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 Abstract 

  Over the last decade demand for renewable energy technologies has been one of the primary 

issues of concern across the globe. It is in this context, lithium-sulfur battery based on sulfur 

cathode have drawn the particular interest owing to the high specific capacity, high energy density 

and low cost of eco-friendly sulfur. Nonetheless, there are still formidable challenges hindering 

the successful application of lithium-sulfur battery. Those challenges can be categorized as, poor 

electrical conductivity of elemental sulfur, lithium polysulfide intermediate dissolution / shuttling. 

In my doctoral work, I focused mainly on the cathodes, such as developing a new class of sulfur 

material and optimizing the cathode structure to improve the electrochemical performance of 

lithium-sulfur batteries.  

 The first part of the thesis, we report a novel sulfur rich copolymer@ 3D graphene-carbon 

nanotubes (G-CNT) network cathode for high performance lithium-sulfur batteries. Unlike 

elemental sulfur as cathode, this squalene-derived copolymer can greatly suppress the dissolution 

of sulfur and polysulfides due to the chemical confinement from the crosslinking of polysulfur 

chains with the squalene molecules. While in the SP@G-CNT composite electrode, the interlinked 

Sp2 G-CNT network not only enhance the polysulfide entrapment capability, but also provide the 

composite with an 3D electrically conductive path as well as an eminent mechanical resilience 

towards the huge volume change of sulfur. The as-developed cathode can deliver a high specific 

capacity, excellent rate performance and cycling stability.  

 In the second part, a nitrogen-doped micro/mesoporous carbon is derived from an amine-

functionalized metal oxide framework (UIO-66-NH2 abbreviated as NH2-MOF) to host sulfur. 

Moreover, a freestanding permselective membrane was fabricated by the layer-by-layer (LBL) 

assembly of NH2-MOF and graphene oxides nanosheets and implicated as an interlayer. Such, 
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multifunctional interlayer can block the shuttling of polysulfides in both physical and chemical 

ways without compromising the ion conductivity. The optimized lithium-sulfur cells realized high 

reversible capacity, extended cycling stability at high rate and much improved rate performance.  

 In the third part, a well-designed bilayer cathode structure is proposed to increase the active 

material loading and improve the areal capacity. The support layer contains carbon nanofiber / 

nickel nanoparticles decorated nitrogen-doped graphene (Ni-NG) and the top layer composed of 

Ni-NG nanosheets. The porous and highly conductive bilayer host not only ameliorates high sulfur 

loading and increase active material utilization but also accelerates the rapid conversion of 

polysulfides. With Li2S6 catholyte, bilayer Ni-NG@CNF cathodes demonstrates low voltage 

polarization, superior cycling stability and excellent rate performance.  
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Introduction 

  Lithium-Sulfur (Li-S) battery is one of the most promising candidates for the next-generation 

energy storage devices, with high specific capacity (~1672 mAh g-1), high theoretical energy 

density (2600 Wh kg-1) and low cost.1,2 However, the development and applications of Li-S battery 

have been severely hindered by the intrinsic poor electronic conductivity of sulfur and the rapid-

capacity degradation due to dissolution of intermediate polysulfides into the electrolytes. 3 

  Considerable efforts have been made to address the issues, including design of nanostructured 

cathode, optimization of electrolytes and protection of lithium anodes. One of the most common 

approaches in the cathode design is to utilize mesoporous carbonaceous materials as a potential 

host for sulfur. 4 Typically, a highly conductive carbon matrix can improve the charge transfer 

resistance of the cathode and the mesopores within the structure can be used to trap soluble lithium 

polysulfides physically. However, weak interaction between hydrophilic lithium polysulfides and 

the non-polar carbon surface often leads to out-diffusion of polar lithium polysulfides over 

extended cycling. 5 Recently, polar materials such as, hetero-atom doped carbon, 6,7 metal oxides/ 

sulphides/nitrides 8, 9, 10 have been explored extensively. Unlike non-polar carbon, the hydrophilic 

surfaces of these polar hosts can bind the migrating lithium polysulfides via hydrophilic surface 

interaction and improve the cyclability of Li-S system. As a replacement for elemental sulfur, 

polymers containing high content of organosulfur that is covalently bonded to the organic 

backbones have also been reported as an effective strategy to endow both physical and chemical 

confinements on the soluble lithium polysulfides intermediates. 11 Therefore, in a nut-shell an ideal 

sulfur cathode host should have: (i) highly porous structure to encapsulate sulfur; (ii) high 

electronic conductivity to improve the active material utilization; (iii) capability to restrain 
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polysulfides and (iv) flexible and robust physical properties to buffer the volume change of active 

materials during lithium insertion/extraction. 12 

Chapter 1 introduces the research development of lithium-sulfur batteries. The working principle, 

major challenges, and the ongoing approaches to overcome these challenges are presented in this 

chapter. 

Chapter 2 briefs about the experimental section, which includes material preparation techniques, 

physiochemical characterizations of as-prepared materials and their electrochemical investigations. 

Various synthesis strategies, such as solid-state reaction and hydrothermal synthesis were mainly 

applied to prepare different electrode materials in this doctoral work. This chapter also briefly 

introduces the instrumental analysis techniques that have been used to characterize the as-prepared 

electrode materials, including X-ray diffraction (XRD), Raman Spectroscopy, thermogravimetric 

analysis, field emission scanning electron microscopy (FESEM), transmission electron 

microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption, and 

Fourier transform infrared spectroscopy (FTIR). Cell assembly and electrochemical testing 

techniques, including cyclic voltammetry (CV) galvanostatic charge-discharge and 

electrochemical impedance spectroscopy (EIS) were also presented. 

 Chapter 3 presents synthesis of a novel sulfur-rich copolymer which is utilized as a new cathode 

active material for Li-S batteries. The sulfur-rich copolymer (87.29 % sulfur) synthesized by 

inverse vulcanization between two eco-friendly sources, sulfur and squalene. Covalent bonding 

between squalene (organic moiety) and sulfur molecules effectively suppresses the active material 

dissolution and migration during consecutive charge-discharge process. With such merit, the 

sulfur-rich copolymer (SP) demonstrates superior electrochemical performances as compared to 

that of elemental sulfur. For further improvement in electrochemical performances, SP was 
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combined with two-dimensional graphene (G) and three-dimensional graphene-carbon nanotubes 

(G-CNT) matrixes. The three-dimensional SP@ G-CNT composite shows high discharge capacity 

value (1265 mAh g-1 at 0.2 C), improved cycling stability (782 mAh g-1 at after 300 cycles at 1 C) 

and excellent rate performances compared to that of two-dimensional SP@G. This is attributed to 

the 3D interlinked Sp2 G-CNT network, which not only improve the 3D electrically conductivity 

of the composite for better active material utilization, but also enhance the polysulfide entrapment 

capability and acts as a mechanical buffer against the huge volume change of active material. 

 Chapter 4 reports the synthesis of nitrogen-doped mesoporous carbon (NMC) with hierarchical 

pore architecture for high performance Li-S batteries. The materials contain nanopores (< 2 nm) 

and mesopores (2 – 4 nm), derived from carbonization of porous amine (NH2)-functionalize metal 

organic frameworks (NH2-MOFs). Subsequently, sublimed sulfur was infused into the porous 

NMC by simple melt-diffusion method.  Through the synergistic effect of nanopores and 

mesopores, the porous matrix can endow an exceptionally high ion–accessible surface area and 

low ion diffusion barrier. This conductive host not only improve the active materials utilization 

but also alleviate the large volume change of sulfur during electrochemical reaction. Besides, the 

successful N-doping can provide an additional interaction to the migrating lithium polysulfides. 

Exploiting the interaction between amidogen (NH2) groups of NH2-MOFs and the surface 

functional groups of graphene oxide (GO), a layer-by-layer (LBL) assembled membrane (NH2-

MOF-GO) was prepared by simple vacuum filtration technique and was utilized as an interlayer 

in between the cathode and the separator (PP). This freestanding permselective membrane can 

interact to the migrating lithium polysulfides in both physical and chemical ways. Therefore, the 

newly configured interlayer suppresses the polysulfide migration and ensure the lithium anode 

stability. As a result, compared with the NMC-S/PP, this rationally designed NMC-S/NH2-MOF-
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GO cell shows an obviously improved electrochemical performance, including discharge capacity 

and high-capacity retention.   

Chapter 5 elucidates a sophisticated bilayer cathode structure to increase the sulfur loading, active 

material utilization, and the enhanced areal capacity. A simple vacuum filtration technique was 

adopted to fabricate the freestanding and flexible bilayer cathode. Bottom layer of this cathode 

consists of carbon nanofiber (CNF) and nickel nanoparticles decorated with nitrogen-doped 

graphene (NiNG). The top layer is composed of only NiNG. The integrated CNF and NiNG 

matrixes in the bottom layer host the active material and ensure their high utilization efficiency. 

Besides, intertwined CNF network possesses abundant void spaces to buffer the volume expansion 

of the active material.  With the presence of nickel nanoparticles, the top NiNG layer accelerates 

the polysulfide conversion kinetics and effectively block the polysulfide migration. To maximize 

the potential of this bilayer host, Li2S6 / electrolyte solution (catholyte) was used as active material 

due well-dispersibility of the catholyte and drop-casted onto bottom layer of the bilayer host. 

Benefitting from such advantageous structural features, the bilayer Li2S6-NiNG@CNF cathodes 

demonstrates low voltage polarization, improved cycling stability and excellent rate performance, 

including a reversible discharge capacity of 1272 mAh g-1 at 0.2 C rate, 89.4 % capacity retention 

after 100 cycles and discharge capacity of 848 mAh g-1 at 3 C current rate. In addition, high sulfur 

loading up to 8 mg cm-2 and an areal capacity of 6.8 mAh cm-2 were achieved at low electrolyte to 

sulfur (E/S) ratio of 7 µL mg-1
sulfur.  

Chapter 6 briefly summarizes the research outcomes of this thesis work and future perspective of 

cathode materials for Li-S batteries. 
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