Applied Energy 175 (2016) 128-140

Contents lists available at ScienceDirect m
Applied=)=17

3

Applied Energy

>
.

journal homepage: www.elsevier.com/locate/apenergy

A comparison and accuracy analysis of impedance-based temperature
estimation methods for Li-ion batteries ™

@ CrossMark

H.P.G.J. Beelen**, L.H.J. Raijmakers *, M.C.F. Donkers ?, P.H.L. Notten *", H.J. Bergveld *¢

2 Dept. Electrical Engineering, Eindhoven University of Technology, Netherlands

b Dept. Fundamental Electrochemistry, Forschungszentrum Jiilich, Germany

Dept. Radiation, Science and Technology, Delft University of Technology, Netherlands
4 NXP Semiconductors, Eindhoven, Netherlands

HIGHLIGHTS

« Temperature and State-of-Charge sensitivity analyses of the battery impedance.

« New framework for capturing existing EIS-based temperature estimation methods.

« Comparison and analysis of EIS-based temperature estimation, using this framework.
« Compared to existing methods, a more-accurate EIS-based method is synthesised.

ARTICLE INFO ABSTRACT

Article history:

Received 5 February 2016

Received in revised form 30 March 2016
Accepted 24 April 2016

Available online 6 May 2016

In order to guarantee safe and proper use of Lithium-ion batteries during operation, an accurate estimate
of the battery temperature is of paramount importance. Electrochemical Impedance Spectroscopy (EIS)
can be used to estimate the battery temperature and several EIS-based temperature estimation methods
have been proposed in the literature. In this paper, we argue that all existing EIS-based methods implic-
itly distinguish two steps: experiment design and parameter estimation. The former step consists of
choosing the excitation frequency and the latter step consists of estimating the battery temperature
based on the measured impedance resulting from the chosen excitation. By distinguishing these steps
and by performing Monte-Carlo simulations, all existing methods are compared in terms of accuracy
(i.e., mean-square error) of the temperature estimate. The results of the comparison show that, due to
different choices in the two steps, significant differences in accuracy of the estimate exist. More impor-
tantly, by jointly selecting the parameters of the experiment-design and parameter-estimation step, a
more-accurate temperature estimate can be obtained. In case of an unknown State-of-Charge, this novel
method estimates the temperature with an average absolute bias of 0.4 °C and an average standard devi-
ation of 0.7 °C using a single impedance measurement for the battery under consideration.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Due to properties such as high energy density, Lithium-ion (Li-
ion) batteries are used in various applications such as battery packs
in (hybrid) electric vehicles and in mobile phones. For safety and
control purposes, temperature estimation of Li-ion batteries is of
vital importance. For example, high battery temperatures can
induce thermal runaway, which may cause fire or explosions,
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(E-COSM'15) [1].
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and accelerate ageing of the battery, thus reducing its lifetime
and performance [2,3]. A relatively new field of temperature esti-
mation methods is based on Electrochemical Impedance Spec-
troscopy (EIS), where a temperature relation is inferred from the
electrochemical battery impedance. Using EIS for temperature esti-
mation is often referred to as “sensorless temperature estimation”,
since no intrusive or surface-mounted temperature sensors are
needed. Another advantage is that the average' battery tempera-
ture is gauged. Therefore, there is no heat transfer delay due to the

! Note that, due to temperature gradients and the non-linear relation between
battery impedance and battery temperature, the EIS-based average temperature,
which can be interpreted as a weighted average, is not necessarily equal to the actual
average temperature. However, these average temperatures will typically be close in
value [4].
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Nomenclature
EIS Electrochemical Impedance Spectroscopy SNR Signal-to-Noise Ratio
SoC State-of-Charge BMS Battery Management System
MSE Mean-Square Estimation error
T to how many measurements are taken and averaged in order to
# obtain a temperature estimate.
In this paper, we compare and analyse the accuracy of
Fxperiment f Battery impedance-based temperature estimation and propose a method
Design that yields a more accurate temperature estimate, when compared
f Parameter 47“» to the existing methods. To do so, we will analyse the sensitivity of
p Estimation the battery impedance with respect to temperature and SoC. Also,
’ 4 T ﬁ we will carefully investigate both experiment design and parameter
Battery Model m

Fig. 1. Top-level block diagram of measurement system.

thermal mass of the battery as with measurements of the surface
temperature.

A number of studies have presented EIS-based temperature esti-
mation methods and expansions or improvements of these meth-
ods [4-14]. It can be argued that the presented methods can be
broken down into two components: how to choose the excitation
signal for the battery and how to estimate the battery temperature
based on the measured output resulting from the chosen excitation
signal. In Fig. 1, a general block diagram is shown that can be used
to describe existing EIS-based temperature estimation methods.
Here, the frequency f defines the excitation signal and the measured
output Z is the battery impedance. Choosing the excitation fre-
quency f is referred to as experiment design, whereas estimating
the battery temperature based on the measured impedance Z is
referred to as parameter estimation. The real battery temperature

and estimated battery temperature are denoted by T and T, respec-
tively, and v denotes measurement noise on the measured impe-
dance Z. Furthermore, a battery impedance model is employed to
establish a relation between the measured battery impedance Z
and the battery temperature T. In Fig. 1, this is captured by the mod-

elled battery impedance Z, which is computed by using a battery
impedance model and the excitation frequency f.

In general, the modelled battery impedance Z is compared to
the measured battery impedance Z, using some established tem-

perature relation, in order to obtain a temperature estimate T. This
comparison is defined by the parameter-estimation component by
means of settings given by m. For example, one existing estimation
method [7] relates the real part of the battery impedance Z to the
battery temperature T. Therefore, the parameter m induces the set-
ting “real part of Z” on the parameter-estimation block and the bat-

tery temperature T is estimated in the form of T by comparing the
real part of the measured battery impedance Z to the real part of

the modelled battery impedance Z at the excitation frequency f.
The settings for experiment design p should yield a certain fre-
quency f that causes the output Z to have the right information
for the parameter estimation to give accurate results. For example,
a sensitivity analysis in [7] reveals that a high variation of impe-
dance Z with temperature T can be found for low frequencies f.
However, also a high variation of the impedance Z with the
State-of-Charge (SoC) is found in this frequency region. The combi-
nation of both sensitivity analyses can be seen as choosing the
experiment-design parameter p, which resulted in [7] in a compro-
mise in the excitation frequency f. Also, p can hold information as

estimation of impedance-based temperature estimation by intro-
ducing several parameters, and explain how existing methods
can be considered as having certain choices for these parameters.
A Monte-Carlo approach will be taken to analyse how different
choices in experiment design and parameter estimation will lead to

a different accuracy of T. This accuracy is defined as the Mean-

Square Estimation error (MSE) of the temperature estimate T,
where the MSE can be broken down into bias (i.e., systematic error)
and standard deviation (i.e., random error) of the temperature esti-

mate T (compared to the real battery temperature T). This will
allow for a thorough comparison of the achieved estimation accu-
racy of the state-of-the-art impedance-based temperature estima-
tion methods. Moreover, the analysis allows for synthesising
parameters p and m that yield a more accurate temperature esti-
mate (in terms of a smaller MSE value). As a basis for the compar-
ison, analysis and synthesis, a data-based approach is chosen. No
prior knowledge about batteries or battery modelling is assumed
and therefore this paper focuses on the estimation problem instead
of battery modelling and related issues. This makes the framework
widely applicable for data-based battery analysis which is an addi-
tion to the work in [ 14], where polynomial modelling is chosen and
where a comparison of existing methods is not included. The work
presented in this paper extends on preliminary work [1] by per-
forming extensive sensitivity analyses of the battery impedance
with respect to temperature and SoC, by giving a more thorough
analysis of temperature estimation, a more extensive comparison
of estimation methods as well as by pointing to interesting exten-
sions of this work.

The organisation of the paper is as follows. Some theoretical
background is presented in Section 2. Then, the principle of
impedance-based temperature estimation and the proposed
approach for comparison, analysis and synthesis are introduced
in Section 3. Subsequently, Section 4 will give an extensive sensi-
tivity analysis of the battery impedance with respect to tempera-
ture and SoC. The results of this study are presented and
discussed in Section 5 and some possible extensions to this work
are discussed in Section 6. Conclusions are drawn in Section 7.

2. Theoretical background

Let Z € C denote a complex number of the form Z =a+jb

where a,b € R and j satisfies j* = —1. The real and imaginary parts
of this complex number are denoted by Re(Z) = a and Im(Z) = b,
respectively. Furthermore, the complex modulus is given by
|Z| = V'@ + b* and the argument or phase by arg(Z) = arctan (b/a).

Let x; with i € {1,...,N} denote N independent and identically
distributed random variables. Then, the sample mean of x is given
by
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N
My(x) :Nin. (1)

—_

For N — oo, the sample mean My(x) converges to the expected value
E[x] of x. The sample variance of x is given by

N
Var() = 1S (% - My(x)) (% — M (x))". 2)

For N — oo, the sample variance Vary(x) converges to the variance
a%(x) = E[(x — E[x])(x — E[x])"] of x, which equals the square of the
standard deviation . Around the expected value E[x] of a random
variable x, a confidence interval with confidence B such that
X € [x,X] is defined as

Pix <Ex] <X] = B. 3)

In case the upper bound is given by X = My(x) + ¢, and the lower
bound is given by x = My(x) — ¢, making the length of the confidence
interval to be 2c, then § = 1 — Vary[x]/(Nc?). This allows us to calcu-
late the sample size N for a desired confidence interval 2c with a cer-
tain confidence coefficient 8, or to calculate  for a given N.

Furthermore, let Z = g(T) denote a non-linear function, where Z
could be the measured impedance in Fig. 1 and g(T) could be the
battery model. Then, one way of estimating T is by using a non-
linear regression approach, such as non-linear least squares, which
can be denoted by T = arg ming||Z — g(T)||> where || - || is any vector
norm. In this paper, we will take the Euclidean norm.

For an uncertain model g(T) that is parametrised by parameter
T, a probability distribution P(Z|T), and produces observations Z,
the estimate of the parameter T is denoted by T. The expected

value of E[T] is used to define the bias b and the variance of the esti-
mate. When using only a finite number of observations N, Eqgs. (1)

and (2) can be used instead of E[T] and the variance based on E[T],
respectively. Then, bias b(T) and variance Var(T) are given by

b(T) =Mn(T)—T and Var(T) = Vary(T), 4)
respectively and the MSE is given by
MSE = b(T)” + Var(). 5)

Finally, complex-valued zero-mean Gaussian noise is denoted by
v = c +jd, where the vector [cd]" is a (joint) Gaussian distribution
with zero mean and variance ¢2.

3. Impedance-based temperature estimation

In this section, an overview of the framework for analysis, com-
parison and synthesis of impedance-based temperature estimation
as presented in [1] will be given. This overview will include the
definition of the battery impedance Z, the relation of Z with respect
to the battery temperature T and the proposed estimator for accu-
rately estimating T given the aforementioned relation with Z. Fur-
thermore, the framework in [1] will be extended towards the case
where accurate information on the SoC is available. Also, the over-
view of state-of-the-art estimation techniques in [1] will be
updated with recent literature.

3.1. Battery impedance modelling

The battery impedance Z can be interpreted as the battery fre-
quency response, where the battery takes a sinusoidal voltage or
current input with frequency f = w/(2m), and produces a sinu-
soidal current or voltage output, respectively, with the same fre-
quency. The ratio between input and output can be described as
a (complex) impedance

. V(w)

Z(jw) = Tjo) (6)
where the magnitude of the excitation signal should be sufficiently
small in order to guarantee local linearity of the system, yet not too
small to prevent a poor Signal-to-Noise Ratio (SNR). The technique
of obtaining the frequency response of the battery is known as EIS
and is widely used for gathering information about batteries [15-
18]. In this study, EIS measurements are conducted in galvanostatic
mode by superimposing a sinusoidal current with an amplitude of
100v/2 mA on the load current of the battery (whether or not a load
current is present).

As discussed in the introduction, modelling efforts are limited
to defining a data-based model instead of using modelling
approaches such as first-principles modelling or equivalent-
circuit modelling [19,20]. In particular, we model the battery by
a function g : R* — C, that depends on excitation frequency f, tem-
perature T, State-of-Charge (SoC) and other effects w such as bat-
tery ageing and (dis)charge current. If also additive measurement
noise v € C, induced by the measurement device, is considered,
the battery impedance is given by

Z=g(f,T,SoC.w) + v, (7)

where vis complex-valued zero-mean Gaussian noise as introduced
in the previous section. In this paper, we do not take into account
the dependencies denoted by w and we shall assume w = 0 from
now on. Still, the parameter w can be used to model other depen-
dencies than f,T and SoC as mentioned above, which can be seen
as an extension on this work without changing the approach pre-
sented in this paper.

Based on the relation in Eq. (7) and EIS measurements, a battery
model can be made, e.g., by storing impedance data in look-up
tables. If the measurement noise v and the SoC are assumed to
be unknown, for simplicity, a model g of the battery impedance Z
is constructed by averaging over SoC and v in order to make the
model independent of these influences. As a result of these
assumptions, the model is given by

R 1 M K
81 T) =z > > &(f,T,S0G;,0) + v; (8)
j=1 i=1

for some SoC;j € [0,100] and j € {1,...,M}, where M € N is the num-
ber of SoC values at which the battery impedance is measured and
K € N is the number of measurements taken per SoC. The choice
and range of SoC values over which is averaged (e.g.
SoC € {40,60}) in order to construct an averaging-based model
may depend on the intended application. For example, a battery
used in a charge sustaining setup where the SoC is kept around
50% does not require an accurate model for SoC € [0, 100], instead,
SoC € [40, 60] will suffice. In case the SoC is known, e.g., through SoC
estimation [21], & can be redefined to an SoC-dependent model
given by

K
8.T,500) = 1 " g(f..50C0) + 1 9)
i=1

3.2. Temperature estimation

Fig. 1, Egs. (8) and (9) show that battery temperature estimation
can be broken down into two questions with the joint objective of
obtaining the most accurate temperature estimate T: how to deter-
mine the excitation frequency f (or multiple frequencies
fi,ie{1,...,N}) and how to obtain the temperature estimate T
from the measured impedance Z for a certain f? Referring back to
Fig. 1, what should p and m be? For answering the first question,
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better understanding is needed of the sensitivity of the tempera-
ture estimate with respect to the excitation frequency. This will
eventually allow us to make a comparison of existing EIS-based
estimation methods and it will allow us to devise a more accurate
method. The second question has been answered in [ 1], resulting in
the estimator for estimating the battery temperature given by

N
T(vav OC,Z) = arg m].inzag%(fiv T,Z,‘) + (] - O() g%(fl T7Zi)7 (]O)
i=1

where N is the number of EIS measurements, f is the vector of exci-
tation frequencies f = [f,,...,fy]” with a frequency f; for each EIS
measurement, Z is the vector of measured battery impedance values
Z =[Zy,...,Zy]" obtained through EIS, and « € [0, 1] denotes a selec-
tor variable. In Cartesian coordinates, g, and g, are given by

g1 (fh T,Z,‘) = Re(g(fh T) - Zi)
&(fi.T.Z) =Im(@g(f.T) - Z))

while for polar coordinates, we have

&:1(f,T.Z;) = arg (8(f;, T)) — arg (Z;) (12a)
&(fi,T.Z) = 1&(f;, T)| - |Zil. (12b)

Note that the model in Eq. (8) is obtained through averaging a
number of K EIS measurements, and the result from Eq. (10) is
obtained with a number of N EIS measurements using the same
model.

The estimator, given in Eq. (10), uses the characterised temper-
ature T in the battery model g(f,T), at a certain frequency f, as a
decision variable in the minimisation of the difference between
the measured impedance Z and the modelled impedance g(f, T).
At the point where this difference is minimised, the minimiser is

taken to be the battery-temperature estimate T. Furthermore, the
physical interpretation for « = 1 in Eq. (10) in combination with
Eq. (11) is that only Re(Z) is used in estimating the temperature.
For o = 0, only Im(Z) is used. In case Eq. (10) is used in combina-
tion with Eq. (12), « =1 can be interpreted as using only arg(Z)
and o = 0 as using only |Z|.

Now, for given experiment-design settings f and N, the estima-
tion method in Eq. (10) provides a structured approach for compar-
ing, analysing, and finally, improving the parameter-estimation
settings, oo with a certain coordinate system, Eq. (11) or Eq. (12),
for temperature estimation. Providing a framework for improving
the parameter-estimation settings, thus deriving a more-accurate
estimation method, is a novel contribution of this work. These
parameter-estimation settings can be seen as a concrete example
of m in Fig. 1. In order to apply an (improved) estimation method
with certain settings in f,N and o on a practical application, such
as a Battery Management System (BMS), Eq. (10) can be stored as
a look-up table which maps the measured input Z to an estimated

temperature T, since all input arguments, except for Z, are fixed in
Eq. (10).

Table 1
Existing temperature-estimation methods.

3.3. State-of-the-art temperature estimation methods

Currently, there are a number of studies presenting EIS-based
temperature estimation methods. In the design of the estimation
method, these studies do not clearly differentiate between experi-
ment design and parameter estimation. Table 1 shows the corre-
sponding differentiation as partly presented in [1] of the existing
estimation methods. For each method, the estimation parameters
f,o and the coordinate system, Eq. (11) or Eq. (12), can be identi-
fied to fit Eq. (10). This allows for a comparison of methods in Sec-
tion 5 for a fixed N.

For a more detailed explanation of the different settings in p and
m for the existing temperature-estimation methods, as indicated in
Table 1, the reader is referred to [1]. In recent literature, a new
method has been presented by Spinner et al. [13], where, contra-
dicting to the methods by Schmidt et al. [7] and Richardson et al.
[10], a temperature relation is inferred from Im(Z) at a fixed fre-
quency rather than from Re(Z). The estimation parameters for
the improved method, which we will propose in Section 5, will
be obtained by choosing the estimation parameters which achieve
an improved accuracy, in terms of a smaller MSE of the estimated
temperature, based on the results of the analysis also presented in
Section 5. It should be noted that a better accuracy in terms of MSE
is not necessarily equivalent to both a smaller bias and standard
deviation since the MSE is given by Eq. (5). A trade-off between
bias and standard deviation may also result in a smaller MSE.

4. Sensitivity analysis

The presented estimation method in Eq. (10) in combination
with experiment design provides a structured approach for com-
paring and analysing the accuracy of EIS-based temperature esti-
mation. Also, it provides an approach in finding improved
settings in experiment design and parameter estimation. However,
which settings should be chosen, and what is the basis for these
settings for other state-of-the-art estimation methods? More gen-
erally, which p and m are chosen in Fig. 1 and which settings could
yield more accurate results? Therefore, an analysis of battery-
impedance data may provide indications as to what these settings
should be. Also, it may give insight into the choices for certain set-
tings in other studies and their presented estimation methods.

The first condition for obtaining an accurate temperature esti-
mate is that the sensitivity of the battery impedance with respect
to temperature should be high. A second condition for an accurate
estimate is that the sensitivity with respect to other dependencies
such as SoC or w is low. These sensitivities can be clearly shown by
approximating the terms in the objective function in Eq. (10) (i.e., g
in Eq. (11) or Eq. (12)), for a fixed frequency f and for N = 1, with a
first-order Taylor approximation around the estimated battery

temperature T, i.e.,

g(fv T) 7g(fvT7 SOC7W) -V

g - g (1S ~ og
Nﬁ(T—T)—&-ﬁ(M;SOCJ—SOC WY (13)

Parameter-estimation parameters m

Method Experiment-design parameters p
Schmidt et al. [7] Fixed f,N
Richardson et al. [10] Fixed f,N
Spinner et al. [13] Fixed f,N
Srinivasan [9] Fixed f,N

Raijmakers et al. [5]
fixed N

Varying f such that Im(Z) = 0,

Cartesian, Eq. (11), 2 =1
Cartesian, Eq. (11), 2 =1
Cartesian, Eq. (11), 2 =0
Polar,

Eq. (12), =1

Cartesian, Eq. (11),x =0
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where g is given by Eq. (8), in which 1 E; 17i =~ 0 for large enough K.

The sensitivity of the battery impedance with respect to tem-
perature is now given by the partial derivative of g with respect
to T. The sensitivity with respect to SoC and w is given by the
corresponding partial derivatives. Given the conditions for the sen-
sitivity, we require the partial derivative with respect to T to be
large and the other partial derivatives to be small. Therefore, set-
tings for experiment design and parameter estimation should meet
these requirements and can be found by inspecting these partial
derivatives. Note that this comparison of derivatives is a qualita-
tive comparison since SoC € [0,100] and T € [-20, 50], which are
two fundamentally different quantities. As before, it is assumed
that w=0.

In Fig. 2a-d, partial derivatives of g with respect to temperature
for various parameter-estimation settings (i.e., Re(Z),Im(Z), arg(Z)
and |Z|) are shown. The measurement setup for obtaining these
data will be introduced in Section 5. The horizontal axis of each
plot denotes frequency and the vertical axis denotes temperature.
The derivative is shown in a colour corresponding to the values in
the colourbar. In Fig. 2a and b, the derivatives of Re(Z) and Im(Z)
with respect to temperature, respectively, are shown. The deriva-
tives of arg(Z) and |Z| are depicted in Fig. 2c and d, respectively.

For Fig. 2a and b, it can be seen that the largest temperature
dependencies can be found in the low frequency range. In this fre-
quency range, the derivative in Fig. 2a significantly decreases
above 40 °C and the derivative in Fig. 2b even decreases above
30 °C. It should be noted that, although not visible in the figures
due to the maximum value of 17 pQ K~' shown in the contour
plots, the derivative in the low-frequency range for Fig. 2b is larger
than for Fig. 2a. For measurements at higher frequencies
(> 200 Hz) the derivative in Fig. 2a is generally larger than the
one in Fig. 2b. In Fig. 2d, where the derivative of the modulus of
the battery impedance, |Z|, is depicted, similar trends can be
observed. A large derivative can be seen in the low frequency range
whilst towards the higher frequencies the derivative decreases

5
40 It
30
o 20 10
= 10
0
~10
—20 0

102

=

o

102

b 15
10
y 0

towards zero. As can be expected, the derivative of the argument
with respect to temperature in Fig. 2c shows significantly different
behaviour compared to other derivatives. Generally, the mid-range
frequencies, 500-1000 Hz, show relatively large dependencies over
the full temperature range. In the range of 10-50 °C, lower fre-
quencies up to 500 Hz imply accurate results for a temperature
estimate. Besides the temperature dependency, the battery impe-
dance also depends on SoC. Partial derivatives of g, with
parameter-estimation settings yielding Re(Z) and Im(Z) (i.e.,
o =1 and o = 0, respectively), with respect to SoC are shown in
Fig. 2e and f, respectively. Both plots clearly show that the varia-
tion of the battery impedance with respect to SoC is quite large
for low SoC values, especially for frequencies up to 100 Hz.

In conclusion, the partial derivatives of the sensitivity analyses
in Fig. 2 generally indicate that, for low frequencies, the complex
battery impedance has a higher sensitivity with respect to temper-
ature and simultaneously, also a higher sensitivity with respect to
SoC (especially at low SoC). The existing temperature estimation
methods and their corresponding studies as denoted in Table 1
use similar sensitivity analyses, with similar results, in order to
select settings for experiment design and parameter estimation.
The selection of settings in these studies is typically a quantitative
comparison of % and ;.. In other words, a trade-off is found in a

large Z and a small s2Z .. However, this trade-off does not take into

account how ;% and % jointly affect the accuracy of the estimated
temperature T. Subsequently, it can be stated that a selection of
settings based on the accuracy of the estimated temperature T

instead of a selection based on a trade-off between 2% and

19SOC
(which then results in a certain accuracy of T), is not c0n51dered
in existing literature. It can be concluded that selecting settings
based on the accuracy of the temperature estimate T is not trivial.
Therefore, we propose to do a Monte-Carlo study [22], in which the
accuracy of the temperature estimate T can be evaluated for a
range of frequencies f, temperatures T and SoC values, by using a

o

102 103

1 [Hz] J [H7) [ [Hz]
(a) 52=Re(g) (b) 5% Im(g) (c) Frarg(g)
50
40 15 15 15
30
o 0 = 0 £ 0 10
= 10 g, Q
w2 [9p]
0 5 5 5
—10 \
—20 0 . 0 0
102 103 102 10 102 103
[ [Hz] f [Hz] [ [Hz]
(d) 3% lgl (e) zescRe(9) (f) 5&5Im(g)

Fig. 2. Subfigures (a)-(d) show partial derivatives at SoC = 40% where (a), (b) and (d) are absolute values in [puQ K~'] and (c) is an absolute value in [degree K~']; subfigures

(e) and (f) show partial derivatives in [uQ] at a temperature of T = 30 °C.
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Table 2
EIS-measurement settings for constructing g.

Temperature T
Frequency f
SoC values

~20,-10,+10, +30, +50 °C
25 log-spaced f : 10 Hz < f < 5 kHz
20,40, 60, 80%

distribution of measured impedance values Z (due to measurement
noise v) in Eq. (10) and computing a distribution of temperature

estimates T.

5. Results of accuracy analysis and comparison

To analyse and compare the accuracy of the temperature
estimate T for existing estimation methods in literature, as well
as to synthesise a more accurate estimation method, EIS measure-
ments have been conducted for a single type of battery cell. Based
on these measurements and by using Eq. (10), Monte-Carlo simu-
lations have been conducted.

5.1. Comparison of temperature estimation methods

Given foreseeable use of impedance-based temperature estima-
tion in battery packs of (hybrid) electric vehicles, a large-capacity
(90 Ah) LiFePOy4 cell has been chosen for the experiments. The EIS
measurements were conducted with a dedicated measurement
setup in combination with Maccor cycling equipment and a cli-
mate chamber. The measurement settings for the experiments
are given in Table 2, where the real battery temperature T is mea-
sured after applying a period of rest in order to reach a thermal

-Im(Z) [mQ)]

Re(Z) [mQ)]

Fig. 3. Nyquist plot of EIS data (K = 64) at SoC = 40% at various frequencies and
temperatures given in Table 2; inset: EIS measurement data for f = 2979 Hz.
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equilibrium. The frequency range is based on a lower bound, where
the battery impedance becomes SoC-dependent (see Fig. 2e and f).
The upper bound is chosen at a frequency where no noticeable
temperature dependency is found (see Fig. 2a-d). The temperature
range includes temperatures expected during normal operating
conditions of battery cells and also, it approximately covers the
temperature ranges used in other studies. Temperatures above
+50°C are not considered since the BMS will most likely limit
operation or even disconnect the battery when the upper bound
of this temperature range is reached due to risk of thermal run-
away. Still, temperatures above +50°C can be estimated, albeit
with limited accuracy as can be expected from the trend in
Fig. 2, where the sensitivity of the battery impedance with respect
to temperature decreases for higher temperatures.

For each combination of the measurement settings in Table 2,
K = 64 measurements have been conducted for M = 4 values for
SoC. The measurement time for a single impedance measurement
was fixed at 1 s, independent of the chosen measurement fre-
quency. In the event of thermal runaway, this will allow for suffi-
ciently fast detection of a rapid rise in temperature. It should be
noted that choosing a fixed measurement time provides for an ini-
tial averaging of the measurements in the frequency domain,
depending on the chosen frequency.

Results from these measurements at SoC = 40% are shown in a
Nyquist plot in Fig. 3. Due to the measurement noise v, for each
measurement setting, a distribution of K = 64 data points can be
seen in the Nyquist plot. The inset shows five distributions for five
temperatures at a single frequency. Analysis yields that the mea-
surement points are normally distributed with zero mean and a
standard deviation in the real and imaginary part of ¢ = 14 pQ.
Using the measurement data, a model g of the battery i