of locality—or
more precisely local causality—is that causal influences cannot prop-
agate faster than the speed of light. On the basis of local causality,
and the assumption that measurement settings can be chosen freely,
Bell derived an inequality that must be respected by any set of cor-
relations that can be explained in terms of, possibly hidden, com-
mon causes (see Fig. 1A) but is violated by observed quantum
correlations. Consequently, a new area of research has emerged, ex-
ploring to what extent the various underlying assumptions have to
be relaxed to recover a causal explanation of quantum correlations
(6–14).

A natural framework for this research program, and the study of
Bell’s theorem, is the theory of causal modeling (11, 12), which aims
to explain correlations in terms of cause-and-effect relations between
events (15, 16). Discovering these relations from empirical data is dif-
ficult in general (17–20); however, within classical physics, such an ex-
planation should always exist because the properties of a classical
system, even if not measured, can always be assumed to have well-
defined values. Causal reasoning is at the heart of empirical science
and builds upon the most fundamental understanding of causality—
that if a variable acts as the cause for another one, actively intervening
on the first should cause changes in the second. More recently, causal

modeling has attracted considerable interest in foundational phys-
ics, particularly for the study of stronger-than-classical correlations
(12, 21–28), dynamical causal order (29), and indefinite causal struc-
tures (29, 30), and their role as computational resource (31–34).

Phrasing Bell’s theorem in the language of causal models provides
a clear picture of the underlying assumptions and allows for a unified
and quantitative approach to relaxations of these assumptions (11, 12).
For example, quantum correlations can be explained by causal models
when relaxing Bell’s local causality assumption, which is commonly
referred to as quantum nonlocality. Here, we test nonlocal causal
models, which relax local causality by abandoning causal outcome
independence and allowing for a causal influence from one measure-
ment outcome to the other (see Fig. 1B). First, we consider the simplest
case that reveals such correlations, the Clauser-Horne-Shimony-Holt
(CHSH) scenario (35), where two parties, Alice and Bob, can each
measure one of two dichotomic observables. Using controlled inter-
ventions, we find the potential causal influence insufficiently strong
to explain the observed CHSH violation. In the second experiment,
we go beyond the CHSH scenario and violate a Bell-type inequality,
which involves three measurement settings for each party and is
satisfied even for arbitrarily strong causal influences from one out-
come to the other (11). In contrast to the interventional method,
which requires detailed knowledge of the physical system under con-
sideration, the latter method is device-independent. Our results high-
light the incompatibility of quantum correlations not only with the
well-known Bell-local causal models but also with nonlocal causal
models, where one measurement outcome may have a direct causal
influence on the other.

RESULTS

Theoretical background
A causal structure underlying n jointly distributed discrete random
variables (X1,…, Xn) is represented by a directed acyclic graph, where
the nodes (circles in Fig. 1) represent variables and the directed edges
(arrows in Fig. 1) represent causal relations (15). Bell’s theorem, where
two observers, Alice and Bob, perform local measurements on one
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half of a shared quantum state, can be conveniently formulated in
this language. Figure 1A shows the corresponding causal graph,
based on Bell’s assumptions of measurement independence and local
causality. Measurement independence states that the measurement
choices of Alice and Bob, X and Y, respectively, are independent of
how the system has been prepared, that is, there is no causal link
from the hidden variable L to X or Y and thus p(x,y,l) = p(x,y)p(l).
Local causality implies that the probability of Alice’s (Bob’s) out-
come A (B) is fully specified by L and by the measurement choice
X (Y), that is, p(a|x,y,b,l) = p(a|x,l) and p(b|x,y,a,l) = p(b|y,l).
Here and in the following, we adopt the usual convention that
uppercase letters denote random variables, whereas their values are
denoted in lowercase. Interpreted in the causal modeling framework,
local causality is the combination of what we call causal parameter
independence—there is no direct causal influence from the measure-
ment setting Y (X) to the other party’s outcome A (B)—and causal
outcome independence, stating that there is no direct causal influence
from one outcome to the other. Note that these definitions are moti-
vated by the causal structure and differ from the statistical notion of
outcome independence and parameter independence (36), which can-
not be given a causal interpretation (see Materials and Methods for
details).

The causal models compatible with these assumptions are the
well-known Bell-local hidden-variable models: p(a,b|x,y) = Sl
p(a|x,l)p(b|y,l)p(l). The constraints on the observable probabil-
ities p(a,b|x,y) dictated by such a causal model are known as Bell
inequalities. In the simplest possible Bell scenario, where each of the
parties measures one of two observables (x,y = 0,1) obtaining one of
two possible outcomes (a,b = 0,1), any correlations compatible with
Bell-local causal models must respect the CHSH inequality (35)

S2 ¼ 〈A0B0〉þ 〈A0B1〉þ 〈A1B0〉� 〈A1B1〉 ≤ 2 ð1Þ

where 〈AxBy〉 = ∑a,b = 0,1(−1)
a + bp(a, b|x, y) is the joint expectation

value of Ax and By. The first loophole-free Bell experiments (3–5) now
conclusively show that quantum mechanics allows for correlations that
violate this inequality, therefore witnessing its incompatibility with causal
models that satisfy local causality and measurement independence.

To retain a classical causal explanation for the correlations ob-
served in the Bell scenario, some of these causal assumptions have

to be relaxed (7–14, 36). We focus on the class of models that satisfy
causal parameter independence, but do not assume causal outcome
independence, such that Alice’s measurement outcomes may have a
direct causal influence on Bob’s outcomes (see Fig. 1B). The same
arguments hold for the case where Bob’s outcome influences Alice’s
outcome (with the A→B arrow reversed in Fig. 1B), or any linear
combination of these cases, as discussed in detail in the Supple-
mentary Materials. Because the causal model is formulated without
any reference to a space-time structure, this influence may be sub- or
superluminal, instantaneous, or even to the past, as long as it does not
create any causal loop. In particular, it is consistent with a recent no-go
theorem, which states that quantum correlations cannot be explained
by any finite-speed influence (37). The probability distributions com-
patible with this causal structure can be decomposed as

pða; bjx; yÞ ¼ ∑
l
pða x; lÞp bð jy; a; lj ÞpðlÞ ð2Þ

Interventional method
The first experimental method we use to test this model relies on
interventions, a core tool in causal discovery that allows for the iden-
tification and quantification of causal influences (11, 15, 38, 39). For-
mally, an intervention is the act of locally forcing a variable Xi to take
on some value x′i, denoted do(x′i). This removes all incoming arrows
on Xi while keeping the causal dependencies between all other variables
unperturbed (see A in Fig. 1C). In practice, performing such arrow-
breaking interventions always requires some background knowledge
of the system under consideration because the possible persistence
of “confounding” common causes cannot be excluded from statistics
alone. In our case, we shall assume that, for the purpose of the inter-
vention, the local degrees of freedom behave according to quantum me-
chanics. Such assumptions are common in quantum steering scenarios
and semi–device-independent quantum cryptography, where it is as-
sumed that the devices of at least one of the laboratories can be trusted
and work according to quantum mechanics.

In the CHSH scenario, passive observations alone are not enough
to determine whether correlations between A and B are due to direct
causation or a common cause L. However, an intervention on variable
A would break the link between A and the (hypothetical) variable L.
Thus, all remaining correlations between A and B must stem from
direct causation. The maximal shift in the probability distribution of
B upon intervention on A allows quantifying the strength of this caus-
al link (11). To achieve this, we use the so-called average causal effect
(ACE) (15, 38)

ACEA→B ¼ sup
b;y;a;a 0

p
�
bjdoðaÞ; y�� p

�
bjdoða 0 Þ; y�

���
��� ð3Þ

which is a variant of the measure CA→B used in the work of Chaves et al.
(11). In contrast to the latter, ACEA→B does not require knowledge of
the hidden variable and is thus experimentally accessible. As we prove
in detail in the Supplementary Materials, the average causal effect satisfies
the same relation as CA→B in the work of Chaves et al. (11), namely

ACEA→B ≥ max½0; ðS2 � 2Þ=2� ð4Þ

where the maximum is taken over all eight symmetries of the CHSH
quantity under relabeling of inputs, outputs, and parties (35). That is,

A CB

Fig. 1. Causal structures for a Bell scenario. (A) Bell’s original local hidden-
variable models, where X (Y) is Alice’s (Bob’s) measurement setting, and
A (B) is the corresponding measurement outcome. L denotes the local
hidden variable. (B) A relaxation of local causality, where Amay have direct
causal influence on B. The Bell-local models in (A) are the limiting case
where the green arrow from A to B vanishes. An explicit example of
such a model is given in the Supplementary Materials. (C) An interven-
tion (I) on A forces the variable to take a specific value and breaks all
incoming arrows.
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the average causal effect required for a causal explanation of a set of
quantum correlations is directly proportional to the CHSH violation
achieved by the correlations in question.

We experimentally implemented an intervention on a CHSH-Bell
test using pairs of polarization-entangled photons, generated in the
state cosg|HV〉 + sing|VH〉 (see Fig. 1A). Here, H and V correspond
to horizontal and vertical polarizations, respectively, and g is the polar-
ization angle of the pump beam, which continuously controls the degree
of entanglement, as measured by the concurrence C = |sin(2g) (40).

Alice and Bob test the CHSH inequality with two settings and two
outcomes each. The measurements are chosen in the equatorial (linear
polarization) plane of the Bloch sphere (see Fig. 2B). To test the (di-
rectional) link A→B, Bob was located in the causal future of Alice
using a 2-m fiber delay before Bob’s measurement device. Recall that
an intervention on Alice’s outcome A needs to break all relevant in-
coming causal arrows and deterministically set the value of the variable
A. Relying on the quantum description of the local degrees of freedom,
these requirements are met by first projecting Alice’s photon onto cir-
cular polarization states jR=L〉 ¼ ðjH〉 ± ijV〉Þ= ffiffiffi

2
p

—which, within
experimental precision, erases all relevant information for the CHSH
test performed in the linear polarization plane—and then re-preparing
it in eigenstates of Alice’s measurement PBS |H/V〉—which forces one of
the two outcomes A = ±1. This corresponds to operations of the form
|H/V〉〈R/L|, which are experimentally implemented using a quarter-
wave plate at ±45°, followed by a polarizer directly before Alice’s mea-
surement PBS. The measurement bases for Alice and Bob, as well as the
setting of the intervention polarizer and quarter-wave plate, were chosen
randomly using quantum random numbers from the Australian National
University’s online quantum random number generator based on the work
of Symul et al. (41).

Single-photon clicks in the avalanche photodiodes for each out-
come are registered with an AIT-TTM8000 time-tagging module with
a temporal resolution of 82 ps. Outcome probabilities, used to estimate

ACEA→B, were computed from a total of 48,000 coincidence counts,
and no more than one event was registered for each set of random
choices for X, Y, and the two elements of I.

Figure 3 shows the observed average causal effect as a function of
the CHSH values measured for a range of entangled states. All mea-
sured values are below ACEA→B ¼ 0:02þ0:02

�0:02 and largely independent
of the observed CHSH violation. Note that the quantity is bounded
from below, which results in non-Gaussian statistics and makes the
value 0 unachievable in the presence of experimental imperfections
and finite counting statistics. When taking this into account, all data
lie within the 3s noise due to Poissonian counting statistics (see the
Supplementary Materials for details). All quoted uncertainties were ob-
tained from Monte Carlo simulations of the Poissonian counting statis-
tics and correspond to the 0.13th and 99.87th percentile, respectively (in
the case of normally distributed variables, this would correspond to 3s
confidence regions). Within current experimental capabilities, we find
that CHSH violations above a value of S2 = 2.05 ± 0.02 cannot be fully
explained by means of a direct causal influence from one outcome to
the other. That is, the potential causal influence between Alice’s and
Bob’s measurement (green arrow in Fig. 1B) is not sufficiently strong.

Observational method
As we have demonstrated, interventions can be used to distinguish direct
causation from common-cause correlations in the two-setting CHSH
test, which is not possible with passive observation alone. However, this
comes at the cost that the intervention relies on the quantum descrip-
tion of the degree of freedom responsible for the outcome A (in the case
above, the polarization). The interventional method is thus necessarily
device-dependent and cannot be used to test arbitrary hidden-variable
models. We now show how moving beyond the CHSH scenario allows
for a device-independent test of any model with an arbitrarily strong
causal influence from one outcome to the other.

Consider the situation where each of the two parties can choose to
measure one of three different dichotomic observables. As shown in

HWP

QWP
POL

APD

Source

PBS

A B

X

Y
I

QRNG

Fig. 2. The experimental setup. (A) Pairs of photons are generated via
spontaneous parametric down-conversion in a periodically poled KTP
crystal, using the Sagnac design of Fedrizzi et al. (48). The degree of polar-
ization entanglement between the two photons can be continuously var-
ied by changing the polarization angle g of the pump laser. Alice and Bob
perform measurements in the equatorial plane of the Bloch sphere using a
half-wave plate (HWP) and a polarizing beam splitter (PBS). Additional
quarter-wave plates (QWPs) can be used for quantum state tomography
of the initial entangled state. In the interventionist experiment, an addition-
al combination of QWP and polarizer (POL) is used between Alice’s basis
choice and her measurement. Causal variables are indicated using the no-
tation of Fig. 1A. Note that L can represent an arbitrary hidden variable
acting as a common cause for the observed outcomes, which need not
necessarily originate at the source. (B) Alice’s (red) and Bob’s (blue) mea-
surement bases and the intervention direction (cyan) on the Bloch sphere.
QRNG, quantum random number generator; APD, avalanche photodiode.
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Fig. 3. Observed average causal effect ACE versus measured CHSH
value. Any value below the dashed red line, given by Eq. 4, is not suf-
ficient to explain the observed CHSH violation. Note that the quantity
ACE is bounded from below by 0, as indicated by the hatched area, re-
sulting in asymmetric error distributions. The blue shaded area represents
the 3s region of Poissonian noise. All errors represent the 3s statistical con-
fidence intervals obtained from a Monte Carlo simulation of the Poissonian
counting statistics.
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the work of Chaves et al. (11), any correlations compatible with the
model in Fig. 1B must now satisfy

S3 ¼ 〈E00〉� 〈E02〉� 〈E11〉þ 〈E12〉� 〈E20〉þ 〈E21〉 ≤ 4 ð5Þ
This inequality is symmetric under exchange of the parties and, as

we show in the Supplementary Materials, satisfied by any model that
contains communication of outcomes from Alice to Bob, Bob to Alice,
or any mixture thereof. Crucially, this allows us to test the models in
Fig. 1B in a device-independent fashion and without committing to
any particular temporal ordering of A and B.

To test inequality (5), Alice and Bob each perform measurements
on their quantum system along one of three directions in the equato-
rial plane of the Bloch sphere. These measurements are implemented
using the setup in Fig. 2, with the intervention elements I removed.
The specific measurement settings are given in the Supplementary
Materials. Figure 4 shows the observed violation of inequality (5) as
a function of the parameter g of the used quantum state. The theore-
tical maximal violation of the inequality is achieved using a maximally
entangled state, corresponding to g = 45°.

We observe a value of up to S3 ¼ 5:16þ0:02
�0:02, corresponding to a viola-

tion of Eq. 5 by more than 170 SDs. Complementary to the interven-
tional experiment, which rules out outcome-dependent causal models
in the CHSH scenario but requires additional assumptions about the
underlying causal mechanisms, this result rules out outcome-dependent
causal models without additional assumptions in any scenario with
more than two settings. A direct causal influence from one outcome
to the other can therefore not explain quantum correlations.

DISCUSSION

Previous work on causal explanations beyond local hidden-variable
models focused on testing Leggett’s crypto-nonlocality (7, 42, 43), a

class of models with a very specific choice of hidden variable that is
unrelated to Bell’s local causality (44). In contrast, we make no as-
sumptions on the form of the hidden variable and test all models
compatible with the causal structure in Fig. 1B, which is a natural gen-
eralization of Bell-local models and contains them as a special case.
Practically, our experiment relies on a fair-sampling assumption (see
the Supplementary Materials). Causal models are formulated without
any reference to space-time structure, and hence, space-like separation
between A and B is not required. Our results demonstrate that a causal
influence from one measurement outcome to the other, which may be
subluminal, superluminal, or even instantaneous, cannot explain the
observed correlations.

Our results could have applications in quantum cryptography sce-
narios where the secrecy of the measurement outcomes cannot be

0 20 40 60 80

3.0

4.0

5.0

Pump laser polarization angle [°]

S
3

γ
Fig. 4. Observed values S3 for a variety of quantum states of the form
cosg|HV〉 + sing|VH〉. The orange data points are observed using a fixed
measurement scheme (optimal for the maximally entangled state g = 45°),
with the dotted, orange line representing the corresponding theory prediction.
The blue data points and blue dashed theory line correspond to the case where
measurement settings were optimized for the prepared states (see the Supple-
mentary Materials for details). The black line represents the bound of inequality
(5); any point above this line cannot be explained causally by a model of the
form in Fig. 1B. Error bars correspond to 3s statistical confidence intervals.
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Statistical constraint Causal constraint

Fig. 5. Comparison of various constraints on the causal structure of
Bell’s theorem. The causal links forbidden by the respective assump-
tion are shown in dashed green lines. Note that the statistical con-
straints implied by causal parameter independence are asymmetric in
a and b, and swapping them would result in a causal structure where
the arrow between A and B is reversed. Our experimental test applies to
both of these structures and any convex combination of them.
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guaranteed. Consider a one-sided device-independent scenario where
Alice’s laboratory is trusted, but an eavesdropper, Eve, may control
Bob’s devices and the source of particles. In a standard quantum key
distribution protocol, Alice and Bob would first attempt to violate the
CHSH inequality to certify that they share entanglement. However,
using the knowledge of Alice’s measurement outcomes, Eve could con-
vincingly produce outcomes for Bob that simulate such a violation.
Using an intervention on her measurement outcome, Alice can reveal
such an attack as a nonzero value of ACEA→B (see Eq. 4). Alternatively,
Alice and Bob could use inequality (5) to certify that they share en-
tanglement because a violation of this inequality cannot be simulated
by Eve using knowledge of Alice’s measurement outcomes.

It will be of considerable interest to further develop the causal
modeling tools demonstrated here to test other classes of causal mod-
els, for example, allowing for retrocausal influences or relaxations of
measurement independence (8–14, 45). Alternatively, one could com-
pletely abandon the classical notion of causality and pursue a novel
framework of quantum causality (21, 24–27). It was recently shown
that such a framework can be based on interventionist causation, which
allows for causal discovery and recovers the classical causal modeling
framework in the appropriate limit (46).

Recent experiments put strong constraints on realist interpretations
of quantum mechanics, ruling out maximally epistemic (47) and local
causal (3–5) models. Our results exclude a broad class of nonlocal causal
models, thus contributing to a clearer picture of the status of reality and
causality in quantum mechanics.

MATERIALS AND METHODS

Causal interpretation of local causality
Local causality captures the idea that there should be no causal influence
from one side of the experiment to the spacelike separated other side.
Formally, this is a constraint on the conditional probability distributions:
p(a|b,x,y,l) = p(a|x,l) and p(b|a,x,y,l) = p(b|y,l). We would like to stress
that local causality is not equivalent to signal locality, which follows from
special relativity and imposes constraints on the observable probabilities
only: p(a|x, y) = p(a|x) and p(b|x, y) = p(b|y). The natural generalization
of signal locality to include the hidden variable is typically referred to as
parameter independence or locality: p(a|x,y,l) = p(a|x,l) and p(b|x,y,l) =
p(b|y,l) (36). Parameter independence, together with what is often
referred to as outcome independence p(a|b,x,y,l) = p(a|x,y,l) and
p(b|a,x,y,l) = p(b|x,y,l), then implies local causality.

Interpreted in the causal modeling framework, local causality
implies that there is no causal link from Bob’s measurement setting
Y or outcome B to Alice’s measurement outcome A, and similarly from
Alice to Bob (compare Fig. 5). In the spirit of causal modeling, we would
like to obtain the causal structure of Bell’s theorem directly from
investigating these causal independencies. Specifically, causal out-
come independence denotes the absence of a causal link between
the measurement outcomes, and causal parameter independence
denotes the absence of a causal link from each party’s setting to
the other’s outcome. The latter condition still allows causal influ-
ence between measurement outcomes. Because no causal loop can
exist, in a single causal model, this link must be either from A to B or
from B to A. The most general correlations consistent with causal
parameter independence are convex combinations of correlations
consistent with either model.

As shown in Fig. 5, the causal models compatible with causal out-
come independence are the same as for ordinary outcome indepen-
dence. Causal parameter independence, on the other hand, imposes
different constraints than “ordinary” parameter independence. The
latter is defined as the conjunction of the statistical constraints for
Alice and Bob. Either of these can be given a causal interpretation
in terms of a causal model, which, when imposing the constraint for
Alice, contains explicit links from X and A to B (compare Fig. 5),
and similarly for Bob. However, the set of probability distributions
that satisfy both constraints does not correspond to a causal model,
unless outcome independence is assumed as well. In contrast, causal
parameter independence is defined such that there are no causal
links from X to B and Y to A, but a link between A and B (compare
Fig. 5 for the case A→B) is allowed. Because there are two possible
directions for this link, causal parameter independence contains a set
of constraints for each model, and the set of probability distributions
compatible with it is the set of those compatible with either model.

Note that the joint assumption of causal parameter independence
and causal outcome independence is equivalent to local causality and
thus equivalent to the joint assumption of ordinary parameter inde-
pendence and ordinary outcome independence. However, in contrast
to the latter pair, our causal assumptions individually have clear causal
interpretations.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/8/e1600162/DC1
Relaxation of local causality
Theoretical analysis of experimental imperfections
Testing the new inequality
Error analysis
fig. S1. Efficiency h and visibility v requirements for a violation of inequality (5) in the main text
without fair-sampling assumption.
fig. S2. Measurement angles for inequality (5) in the main text.
fig. S3. Distribution of statistical noise due to Poissonian counting statistics.
table S1. Wave plate characterization data.
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