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Executive Summary 
 
This report presents results from Wallis Lake, one of the estuaries selected as part of Stage 1 
of the NSW Oyster Industry Transformation Project 2017-2021. To predict the impact of 
rainfall on potentially pathogenic bacteria, Harmful Algal Blooms (HABs) and oyster disease, 
precise environmental data with a high temporal frequency were collected and modelled. 
Combined with state-of-the-art molecular genetic methods, this information will help to 
improve efficiency and transparency in food safety regulation, provide predictive information 
and provide insights for more informed and responsive management of shellfish aquaculture.  
 
We installed a real-time sensor in the Long Island harvest area, recording high-resolution 
temperature, salinity and depth data. Oyster farmers collected weekly biological samples (459 
environmental DNA samples and 198 deployed/retrieved oysters for growth assessment) 
from the sensor site. We developed a rapid molecular qPCR (quantitative polymerase chain 
reaction) assay for E. coli, which could directly compare to the currently used plate count by 
commercial laboratories. We also developed specific qPCR assays that could determine which 
animals were contributing to the E. coli load in the river system. We used these assays to 
observe trends in faecal pollution and modelled these in relation to environmental variables 
(salinity, temperature, rainfall etc.) to develop predictive models. Finally, we developed an 
additional model to link oyster growth with environmental variables and assessed its 
predictive capability.  
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1. Introduction 
1.1 Transforming Australian Shellfish Production 
The Transforming Australian Shellfish Production Project (TASPP) follows on from the success 
of the NSW Oyster Industry Transformation Project (NSWOITP), which is a UTS led, 
multidisciplinary collaboration between oyster farmers (NSW Farmers Association), 
researchers (UTS, DPI Aquaculture and Fisheries), regulators (DPI Biosecurity and Food 
Safety), natural resource managers (Local Land Services) and the Food Agility CRC. The project 
uses real time, high-resolution salinity, temperature and depth sensing, combined with novel 
molecular genetic methods (eDNA), to model oyster food safety, pathogenic bacteria, harmful 
algae, and oyster growth and disease, with the aim of improving production and harvest 
management and to reduce harvest closure days for farmers.  
 
As filter feeders, shellfish like oysters and mussels actively remove particles from surrounding 
waterways. Following high-risk events such as heavy rainfall or harmful algal blooms, 
regulators like the NSW Food Authority implement precautionary harvest area closures to 
manage potential food safety risks or implement shellfish movement restrictions to manage 
potential biosecurity risks. Shellfish farmers in Australia are not currently able to predict the 
likelihood of a harvest area closure due to these high-risk events. If farmers were aware of 
imminent closure, they could take meaningful action such as harvesting early, or moving stock 
to lower risk areas. The same environmental variables that influence food safety can also 
impact on oyster health and can increase the risk of certain diseases. Understanding these 
relationships and monitoring these variables could be used to reduce the risk and severity of 
disease outbreaks. 
 
This project will deliver functioning, estuary-specific models relating to oyster growth, disease 
risk, harmful algal bloom risk, sources of contamination, and other supporting factors 
influencing industry productivity. Each of these models will relate biological data to high 
frequency water quality metrics as measured by real-time sensors deployed in situ. 
 
Stage 1 (2017-2021) of the project has been successfully completed, with ~5,000 water and 
3,000 oyster samples collected across 13 NSW estuaries engaged in the project. Stage 2 (2021-
2024) is now underway, with two further NSW estuaries engaged, and expansion of the 
project into Western Australia. Sample processing, data analysis and report writing will 
continue during this second phase, with modelling to predict oyster growth and mortality 
rates, including key oyster diseases such as Marteilia sydneyi (QX) and Winter Mortality, and 
the intensity of harmful algal blooms planned. As part of these analyses, novel qPCR assays 
for E. coli (bird, cow, human) and harmful algal species (Pseudo-nitzschia spp., Dinophysis 
spp., P. minimum), which were developed during Phase 1, will also be implemented. 
 
Preliminary results from this high frequency data have already demonstrated the link 
between salinity levels related to rainfall and E. coli levels. In 2019, the NSW Shellfish 
Program's Annual Sanitary Survey Report (DPI) stated that using this real-time, high frequency 
environmental data, the project provided the basis for a change to the management plans for 
the Pambula Lake harvest area and the Cromarty Bay harvest area (Port Stephens). These 
management plan changes mean that harvest area openings and closures can be based on 
salinity-only data, with unnecessary extra harvest closure days avoided. As early adopters of 
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the technology for harvest area management, an independent economic assessment by NSW 
DPI completed in January 2021 evaluated Pambula Lake and Cromarty Bay. The report 
highlighted positive benefits for industry using salinity-based management plans. Focusing on 
the six-month period where oysters were at peak marketable condition, it was estimated that 
up to two extra weeks of harvest could be achieved, with a projected annual net profit boost 
of $15,344 (Cromarty Bay) and $95,736 (Pambula Lake) for the study areas, based on current 
lease area used. The full report is available on the NSW Food Authority website.  
 
Across the NSW shellfish industry, the potential economic benefit from the use of real-time 
sensors for harvest area management is conservatively estimated at up to $3 million annual 
farm gate value. Increased revenue will improve the confidence of the industry to further 
invest and drive more growth. As of February 2022, thirteen salinity-only management plans 
had been offered for harvest areas in participating NSW estuaries, of which six were taken up 
and seven are under consideration. 
 

1.2 Wallis Lake 

Wallis Lake (-32.27° S, 152.49°E) is an open, moderately large yet relatively shallow, coastal 
barrier estuary covering an area of ~99 km2 with a catchment area of ~1197 km2 and a flushing 
rate of ~76 days (Roy et al. 2001, Roper et al. 2011) (Fig. 1). It extends ~25 km upstream of 
the ocean and has two broad topographic units: the coastal plain and the inland ridges and 
valleys.  
 
Based on drainage networks, the Lake’s catchment is divided into seven primary 
subcatchments: Wallamba River, Lower Wallamba River, Wang Wauk River, Minimbah 
Sandbed, Coolongolook River, Wallingat River, and Wallis Lake Body. While land use is still 
largely agricultural (beef production/grazing ~36%) and forestry (40%), there has been a shift 
in recent years towards urban and rural residential development (Great Lakes Council 2014). 
 
The estuary itself supports a diverse range of marine life, including important fisheries such 
as blue swimmer and mud crabs, prawns, bream, flathead and mullet. These are intrinsically 
linked with abundant seagrass (the largest area in NSW), saltmarsh (second largest in NSW) 
and mangrove habitats, which in turn support food webs, and provide habitat and fish nursery 
grounds (Great Lakes Council 2014). Wallis Lake also supports a unique and diverse 
assemblage of sponges with a greater number of species than other coastal lakes and lagoons 
in NSW (Barnes 2010). 
 
Over recent years, Hunter LLS has initiated a number of studies into water quality in Wallis 
Lake aimed at improving understanding of the dynamic nature of the system and the impact 
on oysters. Two publications (Fitzer et al. 2018; Fitzer et al. 2019) investigated the impact of 
water quality on oyster shell biomineralization and potential adaptation responses such as 
the use of selectively bred Sydney Rock Oysters (Saccostrea glomerata). Decreasing salinity, 
pH and alkalinity in the mid-upper estuary was associated with reduced oyster growth 
indicating a reduced capacity of oysters to biomineralise (i.e. form calcium carbonate crystals) 
under acidified conditions. Acidification can occur from freshwater inputs (which have a lower 
pH than seawater) or as a result of sulfuric acid associated with acid sulfate soils. 
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A study by Department of Planning and Environment (2022) in collaboration LLS 
demonstrated that the total number of plate-sized Sydney Rock Oysters (SROs) harvested was 
negatively correlated with the 4-year antecedent annual rainfall total. The study investigated 
environmental conditions associated with SRO production in Wallis Lake by measuring 
salinity, temperature, water level and atmospheric pressure continuously during three 
periods between March 2017 and April 2019 at four sites located at the approximate 
boundaries of oyster aquaculture in Wallis Lake.  
 
Spatial and temporal patterns in salinity are complex in Wallis Lake, being influenced by 
freshwater inputs, tidal exchange and sea level anomalies. Large rainfall events cause the 
Wallamba River to flush fresh to its confluence with the lake system, with estuary recovery 
(i.e. salinity returning to marine/brackish conditions) proceeding rapidly due to tidal 
exchange. Tidal exchange has increased as a result of the construction/extension of entrance 
training walls in the 1960s with a greater marine influence significantly increasing tidal range, 
increasing channel velocity and scouring of sediments (Neilsen and Gordon 2016) all factors 
that have impacted on oyster aquaculture in Wallis Lake.  
 
The trajectory of estuarine recovery is determined by factors such as follow-up rainfall, 
groundwater inputs, tidal mixing, the spring/neap tidal cycle, and the mean water level 
anomalies. In contrast, hypersalinity can develop in the lake basin in response to high sea 
level anomalies coincident with extended dry periods. The data collected during the study 
allowed the development of an empirical rainfall-salinity model for the Wallamba River. 
 
1.3 Oyster Production in Wallis Lake 

Wallis Lake is one of the most significant producers of Sydney Rock Oysters in Australia, with 
production in 2020/21 of 1.1 Mil dozens valued at $9.5 Mil, ~18% of NSW’s total oyster 
production (NSW Department of Primary Industries 2022). Key threats to water quality in the 
lake include elevated sediment and nutrient levels, pollutants (including litter, pathogens, 
chemical and oil spills and leachate), loss of ecosystem function and associated services, 
detrimental soil and ground cover management, invasive species, climate change and 
associated sea-level rise, acid sulfate soils and increasing development (Great Lakes Council 
2009).  
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2. Findings
2.1. The data assessment from this report supports implementing a harvest area management 
plan based on sensor salinity data for Long Island harvest area, subject to the agreement of the 
local shellfish industry. Available data indicated that one harvest area closure and three harvest 
area downgrades could have potentially been avoided between March 2018 and April 2021. If 
additional sensors were being considered by the Wallis Lake Shellfish Program (WLSP), a sensor 
situated within harvest area boundaries would provide more insight on salinity conditions.  

2.2. We developed rapid, efficient, and sensitive qPCR assays for E. coli, cow, bird, and human 
faecal indicators, and used these rapid genetic tools to track these sources of pollution in 
Wallis Lake over the biological sampling period, September 2018 to September 2020. 

2.3. The real time sensor data showed a higher predictive capacity than rainfall data for all 
faecal indicator bacteria modelled. 

2.4. Overall, the abundance of bacteria was low and highly variable across the sampling 
period, with the maximum predictive capability of models being 15% for E. coli, 27% for cow, 
and 36% for bird.  

2.5 Human bacterial contamination was detected on only one occasion and followed on from 
a moderate rainfall event. There was insufficient data to model/predict its prevalence.  

2.6 Where the models were predictive, they suggested E. coli and bird bacterial abundance 
increased with increasing salinity. This may be, in part, linked to a lag in input from the upper 
catchment. Cow bacterial abundance rose with decreasing salinity (linked to rainfall). All 
models indicated that higher bacterial concentrations occurred when surface water 
temperatures were between 20-22℃. 

2.6. The greatest oyster growth occurred during the spring and summer months, with the 
sensor variables - daily salinity (increasing) and weekly rainfall (increasing) - resulting in a 
highly predictive model performance of ~92%. 

2.7. No oyster mortality events that exceeded background farming mortality (approximately 
10% per annum) occurred in Wallis Lake over the period from August 2018 to February 2020. 
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4. Feedback 
In June 2018, the Oyster Transformation Team held an information workshop to allow farmers 
the opportunity to have their say in the project. The workshop was at the Manning Valley 
Visitor Information Centre in Taree, New South Wales. Farmers were asked to rate the 
following factors in order of importance and benefit to their business operations (Fig 4.1). Of 
highest importance to them was the prediction of harmful algal blooms and access to real 
time monitoring data, followed by reduced stock mortalities/disease, longer harvest opening 
times with forecasting ability, and access to real time tidal information. Group discussions 
followed, whereby additional issues that farmers raised were; if routine algal monitoring 
methods could be changed and if identifying sources of E. coli via genetics was possible. 
Remarks relating to direct harvest and management plan changes, pollution source tracking, 
and concerns about mudworm were also noted. 

 

Figure 4.1. The importance of factors as rated by farmers in relation to their business operations. Light green is 
most important and brown is least important. 
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5. Results 

5.1 High resolution temperature and salinity data 

High-resolution real time data summaries for Wallis Lake for the period 13 March 2018 to 31 
March 2021 are shown in Figs. 5.1A-C. Depth recordings ranged from 0.3 m (21 Nov 2018) to 
1.9 m (21 Mar 2021). The lowest and highest daily average salinity recordings were 0.07 ppt 
(22 Mar 2021) and 36.98 ppt (30 Dec 2019) respectively, while the lowest and highest daily 
average temperature recordings were 13.7℃ (20 Aug 2018) and 27.3 ℃ (25 Jan 2021), 
respectively. 

 

Figure 5.1A-C. Real time sensor data from Wallis Lake 13 March 2018 to 31 March 2021. A. Depth (m); B. Daily 
average salinity (ppt); and C. Daily average temperature (°C).  
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The maximum daily rainfall across both rain stations (BOM Station No. 060013 and MHL 
Station No. 209401D) occurred on 22 Mar 2018 and was reported as 174 mm (Fig. 5.2).  

 

Figure 5.2. Daily rainfall (mm) from rainfall gauge sites at Forster (BOM Station No. 060013) and Tuncurry 
(MHL Station No. 209401D) 

5.2 Management Plan  

Data analysed during the 2021 annual review of Long Island harvest area (see Fig. A1) 
indicated that there could have been one less harvest area closure and fewer downgrades 
since the sensor was installed, if closures were based on salinity sensor data. There were ten 
harvest area rainfall closures in Long Island harvest area between March 2018 and April 2021. 
During the same period there were three harvest area salinity closures, as advised by the local 
program monitoring local conditions. Based on a management plan sensor salinity closure 
limit of 24 ‰, harvest area closures were reviewed focusing on available salinity sensor data 
and shellfish program microbiological results since March 2018. One harvest area closure, of 
two days duration, could have potentially been avoided. During the same time period, there 
were six rainfall downgrades in Long Island harvest area. A review of salinity sensor data and 
shellfish program microbiological results indicated that there were three rainfall downgrades 
where salinity as reported by the sensor was higher than 28 ‰ (downgrade salinity range 24-
28 ‰), and microbiological results from samples collected 0-6 days post downgrade met 
Approved harvest criteria. It should be noted that salinity data analysed between May 2020 
and May 2021 had a higher variability due to more frequent rainfall events, and time periods 
where salinity is slower to recover may require additional sampling to meet management plan 
requirements. A review of the available data also indicated that given high fluctuations in 
salinity between high and low tides, particularly after prolonged wet periods, decisions on 
harvest area closures would consider salinity trends rather than point in time measurements. 
It is also noted that the current location of the sensor is upstream of Long Island harvest area, 
and it was recommended that if additional sensors were being considered by WLSP, a sensor 
situated within harvest area boundaries would provide more insight on salinity conditions, 
which may lead to a more advantageous management regime. 
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5.3 Bacterial source tracking  

A total of 459 water samples and 198 oysters were collected over a two-year period (a subset 
of the entire sensor data collection time) from Sept 2018 to Sept 2020 from the sensor 
location in Wallis Lake (Fig. A1).  

The pollution source tracking results were highly variable across the study period, with the 
majority of cow and human results just above detection limits. The maximum E. coli 
abundance was recorded as 4,509 gene copies 100 mL-1 on 9 Mar 2019, for bird as 11,534 
copies 100 mL-1 on 9 Mar 2019, for bovine faecal pollution (cow) as 229 gene copies 100 mL-

1 on 5 Feb 2020, and finally, 787 copies 100 mL-1 for human faecal pollution on 8 Jun 2019 
(Fig. 5.3 A-D).   
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Figure 5.3 A-D. Weekly E. coli data from the sensor location, Wallis Inlet, using A. E. coli assay; B. Bird assay; C. 
Cow assay; and D. Human assay. Purple bars represent rainfall events that were sampled. Dotted lines in Fig. A 
at 14 and 70 cfu/100 mL are the operational limits for direct or restricted (oysters must meet depuration 
requirement) harvest, respectively, depending on individual harvest area classification. Long Island Harvest area 
is classified as Conditionally Approved dual management.  
https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.p
df.  

https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.pdf
https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.pdf
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Figure 5.4 Weekly faecal coliform counts (cfu/100 mL) from water samples collected by DPI Food Authority at 
two sites in Wallis Lake sensor site compared to Oyster Transformation Project weekly sampling results 
(including rainfall sampling). Dotted lines at 14 and 70 cfu/100 mL are the operational limits for direct or 
restricted (oysters must meet depuration requirement) harvest, respectively, depending on individual harvest 
area classification (see above). 
 
Faecal coliform counts reported by DPI Food Authority generally corresponded well with 
those examined using qPCR as part of the CRC project. The maximum faecal coliform counts 
reported in Jul 2020 by the Food Authority, however, did not have corresponding samples 
collected by the CRC project, so a comparison of methods/results at this time is not possible 
(Fig. 5.4).  
 

Six rainfall events were sampled across the study period. These occurred on 5-7 Oct 2018, 6-
8 Jun 2019, 25 and 27 Jun 2019, 12 and 13 Oct 2019, 18-20 Jan 2020, and 7-10 Feb 2020 (Fig. 
5.5A-F). Overall E. coli increased marginally after rainfall, but remained below regulatory 
limits on all occasions. Bird bacteria was only detected during one rainfall event (12-13 Oct 
2019), increasing from day 1 to day 2 (no sampling occurred on day 3) (Fig. 5.5D). Cow bacteria 
was detected during one rainfall event (8 Feb 2020), however, it went back to background 
concentrations by day 3 (Fig. 5.5F). Human bacterial contamination was detected on one 
occasion (8 Jun 2019) and was linked to a moderate rainfall event. Without further sample 
collection after this event, it is unclear how quickly this contamination would have dissipated 
(Fig. 5.5B).  
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Figure 5.5 A-F. Sensor site (Wallis Lake) rainfall events sampled for E. coli assays. Green bar = 16S E. coli; blue 
bar = bird assay; purple bar – cow assay; red bar = human assay. Dotted line is rainfall (mm) obtained from the 
closest Bureau of Meteorology weather station at Forster (BOM Station No. 060013). All bars are the mean value 
of nine replicate samples (3 biological x 3 technical) and the error bars are the standard error of all nine 
replicates.  

5.4 Phytoplankton enumeration and HAB events  

The maximum phytoplankton cell concentration across the sampling period (Mar 2018 to Mar 
2021) at the site closest to the sensor (site 3), occurred on 19 Feb 2020 (Fig. 5.6). Although 
rainfall data is not available for this date and in the lead up to this time, salinity dropped to 
an average daily of 1.4 ppt a week prior (10 Feb 2020) indicating a freshwater influx had 
occurred. Total cell concentrations reached 4.8E +06 cells L-1 and samples contained 
planktonic diatoms (particularly a small, solitary Chaetoceros sp., with other Chaetoceros spp. 
and Leptocylindrus), benthic diatoms (Cylindrotheca) and small flagellates (cryptomonads, 
dinoflagellates, euglenoids, ochromonads). High levels of sediment and organic detritus were 
also reported. 
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Other potentially harmful bloom events across the sampling period included blooms of the 
diatom Pseudo-nitzschia delicatissima gp. These occurred during Jun 2018, May and Oct 2020, 
with a maximum concentration of 2.2E +06 cells L-1 reported (21 Oct 2020). Another harmful 
diatom group, Pseudo-nitzschia fraudulenta/australis, bloomed in Jan/Feb 2019, reaching a 
maximum cell concentration of 2.3E +05 cells L-1. The toxic dinoflagellate Dinophysis caudata 
reached elevated cell densities on 9 Apr 2018 and 23 Oct 2019, at 700 and 580 cells L-1 
respectively. The NSW Food Authority’s Phytoplankton Action Limits to trigger biotoxin 
testing are 500,000 cells L-1 for Pseudo-nitzschia delicatissima gp., 50,000 cells L-1 for P. 
australis & multiseries and 500 cells L-1 for Dinophysis caudata (NSWFA 2015). No biotoxins 
were detected in association with any of these blooms.  

 

Figure 5.6 Log abundance of total phytoplankton sampled approximately fortnightly at site 2 (closest to the 
sensor) from 13 March 2018 to 31 March 2021. 

5.6 Oyster Growth and Mortality  

5.6.1 Oyster Growth  

Oyster whole weight increased by 28 g in the experimental period (August 2018 to June 2020) 
(Fig. 5.7 A).  Oyster whole weight increases were greatest in spring and summer months of 
this experiment when oysters increased their weight by 9.1 g over 6 months in 2018/2019 
and 10 g over 6 months in 2019/2020.  Oyster whole weight was 50.6 ± 4.9 g at the end of the 
experiment (June 2020). Oysters deployed in Wallis Lake attained a large size grade (> 70 mm 
total length or > 50 g whole weight) in June 2020 (50.6 g) and were 42 mo on this date.  

Oyster shell length was 52 ± 2 mm at the start of the experiment and increased to 69 ± 2 mm 
in June 2020 (Fig. 5.7 B). The greatest increase in shell length in Wallis Lake was recorded from 
September to December 2018. The increase in size through this period was 14 mm. Shell 
lengths were measured more frequently than whole weight and fluctuated throughout the 
experiment. Periods of shell length decreases were recorded between December 2018 and 
February 2019, July and August 2019, October and November 2019 as well as February and 
June 2020.    
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5.6.3 Mortality  

No mortality events that exceeded background farming mortality (<10% per annum) occurred 
in Wallis Lake over the period from August 2018 to February 2020 (Fig 5.7 C-D). The period of 
highest mortality in this experiment was between October 2018 and February 2019 when 
oysters were 25 mo (Fig 5.7 C).  Oysters from this site remain frozen for future analyses.   

 

Figure 5.7 A-D. Oysters deployed at the sensor site, Wallis Lake. A. whole weight; B. shell height; C. cumulative 
mortality, and D. monthly mortality.  

5.7 Modelling   

5.7.1 Modelling of E. coli data   

Summary statistics for all bacterial concentrations and environmental variables used in the 
general additive models are shown in Appendix 2A-B. Correlation coefficients were calculated 
among every pair of environmental variables and suggested very few strong positive 
relationships (r > 0.7) overall. A total of 4 models were developed for each of the bacterial 
sources: sensor only; sensor and total phytoplankton (logged or unlogged); rainfall only; and 
rainfall and total phytoplankton. Depth and week were included as response variables in all 
models. The maximum predictive capability for each bacterial group at the sensor site were: 
15% for E. coli (sensor + total phytoplankton), 26.7% for cow (sensor + total phytoplankton), 
and 35.9% for bird (sensor + total phytoplankton) (Table 1). There was only one human 
bacterial detection across the entire sampling program, which occurred three days after 
significant rainfall of 44 mm on 5 Jun 2019. Considering this low occurrence, there was 
insufficient data to model/predict its prevalence. 
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The abundance of E. coli at the sensor site was only marginally explained by the models (15% 
deviance explained using sensor data compared to 6% using rainfall data), but appeared to 
be linked to increasing salinity. Data also indicated that peak E. coli coincided with a surface 
water temperature of ~20-22℃ (Table 1) (Figures 5.7 A-D, 5.8 A-D).  

On the other hand, cow bacterial abundance was far better explained by the models (~27% 
using sensor data compared to 17% using rainfall), with both a decreasing salinity and 
decreasing temperature significantly contributing to these outcomes (Table 1). Data 
suggested, however, that a peak in cow bacteria still coincided with a surface temperature of 
~20℃ (Figures 5.7 A-D, 5.8 A-D).  

Faecal contamination from birds at the sensor site was twice as well explained by the salinity 
data compared to the rainfall data (36% and18% respectively), with salinity (increasing) and 
again a maximum temperature of ~22℃ significantly contributing to the prediction of this 
bacterial source (Table 1). 

5.7.2 Modelling of oyster growth and mortality  

While there was insufficient oyster weight data to model (only 5 data points across the 
sampling period), there was sufficient shell length data to model. The best model explained a 
very high ~92% of the deviance, with the strongest predictor variables being the daily average 
salinity (increasing) and the maximum average salinity for the week prior to the oyster length 
observation (decreasing). The negative effect of this latter variable suggests that the impact 
of daily salinity on oyster length is attenuated when relatively high salinity is present for an 
extended period. This suggests that if salinity has been relatively high during the previous 
week, the oysters will have grown, whereas a single day of elevated salinity might see all the 
growth at that particular point in time. There was also a linear response to rainfall, with 
lengths appearing greater as weekly rainfall increased, but this effect was not large, and could 
be due to increases in nutrient availability during periods of low to moderate rainfall that did 
not result in major prolonged reductions in salinity.  
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Table 1 A. Modelling results for bacterial source tracking at the sensor site in Wallis Lake. Only 
significant variables are shown for each model.  
Bacteria Variables No. of 

observations 
Significant Variables Deviance 

Explained 
E. coli Salinity, Depth, Temp 74 Depth72**, Salinity72***, 

Temp72*** 
12.7% 
 

E. coli Salinity, Depth, Temp, 
logPhytoplankton 

74 logPhytoplankton ***, 
depth**, salinity***, 
temp*** 

15% 

E. coli Rainfall72 65 Rainfall72*** 5.14% 
E. coli Rainfall72, 

logPhytoplankton 
65 Rainfall72***, 

logPhytoplankton *** 
5.79% 

Bird Salinity, Depth, Temp 74 Salinity***, Depth***, 
Temp*** 

34% 

 Salinity, Depth, Temp, 
logPhytoplankton 

74 Salinity***, Depth***, 
Temp***, logPhytoplankton 
*** 

35.9% 

Bird Rainfall72 65 Rainfall72*** 17.2% 
Bird Rainfall72, 

logPhytoplankton 
65 Rainfall72***, 

logPhytoplankton*** 
17.7% 

Cow Salinity, Depth, Temp 74 Salinity***, Depth***, 
Temp*** 

26.6% 

Cow Salinity, Depth, Temp, 
logPhytoplankton 

74 Salinity***, Depth***, 
Temp***, 
logPhytoplankton*** 

26.7% 

Cow Rainfall24 65 Rainfall48*** 16.6% 
Cow Rainfall24, 

logPhytoplankton 
65 Rainfall48***, 

logPhytoplankton*** 
17.4% 
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Figure 5.7 A-D. Data points (black dots), average (blue line) and standard error (shaded area) of A. E. coli, B. 
Bird, C. Cow, and D. Human bacterial load as measured by weekly sampling at the sensor site, Wallis Lake.  
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Figure 5.8 A-D. Data points (black dots), average (blue line) and standard error (shaded area) of A. Rainfall, B. 
Depth, C. Salinity, and D. Temperature values measured in at the sensor site, Wallis Lake.  
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6. Discussion  
 
6.1 High Resolution Sensor Data and Management Plan  
  
Analysis of sensor data during the annual review process demonstrated that there is potential 
to implement a salinity sensor-based management plan for Long Island harvest area. Based 
on the available data, at least one harvest area closure and three harvest area downgrades 
could have potentially been avoided between March 2018 and April 2021. The option of a 
salinity based management plan based on the sensor in its current position is still feasible for 
Long Island harvest area, however, greater insight would be gained from sensor data within 
a harvest area boundary. During the initial implementation of such a management plan 
change, rainfall events would continue to be monitored to increase the database to support 
the change. Wallis Lake Shellfish Program (WLSP) were consulted about the option of a 
salinity-only management plan for Long Island harvest area following the 2021 annual review, 
but a decision has not yet been reached. If WLSP did not wish to pursue the implementation 
of a management plan that is based on sensor salinity, or if the salinity sensor data were not 
accessible, the Long Island harvest area management plan would revert to the current 
management plan that is based on both rainfall and salinity closure limits.     
 
6.2 Phytoplankton and HABs  
 
The biggest increase in phytoplankton growth throughout the sampling period was observed 
prior to a significant drop in salinity. This growth was most likely a response to a rainfall event 
(data not available) and subsequent nutrients entering the waterway. Apart from Pseudo-
nitzschia (discussed below), other HAB events were those caused by the dinoflagellates 
Dinophysis caudata, although no biotoxins were associated with any of these blooms.  
 
Pseudo-nitzschia is a high-risk HAB group in SE Australia for the shellfish aquaculture industry, 
and both estuaries and coastal waters in this area remain under threat (Ajani et al., 2013a, 
2020). Wallis Lake has been identified as a high-risk estuary, with maximum cell densities of 
(total) Pseudo-nitzschia spp. reported anytime across the austral winter, spring or summer, 
with an autumn minimum (Ajani et al., 2013a). Blooms within the Hawkesbury River estuary 
(330 km south of Wallis Lake), another high-risk area in SE Australia for HAB events, recently 
experienced a very dense bloom of P. delicatissima gp., with one out of seven strains isolated 
to produce domoic acid (Ajani, 2020). Fifteen years of modelled data in the Hawkesbury River 
estuary revealed that Pseudo-nitzschia was linked to an increase in soluble reactive 
phosphorus and a decrease in nitrogen at all six sites sampled (via rainfall/nutrient runoff). 
There is contrasting evidence, however, of which environmental conditions promote the 
blooming of the different species complexes (Dermastia et al., 2020). In response to a toxic 
bloom of Pseudo-nitzschia delicatissima gp. (dominated by P. cf. cuspidata) in Wagonga Inlet 
in April 2019, we have now successfully developed a rapid, sensitive and efficient quantitative 
real-time polymerase chain reaction (qPCR) assay to detect P. pseudodelicatissima complex 
Clade I, to which P. cf. cuspidata belongs (Ajani et al. 2020). 
 
Species belonging to the genus Dinophysis (and more rarely benthic Prorocentrum) are the 
most problematic Diarrhetic Shellfish Toxin (DSTs) producers worldwide. With over 100 
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species represented worldwide, ten have been unambiguously found to be toxic (Dinophysis 
acuminata, D. acuta, D. caudata, D. fortii, D. infundibulum, D. miles, D. norvegica, D. ovum, D. 
sacculus and D. tripos), producing DSTs (okadaic acid and dinophysistoxins) even at low cell 
densities (<103 cells L-1) (Reguera et al., 2014; Reguera et al., 2012; Simoes et al., 2015).  
 
Dinophysis is common in Australian waters, with 36 species reported (Ajani et al., 2011; 
Hallegraeff and Lucas, 1988; McCarthy, 2013). Toxic species include D. acuminata, D. acuta, 
D. caudata, D. fortii, D. norvegica, and D. tripos. There have been three serious human DSP 
poisoning events in Australia. The first episode was caused by contamination of Pipis 
(Plebidonax deltoides) in New South Wales in 1997 (NSW) by D. acuminata (Quaine et al., 
1997). One hundred and two people were affected and 56 cases of gastroenteritis reported. 
A second episode occurred again in NSW in March 1998, this time with 20 cases of DSP 
poisoning reported (Madigan et al., 2006). The final event occurred in Queensland in March 
2000, when an elderly woman became seriously ill after eating local Pipis (Burgess and Shaw, 
2001). While no human fatalities from DSP are known globally, DSTs continue to be a major 
food safety challenge for the shellfish industry. In response to elevated cell densities of a toxic 
algal species Dinophysis in February 2019 in the Manning River, we have also successfully 
developed a rapid qPCR assay to detect species belonging to the genus Dinophysis in 
environmental samples (Ajani et al. 2022).  
 
Another HAB group to watch in NSW is the toxic dinoflagellate genus Alexandrium. 
Approximately 33 species of Alexandrium have been recorded worldwide, of which around 
10 species can potentially produce Paralytic Shellfish Toxins (PSTs). These are A. affine, A. 
andersonii, A. pacificum (= A. catenella Group IV ribotype); A. australiense (= A. tamarense 
Group V ribotype), A. minutum, A. ostenfeldii, A. catenella, A. tamiyavanichii and A. taylori 
(Anderson et al. 2012, Tomas et al. 2012, John et al. 2014). PSP was first reported in Australia 
in 1935, when typical PSP symptoms were observed following the consumption of wild 
mussels collected from Batemans Bay, NSW (Le Messurier et al. 1935). In 1986, the first PSP 
outbreak in Australia was recorded in Port Philip Bay, Victoria, with A. pacificum (as A. 
catenella) as the causative organism (Hallegraeff et al. 1992). A. pacificum is also the main 
causative agent of PSTs in NSW (Ajani et al. 2013). In October 2016, high cell densities of this 
species were detected in the coastal waters of Twofold Bay, NSW, an unprecedented event 
for this location in south eastern Australia. With a maximum cell density (89,000 cells L-1) and 
a concentrations of 7.2 mg/kg PST STX equivalent in blue mussels (Mytilus galloprovincialis) 
from the bay, a four-month shellfish harvest closure ensued (Barua et al. 2020). Another 
unprecedented bloom of this species occurred early in Tasmania in 2010. This toxic event led 
to a worldwide product recall and it was estimated that this toxic event cost the Australian 
industry AUD ~$23 M in lost revenue (Campbell et al. 2013). 
 
Quantitative PCR is an efficient and powerful tool to identify and enumerate HAB species, 
especially those that are difficult to distinguish using routine methods (Handy et al. 2008, 
Penna and Galluzzi 2013). For this reason, this method is used routinely in certain monitoring 
programs around the world (Clarke & Gilmartin 2020). We have now developed qPCR assays 
for Alexandrium (sxtA gene) (Ruvindy et al. 2018), Dinophysis spp. (Ajani et al. 2022) and 
Pseudo-nitzschia pseudodelicatissima complex Clade 1 (Ajani et al. 2021). The qPCR assays 
can be used on-farm, allow for automation, are easy to use without specialist knowledge, and 
provide an early warning that harmful algae are present in the water column. It is envisaged 
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that high-resolution, real-time environmental data, combined with sensitive, specific and 
efficient molecular tools such as we have developed in the current study, will enable us to 
effectively predict and manage these blooms into the future. 
 
6.3 Assay Development and Faecal Pollution in Wallis Lake 
Molecular assays for the detection of faecal bacterial contamination in Wallis Lake were 
determined with two main aims. The first was to design a faster method for the currently used 
place count methodologies for the detection of faecal indicator bacteria by commercial 
laboratories and secondly, for source tracking. This later assay would be used to identify which 
animals might be contributing to any E. coli in the river system. Assays needed to be sufficiently 
specific to only the target organism, to have a sufficiently low level of detection, and finally have 
a high level of efficiency, in line with the best practice guidelines for qPCR assays (Bustin et al. 
2009). 
 
E. coli is the primary faecal indicator bacterial species, and is most commonly used for detecting 
faecal contamination using culture-based methods (Odonkor & Ampofo 2013, NHMRC 2008, 
2011). Although there are assays that target genes that detect faecal coliforms (Isfahani 2017), 
genetic variability between coliforms makes it a challenge for accurate assessment (Maheux et al. 
2014). As E. coli is tested for in oyster meat (NSWFA 2015, 2017) E. coli was considered to be a 
more targeted approach to also detect in estuarine waters. In this study, several primer pairs were 
trialled which targeted 3 different genes within E. coli, with the final E. coli assay selected being 
the most efficient and specific only to the target organism (Tesoreiro 2020). 
 
The second group of assays developed were those that were microbial source tracking as they 
detect bacteria of faecal origin specifically associated with a group of animals, i.e. bird, cow and 
human. Birds are a significant source of faecal contamination in estuarine/marine waters during 
dry periods, and increase faecal indicator bacteria load in catchments (Araujo et al. 2014, 
Converse et al. 2012). The marker we used was 100% avian specific, with gulls, geese, ducks and 
chickens being tested (Green et al. 2012) and has been successfully used in catchments across 
different continents (Ahmed et al. 2016, 2019; Li et al. 2019, Vadde et al. 2019). Our source 
tracking assay for cows had 100% sensitivity to bovine faecal samples, with little cross reactivity 
to other species (93% specific). When tested in a rural catchment, a high proportion of faecal 
contamination was attributable to cattle (Layton 2006). Finally, the human marker we used has 
demonstrated the best performance for the detection of human faecal contamination compared 
to all other assays since it was developed in 2000 (Boehm 2013, Shanks 2010). 
 
In most coastal and estuarine systems, an increase in bacterial load is usually linked to an increase 
in rainfall and a decrease in water salinity. These events most likely lead to a concomitant increase 
in nutrients entering the waterway (Amato et al. 2020, Abimbola et al. 2021, Liang et al. 2019, 
Buszka & Reeves 2021), providing bioavailable nutrient forms for phytoplankton growth. E. coli 
pollution entering a waterway can also induce nutrient recycling and accelerate the 
decomposition of other organics like aquatic plants, further releasing nutrients into the system 
(Wu et al. 2021). The survival and proliferation of E. coli in the aquatic systems have also been 
found to be strain specific, with hydrological conditions, differing sources of pollution, selective 
pressures in the waters, and various land uses, all contributing to the community structure and 
diversity of E. coli in a waterway (Bong et al. 2021).  
 
While bacterial contamination (cow, human and E. coli) was relatively low across the sampling 
period in Wallis Lake, it was the avian faecal load that was best explained by the predictive 
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modelling (~36%), with increasing salinity and warmer surface water temperatures being the best 
predictors. The correlation with increasing salinity may be, in part, linked to a lag in input from 
the upper catchment. Like other estuaries examined so far in this program (Manning River, 
Wagonga Inlet), the bird contamination in Wallis Lake was observed during the Autumn months, 
but unlike these other estuaries, elevated, albeit lower, bird contamination was also observed 
during some winter months in Wallis Lake. This may be a result of some winter migrant (food 
migrant) species such as pigeons, doves, egrets and kestrels which travel for the ripening fruits of 
Cabbage Palms in the surrounding areas (Turner 2020). The molecular marker used in this study 
for avian bacteria, does not, however, discriminate between avian species (gulls, geese, chickens, 
ducks etc), so it is uncertain what percentage of the bacterial load is attributable to terrestrial 
birds and that of aquatic birds. Further discrimination into the breakdown of the faecal load would 
be required for this elucidation. 
 
The low levels of human bacterial contamination observed in this study may suggest that water 
quality management efforts in regard to sources of human contamination over the past two 
decades are working. Sewer overflows and septic tank seepage present the highest impact/risk 
for human contamination Wallis Lake. It was suggested that, due to the wider range of human 
enteric viruses in a large number of oyster and sediment samples, the outbreak of hepatitis A 
linked to the consumption of oysters from Wallis Lake in 1997 was linked to significant sewage or 
faecal contamination. New legislation followed on from this event, tightening controls over septic 
maintenance, new sewerage management plans developed, and a mandatory notification system 
for sewage overflows introduced. Following this, mandatory membership for industry to Shellfish 
Quality Assurance Programs was implemented and an estuary classification system introduced 
(Conaty et al. 2000).  

The future use of molecular tools such as qPCR for the detection and quantification of bacteria or 
HABs would require further validation in accordance with the Association of Official Agricultural 
Chemists (AOAC) procedures for the validation of such tests. This would include the validation of 
the sensitivity, precision and reliability of methods and a rigorous comparison to existing 
methods. Methodology and protocols for sampling accreditation and assurance of independence 
in testing and reporting for on farm testing would then follow. 

Increases in whole oyster weight in Wallis Lake were greatest during the spring and summer 
months. Growth, in terms of shell length, was greatest during this same period in the first year of 
the experiment. The spring and summer months of this experiment were characterised by high 
salinity (> 30 ppt) and temperature levels (> 23 °C) which is optimal for Sydney Rock Oyster growth 
and survival. Higher salinities increase seawater alkalinity providing more calcium carbonate 
available for oyster shell deposition. The salinity level that promotes the greatest growth rates in 
Sydney Rock Oyster spat is 30 ppt for small spat (1.3 mg) and 35 ppt for larger spat (0.61 g) (Nell 
and Holliday, 1988). Fastest growth of Sydney Rock Oyster spat occurs at 30 °C.  However, the 
optimal temperature and salinity combination for spat survival is 23 °C and 30 ppt, respectively 
(Dove and O’Connor, 2007).   
 
Survival of oysters during the experiment was high from deployment until February 2020. 
Mortality during this period was below the background farming mortality (approximately 10% per 
annum) commonly experienced when farming Sydney Rock Oysters. Cumulative mortality in 
February 2020 was 14% and comparable to cumulative mortality measured on the same date in 
the two oyster producing estuaries located to the north and south of Wallis Lake, Manning River 
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(15%) and Port Stephens (15.7%).  Cumulative mortality measured at this site in a previous study 
was 25.3% over a 26-month period from April 2004 to June 2006 (Dove and O’Connor, 2009).   
 
The batch of oysters used for this experiment were a random mix of families taken from the 2016-
year class of the Sydney Rock Oyster Breeding program. This particular year class had 86% of the 
parents selected from wild and QX disease resistant genetic groups. Only 14% of the parents for 
this year class were sourced from the fast growth genetic group. It took this year class 3 years and 
6 months to reach the large oyster size grade (> 70 mm total length or > 50 g whole weight). 
Estuaries where this same batch of oysters reached the large oyster size grade benchmark at the 
same time were Hastings River (52.5 g), Port Stephens (58.5 g), Shoalhaven River (50.6 g) and 
Pambula River (59.4 g).   
 
When oyster growth measured at the conclusion of the experiment (June 2020) was compared 
between the twelve estuarine sites in this study, Wallis Lake ranked 10th and 9th in terms of whole 
oyster weight and shell length, respectively.  Most oysters produced in Wallis Lake are sold at the 
‘small’ size grade where oysters are less than 55 mm in shell size and less than 30 g in whole 
weight (NSW Department of Primary Industries 2022). Oysters at Wallis Lake reached this 
benchmark in February 2019 when they were just over 2 years in age.  Wallis Lake is the state’s 
largest oyster producing estuary with one million dozen oysters sold annually (NSW Department 
of Primary Industries, 2022).  Wallis Lake is also the most valuable estuary in the state and is worth 
approximately $9.5 million annually despite selling most oysters at the ‘small’ size grade.   
 
6.5 Outreach  

Outreach and project materials developed during Stage 1 of this project include two scientific 
publications - Harmful Algae (international scientific journal) and The Conversation, and a further 
one in preparation; one Department of Primary Industry Report; three newsletters/factsheets; 
sixteen seminars/conferences/workshop presentation and four videos/YouTube posts (Appendix 
3). Regular program progress reports were provided to the NSW Shellfish Committee and the 
NSW Aquaculture Research Advisory Committee. 
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7. Conclusions  
The data assessment from this report supports implementing a harvest area management plan 
based on sensor salinity data for Long Island harvest area, subject to the agreement by the local 
shellfish industry. Available data indicated that one harvest area closure and three harvest area 
downgrades could have potentially been avoided between March 2018 and April 2021. During 
May 2022, NSW Hunter Local Lands Services facilitated the deployment of seven sensors in Wallis 
Lake. Data from these sensors can be included in future annual reviews for Wallis Lake harvest 
areas.  As of April 2022, sixteen salinity-only management plans had been offered for harvest 
areas in participating NSW estuaries, with six being taken up and the remaining ten under 
consideration. 
 
Compared to the other monitoring sites in NSW, oyster growth in Wallis Lake ranked 10th and 
9th in terms of whole oyster weight and shell length, respectively. Very low levels of mortality 
were recorded over the period from August 2018 to February 2020 and was below the level 
accepted as background farming mortality (approximately 10% per annum). Wallis Lake is an 
important estuary for Sydney Rock Oyster culture in NSW as it is the most productive in terms of 
oyster sales and the most valuable (NSW Department of Primary Industries, 2022). 
 
The pollution source tracking results were highly variable across the study period, most likely 
attributable to the extreme variation in environmental conditions experienced (drought, bush 
fires, floods). Real time sensor data (increasing salinity) however, showed a higher predictive 
capability than rainfall for all of the four faecal indicator bacteria. 
 
PCR based assays demonstrate significant potential to supplement and/or replace classical 
environmental sample analytical methods. The benefits of PCR based analysis includes reduced 
cost, faster sample turnaround time and potentially the ability to analyse samples on-site, 
removing the need for the cost and delay of sample transport. Sample transport often comprises 
>50% of the delay between sample collection and result reporting. These delays cost industry 
money and reduce the utility of samples for risk management purposes. Future work should focus 
on validating qPCR methods in accordance with AOAC procedures.  

Overall these results demonstrate the utility of salinity-based management plans for predicting 
potential contamination events and managing water quality risks. Real time sensor data, 
combined with rapid molecular tools, can help predict optimal conditions for harvesting and 
growth. This has the potential to improve regulatory and management outcomes and enhance 
the productivity and profitability of oyster farming in Wallis Lake.  
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9. Appendices  

A1. Methods   

A1.1 Sampling locations in Wallis Lake  

Data used in this report originates from two locations within Wallis Lake over the period March 2018 
to March 2021. High-resolution temperature, salinity and depth data were obtained from a sensor 
deployed in Wallamba River, Long Island (-32.18S, 152.48E) (Fig. A1). At this location, oysters were 
both deployed and retrieved, and water samples for eDNA were collected. From here on, this location 
is referred to as the ‘sensor site’. Phytoplankton was also collected at a second sampling location 
established as part of the DPI’s Shellfish Quality Assurance program (Fig. A1).  

Figure A1: Map of Wallis Lake highlighting the sensor (black square) in Long Island harvest area and 
phytoplankton sampling location (black circle). 

A1.2 High-resolution sensor data  

High-resolution temperature (℃), salinity and water depth (m) data were collected from 13 March 
2018 – 31 March 2021 using a Seabird SBE 37-SM/SMP/SMP-ODO MicroCAT high accuracy 
conductivity, temperature and depth (CTD) field sensor. This sensor was deployed using a fixed 
installation, with the inlet 60 cm above the seabed and at least 30 cm below the estimated Lowest 
Astronomical Tide (LAT) (Fig. A2). This fully autonomous instrument collected and transmitted data 
every 10 minutes (24 h day-1) to Microsoft Azure cloud storage before downstream quality checking 
and analysis. Sensor data was then packaged into RO-Crates by the e-Research team at UTS, which are 
then uploaded to an Arkisto-based website. This website allows for the filtering and downloading of 
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these crates based on both time and location, for use in research and analysis (Fig. A3). Finally, rainfall 
data were obtained from the closest Bureau of Meteorology weather stations at Forster (BOM 60013, 
32.21S, 152.53E).  

 

Figure A2 Seabird MicroCAT high accuracy conductivity, temperature and depth (CTD) field sensor deployed in 
Wallis Lake. Image: Brian Hughes 
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Figure A3. Wallis Lake data provenance chain from source of data (sensors), via quality assurance processes, 
data analyses, to consumers.  

A1.3 DPI Management Plan review  

Evaluation of the harvest area management plans for each NSW harvest area occurs annually. This is 
carried out by the NSW Shellfish Program (NSW DPI Food Authority). The date of the Wallis Lake 
annual review is 1 May. As part of the most recent (2022) annual review for Long Island harvest area, 
all salinity data from the monitoring sensors during the 2018, 2019, 2020, 2021 and 2022 annual 
review periods were assessed in relation to microbiological samples collected by the local shellfish 
program during the same period. There was a gap in data collection between 1 and 16 April 2021 due 
to a change in sensor provider. Data after 1 May 2021 (2022 annual review period) were only available 
up to 20 June 2021, and were not included in the analyses, as salinity reported by the sensor appeared 
to be drifting >40 ‰, which was not representative of this location and indicated a possible issue with 
the sensor.  

A1.4 Biological sampling and eDNA extraction   

Estuarine water samples were collected weekly by oyster farmers working at Verdich and Sons Pty Ltd 
from September 2018 - September 2020 for both phytoplankton and bacteria. For algal samples, 3L 
sub-surface water samples (0.5 m, in triplicates) were collected and filtered using a specially made 
PVC sampler. Samples were then stored at 4 ℃ until further downstream processing. DNA was then 
extracted using the DNeasy 96 PowerSoil Pro QIAcube HT Kit (Qiagen) and DNA stored at -20℃ until 
further analysis.  

In the case of a rainfall event, water samples were collected for bacterial analysis (only) every 24 h 
over a two-day period commencing on the first day of rainfall and processed as described above. Daily 
rainfall measurements were taken from the closest available weather stations at Forster (BOM Station 
No. 060013, 13 Mar 2018 - 24 Mar 2020) and Tuncurry (MHL Station No. 209401D, 25 Mar 2020 to 31 
Mar 2021), which are approximately ~4 km downstream and 2 km upstream of sensor site 
respectively.  

A1.5 qPCR assays for bacterial source tracking  

Realtime qPCR tests were carried out on all water samples in triplicate for bacterial source tracking of 
E. coli, bird, cow and human faecal indicators.     

 

 



42 
 

A1.6 Phytoplankton enumeration  

Water samples (500 mL) were collected at approximately 2-weekly intervals from a depth of 0.5 m 
closest to the sensor for microscopic phytoplankton identification and enumeration in accordance 
with the NSW Marine Biotoxin Management Plan (NSW MBMP) and the Australian Shellfish Quality 
Assurance Program (ASQAP). Once collected, samples were immediately preserved with 1% Lugol's 
iodine solution, and returned to the laboratory for concentration using gravity-assisted membrane 
filtration. Detailed cell examination and counts were then performed using a Sedgewick Rafter 
counting chamber and a Zeiss Axiolab or Standard microscope equipped with phase contrast. Cells 
were identified to the closest taxon that could be accurately identified using light microscopy 
(maximum magnification x1000). Cell counts were undertaken to determine the abundance of 
individual HAB species and total phytoplankton cell (>5 mm) numbers. Dinophysis cells were counted 
to a minimum detection threshold of 50 cells L-1 while all other species were counted to a minimum 
detection threshold of 500 cells L-1.  

A1.8 Oyster Growth and Mortality   

At the sensor site, we also deployed two types of experimental Sydney Rock Oysters (Saccostrea 
glomerata). The first group of oysters were all the same age and used to collect weekly samples at the 
sensor site when water samples were collected for downstream processing. Three oysters were 
removed on each sampling occasion and placed whole and live into a freezer for preservation.   

The second group of experimental oysters were obtained from the NSW DPI Sydney Rock Oyster 
Breeding Program and were deployed at the sensor site to measure shell length (Fig. A4), whole weight 
and mortality.  These oysters were from the 2016-year class and were the same age, size and 
originated from a single genetic group. Three replicate floating baskets were placed on the designated 
oyster sampling lease and each replicate unit contained approximately 70 oysters.   

A1.8.1 Oyster Whole Weight  

Whole weight was measured in August 2018, February 2019, August 2019, February 2020 and finally 
in June 2021. Thirty randomly sampled oysters from each replicate were pooled and weighed on each 
sampling date using a calibrated weight balance to the nearest 0.1 g.  The average whole weight of 
oysters at the start of the experiment in August 2018 was 22.6 ± 1.4 g.   

A1.8.2 Shell Length  

Oyster shell length was measured ~monthly from August 2018 to June 2020 (Fig. A4). A subsample of 
30 oysters from each replicate were measured on each sampling occasion. The 30 oysters from each 
replicate were arranged on a measuring board that included a scale bar. A digital image was taken and 
GrabIt software (MyCommerce Inc, Minnetonka, MN, USA) was used to estimate the shell length (mm) 
of oysters in the images provided.   
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Figure A4. Oyster shell dimensions (Carriker 1996)  

 A1.8.3 Oyster Mortality   

Oyster mortality was calculated by counting the number of empty oyster shells in each replicate 
approximately each month from August 2018 to February 2020.  After empty oyster shells were 
counted, they were removed from the experimental baskets. Oyster farmers performed the counts 
and recorded this information during the experiment.  

A1.9 Modelling  

To model the relationship between pathogens and oyster growth in this estuary, a series of models 
were run to investigate firstly the predictors of faecal bacteria abundance and secondly, oyster 
growth.  

Daily averages for all sensor measurements taken on a calendar day, midnight to midnight, were then 
calculated. A simple unweighted average was taken over all observations. Data for a day was regarded 
as missing if fewer than 96 observations were made. 24 h, 48 h, 72 h and weekly salinity and 
temperature averages were then calculated by taking the simple unweighted averages of each day’s 
daily average. Where a day’s data were missing, all other variables which relied on this were classified 
as missing. For example, if no observations were recorded on 1 June, then the 1 June 24 h average 
was missing, the 1 June and 2 June 48 h average was missing, the 1 June, 2 June and 3 June 72 h 
average were missing (Appendix 2).  

Rainfall data from the closest Bureau of Meteorology weather station at Forster (BOM Station No. 
060013), which was the official management plan gauge for this harvest area, were averaged over the 
24 h, 48h, 72 h and 7 days prior to the water sampling each day, to incorporate a measure of exposure 
of the bacterial community and deployed oysters. Total phytoplankton (and log transformed total 
phytoplankton) from microscopic phytoplankton enumeration was also included in the modelling as a 
potential predictor variable. Finally, week of the year and water depth were included in the models to 
understand any seasonality or tidal variability that was present in the data.  
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To model the relationship between bacteria (E. coli, bird, cow, human) abundance and/or oyster 
growth (response variables) and environmental variables (temperature, salinity, week, depth, total 
phytoplankton, rainfall) at the sensor location within Wallis Lake, correlation analyses were initially 
undertaken to explore the relationships between variables. Generalised additive models (GAMs) were 
then applied to the data. GAMs allow abundance data to be treated as count data (discrete integer 
values), and as such can handle zero counts. GAMs also allow for smoother functions to be 
incorporated into each model for the environmental variables that had a non-linear relationship with 
bacterial abundance.   

Input data (predictor variables) were the sensor observations for both salinity and temperature, 
including aggregation over several different time periods, including depth, week and total 
phytoplankton (logged or unlogged). For comparison to current (non-sensor-based) practice, models 
were also run using only rainfall data. Again, these included depth, week and total phytoplankton. As 
total phytoplankton data is not available in real time, and therefore not considered a predictor 
variable by definition, models were run both with and without this variable. In summary, four models 
were developed for each of the bacterial sources: rainfall only, rainfall and total phytoplankton; sensor 
only; and sensor and total phytoplankton.   

To model the relationship between oyster growth various GAMs models were also investigated using 
the sensor/total phytoplankton/rainfall data for the same time period. These models were then fitted 
in version 3.4.3 of the R statistical package (Team R Core, 2013), using the GLM function in version 
1.8–22 of the ‘mgcv’ package (Wood, 2006). Models were then compared using the Akaike 
information criterion (AIC) and the model with the lowest AIC selected.  
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Appendix 2A. Summary Statistics for Bacterial Modelling – Sensor site, Wallis Lake 

 

  

Variable Mean Standard Error Median Standard Deviation Minimum Maximum Count Missing
average_cfu 3.86 0.82 1.41 7.18 0.00 39.19 76 0
bird 509.77 204.16 0.00 1779.87 0.00 11542.83 76 0
cow 12.34 4.69 0.00 40.92 0.00 228.89 76 0
depth24 0.75 0.02 0.72 0.15 0.45 1.28 76 0
depth48 0.75 0.02 0.72 0.14 0.52 1.16 76 1
depth72 0.75 0.01 0.72 0.13 0.55 1.10 76 2
ecoli 595.87 96.62 342.54 842.35 0.00 4508.50 76 0
human 10.35 10.35 0.00 90.26 0.00 786.84 76 0
logPhytoplankton 13.29 0.10 13.16 0.86 11.51 15.62 76 0
Phytoplankton 900578.95 131502.54 520000.00 1146412.55 100000.00 6100000.00 76 0
rainfall24 5.61 1.35 0.10 11.80 0.00 59.00 76 7
rainfall48 5.75 0.96 1.80 8.34 0.00 31.60 76 9
rainfall72 5.92 0.73 4.73 6.38 0.00 21.40 76 11
salinity24 32.90 0.69 34.56 6.05 1.39 36.98 76 0
salinity48 32.90 0.66 34.43 5.73 2.99 36.48 76 1
salinity72 32.90 0.62 34.54 5.37 6.17 36.29 76 2
temp24 21.27 0.41 21.62 3.55 15.01 28.27 76 0
temp48 21.30 0.39 21.83 3.43 15.34 27.66 76 1
temp72 21.33 0.38 22.10 3.35 15.70 27.13 76 2
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Appendix 3.  Summary of project related publications, seminars, workshops, conference 
presentations and other project related public presentations.   

Author(s)  Title  Bibliographic details  Status   
(Submitted, 
Accepted, 
Published)  

Penelope Ajani, 
Hernan Henriquez-
Nunez, Arjun 
Verma, Satoshi 
Nagai, Matthew 
Tesoriero, Hazel 
Farrell, Anthony 
Zammit, Steve Brett 
and Shauna 
Murray   

Mapping the 
development of 
Dinophysis spp. HABs 
using a novel molecular 
qPCR assay  

Harmful Algae 116 (2022)102253 Published  

Penelope Ajani, 
Arjun Verma, Jin Ho 
Kim, Hazel Farrell, 
Anthony Zammit, 
Steve Brett & 
Shauna Murray  

  

Using qPCR and high-
resolution sensor data to 
model a multi-species 
Pseudo-nitzschia 
(Bacillariophyceae) bloom 
in southeastern Australia  

Harmful Algae 108 (2021) 102095  Published  

NSW DPI  Net Returns of Real-Time 
Sensors and Salinity-
Based Management Plans 
in NSW Oyster Production 
- Report  

https://www.foodauthority.nsw.gov.au/about-
us/science/science-in-focus/real-time-sensors-
shellfish-harvest-area-management  

Published  

NSW DPI  Net Returns of Real-Time 
Sensors and Salinity-
Based Management Plans 
in NSW Oyster Production 
- Factsheet  

https://www.foodauthority.nsw.gov.au/about-
us/science/science-in-focus/real-time-sensors-
shellfish-harvest-area-management  

Published  

The Team  Oyster Transformation 
Project  

NSW Oyster Newsletter  

https://www.nswoysters.com.au/nsw-oyster-
newsletter.html  

July 2020  

Published  

DPI Food Authority  Foodwise - Issue 46  https://www.foodauthority.nsw.gov.au  

Feb 2018  

Published  

Shauna Murray & 
Penelope Ajani  

Ah shucks, how bushfires 
can harm and even kill our 
delicious oysters  

The Conversation  

https://theconversation.com/ah-shucks-how-
bushfires-can-harm-and-even-kill-our-delicious-
oysters-131294 Aug 2020  

Published  

  

https://www.nswoysters.com.au/nsw-oyster-newsletter.html
https://www.nswoysters.com.au/nsw-oyster-newsletter.html
https://www.foodauthority.nsw.gov.au/
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
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Appendix 4.  Summary of project related seminars, workshops and conference 
presentations   

Presenter(s)  Event/Activity  Presentation title  
Matthew Tesoriero  

(Supervisors: Arjun Verma 
and Shauna Murray)  

Final Hons Seminar,   

School of Life Sciences, UTS, 
2020  

Abundance and distribution of pathogenic bacteria 
in NSW oyster producing estuaries  

Shauna Murray, Penelope 
Ajani, Arjun Verma, Rendy 
Ruvindy, Jin Ho Kim & Kate 
McLennan  

Australasian Society for 
Phycology and Aquatic Botany 
Annual Conference 2020  

Using molecular genetic techniques to detect 
harmful algal bloom-forming species impacting 
aquaculture  

Arjun Verma & Matt 
Tesoriero           

Catchment, Estuary and 
Wetland Mapping, Modelling 
and Prioritisation Workshop 
2020  

Oyster Transformation Project  

Shauna Murray & Matt 
Tesoriero      

Manning River Estuary CMP 
Discussion Group - Sewerage 
and Septic Pathogen Risks 
2020  

Discussion Group  

Wayne O’Connor  Aust & NZ Biotechnology 
Conference, May, 2019, 
Sydney  

Plenary Address: The future of NSW Aquaculture: 
the need for clever solutions  

Shauna Murray, Arjun 
Verma, Swami Palanisami & 
Penelope Ajani  

Australia New Zealand Marine 
Biotechnology Conference 
(ANZMBS) 2019  

The use of eDNA and arrays for precise estuarine 
water quality assessment  

Arjun Verma, Swami 
Palanisami, Penelope Ajani 
& Shauna Murray  

Australian Marine Science 
Association Conference 2019  

Novel molecular ecology tools to predict harmful 
algal blooms in oyster- producing estuaries  

Arjun Verma and Matthew. 
Tesoriero  

Trade table, NSW Oyster 
Conference, Forster NSW 
2019  

Oyster Transformation Project  

Penelope Ajani, Arjun 
Verma & Shauna Murray  

NSW Oyster Conference, 
Forster NSW (Poster 
Presentation) 2019  

Common harmful algae in the oyster growing 
estuaries of New South Wales.  

Wayne O’Connor   DPI, Senior Scientist 
Symposium. EMAI, Camden, 
November 2018  

Overview and Progress – Oyster Transformation 
Project  

Penelope Ajani, Michaela 
Larsson, Ana Rubio, 
Stephen Bush, Steve Brett,   
Stephen Woodcock, Hazel 
Farrell & Shauna Murray  

Estuarine Coastal Shelf Science 
Conference 2018  

Modelling harmful algal blooms in   
the Hawkesbury River, Australia  

  

  
Wayne O’Connor  Macquarie University, 

Microbiomes Workshop, 
Epping, November 2018  

Overview and Progress – Oyster Transformation 
Project  

Shauna Murray, Arjun 
Verma, Penelope Ajani, 
Anthony Zammit, Hazel 
Farrell, Swami Palanisami & 
Wayne O’Connor  

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Building profitability and sustainability in the NSW 
oyster industry  
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Penelope Ajani, Michaela 
Larsson, Ana Rubio, 
Stephen Bush, Steve Brett,   
Stephen Woodcock, Hazel 
Farrell & Shauna Murray  

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Modelling harmful algal blooms in   
the Hawkesbury River, Australia  

Hazel Farrell, Grant 
Webster, Phil Baker, 
Anthony Zammit, Penelope 
Ajani, Shauna Murray & 
Steve Brett  

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018  

Developing phytoplankton and biotoxin risk 
assessments for both shellfish aquaculture and wild 
harvest shellfish in New South Wales.  

Wayne O’Connor  SIMS, July 2017  Oyster Research Overview Presentation  

  

Presenter(s)  Event  Presentation title  
Shauna Murray & Arjun 
Verma  

https://www.youtube.com/watch?v=cfAyjjnASy0&t=154s   

  

Sept. 2019: PROJECT 
NEWS: Can World 
Leading Research 
Transform the NSW 
Oyster Industry?   

Shauna Murray  https://www.youtube.com/watch?v=4NM_U_lKCEE&t=1s   

  

Sept. 2020: Food 
Agility CRC – 
Cooperative Research 
Centre customer story 
   

Arjun Verma & Penelope 
Ajani  

https://www.youtube.com/watch?v=iRcRZkptpOY&t=46s  

  

Feb. 2020: Food 
Agility Summit 2020: 
WE LOVE SCIENCE!   

Anthony Zammit  https://www.cnbc.com/video/2017/03/05/one-of-the-most-
sustainable-farming-enterprises-meets-hi-tech.html   

  

Mar 2017: One of the 
most sustainable 
farming enterprises’ 
meets hi-tech  

 

 

 

https://www.youtube.com/watch?v=cfAyjjnASy0&t=154s
https://www.youtube.com/watch?v=4NM_U_lKCEE&t=1s
https://www.youtube.com/watch?v=iRcRZkptpOY&t=46s
https://protect-au.mimecast.com/s/jVdMCr81YNH380D1h7VvYG?domain=cnbc.com
https://protect-au.mimecast.com/s/jVdMCr81YNH380D1h7VvYG?domain=cnbc.com

