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Abstract 14 

The continuous increase of demand for lithium (Li) chemicals in industrial applications calls 15 

for exploring affordable Li production and sustainable options beyond land mining. Thus, aqueous 16 

resources, such as geothermal brine, salt lake brine, and seawater, play an essential role in 17 

continuous Li supply due to abundant storage and low cost. Adsorption technology is promising 18 

in Li recovery with the advantages of attaining high selectivity for Li over other major ions present 19 

in aqueous resources at low cost and low energy demand with facile synthesis processes that enable 20 

practical large-scale production. Metal-based adsorbents are conspicuous among various 21 

adsorbents for presenting the visible prospect closest to industrial applications. This review 22 

presents a comprehensive summary and critical analysis of the synthesis methods for metal-based 23 

adsorbents, the mechanisms for Li selective recovery, and the performance of Li adsorption. The 24 
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advantages and challenges are discussed for different adsorbents and preparation methods. A 25 

specific focused case study on an industrial application of Al-based adsorbent production and Li 26 

recovery processes and operations on an engineering and economic scale is discussed in detail to 27 

provide a comprehensive overview of the practical industrial application of metal-based adsorbent. 28 
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1. Introduction 62 

Lithium (Li) has become one of the most crucial elements in this century in various industries 63 

because of its electrochemically active property and high specific heat capacity [1, 2]. Fig. 1 shows 64 

diverse applications and distribution of identified Li resources on land. Fig. 2 presents annual Li 65 

consumption from 2010 to 2020 and the distribution of extractable Li reserves with existing 66 

technologies [3-9]. The applications cover batteries, ceramics, lubricating greases, air treatment, 67 

catalysis, etc. Notably, in recent five years, the expansion of batteries for electric vehicles and other 68 

electric devices has been accelerated rapidly by the concept and policies of replacing traditional 69 

fuel energy to clean renewable energy in many countries [9-11]. The boom of global Li 70 

consumption, from 24.5 kt in 2010 to 93.0 kt in 2021 [4], challenges the supply of Li from 71 

conventional ore resources. On that note, recovering Li from aqueous sources exhibits significant 72 

advantages as an alternative Li resources, as about 75% of Li on land is stored in geothermal brines, 73 

oilfield brines, and the salt lakes in South America, China, and Australia [12], and the reserve in 74 

the ocean is even over 16 thousand times than that on land [9].  75 

The main approaches to extracting Li from brines include conventional evaporation 76 

precipitation [13], solvent extraction [14-16], and adsorption [17], and emerging technologies such 77 

as electrochemical methods [18-22], membrane-based technologies [14, 23-27], and reaction-78 

coupled separation [28]. The predominant factors that influence selecting a method for Li 79 

extraction are the practical applicability of the method, the co-existing contaminant multivalent 80 

coions (namely the Mg/Li mass ratio), and the effects of other competing co-existing ions, such as 81 

Na+, K+ [29-32]. The widely used evaporation precipitation method is limited to applying in the 82 

high Mg/Li ratio brines due to the complex and time-consuming pre-processes of removing co-83 

existing ions [12, 33, 34]. The solvent extraction method for extracting Li from multi-ion-existing 84 
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brines shows undesirable sustainability since the organic solvents can corrode the process 85 

equipment and the solvent leakage pollutes the environment [35, 36]. Electrochemical Li capture 86 

systems [37], including capacitive deionization (CDI) [38-40] and electrodialysis (ED) [41-44] 87 

based on electrochemically switchable ion exchange (ESIX) rely on the external electric field, thus 88 

being limited by problems of high cost and energy consumption. Membrane-based technologies 89 

for Li recovery contain capacitive deionization (MCDI) [45-47], selective electrodialysis (SED) 90 

[21, 26, 32, 44], nanofiltration (NF) [24, 48], ion-imprinted membrane (IIM) [49, 50], and 91 

membrane distillation crystallization (MDC) [51, 52], driven by external stimuli such as thermal 92 

gradient, pressure, and electric field [53-57]. These technologies have vast potential to develop in 93 

the next generation roadmap, yet the difficulties of energy consumption, separation efficiency, and 94 

membrane durability limit their industrialization. Reaction-coupled separation technology for the 95 

separation of Mg/Li by co-precipitating Mg-ions and foreign Al-ions with an alkali solution is still 96 

at the start-up stage [28, 29].  97 

Compared to the above technologies, the adsorption method shows an excellent balance of 98 

high Li selectivity, simple and efficient operation process, good applicability to most brine 99 

resources, high economical advantage, and less environmental impact [58, 59]. It utilizes Li-100 

selective adsorbents to uptake Li from a multi-ion aqueous environment and then desorbs them 101 

with some solvents, thus extracting Li. The principle requirements for proper adsorption materials 102 

cover high Li selectivity, adequate adsorption capacity, and suitable operation stability [60]. As 103 

shown in Fig. 3, the mainly studied Li adsorbents involve inorganic, organic, and composite 104 

adsorbents. Organic adsorbents, such as crown ether and polymer ion-exchange resin, are limited 105 

for applications due to the hazardous organic raw materials and the complex synthesis processes. 106 

Inorganic adsorbents include metal-based adsorbents and natural mineral-based adsorbents. The 107 
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selection of the latter ones strongly depends on cost and resource quantity, impeding promoted 108 

applications in different brine source areas. Nowadays, metal-based adsorbents have 109 

become the hotspot and keystone of the research on Li adsorbents. The merits of metal-based Li 110 

adsorbents, including high Li capture capacity, low regeneration loss of raw materials, excellent 111 

Li selectivity, robust cycle performance, and relatively less energy consumption, qualify them as 112 

promising environmentally-friendly candidates for Li extraction from aqueous solutions 113 

containing different ions [61]. The pilot- and commercial-scale applications have been developed 114 

in Li recovery cases from the Qarhan Salt Lake by Qinghai Lakelithium Co., LTD. The related 115 

case study is developed in Section 3.  116 

 117 

Figure 1. Diverse applications of Li and distribution of identified Li resources on land, including 118 

exploitable and unexploitable with existing technologies. Figure partly modified from [8] with 119 

copyright permission from John Wiley and Sons.  120 

Previous review papers on Li recovery focused on 1) membrane-based [14], manganese-121 

based [62], and MOF-based [8] Li extraction materials, 2) electrochemical methods [18, 41, 63], 122 
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and other industry production methods [64, 65] from one specific brine source [13, 66] or region 123 

[67], 3) brine and mineral management perspectives [68, 69]; however, thus far, almost no 124 

comprehensive reviews concerning the developments of all metal-based adsorbents for Li recovery 125 

from sorts of brines. This review emphasizes the synthesis methods and Li adsorption 126 

performances of the current and the emerging metal-based Li adsorbents. Simultaneously, the 127 

techno-economic analysis is studied based on the application case of Al-based adsorbent in Li 128 

recovery from the Qarhan Salt Lake. The challenges and potential opportunities to implement on 129 

the future engineering scale are also discussed. 130 

 131 

Figure 2. Global consumption of Li content from 2010 to 2020 and distribution of extractable Li 132 

reserves with existing technologies. 133 
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 134 
 135 
 136 

 137 

Figure 3. Classification of adsorbents for Li recovery. 138 



 

9 
 

2. Metal-based Li adsorbents 139 

Metal-based Li adsorbents for Li recovery are basically comprised of aluminum (Al)-based, 140 

manganese (Mn)-based, and titanium (Ti)-based adsorbents. The overarching principle governing 141 

Li sorption by metal adsorbents is based on the structural memory effect of Li-ion sieves (LIS): Li 142 

tends to occupy the vacancies generated in the adsorbent preparation process by removing the 143 

original Li from the pristine structure [70-72]. For now, Al-based adsorbents exhibit the most 144 

potential in industrial application owing to the high technology maturity, yet the Li selective uptake 145 

performance is not ideal; Mn-based ones present excellent Li adsorption performances, but the Mn 146 

dissolution impairs its long-term stable application; Ti-based ones is a more recent entry but have 147 

shown promising prospects as it does not exhibit the similar disadvantages of the Al-based and 148 

Mn-based adsorbents. 149 

2.1 Al-based adsorbents 150 

2.1.1 Structure and adsorption mechanism 151 

Al-based adsorbents, especially Li-Al layered double hydroxides (LiAl-LDHs), are widely 152 

studied inorganic adsorbents and the most applicable ones for industrial Li recovery from brines 153 

owing to the advantages of negligible elution damage, stable adsorption performance, and ease of 154 

production [71, 73]. LiAl-LDHs show a structure of a two-dimensional aluminum hydroxide 155 

layered plate linked by hydrogen bonds, electrostatic interaction, and van der Waals with Li filled 156 

in octahedral voids of the packing hydroxide ions (Fig. 4), and the chemical formula could be 157 

expressed as [LimAl2(OH)6]Clm·nH2O (m=0-1) [70, 74-76]. Based on the mechanism of the 158 

structural memory effect, the process of Li adsorption-desorption can be described as the following 159 

formula [73]: 160 

xLiCl + [Li(m−x)Al2(OH)6]Cl(m−x) + (n+1)H2O ⇌ [LimAl2(OH)6]Clm⋅nH2O + H2O 161 
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 162 

Figure 4. Crystal structures of gibbsite (A, B) and LiAl-LDH (C, D); the blue, red, green, and 163 

white dots represent Al, O, Li, and H atoms, respectively. (E) Flowchart for Li recovery from LiAl-164 

LDHs via a mild solution chemistry process. Figure (A-D) obtained from [77] with copyright 165 

permission from ACS Publications. Figure (E) obtained from [78] (copyright 2019 MDPI). 166 
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2.1.2 Synthesis methods and Li recovery performances 167 

The synthesis of LiAl-LDHs has a more extended history than the application studies in Li 168 

recovery. The Li intercalation method was reported to modify aluminum hydroxide by Frenkel et 169 

al. in 1980 [79]. The preparation method of lithium dialuminate using solid lithium hydroxide, 170 

polycrystalline aluminum trihydroxide (bayerite), and water vapor at room temperature was 171 

described by Poeppelmeier and Hwu in 1987 [80]. The mechanochemical process of LiAl-LDHs 172 

production was developed by combining grinding followed by hydrothermal crystallization [81-173 

83]. Isupov et al. proposed using LiAl-LDH as a selective sorbent of Li salts from brines in 1998 174 

[84], yet few studies emphasized the application of Li recovery until recent years. Liu et al. 175 

produced LiCl·2Al(OH)3·xH2O and investigated the Li/Mg separation performance of LiAl-LDH 176 

in brine, revealing the ability of LiAl-LDHs to extract Li from the salt lake brine [85]. Zhong et al. 177 

prepared two-dimensional hexagonal flat Li/Al-LDHs with high Li selectivity via the 178 

coprecipitation method and developed a granulation method to adsorb Li from the Qarhan Salt 179 

Lake old brine at room temperature [73, 86]. Lee et al. synthesized silicon oxide-coated LiAl-LDH 180 

nanocrystals with stable regeneration cycles and high Li selectivity by oxidation of aluminum foil 181 

substrate under a urea and Li solution to extract Li from simulated solution resources [87]. Sun et 182 

al. exploited the hybrid technology of reaction-coupled separation and LiAl-LDHs to extract Li 183 

from the salt lake brine in the Chinese Qaidam Basin, achieving as low as 3.93% Li loss [88]. Lee 184 

et al. proposed a project to separate Li from urea solution using LiAl-LDH coated aluminum metal 185 

foils [89] and fabricated polyacrylonitrile hybrid membranes coated with aluminum hydroxide for 186 

separating Li [90].  187 

For optimal application condition study and large-scale process design, Jiang et al. tested Li 188 

adsorption performances of LiAl-LDHs from simulated brine with various initial Li concentrations 189 

in different feed flow rates at 303 K in fixed-bed columns with varying heights of bed. Their results 190 
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indicate that the breakthrough time (the life span of adsorbents in a single adsorption operation) 191 

and capacity positively correlate with bed height but negatively with the initial Li concentration 192 

and feed flow rate [91], and the optimal pH condition is ascertained to 7 [92, 93]. Paranthaman et 193 

al. designed an economic three-stage bench-scale column extraction process, presenting the merits 194 

of low cost, easy preparation, and environmentally friendly nature for Li recovery from geothermal 195 

brine using LDHs [94]. The competitive and synergic effects of co-existing ions on Li adsorption 196 

are concerned in multi-salt feed solutions. Jiang et al. verified the promotion effect of anions and 197 

the competition effect of other cations on the Li adsorption through adsorption tests in the Li-198 

MgCl2, Li-NaCl, and Li-Na-MgCl2 multicomponent system [17]. Similar investigations were also 199 

studied by Chen et al. [71], and Hu et al. [95]. The selectivity factor can be used to compare the Li 200 

adsorption ability in the multi-cation environment. 201 

Despite the significant advantages in Li extraction from low-grade brines, the drawback of 202 

using LiAl-LDHs is that its sensitivity towards transforming to gibbsite in the desorption process 203 

reduces its adsorption capacity, which is a major challenge for application scale expansion [93, 204 

95]. Prolonging the application life of LiAl-LDHs is also vital to reducing environmental impact 205 

[96]. Introducing magnetic materials is a strategy to reduce the sharp loss in the industrial 206 

application of adsorption capacity due to granulation as an external magnetic field can be employed 207 

after adsorption to recycle adsorbents [97, 98]. Fe3O4-doped magnetic LiAl-LDHs are proved not 208 

harmful to the physicochemical properties of the effective adsorption component and can achieve 209 

rapid recovery and long-term recycling potential [71, 99]. Additionally, except for solid-state 210 

intercalation, the dissolution-reprecipitation pathway was also discovered in the transformation 211 

from gibbsite to LiAl-LDHs, hinting at another potential study direction on the structural 212 

adjustment for reducing effective content loss [77]. 213 
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Except for LiAl-LDHs, other Al-based adsorbents are also reported. Pauwels et al. 214 

investigated Li adsorption of polymeric aluminum hydroxide for geothermal water treatment in 215 

1995 [100]. Wang et al. synthesized magnesium-aluminum-carbonate-layered double hydroxide 216 

adsorbent (MgAlCO3-LDHs) and developed an integrated process to separate and recover both 217 

Mg and Li from brines [101]. Heidari and Momeni utilized AlCl3·6H2O as an adsorbent to recover 218 

Li from Urmia Lake and identified the optimal pH and temperature conditions [102]. In summary, 219 

the synthesis methods and performances of Al-based adsorbents are presented in Table 1. 220 

Table 1. Synthesis methods and performances of Al-based adsorbents 221 

Adsorbents Sources Preparation Li adsorption performance Ref. 

Al(OH)3 
AlCl3·6H2O, 

NaOH, brine 
Coprecipitation  

Li recovery rate of 76.4% when T=30℃, 

pH= 7.5 
[102] 

Al(OH)3 
AlCl3·6H2O, KOH, 

LiCl 
Coprecipitation  

Li recovery rate of 95% when T=80℃ and 

Al/Li molar ratio ~2.5 
[100] 

Li/Al-LDHs LiCl, AlCl3, NaOH Coprecipitation 
Li capacity of 7.27 mg/g in Qarhan old 

brine 
[73] 

Li/Al-LDHs 
AlCl3·6H2O, 

NaOH, brine 
Coprecipitation 

Li recovery rate of 89.7% when T=30℃ 

and Al/Li =5 
[103] 

Li/Al-LDHs 
LiCl, NaOH, 

AlCl3·6H2O 
Coprecipitation Li capacity of 6 mg/g [71] 

Li/Al-LDHs 
Al(OH)3, 

LiOH·H2O, HCl 
Hydrothermal method Li recovery rate of 91% [94] 

Li/Al-LDHs LiCl, AlCl3, NaOH  Li capacity is about 3 mg/g [104] 

Li/Al-LDHs 
AlCl3·6H2O, 

NaOH, Na2CO3 
 

3.93% Li loss under optimal separation 

conditions 
[88] 

Li/Al-LDHs 
AlCl3·6H2O, 

LiOH·H2O, NaOH 
Coprecipitation Li capacity of 9.33 mg/g [93] 

Commercial 

adsorbent 
/ / 

Li capacity range of 5.02 to 5.69 mg/g 

from 200 to 350 mg/L initial LiCl solution  
[17] 

 222 

2.2 Mn-based adsorbents 223 

2.2.1 Type, structure, and adsorption mechanism 224 

Mn-based adsorbents (LMO) are broadly emphasized in research due to their unique chemical 225 

structure, sufficient adsorption capacity, excellent Li selectivity, and outstanding regeneration 226 

performance [61]. For now, the precursors of LMOs can be divided into three types according to 227 

the different ratios of Li/Mn and crystal structures: LiMn2O4, Li1.33Mn1.67O4 (Li4Mn5O12), and 228 
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Li1.6Mn1.6O4 (Li2Mn2O5), with theoretical maximum adsorption capacities of 39.9 mg/g, 59.5 mg/g 229 

and 72.8 mg/g, respectively [105-108]. The crystal structures of LixMn3-xO4 spinels are determined 230 

by stoichiometry, applied pressure, and temperature in the solid-phase reaction by heating a 231 

mixture of Mn and Li compounds [109]. As Fig. 5 shows, spinel-based LiMn2O4 and Li4Mn5O12 232 

exhibit cubic crystal structures. Li and Mn occupy tetrahedral and octahedral sites of LiMn2O4 233 

crystal, respectively [110]. On the basis of LiMn2O4, the excessive amount of Li at octahedral sites 234 

compensate for the increase of Mn(IV) in Li4Mn5O12 [111]. The structural model of Li2Mn2O5 has 235 

not been explicitly reported, but the advantage of its superior theoretical exchange capacity appeals 236 

to researchers as a candidate precursor for an ideal Li-selective adsorbent. 237 

 238 

Figure 5. Crystal structure of spinel (a) LiMn2O4 and (b) Li4Mn5O12, Mn ions reside in 239 

octahedrons formed by O ions. Figure (a) obtained from [112] with copyright permission from 240 

Royal Society of Chemistry and figure (b) obtained from [110] with copyright permission from 241 

ACS Publications. 242 

A number of different mechanism theories of Li intercalation-deintercalation have been 243 

reported. In 1981, Hunter et al. proposed that Mn(III) in LiMn2O4 converted to Mn(II) and Mn(IV) 244 

through redox reaction under acidic conditions, only leaving Mn(IV) in λ-MnO2 and providing 245 
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vacancies for Li intercalation [113]. The dissolution of Mn(II) can reduce the stability of the spinel, 246 

so adsorption capacity decreases with regeneration. But this theory was unable to explain the 247 

phenomenon of the positive influence of the adsorption capacity with pH. A follow-up study by 248 

Shen and Clearfield in 1986 stated that ion exchange between H and Li provided Li vacancies 249 

rather than the disproportionation reaction of Mn ions [114, 115]. Ooi et al. and Feng et al. 250 

concluded the two theories and investigated the Li intercalation process in different types of Mn-251 

based ion-sieves, discovering that Mn(III) in the precursors deliver redox sites and Mn(IV) grant 252 

ion-exchange sites (shown in Fig. 6) [116, 117]. 253 

 254 

Figure 6. Schematic representation of the Li intercalation (a) and deintercalation (b) mechanisms 255 

in spinel LMO adsorbents. Figure obtained from [66] with copyright permission from Elsevier. 256 

2.2.2 Synthesis methods and Li recovery performance 257 

Traditional methods for synthesizing LMO precursors focus on redox precipitation and solid-258 

phase calcination that Li and Mn compounds are mixed according to a certain stoichiometric ratio 259 

and calcined at more than 400℃ [118]. Sun et al. prepared a spinel Li1.6Mn1.6O4 by a combination 260 

of controlled redox precipitation and solid-phase reaction, and the Li adsorption capacity from 261 

Qarhan Salt Lake brine was 3.88 mmol/g [119]. However, since this strategy exhibits the 262 
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disadvantages of coarse and uneven sizes and distributions of the product powders, prolonged 263 

reaction time, and high reaction temperature, the mechanochemical method [120] and rheological-264 

phase-assisted microwave method [121] were proposed to improve the synthesis processes and 265 

products. The mechanochemical method is a mechanical activation method for preparing highly 266 

dispersed compounds at room temperature or relatively low temperatures. The rheological-phase-267 

assisted microwave method is a combination of microwave treatment and rheological phase 268 

method, an approach to facilitate the uniformity of reactants from a solid-liquid rheological 269 

mixture. Then the sol-gel method was introduced to optimize the crystallization process [122]. Sun 270 

et al. synthesized spinel LiMn2O4 powders using metal acetates containing poly(acrylic acid) (PAA) 271 

as a chelating agent [123]. To further simplify the synthesis operation and decrease the cost, the 272 

hydrothermal and microwave hydrothermal methods were utilized in LMO precursor production. 273 

Different morphologies, including nanorods, nanowire, nanocubes, and nanospheres, can be 274 

achieved by controlling hydrothermal conditions [107, 108, 124, 125]. Chitrakar et al. employed 275 

monoclinic type γ-MnOOH reacting with LiOH solution at 120°C for 24 hours, giving 276 

orthorhombic LiMnO2, and then heated to higher than 400℃ to form cubic Li1.6Mn1.6O4  [126]. 277 

Then they exploited microwave irradiation on the materials above, realizing a rapid formation of 278 

semicrystalline orthorhombic LiMnO2 (o-LiMnO2) within 30 minutes [127]. The maximum Li 279 

uptake of their adsorbent from seawater was 40 mg/g [128]. Shi et al. examined Li adsorption 280 

capacity and stability of Li1.6Mn1.6O4 prepared by a hydrothermal reaction, showing a maximum 281 

Li uptake of 27.15 mg/g from brine at 50°C and 20 mg/g after 10 cycles [129]. The cross-linking 282 

strategy was employed by Wang et al., who produced ethylene glycol diglycidyl ether 283 

(EGDE) cross-linked spherical chitosan-Li4Mn5O12 with 8.98 mg/g of Li adsorption capacity in 284 

geothermal brine [130]. In summary, the synthesis methods and performances of LMO are 285 
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concluded in Table 2. 286 

Table 2. Synthesis methods and performances of Mn-based adsorbents 287 

Adsorbents Sources Preparation Li adsorption performance Ref. 

Li1+xMn2-xO4 
LiOH, Li2CO3, 

MnCO3 
Solid-phase method 

23.5 mg/g in mixed solution within 24 

h 
[131] 

Li1.6Mn1.6O4 γ-MnOOH, LiOH 
Hydrothermal 

method 
40 mg/g in seawater [128] 

Li1.6Mn1.6O4 
KMnO4, LiOH, 

MnCl2 

Hydrothermal 

method and solid-

phase method 

28.32 mg/g in Qarhan Salt Lake Li 

adsorption 3.62 mmol/g after reusing 

for six cycles. 

[108] 

Li1.6Mn1.6O4 LiOH, Mn(NO3)2 
Hydrothermal 

method 
26.93 mg/g in Qarhan Salt Lake brine [119] 

Li1.6Mn1.6O4 LiOH, Mn2O3 
Hydrothermal 

method 

27.15 mg/g in brine, Mn loss <2.5%, 

capacity >20 mg/g after 10 cycles 
[129] 

Li1.353Mn1.626O4 
Mn(NO3)2·4H2O 

Na2S2O8, LiNO3 

Hydrothermal 

method 

Li recovery rate reaches 90% in Urmia 

Lake 
[132] 

Li4Mn5O12 LiNO3, β-MnO2 

Hydrothermal 

method and solid-

phase method 

45.95 mg/g in the solution with c(Li) 

=5.0 mol/L 
[107] 

Li4Mn5O12 
EDTA, LiNO3 

Mn(NO3)2·4H2O 

EDTA-citrate 

complexing method 
43.1 mg/g in 0.5g/L LiCl solution [133] 

HZn0.5Mn1.5O4 

Li2CO3, MnCO3 

Zn(CH3COO)2•4 

H2O 

Solid-phase method 33.1 mg/g in artificial seawater [134] 

LiAlxMn2-xO4 

Mn(NO3)2, 

AlCl3·6H2O, 

LiOH·H2O, H2O2 

Hydrothermal 

method 

27.66 mg/g in 50mg/L LiOH solution 

19.5 mg/g after repeating 5 cycles 
[135] 

Li1.6Mn1.6-xCrxO4 
LiOH·H2O, 

Cr(NO)3·6H2O 

Hydrothermal 

method 
25.5 mg/g in Lop Nor Salt Lake [136] 

For improving the feasibility of the practical application, the strategies of doping and coating 288 

are explored to reduce Mn dissolution in an acidic surrounding and enhance the structural stability 289 

of LMO adsorbents [137, 138]. In Qian et al.’s study, the maximum Li uptake capacity of 290 

Li1.6Mn1.6O4 increased from 32.3 to 35.3, 35.4, and 40.9 mg/g, and Mn dissolution reduced from 291 

5.4% to 3.95%, 4.42%, and 2.1% after tracing surface doping Fe3+, Co2+, and Al3+, respectively 292 

[139, 140]. They also asserted that by doping F-, S2-, the capacity of Li1.6Mn1.6O4  increased from 293 

26.1 to 33.4 and 27.9 mg/g [141]. Their K-gradient doping experiment results reported that Mn 294 

dissolution reduced from 5.4% to 4% [142]. Xue et al. enhanced the Li adsorption capacity to 295 

29.33 mg/g with 6.22% Mn loss by doping Fe3O4 via a hydrothermal process [143]. Cao et al. and 296 

Su et al. revealed the influence of Cr-doping content on Mn dissolution and Li adsorption capacity 297 
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[144]. By doping 1% Cr, the LMO-Cr shows an initial Li adsorption capacity of 31.67 mg/g and 298 

Mn dissolution ratio of 2.1%, yet Li adsorption capacity of 25.5 mg/g and Mn dissolution ratio of 299 

0.35% after 20 cycles [136]. Bajestani et al. reported a high adsorption capacity of 53.52 mg/g via 300 

doping Co2+ in LiMn2O4 [145], and Chen et al. stated 27.66 mg/g via doping Al3+ [135]. Compared 301 

to doping studies, coating strategy currently lacks attention. Luo et al. coated Al2O3-ZrO2 on 302 

LiMn2O4 to enhance chemical stability and utilized it as an electrode to capture Li in an 303 

electrochemical way, achieving a Li extraction capacity of 49.92 mg/g and Mn dissolution of 0.1% 304 

after 30 cycles [146]. 305 

Process investigations for practical Li recovery applications, such as granulation methods 306 

development and adsorption column design, are also studied by many research groups. Hong et al. 307 

immobilized spinel HMO on the alpha-Al bead and induced macropores by adding hydrogel beads 308 

before calcination, resulting in similar Li adsorption performance to powdery adsorbents from high 309 

Li concentration feed solutions and improving the performance from diluted feed solutions [147-310 

149]. Han et al. prepared millimeter-sized spherical LMO foams with a Li adsorption capacity in 311 

natural seawater of 3.4 mg/g via foaming, drop-in-oil, and agar gelatin [150]. Ryu et al. designed 312 

a continuous flow adsorption column for efficient Li recovery from seawater with LMO, showing 313 

a maximum adsorption capacity of 54.65 mg/g [151]. Multi-ion feed solutions, including simulated 314 

and real brines, were also employed to test the selectivity of the adsorptions of Li and other cations. 315 

Sun et al. synthesized β-MnO2, spinel-type LiMn2O4, and Li4Mn5O12 via hydrothermal synthesis 316 

and solid-state reaction, then utilized these LMO adsorbents to uptake Li from a solution 317 

containing Li, Na, K, Mg, Ca ions, indicating that the MnO2 nanorod had the best Li selectivity 318 

[106]. Similar studies were also researched by Wang et al. [152], Ryu et al. [153], Recepoglu et al. 319 

[154], Chaban et al. [155], Roobavannan [52], and Xiao et al. [156]. 320 
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Besides directly adsorbing Li from the Li-rich solution, LMO adsorbents are also combined 321 

with electrochemical Li recovery methods [45, 46, 157-159]. Mu et al. coated λ-MnO2 and 322 

LiMn2O4 on 3D-graphite felt electrodes to produce a novel flow-type electrochemical Li recovery 323 

system that extracts Li 75 mg/h per gram LiMn2O4 [160]. Siekierka built a negatively polarized 324 

electrode with LMO for the CDI system, realizing 32 mg/g LiCl adsorption [47]. Liu et al. 325 

developed a new device using the ESIX technique based on λ-MnO2/LiMn2O4 structures, attaining 326 

3.5 mmol/g of Li adsorption capacity and lower than 0.05% Mn loss [105]. 327 

2.3 Ti-based adsorbents 328 

Ti-based adsorbents (LTO) applications for Li recovery have gained momentum in the recent 329 

ten years especially due to their stability in acidic solutions. They are considered to be eco-friendly 330 

due to their non-reactive leaching propensity to the water environment and easy removal from 331 

aqueous solutions [61]. Compared with LMOs, the relatively stable structures of LTOs provide 332 

less dissolved loss, high adsorption capacity, excellent selectivity, and recyclability [161, 162]. 333 

2.3.1 Type, structure, and adsorption mechanism 334 

The procedure for Li extraction using a Ti-based ion exchanger H2TiO3 (HTO) dates from 335 

1989, first outlined by Onoderaet et al., prepared via the acid treatment of HTO [163]. The HTO 336 

adsorbent presents a layer crystal structure designated by the Li[Li1/3Ti2/3]O2. The cell structure, 337 

as illustrated in Fig. 7a, is a cubic close packing of oxygen atoms accompanied by metal atoms 338 

placed in octahedral voids [61, 164, 165]. The exchange of Li and H occurs during the adsorbent 339 

preparation, adsorption, and desorption processes. Explicitly speaking, Li is replaced by H in the 340 

HTO preparation process by pickling Li2TiO3 into hydrochloric acid. Then in the Li extraction 341 

process, the memory effect dominates the particular selectivity for accepting Li preferentially 342 

because narrow exchange sites left during the preparation reject the occupation of other ions with 343 

dissimilar ionic radius or dehydration energy due to steric effects [166]. In a recent study, Marthi 344 
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et al. proposed a new perspective to the generally accepted ion-exchange mechanism without 345 

chemical bond breakage theory. They proposed a new explanation that O–H bonds break and the 346 

O–Li bonds form after thermogravimetric analysis, Raman spectroscopy and Fourier transform 347 

infrared spectroscopy studies [167]. Except for layer crystal Li2TiO3, spinel Li4Ti5O12 (Fig. 7d), a 348 

star candidate of large-scale Li-ion batteries [168], is considered another LTO adsorbent. The 349 

mechanisms of Li intercalation and deintercalation are similar to LMO adsorbents, i.e., the redox, 350 

ion exchange, and composite mechanisms [61]. 351 
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 352 
Figure 7. Crystal structure of (a) layered Li2TiO3, (b) H2TiO3, (c) H2TiO3 upon Li exchange, and 353 

(d) spinel Li4Ti5O12. (a), (b), and (c) obtained from [166] with copyright permission from Springer 354 

Nature. (d) from [169] with copyright permission from Royal Society of Chemistry. 355 

2.3.2 Synthesis methods and Li recovery performance 356 

The synthesis strategies of LTO adsorbent highlight solid-phase [161, 164], sol-gel [170], and 357 

hydrothermal methods [171, 172] for precursor preparation (concluded in Table 3 and Fig. 8) and 358 
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acid treatment for ion-sieve fabrication. The conventional solid-phase process requires the 359 

calcination of the ground mixture of TiO2 and Li2CO3 at around 700°C and then cooling down to 360 

room temperature, presenting the merits of high capacity and selectivity for Li uptake and the 361 

drawbacks of high reaction temperature and large grain sizes with low Li adsorption rate [164]. 362 

Shi et al. utilized mixed crystal titanium dioxide (TiO2) to compound single crystal phase of HTO 363 

through the solid-phase and hydrochloric solution immerging methods [161]. Hossain et al. 364 

prepared HTO from sludge-generated TiO2 via 4-h calcination in air at 750°C, and the Ti loss was 365 

less than 3% after 72-h acid treatment [173]. Gu et al. applied the Li adsorbent derived via the 366 

solid-state method from C2H3LiO2·2H2O and TiO2 to separate Li and Mg in West Taijinar Lake. 367 

The separation factor α (Li/Mg) of 5441.17 and the adsorption capacity of 24.5 mg/g after five 368 

cycles demonstrated the feasibility of practical use [174]. Zhang et al. observed that calcination of 369 

metatitanic acid produced different crystal phases of TiO2 at various temperatures and that the 370 

anatase structure reacted with LiOH·H2O benefited the extraction of Li [175]. The sol-gel process 371 

produces smaller particle sizes using multiple raw materials at a lower reaction temperature than 372 

the solid-phase method. Zhang et al. synthesized Li2TiO3 with CH3COOLi and Ti(OC4H9)4 by the 373 

sol-gel process, of which the Li adsorption capacity reached 21.0 mg/g [176]. The hydrothermal 374 

method, widely utilized in the controllable synthesis of non-agglomerative nanomaterials, is also 375 

a typical approach in LTO synthesis. Moazeni et al. synthesized monoclinic Li4Ti5O12 nanotube 376 

ion sieves with 50-70 nm in diameter and 1-2 micrometers in length via a soft hydrothermal 377 

method, which presented outstanding Li selective adsorption capacity [171]. Zhao et al. fabricated 378 

a Li4Ti5O12 adsorbent with 5 μm length along the [100] direction by two hydrothermal processes 379 

followed by a calcination process and HCl treatment [177]. The H4Ti5O12 nanotubes synthesized 380 

by Shoghi et al. via the hydrothermal method and acid treatment using TiO2(B) nanotubes as a 381 
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precursor demonstrated a considerable high ion-exchange capacity (160.6 mg/g) for Li since the 382 

particular surface area was large (115.4 m2/g) [178]. Wang et al. composited a Li-enriched β-383 

Li2TiO3 by hydrothermal treatment with the TBA addition. It initially validated the enhancement 384 

of the Li adsorption capacity of the free hydrogen formation of β-Li2TiO3 and excessive HTi2 layer 385 

exposure of HTO [172]. To overcome the difficulty that the adsorption capacity of LTO-LIS 386 

adsorbent is only about 40% of the theoretical value [58], doping strategy was induced in the 387 

synthesis process to improve the stability and practical capacity through flexible modification of 388 

the band structure of the materials [178, 179]. Wang et al. prepared a Fe-Ti-0.15(H) Li-ion sieve 389 

via solid-state reactions and acid treatment and a Mo-Ti-0.15(H) Li-ion sieve with a high O2-390 

content (61.58%) using a facile calcination method and acid pickling, which showed good stability, 391 

capacity and excellent selectivity [180, 181]. 392 

Composite strategy is also introduced in LTO adsorbent synthesis to produce composite 393 

materials [182]. Lawagon et al. selected hydrophilic polyacrylonitrile (PAN) from various 394 

polymers as the HTO matrix and fabricated nanofibers (NFs) by electrospun technology. The NFs 395 

showed excellent Li selectivity, capacity, durability, recyclability, and suitability for various 396 

aqueous Li sources [183]. Lin et al. employed acid-alkali resistant polyvinyl chloride (PVC) as a 397 

binder to granulate polyporous PVC-HTO adsorbents, exhibiting high separation factors between 398 

Li and Na, K, Ca of 297.55, 521.28, 273.58, respectively, in geothermal brine [184]. Limjuco et 399 

al. prepared a HTO/polyvinyl alcohol (PVA) (200 wt% HTO loading) composite foam, which 400 

exhibited consistent adsorption-desorption performance and mechanical stability in reusability 401 

experiments [185]. Marthi et al. adopted titania slag and diatomaceous earth as raw materials to 402 

synthesize HTO-DE composite adsorbent for extracting Li from the Great Salt Lake. They 403 

perceived that the Li uptake rate and the adsorption capacity in brine solution were influenced by 404 



 

24 
 

the competition of ions and the accumulation of protons and that adsorption sites were lost due to 405 

the hydrolysis of metastable HTO at higher temperatures [186]. Zhang et al. coalesced 406 

HTO powders prepared by solid-phase reaction of TiO2 and Li2CO3 in LiCl molten-salt with the 407 

forming agent polyvinyl butyral (PVB), obtaining chemically stable spherical adsorbent particles. 408 

This synthesis method had a lower cost than the traditional solid-phase reaction approach, while 409 

the adsorption capacity and microstructure stability remained, displaying a promising industrial 410 

outlook [187]. Chen et al. developed a novel and easily reused granular and porous Ti-based Li-411 

ion sieve with the agar-assisted approach for recovering Li from geothermal water [188]. Wei et 412 

al. prepared porous Ti-based nanofiber adsorbents with Li adsorption capacity of 59.1 mg/g and 413 

high selectivity and stability from brine water via a combination strategy of electrospinning and 414 

calcination [189]. Qian et al. prepared a series of HTO/cellulose aerogels  with a porous network 415 

for recovering Li from seawater rapidly and efficiently [190].  416 

 417 

Figure 8. Schematic illustration of synthesis of LTO with a) solid-phase method, b) hydrothermal 418 



 

25 
 

method, and c) sol-gel method. (a) obtained from [161] and (b) from [178] with copyright 419 

permission from Elsevier. (c) obtained from [191] (copyright 2017 John Wiley and Sons). 420 

For improving the performances of the adsorbents, optimal operation conditions are 421 

investigated. Zhu et al. reported that the shaping process did not impact the phase and pore 422 

structure of LTO adsorbents, while higher pH was beneficial to strengthening adsorption strength 423 

and increasing Li adsorption capacity notably [192]. Li et al. discovered that the adsorption process 424 

is mainly single-layer chemical adsorption by modeling the adsorption kinetics process of the LTO 425 

adsorbent, prepared by acid elution of a pure monoclinic spinel precursor [193]. Shi et al. found 426 

that the Li adsorption process conformed to the Langmuir equation with monolayer adsorption and 427 

pseudo-second-order rate model and that the optimal situation should be in the alkaline solution 428 

[161]. Lawagon et al. identified the Li adsorption process as endothermic and spontaneous and 429 

detected that a low ratio of its loading with the feed volume (i.e., low S/L ratio) could promote the 430 

performances of the HTO adsorbent [194]. Ooi et al. calculated the experimental Li elution curves 431 

by modeling and proposed conditions of having the eluate of high Li concentration in a short time 432 

[195]. Li et al. investigated the influence of the different crystal phases of TiO2 precursors 433 

(amorphous, anatase, and rutile) on the adsorption performances of the terminated LTO and 434 

discovered a positive correlation between hydrophilicity and the adsorption performance of HTO 435 

based on contact angle experiments [196]. As for the influence of co-existing ions, Ji et al. noticed 436 

a slight influence of co-existing metal ions in the aqueous solution on Li recovery when searching 437 

the optimal synthesis conditions of their monoclinic crystal HTO [197]. Chitrakar et al. found that 438 

the size effect contributed to the HTO efficiently adsorbing Li from the salt lake brine collected 439 

from Salar de Uyuni, Bolivia, which contained competitive cations such as sodium, potassium, 440 

magnesium, and calcium in considerable excess [164]. 441 
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Table 3. Synthesis methods and performances of Ti-based adsorbents 442 

Precursors Sources Preparation Li uptake capacity Ref. 

Li2TiO3 TiO2, Li2TiO3 Solid-phase method 32.6 mg/g in brine containing NaHCO3 [164] 

Li2TiO3 
CH3COOLi, 

Ti(OC4H9)4  
Sol-gel method 21.0 mg/g after a treatment 24 h [176] 

Li2TiO3 TiO2, LiOH·H2O Hydrothermal method 
76.7 mg/g in LiOH solution (2g/L of Li) at 

30℃ for 24h 
[172] 

Li2TiO3 Titania slag NaOH Hydrothermal method 
27.4 mg/g in LiCl buffered 

solution(pH=9.5) 
[186] 

Li2TiO3 
Li2TiO3, TiO2, 

ethanol 

Liquid-solid phase 

method 
34.2 mg/g in Li-containing solution [196] 

Li2TiO3 

Ti2(SO4)3, 

LiCOOH, 

NH3·H2O, H2O2 

Precipitation-

peptization method 
33.35 mg/g within 8h [198] 

Li2TiO3 
C2H3LiO2·2H2O, 

TiO2 

Liquid-solid phase 

method 

24.5 mg/g after 5 adsorption-desorption 

cycles 
[174] 

Li2TiO3 TiO2, LiOH·H2O Solid-phase method 
52 mg/g in LiOH solutions (1.8 g/L of Li, 

pH=12) 
[199] 

Mo-doped 

Li2TiO3 

TiO2, LiOH·H2O, 

MoO2 
Solid-phase method 

78 mg/g in LiOH solution (1.8g/L of Li at 

room temperature) 
[180] 

Fe-doped 

Li2TiO3 

TiO2, LiOH·H2O, 

Fe2O3 
Solid-phase method 

34.8 mg/g in adjusted brine with 1560 

mg/L of Li 
[200] 

Li4Ti5O12 TiO2, NaOH, LiOH 
Two-step 

hydrothermal method 
39.43 mg/g in 120 mg/L of Li solution [171] 

Li4Ti5O12 TiO2, NaOH, LiOH Hydrothermal method 
160.6 mg/g in the LiCl solution with 2000 

mg/L of Li 
[178] 

2.4 Comparison of three types of metal-based Li adsorbents 443 

Table 4 compared the Li adsorption capacities, selectivity, technology maturity, stability and 444 

regeneration ability, operation condition requirement, environmental safety, and preparation cost 445 

of three types of metal-based Li adsorbents in their optimal operation conditions. Capacities reflect 446 

the Li adsorption ability; selectivity presents Li adsorption advantages in the competition with 447 

other co-existing ions; technology maturity, stability, regeneration ability, operation condition 448 

requirement, environmental safety, and preparation cost are the most significant factors in 449 

industrial scale-up and commercial applications. Al-based adsorbents have the highest technology 450 

maturity but lowest capacity. Mn-based adsorbents show good selectivity, yet the Mn loss during 451 

desorption can be harmful to the water environment. Ti-based adsorbents present remarkable 452 

capacity, but further investigations on fabrication for scale-up applications are required since the 453 

performances decrease dramatically after granulating the powdery adsorbents. 454 
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Table 4. Comparison of three types of metal-based adsorbents 455 

 456 

Due to the Li-H ion-exchange adsorption mechanism, pH is a critical condition to influence 457 

the capacities of metal-based Li adsorbents. Al-based adsorbents show the best performance in 458 

neutral solutions, while Mn-based and Ti-based adsorbents have the highest capacities in basic 459 

conditions  [94, 141, 144, 192, 201-207]. Fig. 9 compared the influence of pH on each type of 460 

metal-based Li adsorbents. 461 

 462 

Figure 9. The capacity performances of metal-based Li adsorbents under different pH conditions. 463 
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3. Case study - Application of metal-based adsorbent for Li recovery in an actual 464 

industrial site 465 

The Qarhan Salt Lake located in Qinghai Province is the largest salt lake with the highest Li 466 

reserves in China, with an estimated 10.49 million tons of lithium carbonate equivalents (LCE) 467 

reserves [208]. Table 5 lists the ion compositions of the Qarhan Salt Lake brine. The primary 468 

interfering ion is Mg, and the Mg/Li ratio is approximately around 365. The current Li mining 469 

right of the Qarhan Salt Lake is held by Qinghai Lakelithium Co., LTD and Golmud Zangge 470 

Lithium Co., LTD. In 2021, a 20000-tonne-scale plant with adsorption technology was built at 471 

Qarhan Salt Lake by Qinghai Lakelithium Co., LTD, and a trial run was successfully completed. 472 

Table 5. Ion Compositions of the Qarhan Salt Lake brine [67] 473 

Li  Na Mg Ca B Cl SO4 Mg/Li 

0.35 1.866 127.9 0.04 0.39 334.8 11.6 365.43 

 474 

3.1 Adsorbent production and regeneration technologies 475 

The production process of the Al-based adsorbent [LiCl·(2.2~2.8)Al(OH)3·(2.7~3.9)H2O] for 476 

Li recovery from the Qarhan Salt Lake is shown in Fig. 10. Firstly, AlCl3 solution and Li compound 477 

(LiOH/Li2CO3/LiCl) are mixed thoroughly in a preparing tank, forming an intermediate product 478 

S0. The ratio of Al and Li should be 1.8-2.2:1. For example, 148 g Li2CO3 or 2 L LiOH solution 479 

(60 g/L) is added in 8 L AlCl3 solution (120 g/L). Then, S0 and NaOH solution react in a reactor, 480 

generating an intermediate product S1. Next, S1 is separated, washed, dried, and ground to powder 481 

S2, and S3 is granulated by adding adhesive and liquid chlorine into S2. Finally, S3 is crushed and 482 

screened to produce Li adsorbents. The granular size of the final product is 0.5-1.8 mm, and the 483 

specific surface area is 2.9 m2/g. The adsorption equivalent is 1.8-2.7 g/kg, and the loss rate in 484 

washing is 12-30% [209]. 485 

The adsorption performance of the adsorbent will decrease after the long-term operation in 486 
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the adsorption chamber because hydroxide precipitates caused by hydrolysis reaction gradually 487 

adhere to the surface of the Li adsorbent and block the inner pores. Thus, a regeneration process 488 

is necessary to reduce adsorbent loss and control the cost. The ammonium salt solution with a 489 

concentration of 0.6-2.0 kg/m3 prepared in the mixing chamber using concentrated ammonium salt 490 

solution and salt-free water is infused into the adsorption chamber to meet with saturated 491 

adsorbents for a residence time (around 3 hours). In this process, during Li desorbing, the 492 

obstruction in adsorbents reacts with ammonium salt and dissolves in solution, and adsorbents 493 

regenerate. Finally, the desorbed LiCl solution and dissolved obstruction flow to the desorption 494 

solution tank [210]. 495 

 496 

Figure 10. Flow sheet of adsorbent production. S0, S1, S2 represent intermediate products 1, 2, 3, 497 

respectively. 498 

3.2 Li recovery process and operation  499 

Li production on a commercial scale typically adopts integrated processes in terms of the 500 

compositions of different brine sources. Fig. 11 presents the overall process of Li recovery in this 501 
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case. The path starts from adsorption in a full chamber bed. In specific scenarios, based on the Li 502 

concentration in the desorbed LiCl solution, nanofiltration is sometimes employed prior to 503 

electrodialysis as a pretreatment. Upon electrodialysis pretreatment, the main train of processes 504 

involves, firstly, ion exchange, reverse osmosis, and secondly ion exchange, followed by 505 

electrodialysis, and crystallization, to finally obtain LiCl product with high purity (LiCl > 99.1%) 506 

[211, 212].  507 

 508 

Figure 11. Li recovery process. Adsorption using a full chamber bed is the first step for 509 

concentrating LiCl solution from the brine. 510 

The operation conditions in the adsorption process are listed in Table 6. The brine is injected 511 

into the adsorption tower loaded with low-Li-state adsorbents. After an adsorption process, the 512 

adsorbents become adsorbed-state, and the adsorption tail solution is discharged out of the 513 

adsorption unit. Next, the rinse solution is injected into the adsorption tower, and then the rinse 514 

tail solution is discharged out of the adsorption unit. Finally, the desorption solution is injected 515 

into the adsorption tower. After a desorption process, the adsorbents return to a low-Li state, and a 516 

high-Li mother solution is obtained and transferred to the next process unit. The discharged 517 

adsorption tail solution and rinse tail solution are mixed and injected back into the adsorption tower. 518 

The above step is repeated several times to produce concentrated LiCl solution continuously. The 519 
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desorption tail solution is left in the adsorption tower. The desorbed solution (high-Li mother 520 

solution) comprises of 0.4-0.9 g/L Li, 0.5-8.0 g/L Mg, 0.01-0.2 g/L Na, 2-20 g/L Cl. The recovery 521 

rate of LiCl reaches 40-60% [211-213]. 522 

Table 6. Operation conditions in the adsorption process [211]. 523 

Adsorption flow 

velocity 

Adsorption 

temperature 

Rinse flow 

velocity 

Rinse 

temperature 

Desorption flow 

velocity 

Desorption 

temperature 

5-8 m/h 10-25°C 10-20 m/h 10-25°C 10-20 m/h 20-40°C 

3.3 Cost, benefit, and economic evaluation 524 

The novel production lines with the adsorption method win the attention of Lakelithium Co. 525 

LTD from the Li market, even stimulating the share price of its parent companies to surge. In the 526 

past years, the Chinese market has shown unprecedented confidence in Li recovery from brines 527 

since new technologies can reduce the cost of production. The unit profits, productions, and costs 528 

of Li carbonate products from 2013 to 2021 are exhibited in Fig. 12. According to the financial 529 

reports and market survey reports [214, 215], the current cost of Li recovery can be controlled 530 

within 34000 RMB/ton (around 5340 USD/ton). Compared with membrane and electrodialysis 531 

processes, the overall capital expenditure on adsorption technology is higher. Thus, the future 532 

production expansion can further reduce the unit cost and increase the profit margin.  533 

 534 

Figure 12. The unit profits, productions, and costs of Li2CO3 from 2013 to 2021 (data from [208]). 535 
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The US National Renewable Energy Laboratory investigated seven Li extraction projects 536 

from geothermal brines in various companies to compare Li recovery costs through different 537 

methods. The survey and modeled data of productions, production costs, capital expenses 538 

(CAPEX), operating expenses (OPEX), product prices, and Li recovery are listed in Table 7. 539 

Although direct cost comparison of different locations requires a number of assumptions and, 540 

therefore, to some degree, is unfair, the data is able to provide a broad visualization of economic 541 

indicators based on different approaches. The pilot plant project of Vulcan Energy Resources using 542 

commercial adsorbents performs outstandingly with the low production cost and high Li recovery 543 

rate. 544 

Table 7. Summary of Li recovery project economics. Table obtained from [216] (copyright 545 

National Renewable Energy Laboratory). 546 

Company 
Production 

(mt/y) 

Production 

cost 

(USD/mt) 

CAPEX 

(kUSD) 

OPEX 

(kUSD/y) 

Product 

price 

(USD/mt) 

Technology 

Li 

recovery 

rate 

SRI International 20000 3845 52300 76900 12000 
Li-imprinted 

polymer 
90% 

Vulcan Energy 

Resources 
40000 3217 1287600 128688 14925 

Commercial 

adsorbents 
90% 

Standard 

Lithium 
20900 4319 437162 90259 13550 

Ceramic 

adsorbent and 

crystallization 

90% 

E3 Metals Corp 20000 3656 602000 73200 15160 Ion exchange >90% 

Anson Resources 15000 4545 120000 68180 13000 Ion exchange 75% 

Pure Energy 

Minerals 
11500 3217 358601 36516 12267 

Solvent 

extraction 
90% 

Lake Resources 25500 4178 544000 106539 11000 Ion exchange 83.2% 

4. Outlook and Conclusions 547 

Li extraction from aqueous resources by Al, Mn, and Ti-based metal adsorbents, is 548 

comprehensively reviewed in terms of synthesis methods, Li uptake mechanisms, and Li recovery 549 

performances. Al-based adsorbents have been employed as commercial adsorbents in the industry 550 

due to the relatively mature preparation technology, low-cost price, and stability, although their Li 551 

adsorption capacity is lower than Mn-based and Ti-based adsorbents. A number of different types 552 
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of Mn-based adsorbents can be developed based on Li/Mn ratio in precursors, and the formations 553 

of the crystals rely on the control of synthesis conditions. Although Mn-based adsorbents present 554 

promising potential in Li adsorption capacity, the Mn loss problem still prevents further scale-up 555 

applications, requiring more investigations on stability improvements such as doping and coating. 556 

Ti-based adsorbents exhibit good stability in acidic surroundings with low leaching issues, yet 557 

practical adsorption capacity is inferior to theoretical capacity. Besides, an industrial case study is 558 

introduced to analyze the operation process and economic behavior, giving an example and 559 

benchmark for the application developments for commercial adsorbents.  560 

The substantial Li demand promotes the rapid transition of lab-state research to engineering 561 

projects. Overall, the adsorbent productions and Li recovery processes show advantages of simple 562 

operation, high maturity, and strong reliability. The metal-based adsorbent presents good Li 563 

selectivity, high adsorption efficiency, and environmental-friendly property. Nevertheless, major 564 

limitations such as poor versatility, low reuse frequency, and dissolution loss hinder industrial 565 

applications. Scaling up to a large-scale plant is the ultimate goal for all kinds of adsorbents. 566 

Therefore, the study on metal-based adsorbents in Li recovery should be focused on 1) stability 567 

improvement to achieve the long-term operation goal, 2) adsorbent explorations for different 568 

application conditions, such as resources with different pH, Li contents, and temperatures, 3) 569 

economical process design to reduce operating cost, 4) hybrid process optimization to produce 570 

valuable net-worth products with high Li purity. 571 
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