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ABSTRACT

Accelerating Deep Convolutional Neural Networks via Filter Pruning

by

Yang He

The superior performance of deep Convolutional Neural Networks (CNNs) usu-

ally comes from the deeper and wider architectures, which cause the prohibitively

expensive computation cost. To reduce the computational cost, works on model

compression and acceleration have recently emerged. Among all the directions for

this goal, filter pruning has attracted attention in recent studies due to its e�cacy.

For a better understanding of filter pruning, this thesis explores di↵erent aspects

of filter pruning, including pruning mechanism, pruning ratio, pruning criteria, and

automatic pruning. First, we improve the pruning mechanism with soft filter prun-

ing so that the mistaken pruned filters can have a chance to be recovered. Second,

we consider the asymptotic pruning rate to reduce the sudden information loss in

the pruning process. Then we explore the pruning criteria to better measure the

importance of filters. Finally, we propose the automatic pruning method to save hu-

man labor. Our methods lead to superior convolutional neural network acceleration

results.

Dissertation directed by Professor Yi Yang

ReLER, Australian Artificial Intelligence Institute, School of Software
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