

Accelerating Deep Convolutional
Neural Networks via Filter Pruning

by Yang He

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Yi Yang

University of Technology Sydney
Faculty of Engineering and Information Technology
July 2021

Certificate of Authorship/Originality

I, Yang He, declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In

addition, I certify that all information sources and literature used are indicated in

the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Pro-

gram.

Signature: Yang He

Date: 1/July/2021

Production Note:
Signature removed prior to publication.

Acknowledgements

First, I would like to express my tremendous gratitude to my supervisor, Professor

Yi Yang, I really appreciate his mentoring and cultivating in my research and my

life. Although I changed my major for my PhD study and had little knowledge in

the area computer science when I entered the group, Yi has always been patient

with me and given me quite a lot guidance. Every time I encountered di�culties,

Yi is always here to help me. It is really my fortune to have Yi as my supervisor.

I am grateful for all my colleagues and teammates in Yi’s group. I convey my

gratitude to my co-supervisor, Prof. Liang Zheng, for his help and advises during

this research. I feel so lucky to met Prof. Yanwei Fu, Guoliang Kang and Xuanyi

Dong that they teached me quite a lot about doing research and writing code when

I am a novice of the research field. It is so important to express my gratitude to

Ping Liu, who is reliable and heart-warming, and gives me many kinds of help and

advice. I am happy to collaborate with many creative teammates in our team and

I really appreciate the kind and useful suggestions given by them. Moreover, I am

thankful for Prof. Hanwang Zhang for his guidance and advises during my visiting

to NTU. I have met quite a lot friends at NTU and thanks for your support. I also

thank Qi Yao for helping me with my PhD study.

Finally, I want to express my special gratitude to my parents, who give me

endless love, help, and encouragement in my life. How lucky to be your child.

Thanks for all the people that ever helped me and encouraged me.

Yang He

Sydney, Australia, 2021.

List of Publications

Journal Papers

J-1. Yang He, Xuanyi Dong, Guoliang Kang, Yanwei Fu, Chenggang Yan, and Yi

Yang, “Asymptotic Soft Filter Pruning for Deep Convolutional Neural Net-

works,” IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3594–3604,

2019.

Conference Papers

C-1. Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang, “Soft

Filter Pruning for Accelerating Deep Convolutional Neural Networks,” in In-

ternational Joint Conference on Artificial Intelligence (IJCAI), pp. 2234–2240,

2018.

C-2. Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, Yi Yang,“Filter Pruning via

Geometric Median for Deep Convolutional Neural Networks Acceleration,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 4340–4349, 2019.

C-3. Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, Yi Yang,

“Learning Filter Pruning Criteria for Deep Convolutional Neural Networks

Acceleration,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 2009–2018, 2020.

Contents

Certificate ii

Acknowledgments iii

List of Publications iv

List of Figures x

List of Tables xvi

Abstract xix

1 Introduction 1

1.1 Background . 1

1.2 Thesis Organization . 3

2 Related Works 5

2.1 Matrix Decomposition . 5

2.2 Low Precision . 6

2.3 Weight Pruning . 6

2.4 Filter Pruning . 7

2.5 Neural Architecture Search . 8

2.6 Vision Transformer Compression . 9

2.7 Applications . 9

3 Soft Filter Pruning 11

3.1 Introduction . 11

vi

3.2 Related Works . 13

3.3 Methodology . 15

3.3.1 Preliminaries . 15

3.3.2 Soft Filter Pruning (SFP) . 16

3.3.3 Computation Complexity Analysis 20

3.4 Evaluation and Results . 22

3.4.1 Benchmark Datasets and Experimental Setting 22

3.4.2 ResNet on CIFAR-10 . 22

3.4.3 ResNet on ILSVRC-2012 . 23

3.4.4 Ablation Study . 25

3.5 Conclusion . 27

4 Asymptotic Soft Filter Pruning 28

4.1 Introduction . 28

4.2 Related Work . 31

4.2.1 Matrix Decomposition . 31

4.2.2 Low Precision . 31

4.2.3 Weight Pruning . 32

4.2.4 Filter Pruning . 32

4.3 Methodology . 33

4.3.1 Preliminary . 33

4.3.2 Pruning with Hard Manner 35

4.3.3 Pruning with Soft Manner . 36

4.3.4 Asymptotic Soft Filter Pruning (ASFP) 37

4.3.4.1 Asymptotic Filter Selection 38

vii

4.3.4.2 Filter Pruning . 39

4.3.4.3 Reconstruction . 39

4.3.4.4 Obtaining Compact Model 40

4.3.5 Pruning Strategy for Convolutional Network 40

4.3.6 Computation Complexity Analysis 41

4.3.6.1 Theoretical Speedup Analysis 41

4.3.6.2 Realistic Speedup Analysis 42

4.4 Experiment . 42

4.4.1 Benchmark Datasets and Experimental Setting 42

4.4.2 VGGNet on CIFAR-10 . 45

4.4.3 ResNet on CIFAR-10 . 47

4.4.4 ResNet on ILSVRC-2012 . 48

4.4.5 Comparing SFP and ASFP 49

4.4.6 Ablation Study . 51

4.4.6.1 Filter Selection Criteria 51

4.4.6.2 Varying Pruned FLOPs 52

4.4.6.3 Selection of the Pruned Layers 52

4.4.6.4 Sensitivity of the ASFP Interval 53

4.4.6.5 Sensitivity of Parameter D of ASFP 53

4.5 Conclusion . 53

5 Filter Pruning via Geometric Median 54

5.1 Introduction . 54

5.2 Related Works . 57

5.3 Methodology . 58

viii

5.3.1 Preliminaries . 58

5.3.2 Analysis of Norm-based Criterion 59

5.3.3 Norm Statistics in Real Scenarios 60

5.3.4 Geometric Median . 62

5.3.5 Filter Pruning via Geometric Median 62

5.3.6 Theoretical and Realistic Acceleration 65

5.3.6.1 Theoretical Acceleration 65

5.3.6.2 Realistic Acceleration 65

5.4 Experiments . 68

5.4.1 Experimental Settings . 68

5.4.2 Single-Branch Network Pruning 69

5.4.3 Multiple-Branch Network Pruning 69

5.4.4 Ablation Study . 72

5.4.5 Feature Map Visualization . 73

5.5 Conclusion . 74

6 Learning Filter Pruning Criteria 75

6.1 Introduction . 75

6.2 Related Work . 78

6.3 Methodology . 80

6.3.1 Preliminaries . 80

6.3.2 Learning Filter Pruning Criteria 81

6.3.2.1 Pruning Criteria . 81

6.3.2.2 Criteria Space Complexity 83

6.3.2.3 Di↵erentiable Criteria Sampler 83

ix

6.4 Experiments . 86

6.4.1 Experimental Setting . 86

6.4.2 ResNet on CIFAR-10 . 89

6.4.3 ResNet on CIFAR-100 . 91

6.4.4 ResNet on ILSVRC-2012 . 92

6.4.5 More Explorations . 92

6.5 Conclusion . 95

7 Conclusion and Future Work 96

7.1 Conclusion . 96

7.2 Future Work . 97

Bibliography 99

List of Figures

1.1 Neural network acceleration is about breaking the existing “wall”

between algorithm and hardware to fit machine learning algorithms

into the resource-constrained hardware platforms. 1

3.1 Hard Filter Pruning v.s. Soft Filter Pruning. We mark the

pruned filter as the green dashed box. For the hard filter pruning,

the pruned filters are always fixed during the whole training

procedure. Therefore, the model capacity is reduced and thus harms

the performance because the dashed blue box is useless during

training. On the contrary, our SFP allows the pruned filters to be

updated during the training procedure. In this way, the model

capacity is recovered from the pruned model, and thus leads a

better accuracy. 12

3.2 Overview of SFP. At the end of each training epoch, we prune the

filters based on their importance evaluations. The filters are ranked

by their `p-norms (purple rectangles) and the small ones (blue

circles) are selected to be pruned. After filter pruning, the model

undergoes a reconstruction process where pruned filters are capable

of being reconstructed (i.e., updated from zeros) by the

forward-backward process. (a): filter instantiations before pruning.

(b): filter instantiations after pruning. (c): filter instantiations after

reconstruction. 16

xi

3.3 Accuracy of ResNet-110 on CIFAR-10 regarding di↵erent

hyper-parameters. (Solid line and shadow denotes the mean and

standard deviation of three experiment, respectively.) 26

4.1 Hard filter pruning v.s. soft filter pruning. We mark the pruned

filter as the orange dashed box. For the hard filter pruning, the

pruned filters are always fixed during the whole training procedure.

Therefore, the model capacity is reduced and thus harms the

performance because the dashed blue box is useless during training.

On the contrary, our soft pruning method allows the pruned filters

to be updated during the training procedure. In this way, the

model capacity is recovered from the pruned model and thus leads a

better accuracy. 29

4.2 Pruning and training schedule of HFP and SFP. Before training, we

first select some filters with pre-defined importance evaluations.

HFP directly deletes these filters before training, while for SFP,

those are set to zero and kept. During training (epoch 1 to N), the

model size is smaller than the original one for HFP. While for SFP,

the zero value filters (filter 2 and 5) become non-zero after training

epoch 1. Then we evaluate the importance of filters again and prune

filter 3 and 4. The model size would not be reduced but be the same

as the original one. When training is finished, the final pruned

model is the model at epoch N for HFP. While for SFP, we delete

the zero value filters (filter 3 and 6) at epoch N to get the final

pruned model. 34

4.3 Overview of HFP (first row), SFP (second row) and ASFP (third

row). (a): filter instantiations before pruning. (b): filter

instantiations after pruning. (c): filter instantiations after

reconstruction. The filters are ranked by their `p-norms and the

small ones (purple rectangles) are selected to be pruned. 35

xii

4.4 Pruning residual block with pruning rate 50%. Red and green

number means the remaining output channel number and input

channel number after pruning, respectively. “BN” and “ReLU”

represents the batch norm layer and non-linear layer, respectively. . 41

4.5 Asymptotically changed pruning rate when the goal pruning rate is

30%. Three blue points are the three pairs to generate the

exponential function of pruning rate (the solid curve). 46

4.6 Model performance regarding di↵erent ratio of pruned FLOPs. The

green line indicates the model without pruning. The blue and the

orange lines represent the model under ASFP and SFP, respectively. . 48

4.7 The training process of ResNet-18 and ResNet-50 and on ImageNet

regarding SFP and ASFP. The solid blue line and red dashed line

indicate the accuracy of the model before and after pruning,

respectively. The black line is the performance gap due to pruning,

which is calculated by the accuracy after pruning subtracting that

before pruning. 50

4.8 Ablation study of ASFP. (Solid line and shadow denote the mean

and standard deviation of three experiments, respectively.) 50

xiii

5.1 An illustration of (a) the pruning criterion for norm-based approach

and the proposed method; (b) requirements for norm-based filter

pruning criterion. In (a), the green boxes denote the filters of the

network, where deeper color denotes larger norm of the filter. For

the norm-based criterion, only the filters with the largest norm are

kept based on the assumption that smaller-norm filters are less

important. In contrast, the proposed method prunes the filters with

redundant information in the network. In this way, filters with

di↵erent norms indicated by di↵erent intensities of green may be

retained. In (b), the blue curve represents the ideal norm

distribution of the network, and the v1 and v2 is the minimal and

maximum value of norm distribution, respectively. To choose the

appropriate threshold T (the red shadow), two requirements should

be achieved, that is, the norm deviation should be large, and the

minimum of the norm should be arbitrarily small. 55

5.2 Ideal and Reality of the norm-based criterion: (a) Small Norm

Deviation and (b) Large Minimum Norm. The blue dashed curve

indicates the ideal norm distribution, and the green solid curve

denotes the norm distribution might occur in real cases. 59

5.3 Norm distribution of filters from di↵erent layers of ResNet-110 on

CIFAR-10 and ResNet-18 on ILSVRC-2012. The small green

vertical lines and blue curves denote each norm and Kernel

Distribution Estimate (KDE) of the norm distribution, respectively. 61

5.4 Accuracy of ResNet-110 on CIFAR-10 regarding di↵erent

hyper-parameters. Solid line and shadow denotes the mean values

and standard deviation of three experiments, respectively. 72

5.5 Input image (left) and visualization of feature maps (right) of

ResNet-50-conv1. Feature maps with red bounding boxes are the

channels to be pruned. 74

xiv

6.1 (a) Previous filter pruning methods manually select a criterion and

apply it to all layers; (b) our pruning method learns appropriate

criteria for di↵erent layers based on the filter distribution. In the

blue dashed box, the solid boxes of di↵erent colors denote di↵erent

pruning criteria. The yellow boxes without shadow correspond to

unpruned layers of the network, while the ones with shadow are the

layers pruned by a selected pruning criterion. 75

6.2 Criteria forward and backward in the network. Grey boxes are the

normal filters. The probability distribution of criteria for three

layers are initialized, as shown in the big orange shadow. After

pruning with four criteria, we obtain four “pruned versions” for

every layer, which are denoted as boxes in purple, green, orange,

and blue color. These filters are utilized to conduct criteria forward.

Then we get the criteria loss on the validation set to update the

“criteria distribution”. 82

6.3 Criteria forward within a layer. Boxes of di↵erent colors indicate the

di↵erent pruning criteria. First, we evaluate the importance of the

filter based on di↵erent criteria. Second, we prune the filter with

small importance scores and get four versions of pruned layers with

various probabilities. After that, the output feature map is the

aligned weighted sum of four feature maps of the pruned layers. . . . 83

6.4 Visualization of the learned criteria and kept filters for ResNet-56

on CIFAR-10. The grey strip indicates the layers before pruning.

The blue, orange and green color denote `1-norm, `2-norm and

geometric median criteria, respectively. For example, the bottom

green strip means that for all the 64 filters in 55th layer, GM

criterion is automatically selected to prune half of those filters, base

on the filter distribution on that layer. 91

xv

6.5 Visualization of the conventional and adversarial criteria for

ResNet-56 on CIFAR-10. The grey strip indicates the layers before

pruning. Di↵erent blue and green colors represent di↵erent pruning

criteria. 93

6.6 The learned criteria during training the criteria sampler. The L1,

L2, and GM denote conventional `1-norm, `2-norm, and geometric

median criteria, respectively. 94

List of Tables

3.1 Comparison of pruning ResNet on CIFAR-10. In “Fine-tune?”

column, “Y” and “N” indicate whether to use the pre-trained model

as initialization or not, respectively. The “Accu. Drop” is the

accuracy of the pruned model minus that of the baseline model, so

negative number means the accelerated model has a higher accuracy

than the baseline model. A smaller number of ”Accu. Drop” is better. 21

3.2 Comparison of pruning ResNet on ImageNet. “Fine-tune?” and

”Accu. Drop” have the same meaning with Tab. 3.1. 23

3.3 Comparison on the theoretical and realistic speedup. We only count

the time consumption of the forward procedure. 24

4.1 Overall performance of pruning ResNet on CIFAR-10. 43

4.2 Pruning from scratch and pre-trained VGGNet on CIFAR-10. “FT”

means “fine-tuning” the pruned model. 46

4.3 Overall performance of pruning ResNet on ImageNet. 47

4.4 Comparison of the theoretical and realistic speedup. We only count

the time consumption of the forward procedure. 49

4.5 Accuracy of CIFAR-10 on ResNet-110 under di↵erent pruning rate

with di↵erent filter selection criteria. 51

xvii

5.1 Comparison of pruned ResNet on CIFAR-10. In “Fine-tune?”

column, “3” and “7” indicates whether to use the pre-trained

model as initialization or not, respectively. The “Acc. #” is the

accuracy drop between pruned model and the baseline model, the

smaller, the better. 66

5.2 Comparison of pruned ResNet on ILSVRC-2012. “Fine-tune?” and

”acc. #” have the same meaning with Table 3.1. 67

5.3 Pruning pre-trained VGGNet on CIFAR-10. “w.o.” means

“without” and “FT” means “fine-tuning” the pruned model. 70

5.4 Pruning scratch VGGNet on CIFAR-10. “SA” means “sensitivity

analysis”. Without sensitivity analysis, FPGM can still achieve

comparable performances comparing to [1]; after introducing

sensitivity analysis, FPGM can surpass [1]. 70

5.5 Comparison on the theoretical and realistic acceleration. Only the

time consumption of the forward procedure is considered. 71

6.1 Di↵erent categories of filter pruning algorithms. “W” and “A”

denote the weight-based and activation-based criteria. “O” and “G”

indicate the one-shot and greedy pruning. 78

6.2 Comparison of the pruned ResNet on CIFAR-10. In “Init pretrain”

column, “3” and “7” indicate whether to use the pre-trained model

as initialization or not, respectively. The “Acc. #” is the accuracy

drop between pruned model and the baseline model, the smaller, the

better. A negative value in “Acc. #” indicates an improved model

accuracy. 87

6.3 Comparison of the pruned ResNet on ImageNet. “Init Pretrain” and

”acc. #” have the same meaning with Table 3.1. 89

6.4 Comparison of the pruned ResNet-56 on CIFAR-100. 92

xviii

6.5 Analysis of adversarial criteria. “w Adv” and “w/o Adv” denote

containing the adversarial criteria or not, respectively. 94

ABSTRACT

Accelerating Deep Convolutional Neural Networks via Filter Pruning

by

Yang He

The superior performance of deep Convolutional Neural Networks (CNNs) usu-

ally comes from the deeper and wider architectures, which cause the prohibitively

expensive computation cost. To reduce the computational cost, works on model

compression and acceleration have recently emerged. Among all the directions for

this goal, filter pruning has attracted attention in recent studies due to its e�cacy.

For a better understanding of filter pruning, this thesis explores di↵erent aspects

of filter pruning, including pruning mechanism, pruning ratio, pruning criteria, and

automatic pruning. First, we improve the pruning mechanism with soft filter prun-

ing so that the mistaken pruned filters can have a chance to be recovered. Second,

we consider the asymptotic pruning rate to reduce the sudden information loss in

the pruning process. Then we explore the pruning criteria to better measure the

importance of filters. Finally, we propose the automatic pruning method to save hu-

man labor. Our methods lead to superior convolutional neural network acceleration

results.

Dissertation directed by Professor Yi Yang

ReLER, Australian Artificial Intelligence Institute, School of Software

1

Chapter 1

Introduction

1.1 Background

����

���

��	
���

���
����
��

���������
��

����
����

������
��

�
� �����

�����
�	� ��������

���

���

���

������	���

�� �
��

���	
���� ��

�������
�
��

! ���
"��
��

�����
�	�#	������� ��#��
��

Figure 1.1 : Neural network acceleration is about breaking the existing “wall” be-

tween algorithm and hardware to fit machine learning algorithms into the resource-

constrained hardware platforms.

The superior performance of deep neural networks usually comes from the deeper

and wider architectures, which cause the prohibitively expensive computation cost.

The storage, memory, and computation costs of these cumbersome models signif-

icantly exceed the computing limitation of resource constraint platforms such as

self-driving cars, unmanned aerial vehicle, and neural processing unit (NPU) in

chips. Therefore, it is essential to maintain the deep neural network models to have

2

a relatively low computational cost but ensure high accuracy in real-world applica-

tions.

As shown in in Fig. 1.1, the left side are di↵erent kinds of algorithms, includ-

ing detection, classification, image retrieval, segmentation. The right side are some

hardware platforms such as FPGA, vehicles, Digital Signal Processors (DSP), air

drones, and smart photos. Inside the black dashed circle, it is about Algorithm-

hardware Co-design. For example, some novel neural architectures, quantization

methods, pruning methods, and network tensor decomposition are proposed to fit

the hardware. Similarly, Tensor Processing Unit (TPU), Graphics Processing Unit

(GPU), and Neural Processing Unit (NPU) are proposed to fit the algorithms. Neu-

ral network acceleration is about breaking the existing “wall” between algorithm and

hardware, to fit machine learning algorithms into the resource-constrained hardware

platforms.

Deep neural network compression and accelerating methods can be roughly di-

vided into four categories, namely, novel architecture, matrix decomposition, quan-

tization, and pruning. novel architecture such as depth-wise separable convolution

of MobileNet and pointwise group convolution and channel shu✏e of Shu✏eNet

can lead to lightweight deep neural networks. Matrix decomposition proposes to

representing the weight matrix of the convolutional network as a low-rank product

of two smaller matrices to reduce the calculation. Quantization aims to store and

use only low-precision weights during the inference procedure so that the storage

and computation cost can be reduced. Pruning-based approaches aim to remove

the unnecessary connections of the neural network [2], and have recently attracted

attention.

Recent developments on pruning can be divided into two categories, i.e., weight

pruning [2–5] and filter pruning [1, 6–54]. Weight pruning directly removes weight

3

values and causes unstructured sparsities. On the contrary, filter pruning removes

the whole filter to obtain the models with structured sparsity. Therefore, filter prun-

ing is preferred compared to weight pruning because filter pruning could make the

pruned model more structural and achieve practical acceleration. The conventional

filter pruning methods follow a three-stage pipeline. (1) Training : training a large

model on the target dataset. (2) Pruning : based on a particular criterion, unim-

portant filters from the pre-trained model are pruned. (3) Fine-tuning (retraining):

the pruned model is retrained to recover the original performance.

Research Objectives. As depicted in Fig. 1.1, neural network acceleration is

about bridging the hardware and machine learning algorithm. The research objec-

tives of this thesis is to build new paradigms of pruning methods to obtain neural

networks that fit into resource-constrained hardware platforms.

1.2 Thesis Organization

An introduction to the battery storage system, including the lithium-ion battery

and the BMS are given in the previous sections. According to the overview, there is

space to improve the e�ciency and reliability of the battery storage system from the

measurement, modelling, and states estimation perspectives. This thesis is organised

as follows:

• Chapter 2: This chapter proposed a Soft Filter Pruning (SFP) method to accel-

erate the inference procedure of deep Convolutional Neural Networks (CNNs).

Specifically, the proposed SFP enables the pruned filters to be updated when

training the model after pruning. SFP has two advantages over previous works:

(1) Larger model capacity; (2) Less dependence on the pre-trained model.

• Chapter 3: This chapter proposed a Soft Filter Pruning (SFP) method to accel-

erate the inference procedure of deep Convolutional Neural Networks (CNNs).

4

Specifically, the proposed SFP enables the pruned filters to be updated when

training the model after pruning. SFP has two advantages over previous works:

(1) Larger model capacity; (2) Less dependence on the pre-trained model.

• Chapter 4: In this chapter, we analyze previous norm-based criterion and point

out that its e↵ectiveness depends on two requirements that are not always met:

(1) the norm deviation of the filters should be large; (2) the minimum norm

of the filters should be small. To solve this problem, we propose a novel filter

pruning method, namely Filter Pruning via Geometric Median (FPGM), to

compress the model regardless of those two requirements.

• Chapter 5: In this chapter, we propose an Asymptotic Soft Filter Pruning

(ASFP) method to accelerate the inference procedure of the deep neural net-

works. Specifically, we prune few filters at first and asymptotically prune

more filters during the training procedure. With asymptotic pruning, the in-

formation of the training set would be gradually concentrated in the remaining

filters, so the subsequent training and pruning process would be stable.

• Chapter 6: In this chapter, we propose Learning Filter Pruning Criteria (LFPC)

to adaptively select the appropriate pruning criteria for di↵erent functional

layers. Specifically, we develop a di↵erentiable pruning criteria sampler. This

sampler is learnable and optimized by the validation loss of the pruned network

obtained from the sampled criteria. Besides, when evaluating the sampled cri-

teria, LFPC comprehensively considers the contribution of all the layers at the

same time.

• Chapter 7: A brief summary of the thesis contents and its contributions are

given in the final chapter. Recommendations for future research are given in

addition.

5

Chapter 2

Related Works

2.1 Matrix Decomposition

To reduce the computation costs of the convolutional layers, previous works

propose to represent the weight matrix of the convolutional network as a low-rank

product of two smaller matrices [55–60]. Then the calculation of production of one

large matrix turns to the production of two smaller matrices. For example, [55]

exploits cross-channel or filter redundancy to construct a low-rank basis of filters

that are rank-1 in the spatial domain. [56, 57] develops an e↵ective solution to the

resulting nonlinear optimization problem without the need for stochastic gradient

descent (SGD). [58] proposes a new algorithm for computing the low-rank tensor

decomposition for removing the redundancy in the convolution kernel. [59] presents

an e�cient general sparse-with-dense matrix multiplication implementation that is

applicable to the convolution of feature maps with kernels of arbitrary sparsity pat-

terns. [60] presents a new tensor-factorized NN (TFNN), which tightly integrates

TF and NN for multiway feature extraction and classification under a unified dis-

criminative objective.

However, the computational cost of tensor decomposition operation is expensive,

which is not friendly to train deep CNNs. Besides, there exists an increasing usage of

1⇥1 convolution kernel in some recent neural networks, such as the bottleneck block

structure of ResNet [61], cases where it is di�cult to apply matrix decomposition.

6

2.2 Low Precision

Some other researchers focus on low-precision implementation to compress and

accelerate CNN models [5, 62–65]. Zhou et al. [62] propose trained ternary quan-

tization to reduce the precision of weights in neural networks to ternary values.

The authors of [63] present incremental network quantization, targeting to convert

pre-trained full-precision CNN model into a low-precision version e�ciently. [64] in-

troduces a method to train Binarized Neural Networks (BNNs) - neural networks

with binary weights and activations at run-time. [65] proposes two e�cient approx-

imations to standard convolutional neural networks: Binary-Weight-Networks and

XNOR-Networks.

In this situation, only low-precision weights are stored and used during the infer-

ence procedure, with the storage and computation cost being dramatically reduced.

This direction can work cooperatively with pruning methods [5] to achieve better

performance.

2.3 Weight Pruning

Recent work [4, 5, 66] prunes weights of neural networks. For example, [4] pro-

posed an iterative weight pruning method by discarding the small weights whose

values are below the threshold. [66] proposed the dynamic network surgery to reduce

the training iteration while maintaining good prediction accuracy. [3, 67] leveraged

the sparsity property of feature maps or weight parameters to accelerate the CNN

models. To this end, [3] proposed the Structured Sparsity Learning (SSL) method to

regularize filter, channel, filter shape and depth structures. [67] applied the group-

sparsity regularization on the loss function to shrink some entire groups of weights

towards zeros. However, weight pruning always leads to unstructured models, so the

model cannot leverage the existing e�cient BLAS libraries in practice. Therefore,

7

it is di�cult for weight pruning to achieve realistic speedup. Meanwhile, Bayesian

methods [68] are also applied to network pruning. [68] extends the soft weight

sharing to obtain a sparse and compressed network. [?] uses hierarchical priors to

prune nodes and utilizes the posterior uncertainties to encode the weights. [?] uses

variational inference to learn the dropout rate, which can then be used to prune the

network. However, these methods are evaluated on rather small datasets such as

MNIST [69] and CIFAR-10 [70].

2.4 Filter Pruning

Pruning the filters [1,14,15,19] leads to the removal of the corresponding feature

maps, thus not only reducing the storage usage on devices but also decreasing the

memory footprint consumption. Considering whether to utilize the training data to

determine the pruned filters, the filter pruning methods are roughly divided into two

categories, data dependent and data independent filter pruning. The latter method

is more e�cient than the former since training data may not be available during the

pruning process.

Data Dependent Filter Pruning. Some approaches [14–17, 19, 21, 22, 71,

72] utilize the training data to determine the pruned filters. The authors of [71]

minimize the reconstruction error of activation maps to obtain a decomposition

of convolutional layers. Luo et al. [19] adopt the statistics information from the

next layer to guide the importance evaluation of filters. [8] proposes an inherently

data-driven that which uses Principal Component Analysis (PCA) to specify the

proportion of the energy that should be preserved. [73] applies subspace clustering

to feature maps to eliminate the redundancy in convolutional filters. [15] imposes

sparsity regularization on the scaling factors of the network. [14] utilizes the LASSO

regression to select channels. [17] proposes to minimize the reconstruction error of

important responses in the “final response layer”, and derives a closed-form solution

8

to it for pruning neurons in earlier layers.

Data Independent Filter Pruning. Concurrently with our work, some data

independent filter pruning strategies [1, 6, 20, 74] have been explored. Li et al. [1]

explore the sensitivity of layers for filter pruning and utilize a `1-norm criterion

to prune unimportant filters. Ye et al. [20] prune models by enforcing sparsity on

the scaling parameters of batch normalization layers. [6] proposes to select filters

with a `2-norm criterion and prune those selected filters in a soft manner. [9] uses

spectral clustering on filters to select unimportant ones. However, for all these filter

pruning methods, the representative capacity of the neural network after pruning is

seriously a↵ected by a smaller optimization space. Besides, the information loss at

the beginning is significant and unrecoverable.

2.5 Neural Architecture Search

DARTS [75] proposes to search the architecture e�ciently using gradient descent.

ENAS [76] proposes to share parameters between child models, so the search pro-

cess is fast. Note that the sub-architectures in DARTS and child models in ENAS

need to be trained during searching, while our sub-networks do not. Our method

is also di↵erent from one-shot NAS [77] which generates the weights for sampled

architecture using a HyperNet. [78] presents the MobileNet-V3 based on a combina-

tion of complementary search techniques as well as a novel architecture design. [79]

proposes an automated mobile neural architecture search (MNAS) approach, which

explicitly incorporates model latency into the main objective so that the search can

identify a model that achieves a good trade-o↵ between accuracy and latency. [80]

addresses the high memory consumption issue of di↵erentiable NAS and reduces

the computational cost (GPU hours and GPU memory) to the same level of regular

training. [81] proposes a di↵erentiable neural architecture search (DNAS) framework

that uses gradient-based methods to optimize ConvNet architectures, avoiding enu-

9

merating and training individual architectures separately as in previous methods.

Our LFPC method shares some basic ideas with Neural Architecture Search.

2.6 Vision Transformer Compression

Vision transformer is firstly proposed in ViT [82], which utilizes attention not on

pixels, but instead on small patches of the images. Becasuse Vision Transformers

require lots of computational costs, some methods [83–91] are proposed for vision

transformer compression and acceleration. Reduce the input image tokens is a

direction. For example, DynamicViT [85] prunes redundant tokens progressively.

EViT [86] reorganizes the token to reduce the computational cost of multi-head

self-attention. Another direction is to reduce the parameters of the network it-

self. In this direction, pruning methods can be utilized. NViT [91] uses structural

pruning with latency-aware regularization on all parameters of the vision trans-

former. UVC [90] assembles three e↵ective techniques, pruning, layer skipping, and

knowledge distillation, for e�cient ViT. VTP [87] prunes the unimportant features

of the ViT with sparsity regularization. AutoFormer [88] uses architecture search

framework for vision transformer search. As-ViT [89] automatically scales up ViTs.

2.7 Applications

Pruning methods have lots of industrial applications, including robotics, com-

puter vision, and the medical industry. Specifically, for inspection robots which

are typically limited in computing and memory resources, [92] introduces a solution

based on network pruning using Taylor expansion to utilize pre-trained deep con-

volutional neural networks for e�cient edge computing. [93] finds that, with some

forms of pruning, a large portion of the connections can be pruned without strongly

a↵ecting robot capabilities. [94] finds that incorporating some forms of pruning in

neuro-evolution leads to almost equally e↵ective controllers for a locomotion task,

10

and for centralized as well as distributed controllers.

Pruning methods are also utilized in [95] for real-time fruit detection and local-

ization in orchards. [96] focuses on real-time and accurate detection of apple flowers

using pruning. [97] uses pruning methods for synthetic aperture radar (SAR) ship

real-time detection. [98] proposes pruning methods for tracking social distances or

recognizing face masks. Pruning methods can also be applied to hardware. In [99],

the authors use pruning on three hardware architectures, namely CPU, GPU, and

Intel Movidius Neural Computer Stick (NCS). Medical image analysis also uses

pruning methods. [100] utilizes pruning for biomedical image segmentation. [101]

introduces pruning to skin lesion image segmentation. [102] improves the defense of

the medical imaging system against adversarial examples with pruning.

11

Chapter 3

Soft Filter Pruning

3.1 Introduction

The superior performance of deep CNNs usually comes from the deeper and wider

architectures, which cause the prohibitively expensive computation cost. Even if we

use more e�cient architectures, such as residual connection [61] or inception mod-

ule [103], it is still di�cult in deploying the state-of-the-art CNN models on mobile

devices. For example, ResNet-152 has 60.2 million parameters with 231MB storage

spaces; besides, it also needs more than 380MB memory footprint and six seconds

(11.3 billion float point operations, FLOPs) to process a single image on CPU. The

storage, memory, and computation of this cumbersome model significantly exceed

the computing limitation of current mobile devices. Therefore, it is essential to main-

tain the small size of the deep CNN models which has relatively low computational

cost but high accuracy in real-world applications.

Recent e↵orts have been made either on directly deleting weight values of fil-

ters [4] (i.e., weight pruning) or totally discarding some filters (i.e., filter prun-

ing) [1,14,19]. However, the weight pruning may result in the unstructured sparsity

of filters, which may still be less e�cient in saving the memory usage and computa-

tional cost, since the unstructured model cannot leverage the existing high-e�ciency

BLAS libraries. In contrast, the filter pruning enables the model with structured

sparsity and more e�cient memory usage than weight pruning, and thus takes full

advantage of BLAS libraries to achieve a more realistic acceleration. Therefore, the

filter pruning is more advocated in accelerating the networks.

12

Input

Filters

Output
Convolution

Operation 灤

灤

Hard pruned
never update

灤灤

Soft pruned
allow update

Capacity
Reduced

Capacity
Maintained

Hard
Filter

Pruning

Non-zero

Still zero

灤

Training

Soft
Filter

Pruning

Training

Figure 3.1 : Hard Filter Pruning v.s. Soft Filter Pruning. We mark the pruned

filter as the green dashed box. For the hard filter pruning, the pruned filters are

always fixed during the whole training procedure. Therefore, the model capacity

is reduced and thus harms the performance because the dashed blue box is useless

during training. On the contrary, our SFP allows the pruned filters to be updated

during the training procedure. In this way, the model capacity is recovered from the

pruned model, and thus leads a better accuracy.

Nevertheless, most of the previous works on filter pruning still su↵er from the

problems of (1) the model capacity reduction and (2) the dependence on pre-trained

model. Specifically, as shown in Fig. 3.1, most previous works conduct the “hard

filter pruning”, which directly delete the pruned filters. The discarded filters will

reduce the model capacity of original models, and thus inevitably harm the perfor-

mance. Moreover, to maintain a reasonable performance with respect to the full

models, previous works [1, 14, 19] always fine-tuned the hard pruned model after

pruning the filters of a pre-trained model, which however has low training e�ciency

and often requires much more training time than the traditional training schema.

13

To address the above mentioned two problems, we propose a novel Soft Filter

Pruning (SFP) approach. The SFP dynamically prunes the filters in a soft manner.

Particularly, before first training epoch, the filters of almost all layers with small

`2-norm are selected and set to zero. Then the training data is used to update the

pruned model. Before the next training epoch, our SFP will prune a new set of filters

of small `2-norm. These training process is continued until converged. Finally, some

filters will be selected and pruned without further updating. The SFP algorithm

enables the compressed network to have a larger model capacity, and thus achieve

a higher accuracy than others.

Contributions. We highlight three contributions: (1) We propose SFP to allow

the pruned filters to be updated during the training procedure. This soft manner

can dramatically maintain the model capacity and thus achieves the superior perfor-

mance. (2) Our acceleration approach can train a model from scratch and achieve

better performance compared to the state-of-the-art. In this way, the fine-tuning

procedure and the overall training time is saved. Moreover, using the pre-trained

model can further enhance the performance of our approach to advance the state-

of-the-art in model acceleration. (3) The extensive experiment on two benchmark

datasets demonstrates the e↵ectiveness and e�ciency of our SFP. We accelerate

ResNet-110 by two times with about 4% relative accuracy improvement on CIFAR-

10, and also achieve state-of-the-art results on ILSVRC-2012.

3.2 Related Works

Most previous works on accelerating CNNs can be roughly divided into three

categories, namely, matrix decomposition, low-precision weights, and pruning. In

particular, the matrix decomposition of deep CNN tensors is approximated by the

product of two low-rank matrices [55,56,58]. This can save the computational cost.

Some works [62,63] focus on compressing the CNNs by using low-precision weights.

14

Pruning-based approaches aim to remove the unnecessary connections of the neural

network [1, 4]. Essentially, the work of this paper is based on the idea of pruning

techniques; and the approaches of matrix decomposition and low-precision weights

are orthogonal but potentially useful here – it may be still worth simplifying the

weight matrix after pruning filters, which would be taken as future work.

Weight Pruning. Many recent works [4,5,66] pruning weights of neural network

resulting in small models. For example, [4] proposed an iterative weight pruning

method by discarding the small weights whose values are below the threshold. [66]

proposed the dynamic network surgery to reduce the training iteration while main-

taining a good prediction accuracy. [3,67] leveraged the sparsity property of feature

maps or weight parameters to accelerate the CNN models. A special case of weight

pruning is neuron pruning. However, pruning weights always leads to unstructured

models, so the model cannot leverage the existing e�cient BLAS libraries in practice.

Therefore, it is di�cult for weight pruning to achieve realistic speedup.

Filter Pruning. Concurrently with our work, some filter pruning strategies

[1, 14, 15, 19] have been explored. Pruning the filters leads to the removal of the

corresponding feature maps. This not only reduces the storage usage on devices but

also decreases the memory footprint consumption to accelerate the inference. [1] uses

`1-norm to select unimportant filters and explores the sensitivity of layers for filter

pruning. [15] introduces `1 regularization on the scaling factors in batch normaliza-

tion (BN) layers as a penalty term, and prune channel with small scaling factors

in BN layers. [16] proposes a Taylor expansion based pruning criterion to approxi-

mate the change in the cost function induced by pruning. [19] adopts the statistics

information from next layer to guide the importance evaluation of filters. [14] pro-

poses a LASSO-based channel selection strategy, and a least square reconstruction

algorithm to prune filers. However, for all these filter pruning methods, the repre-

sentative capacity of neural network after pruning is seriously a↵ected by smaller

15

optimization space.

Discussion. To the best of our knowledge, there is only one approach that uses

the soft manner to prune weights [66]. We would like to highlight our advantages

compared to this approach as below: (1) Our SPF focuses on the filter pruning, but

they focus on the weight pruning. As discussed above, weight pruning approaches

lack the practical implementations to achieve the realistic acceleration. (2) [66] paid

more attention to the model compression, whereas our approach can achieve both

compression and acceleration of the model. (3) Extensive experiments have been

conducted to validate the e↵ectiveness of our proposed approach both on large-

scale datasets and the state-of-the-art CNN models. In contrast, [66] only had the

experiments on Alexnet which is more redundant the advanced models, such as

ResNet.

3.3 Methodology

3.3.1 Preliminaries

We will formally introduce the symbol and annotations in this section. The

deep CNN network can be parameterized by {W(i)
2 RNi+1⇥Ni⇥K⇥K , 1 i L}

W(i) denotes a matrix of connection weights in the i-th layer. Ni denotes the

number of input channels for the i-th convolution layer. L denotes the number of

layers. The shapes of input tensor U and output tensor V are Ni ⇥ Hi ⇥ Wi and

Ni+1 ⇥Hi+1 ⇥Wi+1, respectively. The convolutional operation of the i-th layer can

be written as:

Vi,j = Fi,j ⇤U for 1 j Ni+1, (3.1)

where Fi,j 2 RNi⇥K⇥K represents the j-th filter of the i-th layer. W(i) consists of

16

Reconstruction

1.231

0

2.056

0

1.572

1.231

0.331

2.056

0.275

1.572

filters

Filter Pruning

k-th training epoch

2.512

1.324

0.056

0.897

3.742

a

filters
Pruned model (k+1)-th training epoch

filters

b c

importance importance importance
pxýý pxýý pxýý

Figure 3.2 : Overview of SFP. At the end of each training epoch, we prune the filters

based on their importance evaluations. The filters are ranked by their `p-norms

(purple rectangles) and the small ones (blue circles) are selected to be pruned.

After filter pruning, the model undergoes a reconstruction process where pruned

filters are capable of being reconstructed (i.e., updated from zeros) by the forward-

backward process. (a): filter instantiations before pruning. (b): filter instantiations

after pruning. (c): filter instantiations after reconstruction.

{Fi,j, 1 j Ni+1}. The Vi,j represents the j-th output feature map of the i-th

layer.

Pruning filters can remove the output feature maps. In this way, the computa-

tional cost of the neural network will reduce remarkably. Let us assume the pruning

rate of SFP is Pi for the i-th layer. The number of filters of this layer will be re-

duced from Ni+1 to Ni+1(1� Pi), thereby the size of the output tensor Vi,j can be

reduced to Ni+1(1� Pi)⇥Hi+1 ⇥Wi+1. As the output tensor of i-th layer is the

input tensor of i+ 1-th layer, we can reduce the input size of i-th layer to achieve a

higher acceleration ratio.

3.3.2 Soft Filter Pruning (SFP)

Most of previous filter pruning works [1,14,15,19] compressed the deep CNNs in

a hard manner. We call them as the hard filter pruning. Typically, these algorithms

firstly prune filters of a single layer of a pre-trained model and fine-tune the pruned

17

model to complement the degrade of the performance. Then they prune the next

layer and fine-tune the model again until the last layer of the model is pruned.

However, once filters are pruned, these approaches will not update these filters

again. Therefore, the model capacity is drastically reduced due to the removed

filters; and such a hard pruning manner a↵ects the performance of the compressed

models negatively.

As summarized in Alg. 1, the proposed SFP algorithm can dynamically remove

the filters in a soft manner. Specifically, the key is to keep updating the pruned

filters in the training stage. Such an updating manner brings several benefits. It not

only keeps the model capacity of the compressed deep CNN models as the original

models, but also avoids the greedy layer by layer pruning procedure and enable

pruning almost all layers at the same time. More specifically, our approach can

prune a model either in the process of training from scratch, or a pre-trained model.

In each training epoch, the full model is optimized and trained on the training data.

After each epoch, the `2-norm of all filters are computed for each weighted layer

and used as the criterion of our filter selection strategy. Then we will prune the

selected filters by setting the corresponding filter weights as zero, which is followed

by next training epoch. Finally, the original deep CNNs are pruned into a compact

and e�cient model. The details of SFP is illustratively explained in Alg. 1, which

can be divided into the following four steps.

Filter selection. We use the `p-norm to evaluate the importance of each filter

as Eq. equation 3.2. In general, the convolutional results of the filter with the smaller

`p-norm lead to relatively lower activation values; and thus have a less numerical

impact on the final prediction of deep CNN models. In term of this understanding,

such filters of small `p-norm will be given high priority of being pruned than those of

higher `p-norm. Particularly, we use a pruning rate Pi to select Ni+1Pi unimportant

filters for the i-th weighted layer. In other words, the lowest Ni+1Pi filters are

18

Algorithm 1 Algorithm Description of SFP

Input: training data: X, pruning rate: Pi

the model with parameters W = {W(i), 0 i L}.

Initialize the model parameter W

for epoch = 1; epoch epochmax; epoch++ do

Update the model parameter W based on X

for i = 1; i L; i++ do

Calculate the `2-norm for each filter kFi,jk2, 1 j Ni+1

Zeroize Ni+1Pi filters by `2-norm filter selection

end for

end for

Obtain the compact model with parameters W⇤ from W

Output: The compact model and its parameters W⇤

selected, e.g., the blue filters in Fig. 3.2. In practice, `2-norm is used based on the

empirical analysis.

kFi,jkp =
p

vuut
NiX

n=1

KX

k1=1

KX

k2=1

|Fi,j(n, k1, k2)|
p, (3.2)

Filter Pruning. We set the value of selected Ni+1Pi filters to zero (see the filter

pruning step in Fig. 3.2). This can temporarily eliminate their contribution to the

network output. Nevertheless, in the following training stage, we still allow these

selected filters to be updated, in order to keep the representative capacity and the

high performance of the model.

In the filter pruning step, we simply prune all the weighted layers at the same

time. In this way, we can prune each filter in parallel, which would cost negligible

computation time. In contrast, the previous filter pruning methods always conduct

19

layer by layer greedy pruning. After pruning filters of one single layer, existing

methods always require training to converge the network [14, 19]. This procedure

cost much extra computation time, especially when the depth increases. Moreover,

we use the same pruning rate for all weighted layers. Therefore, we need only one

hyper-parameter Pi = P to balance the acceleration and accuracy. This can avoid

the inconvenient hyper-parameter search or the complicated sensitivity analysis [1].

As we allow the pruned filters to be updated, the model has a large model capacity

and becomes more flexible and thus can well balance the contribution of each filter

to the final prediction.

Reconstruction. After the pruning step, we train the network for one epoch to

reconstruct the pruned filters. As shown in Fig. 3.2, the pruned filters are updated

to non-zero by back-propagation. In this way, SFP allows the pruned model to

have the same capacity as the original model during training. In contrast, hard

filter pruning decreases the number of feature maps. The reduction of feature maps

would dramatically reduce the model capacity, and further harm the performance.

Previous pruning methods usually require a pre-trained model and then fine-tune

it. However, as we integrate the pruning step into the normal training schema, our

approach can train the model from scratch. Therefore, the fine-tuning stage is no

longer necessary for SFP. As we will show in experiments, the network trained from

scratch by SFP can obtain the competitive results with the one trained from a well-

trained model by others. By leveraging the pre-trained model, SFP obtains a much

higher performance and advances the state-of-the-art.

Obtaining Compact Model. SFP iterates over the filter selection, filter prun-

ing and reconstruction steps. After the model gets converged, we can obtain a sparse

model containing many “zero filters”. One “zero filter” corresponds to one feature

map. The features maps, corresponding to those “zero filters”, will always be zero

during the inference procedure. There will be no influence to remove these filters

20

as well as the corresponding feature maps. Specifically, for the pruning rate Pi in

the i-th layer, only Ni+1(1� Pi) filters are non-zero and have an e↵ect on the final

prediction. Consider pruning the previous layer, the input channel of i-th layer is

changed from Ni to Ni(1� Pi�1). We can thus re-build the i-th layer into a smaller

one. Finally, a compact model {W⇤(i)
2 RNi+1(1�Pi)⇥Ni(1�Pi�1)⇥K⇥K

} is obtained.

3.3.3 Computation Complexity Analysis

Theoretical speedup analysis. Suppose the filter pruning rate of the ith layer

is Pi, which means the Ni+1 ⇥ Pi filters are set to zero and pruned from the layer,

and the other Ni+1 ⇥ (1� Pi) filters remain unchanged, and suppose the size of the

input and output feature map of ith layer is Hi ⇥Wi and Hi+1 ⇥Wi+1. Then after

filter pruning, the dimension of useful output feature map of the ith layer decreases

from Ni+1⇥Hi+1⇥Wi+1 to Ni+1(1�Pi)⇥Hi+1⇥Wi+1. Note that the output of ith

layer is the input of (i+ 1) th layer. And we further prunes the (i+ 1)th layer with

a filter pruning rate Pi+1, then the calculation of (i + 1)th layer is decrease from

Ni+2⇥Ni+1⇥k2
⇥Hi+2⇥Wi+2 to Ni+2(1�Pi+1)⇥Ni+1(1�Pi)⇥k2

⇥Hi+2⇥Wi+2.

In other words, a proportion of 1� (1� Pi+1)⇥ (1� Pi) of the original calculation

is reduced, which will make the neural network inference much faster.

Realistic speedup analysis. In theoretical speedup analysis, other opera-

tions such as batch normalization (BN) and pooling are negligible comparing to

convolution operations. Therefore, we consider the FLOPs of convolution opera-

tions for computation complexity comparison, which is commonly used in previous

work [1, 19]. However, reduced FLOPs cannot bring the same level of realistic

speedup because non-tensor layers (e.g., BN and pooling layers) also need the infer-

ence time on GPU [19]. In addition, the limitation of IO delay, bu↵er switch and

e�ciency of BLAS libraries also lead to the wide gap between theoretical and realis-

tic speedup ratio. We compare the theoretical and realistic speedup in Section 3.4.3.

21

Depth Method Fine-tune?Baseline Accu. (%)Accelerated Accu. (%)Accu. Drop (%)FLOPsPruned FLOPs(%)

20

[104] N 91.53 91.43 0.10 3.20E7 20.3

Ours(10%) N 92.20 ± 0.18 92.24 ± 0.33 -0.04 3.44E7 15.2

Ours(20%) N 92.20 ± 0.18 91.20 ± 0.30 1.00 2.87E7 29.3

Ours(30%) N 92.20 ± 0.18 90.83 ± 0.31 1.37 2.43E7 42.2

32

[104] N 92.33 90.74 1.59 4.70E7 31.2

Ours(10%) N 92.63 ± 0.70 93.22 ± 0.09 -0.59 5.86E7 14.9

Ours(20%) N 92.63 ± 0.70 90.63 ± 0.37 0.00 4.90E7 28.8

Ours(30%) N 92.63 ± 0.70 90.08 ± 0.08 0.55 4.03E7 41.5

56

[1] N 93.04 91.31 1.75 9.09E7 27.6

[1] Y 93.04 93.06 -0.02 9.09E7 27.6

[14] N 92.80 90.90 1.90 - 50.0

[14] Y 92.80 91.80 1.00 - 50.0

Ours(10%) N 93.59 ± 0.58 93.89 ± 0.19 -0.30 1.070E8 14.7

Ours(20%) N 93.59 ± 0.58 93.47 ± 0.24 0.12 8.98E7 28.4

Ours(30%) N 93.59 ± 0.58 93.10 ± 0.20 0.49 7.40E7 41.1

Ours(30%) Y 93.59 ± 0.58 93.78 ± 0.22 -0.19 7.40E7 41.1

Ours(40%) N 93.59 ± 0.58 92.26 ± 0.31 1.33 5.94E7 52.6

Ours(40%) Y 93.59 ± 0.58 93.35 ± 0.31 0.24 5.94E7 52.6

110

[1] N 93.53 92.94 0.61 1.55E8 38.6

[1] Y 93.53 93.30 0.20 1.55E8 38.6

[104] N 93.63 93.44 0.19 - 34.2

Ours(10%) N 93.68 ± 0.32 93.83 ± 0.19 -0.15 2.16E8 14.6

Ours(20%) N 93.68 ± 0.32 93.93 ± 0.41 -0.25 1.82E8 28.2

Ours(30%) N 93.68 ± 0.32 93.38 ± 0.30 0.30 1.50E8 40.8

Ours(30%) Y 93.68 ± 0.32 93.86 ± 0.21 -0.18 1.50E8 40.8

Table 3.1 : Comparison of pruning ResNet on CIFAR-10. In “Fine-tune?” column,

“Y” and “N” indicate whether to use the pre-trained model as initialization or not,

respectively. The “Accu. Drop” is the accuracy of the pruned model minus that of

the baseline model, so negative number means the accelerated model has a higher

accuracy than the baseline model. A smaller number of ”Accu. Drop” is better.

22

3.4 Evaluation and Results

3.4.1 Benchmark Datasets and Experimental Setting

Our method is evaluated on two benchmarks: CIFAR-10 [70] and ILSVRC-

2012 [105]. The CIFAR-10 dataset contains 50,000 training images and 10,000 test-

ing images, which are categorized into 10 classes. ILSVRC-2012 is a large-scale

dataset containing 1.28 million training images and 50k validation images of 1,000

classes. Following the common setting in [14, 19, 104], we focus on pruning the

challenging ResNet model in this paper. SFP should also be e↵ective on di↵erent

computer vision tasks, such as [106–112], and we will explore this in future.

In the CIFAR-10 experiments, we use the default parameter setting as [113]

and follow the training schedule in [114]. On ILSVRC-2012, we follow the same

parameter settings as [61,113]. We use the same data argumentation strategies with

PyTorch o�cial examples [115].

We conduct our SFP operation at the end of every training epoch. For pruning a

scratch model, we use the normal training schedule. For pruning a pre-trained model,

we reduce the learning rate by 10 compared to the schedule for the scratch model.

We run each experiment three times and report the “mean ± std”. We compare the

performance with other state-of-the-art acceleration algorithms, e.g., [1,14,19,104].

3.4.2 ResNet on CIFAR-10

Settings. For CIFAR-10 dataset, we test our SFP on ResNet-20, 32, 56 and

110. We use several di↵erent pruning rates, and also analyze the di↵erence between

using the pre-trained model and from scratch.

Results. Tab. 3.1 shows the results. Our SFP could achieve a better perfor-

mance than the other state-of-the-art hard filter pruning methods. For example, [1]

use the hard pruning method to accelerate ResNet-110 by 38.6% speedup ratio with

23

0.61% accuracy drop when without fine-tuning. When using pre-trained model and

fine-tuning, the accuracy drop becomes 0.20%. However, we can accelerate the in-

ference of ResNet-110 to 40.8% speed-up with only 0.30% accuracy drop without

fine-tuning. When using the pre-trained model, we can even outperform the original

model by 0.18% with about more than 40% FLOPs reduced.

These results validate the e↵ectiveness of SFP, which can produce a more com-

pressed model with comparable performance to the original model.

3.4.3 ResNet on ILSVRC-2012

Table 3.2 : Comparison of pruning ResNet on ImageNet. “Fine-tune?” and ”Accu.

Drop” have the same meaning with Tab. 3.1.

Depth Method

Fine-

tune?

Top-1 Accu.

Baseline(%)

Top-1 Accu.

Accelerated(%)

Top-5 Accu.

Baseline(%)

Top-5 Accu.

Accelerated(%)

Top-1 Accu.

Drop(%)

Top-5 Accu.

Drop(%)

Pruned

FLOPs(%)

18

[104] N 69.98 66.33 89.24 86.94 3.65 2.30 34.6

Ours(30%) N 70.28 67.10 89.63 87.78 3.18 1.85 41.8

34

[104] N 73.42 72.99 91.36 91.19 0.43 0.17 24.8

[1] Y 73.23 72.17 - - 1.06 - 24.2

Ours(30%) N 73.92 71.83 91.62 90.33 2.09 1.29 41.1

50

[14] Y - - 92.20 90.80 - 1.40 50.0

[19] Y 72.88 72.04 91.14 90.67 0.84 0.47 36.7

Ours(30%) N 76.15 74.61 92.87 92.06 1.54 0.81 41.8

Ours(30%) Y 76.15 62.14 92.87 84.60 14.01 8.27 41.8

101

Ours(30%) N 77.37 77.03 93.56 93.46 0.34 0.10 42.2

Ours(30%) Y 77.37 77.51 93.56 93.71 -0.14 -0.20 42.2

Settings. For ILSVRC-2012 dataset, we test our SFP on ResNet-18, 34, 50 and

101; and we use the same pruning rate 30% for all the models. All the convolutional

layer of ResNet are pruned with the same pruning rate at the same time. (We do

not prune the projection shortcuts for simplification, which only need negligible time

and do not a↵ect the overall cost.)

24

Model

Baseline

time (ms)

Pruned

time (ms)

Realistic

Speed-up(%)

Theoretical

Speed-up(%)

ResNet-18 37.10 26.97 27.4 41.8

ResNet-34 63.97 45.14 29.4 41.1

ResNet-50 135.01 94.66 29.8 41.8

ResNet-101 219.71 148.64 32.3 42.2

Table 3.3 : Comparison on the theoretical and realistic speedup. We only count the

time consumption of the forward procedure.

Results. Tab. 3.2 shows that SFP outperforms other state-of-the-art methods.

For ResNet-34, SFP without fine-tuning achieves more inference speedup to the hard

pruning method [19], but the accuracy of our pruned model exceeds their model by

2.57%. Moreover, for pruning a pre-trained ResNet-101, SFP reduces more than

40% FLOPs of the model with even 0.2% top-5 accuracy increase, which is the

state-of-the-art result. In contrast, the performance degradation is inevitable for

hard filter pruning method. Maintained model capacity of SFP is the main reason

for the superior performance. In addition, the non-greedy all-layer pruning method

may have a better performance than the locally optimal solution obtained from

previous greedy pruning method, which seems to be another reason. Occasionally,

large performance degradation happens for the pre-trained model (e.g., 14.01% top-1

accuracy drop for ResNet-50). This will be explored in our future work.

To test the realistic speedup ratio, we measure the forward time of the pruned

models on one GTX1080 GPU with a batch size of 64 (shown in Tab. 3.3). The

gap between theoretical and realistic model may come from and the limitation of

IO delay, bu↵er switch and e�ciency of BLAS libraries.

25

3.4.4 Ablation Study

We conducted extensive ablation studies to further analyze each component of

SFP.

Filter Selection Criteria. The magnitude based criteria such as `p-norm are

widely used to filter selection because computational resources cost is small [1].

We compare the `2-norm and `1-norm. For `1-norm criteria, the accuracy of the

model under pruning rate 10%, 20%, 30% are 93.68±0.60%, 93.68±0.76% and

93.34±0.12%, respectively. While for `2-norm criteria, the accuracy are 93.89±0.19%,

93.93±0.41% and 93.38±0.30%, respectively. The performance of `2-norm criteria

is slightly better than that of `1-norm criteria. The result of `2-norm is dominated

by the largest element, while the result of `1-norm is also largely a↵ected by other

small elements. Therefore, filters with some large weights would be preserved by

the `2-norm criteria. So the corresponding discriminative features are kept so the

performance of the pruned model is better.

Varying pruning rates. To comprehensively understand SFP, we test the

accuracy of di↵erent pruning rates for ResNet-110, shown in Fig. 3.3(a). As the

pruning rate increases, the accuracy of the pruned model first rises above the baseline

model and then drops approximately linearly. For the pruning rate between 0% and

about 23%, the accuracy of the accelerated model is higher than the baseline model.

This shows that our SFP has a regularization e↵ect on the neural network because

SFP reduces the over-fitting of the model.

Sensitivity of SFP interval. By default, we conduct our SFP operation at the

end of every training epoch. However, di↵erent SFP intervals may lead to di↵erent

performance; so we explore the sensitivity of SFP interval. We use the ResNet-110

under pruning rate 30% as a baseline, and change the SFP interval from one epoch to

ten epochs, as shown in Fig. 3.3(b). It is shown that the model accuracy has no large

26

Figure 3.3 : Accuracy of ResNet-110 on CIFAR-10 regarding di↵erent hyper-

parameters. (Solid line and shadow denotes the mean and standard deviation of

three experiment, respectively.)

fluctuation along with the di↵erent SFP intervals. Moreover, the model accuracy of

most (80%) intervals surpasses the accuracy of one epoch interval. Therefore, we

can even achieve a better performance if we fine-tune this parameter.

Selection of pruned layers. Previous works always prune a portion of the

layers of the network. Besides, di↵erent layers always have di↵erent pruning rates.

For example, [1] only prunes insensitive layers, [19] skips the last layer of every

block of the ResNet, and [19] prunes more aggressive for shallower layers and prune

less for deep layers. Similarly, we compare the performance of pruning first and

second layer of all basic blocks of ResNet-110. We set the pruning rate as 30%. The

model with all the first layers of blocks pruned has an accuracy of 93.96 ± 0.13%,

while that with the second layers of blocks pruned has an accuracy of 93.38±0.44%.

Therefore, di↵erent layers have di↵erent sensitivity for SFP, and careful selection of

pruned layers would potentially lead to performance improvement, although more

hyper-parameters are needed.

(a) Different Pruning Rates (b) Different SFP Intervals

27

3.5 Conclusion

In this paper, we propose a soft filter pruning (SFP) approach to accelerate

the deep CNNs. During the training procedure, SFP allows the pruned filters to

be updated. This soft manner can maintain the model capacity and thus achieve

the superior performance. Remarkably, SFP can achieve the competitive perfor-

mance compared to the state-of-the-art without the pre-trained model. Moreover,

by leveraging the pre-trained model, SFP achieves a better result and advances the

state-of-the-art.

28

Chapter 4

Asymptotic Soft Filter Pruning

4.1 Introduction

Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art per-

formance in computer vision tasks [107,116,117]. The superior performance of deep

CNNs usually comes from the deeper and wider architectures [61,103,116,118,119],

which cause the prohibitively expensive computation cost. The storage, memory,

and computation of these cumbersome models significantly exceed the computing

limitation of current mobile devices or drones. [4] shows that running a 1 billion

connection neural network at 20Hz would require 12.8W just for DRAM access.

Besides, the authors of [120, 121] claim that VGGNet [118] requires 321.1 MBytes

memory and 236 mW power for a batch of three frames and processes 0.7 frame per

second even when it is deployed on the optimized energy-e�cient chip. Therefore, it

is essential to maintain the deep CNN models to have a relatively low computational

cost but ensure high accuracy in real-world applications.

Pruning deep CNNs [122–124] is an important direction for accelerating the

networks. Recent e↵orts have been made either on directly deleting some weight

values of filters [4] (i.e., weight pruning) or totally discarding some filters (i.e., filter

pruning) [1, 14, 19]. However, weight pruning results in the unstructured sparsity

of filters. Since the unstructured model cannot leverage the existing high-e�ciency

BLAS (Basic Linear Algebra Subprograms) libraries, weight pruning is not e�cient

in saving the memory usage and computational cost. In contrast, filter pruning

enables the model with structured sparsity, taking full advantage of BLAS libraries

29

Figure 4.1 : Hard filter pruning v.s. soft filter pruning. We mark the pruned

filter as the orange dashed box. For the hard filter pruning, the pruned filters are

always fixed during the whole training procedure. Therefore, the model capacity

is reduced and thus harms the performance because the dashed blue box is useless

during training. On the contrary, our soft pruning method allows the pruned filters

to be updated during the training procedure. In this way, the model capacity is

recovered from the pruned model and thus leads a better accuracy.

to achieve more e�cient memory usage and more realistic acceleration. Therefore,

filter pruning is more favored in accelerating the networks.

Nevertheless, most filter pruning algorithms su↵er from two problems: (1) the

model capacity reduction and (2) the unrecoverable filter information loss. Specif-

ically, as shown in Figure 4.1, most researchers conduct the “hard filter pruning

(HFP)” [1, 14, 19], then the pruned filters are directly deleted and have no possi-

30

bility to be recovered. The discarded filters will reduce the optimization space and

model capacity, and thus it is unfavorable for the pruned network to learn enough

knowledge. To alleviate this problem, they use pre-training to maintain a good per-

formance, which in turn induces much more training time. Furthermore, existing

methods directly prune a large number of filters, which contain information of train-

ing set, at first. This process leads to severe and unrecoverable information loss and

thus inevitably degrades the performance.

To solve the above two problems, we propose ASFP, which prunes the convo-

lutional filters dynamically. Particularly, before the first training epoch, the filters

with small `2-norm are selected and set to zero. Then we retrain the model, and the

previously pruned filters could be updated. Before the next training epoch, we will

prune a new set of filters with small `2-norm. These training processes are contin-

ued until converged. Lastly, some filters with smallest `2-norm will be selected and

pruned without further updating. This soft manner enables the compressed network

to have a larger optimization space and model capacity. Hence it is easier for the

model to learn from the training data, and achieve higher accuracy even without

the pre-training process.

In addition, we prune the network asymptotically —— pruning few filters at

first, and more filters at later training epochs. If few filters are pruned at first,

little pre-trained information would be lost, so it is easy for the model to recover

from pruning. With the following iterative training and soft pruning, the training

set information would be gradually concentrated in some important filters. At the

same time, the training and pruning process would be stable, as the information is

lost gradually instead of suddenly.

We highlight the following three contributions of ASFP:

(1) We propose a soft manner to allow the previous pruned filters to be reconstructed

31

during training. This soft manner could significantly maintain the model capacity,

which enables the network to be trained and pruned simultaneously from scratch.

(2) To avoid severe information loss, we propose to asymptotically prune the filters,

which makes the subsequent training and pruning process more stable.

(3) Experiments on CIFAR-10 and ImageNet demonstrate the e↵ectiveness and ef-

ficiency of the proposed ASFP.

4.2 Related Work

CNN accelerating methods can be roughly divided into four categories, namely,

matrix decomposition, low-precision weights, weight pruning, and filter pruning.

4.2.1 Matrix Decomposition

To reduce the computation costs of the convolutional layers, previous work pro-

pose to representing the weight matrix of the convolutional network as a low-rank

product of two smaller matrices [55–60]. Then the calculation of production of one

large matrix turns to the production of two smaller matrices. However, the compu-

tational cost of tensor decomposition operation is expensive, which is not friendly

to train deep CNNs. Besides, there exists an increasing usage of 1 ⇥ 1 convolution

kernel in some recent neural networks, such as the bottleneck block structure of

ResNet [61], cases where it is di�cult to apply matrix decomposition.

4.2.2 Low Precision

Some other researchers focus on low-precision implementation to compress and

accelerate CNN models [5, 62–65]. Zhou et al. [62] propose trained ternary quan-

tization to reduce the precision of weights in neural networks to ternary values.

The authors of [63] present incremental network quantization, targeting to convert

pre-trained full-precision CNN model into a low-precision version e�ciently. In this

32

situation, only low-precision weights are stored and used during the inference pro-

cedure, with the storage and computation cost being dramatically reduced.

4.2.3 Weight Pruning

Recent work [4, 5, 66] prunes weights of neural networks. For example, [4] pro-

posed an iterative weight pruning method by discarding the small weights whose

values are below the threshold. [3, 67] leveraged the sparsity property of feature

maps or weight parameters to accelerate the CNN models. However, weight prun-

ing always leads to unstructured models, so the model cannot leverage the existing

e�cient BLAS libraries in practice. Therefore, it is di�cult for weight pruning to

achieve realistic speedup. Meanwhile, Bayesian methods [68] are also applied to

network pruning. However, these methods are evaluated on rather small datasets

such as MNIST [69] and CIFAR-10 [70].

4.2.4 Filter Pruning

Pruning the filters [1,14,15,19] leads to the removal of the corresponding feature

maps, thus not only reducing the storage usage on devices but also decreasing the

memory footprint consumption. Considering whether to utilize the training data to

determine the pruned filters, the filter pruning methods are roughly divided into two

categories, data dependent and data independent filter pruning. The latter method

is more e�cient than the former since training data may not be available during the

pruning process.

Data Dependent Filter Pruning. Some approaches [14–17, 19, 21, 22, 71,

72] utilize the training data to determine the pruned filters. The authors of [71]

minimize the reconstruction error of activation maps to obtain a decomposition of

convolutional layers. Luo et al. [19] adopt the statistics information from the next

layer to guide the importance evaluation of filters.

33

Data Independent Filter Pruning. Concurrently with our work, some data

independent filter pruning strategies [1, 6, 20, 74] have been explored. Li et al. [1]

explore the sensitivity of layers for filter pruning and utilize a `1-norm criterion

to prune unimportant filters. Ye et al. [20] prune models by enforcing sparsity on

the scaling parameters of batch normalization layers. However, for all these filter

pruning methods, the representative capacity of the neural network after pruning

is seriously a↵ected by smaller optimization space. Besides, the information loss at

the beginning is significant and unrecoverable.

4.3 Methodology

4.3.1 Preliminary

We formally introduce the symbol and notations in this section. The deep CNN

network can be parameterized by {W(i)
2 RNi+1⇥Ni⇥K⇥K , 1 i L} ∗. W(i)

denotes a matrix of connection weights in the ith layer. Ni denotes the number of

input channels for the ith convolution layer. L denotes the number of layers. The

shapes of input tensor U and output tensor V are Ni ⇥Hi ⇥Wi and Ni+1 ⇥Hi+1 ⇥

Wi+1, respectively. The convolutional operation of the ith layer can be written as:

Vi,j = Fi,j ⇤U , for 1 j Ni+1, (4.1)

where Fi,j 2 RNi⇥K⇥K represents the jth filter of the ith layer, and Vi,j represents

the jth output feature map of the ith layer. W(i) consists of {Fi,j, 1 j Ni+1}.

Pruning filters can remove the output feature maps. In this way, the computa-

tional cost of the neural network will reduce remarkably. Let us assume the pruning

rate is Pi for the ith layer. The number of filters of this layer will be reduced from

Ni+1 to Ni+1(1 � Pi), thereby the size of the output tensor Vi,j can be reduced to

Ni+1(1� Pi)⇥Hi+1 ⇥Wi+1.

∗
Fully-connected layers can be viewed as convolutional layers with k = 1

34

7UDLQLQJ
(SRFK��

���

���
���

���

���

���
���

���

���

���

$IWHU�SUXQLQJ

7UDLQLQJ
(SRFK�1

���

���
���

���

2ULJLQDO�PRGHO
���

���
���

���
���

���

3UXQHG
PRGHO

3URFHVV�
EHIRUH�WUDLQLQJ

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���

���
���

���

���

���

���
���

���
���

���
���

���

���
���

���

���
���

6RIW�ILOWHU�SUXQLQJ+DUG�ILOWHU�SUXQLQJ

3UXQLQJ�
0RGHO)LOWHU��QRQ]HUR�

)LOWHU��]HUR�

(SRFK
����1

Figure 4.2 : Pruning and training schedule of HFP and SFP. Before training, we first

select some filters with pre-defined importance evaluations. HFP directly deletes

these filters before training, while for SFP, those are set to zero and kept. During

training (epoch 1 to N), the model size is smaller than the original one for HFP.

While for SFP, the zero value filters (filter 2 and 5) become non-zero after training

epoch 1. Then we evaluate the importance of filters again and prune filter 3 and 4.

The model size would not be reduced but be the same as the original one. When

training is finished, the final pruned model is the model at epoch N for HFP. While

for SFP, we delete the zero value filters (filter 3 and 6) at epoch N to get the final

pruned model.

35

Figure 4.3 : Overview of HFP (first row), SFP (second row) and ASFP (third row).

(a): filter instantiations before pruning. (b): filter instantiations after pruning. (c):

filter instantiations after reconstruction. The filters are ranked by their `p-norms

and the small ones (purple rectangles) are selected to be pruned.

4.3.2 Pruning with Hard Manner

Given a dataset D = {(xi,yi)}ni=1
and a desired sparsity level (i.e., the number

of remaining non-zero filters), HFP can formulated as:

min
F

`(F ;D) = min
F

1

n

nX

i=1

`(F ; (xi,yi)) , (4.2)

s.t. F 2 RN⇥K⇥K , N(F) .

Here, `(·) is the standard loss function (e.g., cross-entropy loss), F is the set of

filters of the neural network, and N is the cardinality of the filter set. Typically,

36

HFP firstly prunes filters of a single layer of a pre-trained model and fine-tune the

pruned model to complement the performance degradation. Then they prune the

next layer and fine-tune the model again until the last layer is pruned. Once the

filters are pruned, HFP will not update these filters again.

The full training schedule of HFP is shown in the first column of Figure 4.2, and

the detailed pruning process of HFP is shown in the first row of Figure 4.3. First,

some of the filters with small `p-norm (filter 2 and 4 in HFP-a, marked in blue)

are selected and pruned. After retraining, these pruned filters are not able to be

updated again thus the `p-norm of these filters would be zero during all the training

epochs (filter 2 and 4 in HFP-b). Meanwhile, the remaining filters (filter 1, 3 and

N in HFP-c, marked in green) might be updated to another value after retraining

to make up for the performance degradation due to pruning. After several epochs

of retraining to converge the model, a compact model is obtained to accelerate the

inference.

4.3.3 Pruning with Soft Manner

SFP can dynamically remove the filters in a soft manner. Specifically, the key is

to keep updating the pruned filters in the training stage. The full training schedule

of SFP is shown in the second column of Figure 4.2. Such an updating manner brings

several benefits. It not only keeps the model capacity of the pruned models as the

original models but also avoids the greedy layer by layer pruning procedure and

enables pruning all convolutional layers at the same time. For SFP, the constrain

in the Eq. 4.2 changes to:

kFk0 , N(F) = Ni+1. (4.3)

Here, k · k0 is the standard L0 norm. After soft pruning, the number of filters N(F)

is still the same as that of the original model (Ni+1).

37

The second row of Figure 4.3 explains the detailed process of SFP. First, the

`2-norms of all filters are computed for each weighted layer and used as our filter

selection criterion. Second, some filters with a small `p-norm (filter 2 and 4 in SFP-a,

marked in blue) are selected, and we prune those filters by setting the corresponding

filter weights as zero (filter 2 and 4 in SFP-b). Then we retrain the model. As we

allow the pruned filters to be updated during retraining, the pruned filters become

nonzero again (filter 2 and 4 in SFP-c) due to back-propagation. After iterations of

pruning and reconstruction to converge the model, we delete the unimportant filters

and obtain a compact and e�cient model.

4.3.4 Asymptotic Soft Filter Pruning (ASFP)

It is known that all the filters of the pre-trained model have the information of the

training set. Therefore, pruning those informative filters would cause information

loss. This situation is especially di�cult for pruning the models that pre-trained

on large datasets, or pruning a large number of filters of small models, as the lost

information is rather massive. Therefore, we propose to pruning the neural network

asymptotically.

Specifically, we use a small pruning rate at early epochs, and gradually increase

the pruning rate later, until we reach the goal pruning rate Pi at the last retraining

epoch. The optimization problem of ASFP:

min
F

`(F ;D) = min
F

1

n

nX

i=1

`(F ; (xi,yi)) , (4.4)

s.t. kFk0 epoch, N(F) = Ni+1.

Here, epoch means the sparsity level changes with the training epoch. Comparing

Eq. 4.3 and Eq. 4.4, the di↵erence between SFP and ASFP is whether the pruning

rate is changing with epochs. For SFP, the in Eq. 4.3 is a pre-defined constant

regarding the number of remaining non-zero filters, so it would not change during

38

the training process. In contrast, epoch in Eq. 4.4 is a function of epoch and would

change with the epoch number of training. Therefore, SFP is a special case of ASFP

when the pruning rate Pi during all training epochs are the same.

4.3.4.1 Asymptotic Filter Selection

We use the `p-norm to evaluate the importance of each filter as Eq. 4.5. In

general, the convolutional results of the filters with the smaller `p-norm would lead

to relatively lower activation values, and thus have a less numerical impact on the

final prediction of deep CNN models. In term of this understanding, such filters

of small `p-norm will be given higher priority of being pruned than those of higher

`p-norm:

kFi,jkp =
p

vuut
NiX

n=1

KX

k1=1

KX

k2=1

|Fi,j(n, k1, k2)|
p. (4.5)

In practice, we use the `2-norm based on the empirical analysis.

Di↵erent from SFP [6] that the pruning rate equals the goal pruning rate P goal

i

during retraining, we use di↵erent pruning rate P
0
i
at every epoch. The definition

of P
0
i
is list as follows:

P
0

i
= H(P goal

i
, D, Pmin

i
, epoch), (4.6)

where P goal

i
represents the goal pruning rate for the ith layer, D and Pmin

i
are pre-

defined parameter which will be explicitly explained later. As exponential parameter

decay is widely used in optimization [125] to achieve a stable result, we change the

pruning rate exponentially. The equation is as follows:

P
0

i
= a⇥ e�k⇥epoch + b, (4.7)

In order to solve three parameters a, k, b of the above exponential equation, three

points consists of (epoch, P
0
i
) pair are needed. Certainly, the first point is (0, Pmin

i
),

39

which means the pruning rate is Pmin

i
for the first training epoch. In addition, to

achieve the goal pruning rate Pi at the final retraining epoch, the point (epochmax,

P goal

i
) is essential. Now we have to define the third point (epochmax ⇥D, 3P goal

i
/4),

to solve the equation. This means that when the epoch number is epochmax ⇥ D,

the pruning rate increase to 3/4 of the goal pruning rate P goal

i
.

4.3.4.2 Filter Pruning

We set the value of selected Ni+1P
0
i
filters to zero (see the filter pruning step

in Figure 4.3). This can temporarily eliminate their contribution to the network

output. We prune all the weighted layers at the same time. In this way, we can

prune each filter in parallel, which would cost negligible computation time. In

contrast, previous methods [14, 19] always conduct a greedy layer by layer pruning

and retraining, which would cost more computation time, especially when the model

depth increases. Moreover, we use the same pruning rate for all the weighted

layers, P goal

i
= P . Therefore, we only require one hyper-parameter P to balance

acceleration and accuracy. This can avoid the inconvenient hyper-parameter search

or the complicated sensitivity analysis shown in [1].

4.3.4.3 Reconstruction

After the pruning step, we train the network for one epoch to reconstruct the

pruned filters. In order to keep the representative capacity and the high performance

of the model, those pruned filters are updated to non-zero by back-propagation, as

shown in Figure 4.3. In this way, the pruned model has the same capacity as

the original model during the training. In contrast, hard filter pruning leads to a

decrease of feature maps, so the model capacity is reduced and the performance is

influenced. With large model capacity, we could integrate the pruning step into the

normal training schema, that is, training and pruning the model synchronously.

40

4.3.4.4 Obtaining Compact Model

ASFP iterates over the filter selection, filter pruning, and reconstruction steps.

After model convergence, we can obtain a sparse model containing many “zero

filters”. The features maps corresponding to those “zero filters” will always be zero

during the inference procedure. Therefore, there will be no influence to remove these

filters as well as the corresponding feature maps.

4.3.5 Pruning Strategy for Convolutional Network

Pruning the traditional convolutional architectures [116, 118] is easy to under-

stand, but it is elusive for pruning recent structural variants, such as ResNet [61].

In Figure 4.4, pruning the residual blocks is illustrated. If we set the pruning rate

as 50%, the output dimension of three layers would decrease by 50% (the red num-

bers). The input dimension of the last two layers would change according to the

output dimension of the previous layer (the green numbers). What we should es-

pecially care about is the element-wise additive of the residual connections and the

output of convolutional layers. In Figure 4.4, the channel number of the residual

connections and the output of convolutional layers is 256 and 128, respectively. The

element-wise additive should change to:

Oindex =

8
><

>:

Rindex +Cindex if index 2 I

Rindex else
(4.8)

where I is the index of 128 remaining channels, C is the convolutional output after

the batch norm layer (128 channels), R is the residual output (256 channels), and

O is the output of the whole residual block.

41

Figure 4.4 : Pruning residual block with pruning rate 50%. Red and green number

means the remaining output channel number and input channel number after prun-

ing, respectively. “BN” and “ReLU” represents the batch norm layer and non-linear

layer, respectively.

4.3.6 Computation Complexity Analysis

4.3.6.1 Theoretical Speedup Analysis

Suppose the filter pruning rate of the ith layer is Pi, which means the Ni+1 ⇥ Pi

filters are set to zero and pruned from the layer, and the other Ni+1⇥ (1�Pi) filters

remain unchanged. Besides, suppose the size of the input and output feature map

of ith layer is Hi ⇥ Wi and Hi+1 ⇥ Wi+1. Then after filter pruning, the dimension

of useful output feature map of the ith layer decreases from Ni+1 ⇥Hi+1 ⇥Wi+1 to

Ni+1(1�Pi)⇥Hi+1⇥Wi+1. Note that the output of ith layer is the input of (i+ 1)
th

layer. And we further prunes the (i+ 1)
th
layer with a filter pruning rate Pi+1, then

the calculation of (i+ 1)
th

layer is decrease from Ni+2 ⇥Ni+1 ⇥ k2
⇥Hi+2 ⇥Wi+2 to

Ni+2(1� Pi+1)⇥Ni+1(1� Pi)⇥ k2
⇥Hi+2 ⇥Wi+2. In other words, a proportion of

1� (1� Pi+1)⇥ (1� Pi) of the original calculation is reduced, which will make the

inference procedure of CNN models much faster.

42

4.3.6.2 Realistic Speedup Analysis

In theoretical speedup analysis, other operations such as batch normalization and

pooling are negligible compared to the convolution operations. Therefore, we con-

sider the FLOPs (Floating-point operations per second) of convolution operations

for computation complexity comparison, which is commonly used in the previous

work [1, 19]. In the real scenario, reduced FLOPs cannot bring the same level of

realistic speedup because non-tensor layers (e.g., batch normalization and pooling

layers) also need the inference time on GPU [19]. In addition, the limitation of

IO delay, bu↵er switch, and e�ciency of BLAS libraries also lead to the wide gap

between theoretical and realistic speedup ratio. We compare the theoretical and

realistic speedup in Section 4.4.4.

4.4 Experiment

4.4.1 Benchmark Datasets and Experimental Setting

Dataset. Our method is evaluated on two benchmarks: CIFAR-10 [70] and

ILSVRC-2012 [105]. CIFAR-10 contains 50,000 training images and 10,000 test

images, which are categorized into ten classes. ILSVRC-2012 is a large-scale dataset

containing 1.28 million training images and 50k validation images of 1,000 classes.

Architecture. As discussed in [14, 19, 104], multiple-branch ResNet [61] is less

redundant than VGGNet [118], so it is more di�cult to accelerate ResNet. There-

fore, we focus on pruning the challenging ResNet model. To validate our method

on the single-branch network, we also prune the VGGNet following [1].

Training setting. In the CIFAR-10 experiments, we use the default parameter

setting in [113] and follow the training schedule in [114]. For CIFAR-10 dataset,

we test our ASFP on ResNet-56 and 110. On ILSVRC-2012, we follow the same

parameter settings as [61, 113]. The data argumentation strategies are the same as

43

Table 4.1 : Overall performance of pruning ResNet on CIFAR-10.

Depth Method Pre-train?Baseline Accu. (%)Accelerated Accu. (%)Accu. Drop (%)FLOPsPruned FLOPs(%)

56

PFEC [1] 7 93.04 91.31 1.75 9.09E7 27.6

CP [14] 7 92.80 90.90 1.90 - 50.0

SFP [6] 7 93.59 (±0.58) 92.26 (±0.31) 1.33 5.94E7 52.6

ASFP (40%) 7 93.59 (±0.58) 92.44 (±0.07) 1.15 5.94E7 52.6

PFEC [1] 3 93.04 93.06 -0.02 9.09E7 27.6

CP [14] 3 92.80 91.80 1.00 - 50.0

SFP [6] 3 93.59 (±0.58) 93.35 (±0.31) 0.24 5.94E7 52.6

ASFP (40%) 3 93.59 (±0.58) 93.12 (±0.20) 0.47 5.94E7 52.6

110

PFEC [1] 7 93.53 92.94 0.61 1.55E8 38.6

MIL [104] 7 93.63 93.44 0.19 - 34.2

SFP [6] 7 93.68 (±0.32) 92.62 (±0.60) 1.04 1.21E8 52.3

ASFP (20%) 7 93.68 (±0.32) 93.94 (±0.56) -0.24 1.82E8 28.2

ASFP (40%) 7 93.68 (±0.32) 93.20 (±0.10) 0.48 1.21E8 52.3

PFEC [1] 3 93.53 93.30 0.20 1.55E8 38.6

SFP [6] 3 93.68 (±0.32) 93.86 (±0.21) -0.18 1.50E8 40.8

SFP [6] 3 93.68 (±0.32) 92.90 (±0.18) 0.78 1.21E8 52.3

ASFP (30%) 3 93.68 (±0.32) 93.37 (±0.12) 0.31 1.50E8 40.8

ASFP (40%) 3 93.68 (±0.32) 93.10 (±0.06) 0.58 1.21E8 52.3

PyTorch implementation [115]. We test ASFP on ResNet-18, 34, 50 and we use

the pruning rate 30% for all the models. We also analyze the di↵erence between

pruning the pre-trained model and scratch model. For pruning the model from

scratch, We use the normal training schedule without additional fine-tuning process.

For pruning the pre-trained model, we reduce the learning rate to one-tenth of the

original learning rate. To conduct a fair comparison of pruning from scratch and pre-

trained models, we use the same training epochs to train/fine-tune the network. The

previous work [1] uses fewer epochs to fine-tune the pruned model, but it converges

too early and harms the accuracy, as shown in section 4.4.2.

Pruning setting. For VGGNet on CIFAR-10, we use the same pruning rate

as [1]. For experiments on ResNet, we follow [6] and prune all the convolutional

44

layers with the same pruning rate at the same time. We do not prune the projection

shortcuts for simplification, which only need negligible time and do not a↵ect the

overall cost. Therefore, only one hyper-parameter, the pruning rate Pi = P is used

to balance acceleration and accuracy.

To asymptotically change the pruning rate, we set the parameters in Eq. 4.6 as

D = 1/8 and Pmin

i
= 0. This setting is denoted as ASFP-P0.† For example, if

we use the goal pruning rate P goal

i
= 30%, then the pruning rate curve according

to epoch is shown in Figure 4.5. If we set Pmin

i
= P goal

i
, ASFP is same as SFP.

The pruning operation is conducted at the end of every training epoch. We run

some experiments three times and report the “mean ± std”. The performance

is compared with other state-of-the-art acceleration algorithms, e.g., MIL [104],

PFEC [1], CP [14], ThiNet [19], SFP [6], NISP [17]. We choose to directly cite the

numbers from original papers for a fair comparison.

Explanation for Tables. The results of ResNet are listed in Table 4.1 and

Table 4.3. In “Pre-train?” column, “Y” and “N” indicate whether to use the pre-

trained model as initialization or not. The “Accu. Drop” is the accuracy of the

pruned model minus that of the baseline model, so negative number means the

accelerated model has higher accuracy than the baseline model. A smaller number

of ”Accu. Drop” is better. For CIFAR-10, we run every experiment for three times

to get the mean and standard deviation of the accuracy. For Imagenet, we just list

the one-view accuracy.

Explanation for Baselines. The baseline network is the same for di↵erent

pruning methods, and accuracy numbers are cited from the original paper. The

di↵erent accuracies are due to di↵erent hyper-parameter settings (e.g. di↵erent data

†
For the following sections, the “ASFP” (without su�x) means “ASFP-P0” if not particularly

indicated.

45

augmentations, di↵erent learning rate schedules, etc.) and di↵erent implementation

frameworks (e.g. Ca↵e, TensorFlow and Pytorch). For example, in Thinet [19], all

the images are resized into 256 ⇥ 256, then center-cropped to 224 ⇥ 224. However,

in CP [14], the images are resized such that the shorter side equals to 256. In this

case, we choose to use the “Accu. Drop” (in Table 4.1) rather than the “Accelerated

Accu.” (in Table 4.1) to fairly evaluate the e↵ectiveness of our method.

Optimization Time of ASFP. In this paper, we care more about the acceler-

ation during the inference time rather than the training time. However, we would

like to show that the additional time cost of ASFP is negligible compared to a hard

pruning method. Take the scratch model for an example. HFP and ASFP both need

200 epochs to training CIFAR-10 from scratch to converge, so the additional time

cost of ASFP comes from the operation of pruning (Eq. 4.4). Two steps are needed

in such a process. 1) Obtaining the pruning rate P
0
i
. 2) Ranking and pruning the

filters. For step one, the exponent pattern of the pruning rate is pre-defined, and it

could be directly accessed during training. For step two, after we get the importance

scores of the filters, we zeroize the filters with smaller importance scores to conduct

the pruning operation. All these steps bring minor computation cost. For HFP, it

takes about 171.01s for training ResNet-110 for one epoch on GTX 1080. For ASFP,

the total time for one epoch is 171.45s. Therefore, the time di↵erence between soft

pruning and hard pruning is negligible.

4.4.2 VGGNet on CIFAR-10

The result of pruning from scratch and pre-trained VGGNet is shown in Ta-

ble 4.2. Not surprisingly, ASFP achieves better performance than [1] in both set-

tings. With our pruning criterion, we could achieve slightly better accuracy than

[1] when pruning the random initialized VGGNet (93.37% vs. 93.31%). In addition,

The pruned model without fine-tuning has better performance than [1] (81.66% vs.

46

Figure 4.5 : Asymptotically changed pruning rate when the goal pruning rate is

30%. Three blue points are the three pairs to generate the exponential function of

pruning rate (the solid curve).

77.45%). After fine-tuning 40 epochs, our model achieves similar accuracy with [1].

Notably, if more fine-tuning epochs (160) are utilized, the accuracy of [1] is almost

unchanged (93.28% vs. 93.22%), which means their models have no much more

capacity to learn. On the contrary, our method could achieve much better perfor-

mance (94.02% vs. 93.28%) with more fine-tuning epochs, which shows the model

capacity of our ASFP is much larger than [1].

Table 4.2 : Pruning from scratch and pre-trained VGGNet on CIFAR-10. “FT”

means “fine-tuning” the pruned model.

Setting \ Acc (%) PFEC [1] Ours

Baseline 93.58 (±0.03) 93.58 (±0.03)

Prune from scratch 93.31 (±0.03) 93.37 (±0.08)

Prune from pre-train without FT 77.45 (±0.03) 81.66 (±0.03)

FT 40 epochs 93.22 (±0.03) 93.27 (±0.08)

FT 160 epochs 93.28 (±0.03) 94.02 (±0.15)

47

Table 4.3 : Overall performance of pruning ResNet on ImageNet.

Depth Method

Pre-

train?

Top-1 Accu.

Baseline(%)

Top-1 Accu.

Accelerated(%)

Top-5 Accu.

Baseline(%)

Top-5 Accu.

Accelerated(%)

Top-1 Accu.

Drop(%)

Top-5 Accu.

Drop(%)

Pruned

FLOPs(%)

18

MIL [104] 7 69.98 66.33 89.24 86.94 3.65 2.30 34.6

SFP [6] 7 70.23 (±0.06) 67.25 (±0.13) 89.51 (±0.10) 87.76 (±0.06) 2.98 1.75 41.8

ASFP (30%) 7 70.23 (±0.06) 67.41 89.51 (±0.10) 87.89 2.82 1.62 41.8

SFP [6] 3 70.23 (±0.06) 60.79 89.51 (±0.10) 83.11 9.44 6.40 41.8

ASFP (30%) 3 70.23 (±0.06) 68.02 89.51 (±0.10) 88.19 2.21 1.32 41.8

34

SFP [6] 7 73.92 71.83 91.62 90.33 2.09 1.29 41.1

ASFP (30%) 7 73.92 71.72 91.62 90.65 2.20 0.97 41.1

PFEC [1] 3 73.23 72.17 - - 1.06 - 24.2

SFP [6] 3 73.92 72.29 91.62 90.90 1.63 0.72 41.1

ASFP (30%) 3 73.92 72.53 91.62 91.04 1.39 0.58 41.1

50

SFP [6] 7 76.15 74.61 92.87 92.06 1.54 0.81 41.8

ASFP (30%) 7 76.15 74.88 92.87 92.39 1.27 0.48 41.8

CP [14] 3 - - 92.20 90.80 - 1.40 50.0

ThiNet [19] 3 72.88 72.04 91.14 90.67 0.84 0.47 36.7

NISP [17] 3 - - - - - 0.89 44.0

SFP [6] 3 76.15 62.14 92.87 84.60 14.01 8.27 41.8

ASFP (30%) 3 76.15 75.53 92.87 92.73 0.62 0.14 41.8

4.4.3 ResNet on CIFAR-10

Table 4.1 shows the results on CIFAR-10. Our ASFP could achieve a better

performance than other state-of-the-art hard filter pruning methods. For example,

PFEC [1] accelerate ResNet-110 by 38.6% speedup ratio with 0.61% accuracy drop

when pruning the scratch models. In contrast, our ASFP can accelerate ResNet-110

to 52.3% speed-up with only 0.48% accuracy drop. When pruning the pre-trained

ResNet-110, the accuracy drop of our ASFP is smaller than PFEC [1] when pruning

the same number of ratio. When pruning the scratch ResNet-56, we can achieve

more acceleration ratio than CP [14] (52.6% vs. 50.0%) with less accuracy drop

(1.15% vs. 1.90%) Notably, we can even improve 0.24% accuracy when pruning

28.2% FLOPs of scratch ResNet-56.

48

(a) ResNet-56 from Pre-train. (b) ResNet-110 from Pre-train.

(c) ResNet-110 from Scratch.

Figure 4.6 : Model performance regarding di↵erent ratio of pruned FLOPs. The

green line indicates the model without pruning. The blue and the orange lines

represent the model under ASFP and SFP, respectively.

When the pruning rate is small, we find the performance of SFP [6] and ASFP

is competitive. But ASFP outperforms SFP when a large portion of FLOPs are

pruned. The comprehensive comparison is shown in Figure 4.6. This is because

ASFP is suitable for the situation when a large quantity of the information is re-

moved by pruning. These results validate the e↵ectiveness of our ASFP algorithm,

which can produce a more compressed model with comparable performance to the

original model.

4.4.4 ResNet on ILSVRC-2012

Result Explanation. Table 4.3 shows that ASFP outperforms other state-

of-the-art methods. For pruning from a random initialized ResNet-18, our ASFP

49

Table 4.4 : Comparison of the theoretical and realistic speedup. We only count the

time consumption of the forward procedure.

Model

Baseline

time (ms)

Pruned

time (ms)

Realistic

Speed-up(%)

Theoretical

Speed-up(%)

ResNet-18 37.10 26.97 27.4 41.8

ResNet-34 63.97 45.14 29.4 41.1

ResNet-50 135.01 94.66 29.8 41.8

achieves more inference speedup than MIL [104] (41.8% v.s. 34.6%), but the top-

5 accuracy drop of our pruned model is less than that of their model (1.62% v.s.

2.30%). For pruning pre-trained ResNet-34, our ASFP achieves a much better ac-

celeration than PFEC [1] (41.1% v.s. 24.2%) with comparable accuracy drop. For

pre-trained ResNet-50, SFP leads to 8.27% top-5 accuracy drop for 41.8% speedup,

but our ASFP could achieve negligible top-5 accuracy drop (0.14%) with the same

speedup ratio. The maintained model capacity and asymptotic pruning of ASFP

are the main reasons for the improved accuracy and e�ciency.

Realistic Acceleration. In order to test the realistic speedup ratio, we measure

the forward time of the pruned models on one GTX 1080 Ti GPU with a batch size

of 64. The results are shown in Table 4.4. The gap between theoretical and realistic

speed may come from non-tensor layers and the limitation of IO delay, bu↵er switch

and the e�ciency of BLAS libraries [104].

4.4.5 Comparing SFP and ASFP

Performance Regrading Ratio of Pruned FLOPs. In Figure 4.6, we test

the accuracy of ResNet-56 and ResNet-110 under di↵erent ratios of pruned FLOPs.

For pruning pre-trained initialization, as shown in Figure 4.6(a) and Figure 4.6(b),

ASFP could obtain better performance than SFP on almost all ratio of pruned

50

(a) SFP on ResNet-18 (b) ASFP on ResNet-18

(c) SFP on ResNet-50 (d) ASFP on ResNet-50

Figure 4.7 : The training process of ResNet-18

and ResNet-50 and on ImageNet regarding SFP and

ASFP. The solid blue line and red dashed line indicate

the accuracy of the model before and after pruning,

respectively. The black line is the performance gap

due to pruning, which is calculated by the accuracy

after pruning subtracting that before pruning.

(a) Di↵erent pruning intervals.

(b) Di↵erent parameter D in the

Eq. 4.6.

Figure 4.8 : Ablation study

of ASFP. (Solid line and

shadow denote the mean

and standard deviation of

three experiments, respec-

tively.)

FLOPs. Even for pruning models with the random initialization, as shown in Fig-

ure 4.6(c), our method could still outperform SFP. All the results verify that ASFP

provides a more e↵ective way to reduce the information loss and thus improves the

network performance.

Stable Training Process of ASFP. The model accuracies during training for

SFP and ASFP are shown in Figure 4.7. We run this comparison experiment on

ResNet-18 and ResNet-50, and the pruning rate is 30%. We find that the perfor-

mance gap is not stable for SFP during almost all the 100 retraining epochs. On the

51

contrary, the performance gap of ASFP is much more stable than that of SFP. For

SFP, directly pruning a large number of filters leads to severe information loss. It

is di�cult for the network to recover from this, and it leads to an unstable training

process. In contrast, ASFP would result in a small amount of information loss,

consequently increasing the stability of the pruning process.

4.4.6 Ablation Study

Extensive ablation study is also conducted to further analyze each component of

our model.

4.4.6.1 Filter Selection Criteria

The magnitude based criteria such as `p-norm are widely used to filter selection

because computational resources cost is small [1]. We compare the `2-norm and

`1-norm, and the results are shown in Table 4.5. We find that the performance of

`2-norm criteria are slightly better than that of `1-norm criteria. The result of `2-

norm is dominated by the largest element, while the result of `1-norm is also largely

a↵ected by other small elements. Therefore, filters with some large weights would be

preserved by the `2-norm criteria. Consequently, the corresponding discriminative

features are kept so the accuracy of the pruned model is better.

Table 4.5 : Accuracy of CIFAR-10 on ResNet-110 under di↵erent pruning rate with

di↵erent filter selection criteria.

Pruning rate(%) 10 20 30

`1-norm 93.68 ± 0.60 93.68 ± 0.76 93.34 ± 0.12

`2-norm 93.89 ± 0.19 93.93 ± 0.41 93.38 ± 0.30

52

4.4.6.2 Varying Pruned FLOPs

We evaluate the accuracy of di↵erent pruned FLOPs for ResNet-110, and show

the results in Figure 4.6. When the ratio of pruned FLOPs is less than 40%, ASFP

and SFP achieve similar accuracy. However, when the ratio of pruned FLOPs is

more than 40%, ASFP could obtain much better performance than SFP. This is

because pruning a large number of filters leads to severe information lose and ASFP

is especially e↵ective for this case. In contrast, when only a small portion of the

information is lost, the maintained model capacity of SFP is enough for good results.

For the pruning rate between 0% and about 23%, the accuracy of the accelerated

model is higher than the baseline model. This shows that our ASFP and SFP both

have a regularization e↵ect on the neural network.

4.4.6.3 Selection of the Pruned Layers

Previous work always prunes a portion of the layers of the network. Besides,

di↵erent layers always have di↵erent pruning rates. For example, [1] only prunes

insensitive layers, [19] skips the last layer of every block of the ResNet, and [19]

prunes more aggressively for shallower layers and prune less for deep layers.

Similarly, we compare the performance of pruning the first and second layer of

all basic blocks of ResNet-110. We set the pruning rate as 30%. The model with all

the first layers of blocks pruned has an accuracy of 93.96± 0.13%, while the model

with all the second layers of blocks pruned has an accuracy of 93.38± 0.44%. If we

carefully select the pruned layers based on the sensitivity, performance improvement

may be potentially obtained. However, tuning these hyper-parameters is not the

focus of this manuscript.

53

4.4.6.4 Sensitivity of the ASFP Interval

By default, we conduct our ASFP operation at the end of every training epoch,

we call the ASFP interval equals one under this setting. However, di↵erent ASFP in-

tervals may lead to a di↵erent performance, so we explore the sensitivity of ASFP in-

terval. We use ResNet-110 under a pruning rate of 30% as a baseline, and change the

ASFP interval from one epoch to ten epochs. The result is shown in Figure 4.8(a).

We find the model accuracy of most (80%) intervals surpasses the accuracy of one

epoch interval. Therefore, we can even achieve better performance if we fine-tune

this parameter.

4.4.6.5 Sensitivity of Parameter D of ASFP

We change the parameter D in the Eq. 4.6 to comprehensively understand ASFP,

and the results are shown in the Figure 4.8(b). We prune scratch and pre-trained

ResNet-56 on CIFAR-10 and set the pruning rate as 40%. When changing the

parameter D from 7 to 16, we find the model accuracy has no large fluctuation

(< 0.3%). This shows that the final result of pruning is not sensitive to the parameter

D.

4.5 Conclusion

In this paper, we propose an asymptotic soft filter pruning approach (ASFP) to

accelerate the deep CNNs. As the training procedures go, we allow the pruned filters

to be updated and asymptotically adjust the pruning rate. The soft manner could

maintain the model capacity, and the asymptotic pruning could make the pruning

process more stable. Therefore, our ASFP could achieve superior performance.

Remarkably, without using the pre-trained model, our ASFP can achieve competitive

performance compared to the state-of-the-art approaches. Moreover, by leveraging

the pre-trained model, our ASFP achieves better results.

54

Chapter 5

Filter Pruning via Geometric Median

5.1 Introduction

The deeper and wider architectures of deep CNNs bring about the superior

performance of computer vision tasks. However, they also cause the prohibitively

expensive computational cost and make the model deployment on mobile devices

hard if not impossible. Even the latest architecture with high e�ciencies, such

as residual connection [61] or inception module [103], has millions of parameters

requiring billions of float point operations (FLOPs) [6]. Therefore, it is necessary to

attain the deep CNN models which have relatively low computational cost but high

accuracy.

Recent developments on pruning can be divided into two categories, i.e., weight

pruning [4, 126] and filter pruning [1, 17]. Weight pruning directly deletes weight

values in a filter which may cause unstructured sparsities. This irregular structure

makes it di�cult to leverage the high-e�ciency Basic Linear Algebra Subprograms

(BLAS) libraries [19]. In contrast, filter pruning directly discards the whole selected

filters and leaves a model with regular structures. Therefore, filter pruning is more

preferred for accelerating the networks and decreasing the model size.

Current practice [1,6,20] performs filter pruning by following the “smaller-norm-

less-important” criterion, which believes that filters with smaller norms can be

pruned safely due to their less importance. As shown in the top right of Fig-

ure 5.1(a), after calculating norms of filters in a model, a pre-specified threshold

T is utilized to select filters whose norms are smaller than it.

55

(a) Criterion for filter pruning

(b) Requirements for norm-based criterion

Figure 5.1 : An illustration of (a) the pruning criterion for norm-based approach

and the proposed method; (b) requirements for norm-based filter pruning criterion.

In (a), the green boxes denote the filters of the network, where deeper color de-

notes larger norm of the filter. For the norm-based criterion, only the filters with

the largest norm are kept based on the assumption that smaller-norm filters are

less important. In contrast, the proposed method prunes the filters with redundant

information in the network. In this way, filters with di↵erent norms indicated by dif-

ferent intensities of green may be retained. In (b), the blue curve represents the ideal

norm distribution of the network, and the v1 and v2 is the minimal and maximum

value of norm distribution, respectively. To choose the appropriate threshold T

(the red shadow), two requirements should be achieved, that is, the norm deviation

should be large, and the minimum of the norm should be arbitrarily small.

However, as illustrated in Figure 5.1(b), there are two prerequisites to utilize this

“smaller-norm-less-important” criterion. First, the deviation of filter norms should

be significant. This requirement makes the searching space for threshold T wide

Previous
method

Filters before pruning

Large norm
Medium norm

Small norm

Filter Space

Pruning

Our
method

Number
of filters

Requirement 2: 0

Value of norm
0

Filters to be
pruned

Ideal distribution:
Requirement 1: >> 0

56

enough so that separating those filters needed to be pruned would be an easy task.

Second, the norms of those filters which can be pruned should be arbitrarily small,

i.e., close to zero; in other words, the filters with smaller norms are expected to make

absolutely small contributions, rather than relatively less but positively large con-

tributions, to the network. An ideal norm distribution when satisfactorily meeting

those two requirements is illustrated as the blue curve in Figure 5.1. Unfortunately,

based on our analysis and experimental observations, this is not always true.

To address the problems mentioned above, we propose a novel filter pruning ap-

proach, named Filter Pruning via Geometric Median (FPGM). Di↵erent from the

previous methods which prune filters with relatively less contribution , FPGM

chooses the filters with the most replaceable contribution . Specifically, we

calculate the Geometric Median (GM) [127] of the filters within the same layer. Ac-

cording to the characteristics of GM, the filter(s) F near it can be represented by the

remaining ones. Therefore, pruning those filters will not have substantial negative

influences on model performance. Note that FPGM does not utilize norm based

criterion to select filters to prune, which means its performance will not deteriorate

even when failing to meet requirements for norm-based criterion.

Contributions. We have three contributions:

(1) We analyze the norm-based criterion utilized in previous works, which prunes

the relatively less important filters. We elaborate on its two underlying requirements

which lead to its limitations;

(2) We propose FPGM to prune the most replaceable filters containing redundant

information, which can still achieve good performances when norm-based criterion

fails;

(3) The extensive experiment on two benchmarks demonstrates the e↵ectiveness

and e�ciency of FPGM.

57

5.2 Related Works

Most previous works on accelerating CNNs can be roughly divided into four

categories, namely, matrix decomposition [56,58], low-precision weights [62,63,128],

knowledge distilling [129, 130] and pruning. Pruning-based approaches aim to re-

move the unnecessary connections of the neural network [1, 4, 131]. Essentially,

weight pruning always results in unstructured models, which makes it hard to de-

ploy the e�cient BLAS library, while filter pruning not only reduces the storage

usage on devices but also decreases computation cost to accelerate the inference. We

could roughly divide the filter pruning methods into two categories by whether the

training data is utilized to determine the pruned filters, that is, data dependent and

data independent filter pruning. Data independent method is more e�cient than

data dependent method as the utilizing of training data is computation consuming.

Weight Pruning. Many recent works [4–6, 66, 126, 132–134] focus on pruning

fine-grained weight of filters. For example, [4] proposes an iterative method to

discard the small weights whose values are below the predefined threshold. [126]

formulates pruning as an optimization problem of finding the weights that minimize

the loss while satisfying a pruning cost condition.

Data Dependent Filter Pruning. Some filter pruning approaches [8, 14–17,

19, 21–23, 71–73] need to utilize training data to determine the pruned filters. [19]

adopts the statistics information from the next layer to guide the filter selections. [71]

aims to obtain a decomposition by minimizing the reconstruction error of training

set sample activation. [8] proposes an inherently data-driven method which use Prin-

cipal Component Analysis (PCA) to specify the proportion of the energy that should

be preserved. [73] applies subspace clustering to feature maps to eliminate the re-

dundancy in convolutional filters.

Data Independent Filter Pruning. Concurrently with our work, some data

58

independent filter pruning strategies [1, 6, 9, 20] have been explored. [1] utilizes an

`1-norm criterion to prune unimportant filters. [6] proposes to select filters with a

`2-norm criterion and prune those selected filters in a soft manner. [20] proposes to

prune models by enforcing sparsity on the scaling parameter of batch normalization

layers. [9] uses spectral clustering on filters to select unimportant ones.

Discussion. To the best of our knowledge, only one previous work reconsid-

ers the smaller-norm-less-important criterion [20]. We would like to highlight our

advantages compared to this approach as below: (1) [20] pays more attention to en-

forcing sparsity on the scaling parameter in the batch normalization operator, which

is not friendly to the structure without batch normalization. On the contrary, our

approach is not limited by this constraint. (2) After pruning channels selected, [20]

need fine-tuning to reduce performance degradation. However, our method combines

the pruning operation with normal training procedure. Thus extra fine-tuning is not

necessary. (3) Calculation of the gradient of scaling factor is needed for [20]; there-

fore lots of computation cost are inevitable, whereas our approach could accelerate

the neural network without calculating the gradient of scaling factor.

5.3 Methodology

5.3.1 Preliminaries

We formally introduce symbols and notations in this subsection. We assume

that a neural network has L layers. We use Ni and Ni+1, to represent the number

of input channels and the output channels for the ith convolution layer, respectively.

Fi,j represents the jth filter of the ith layer, then the dimension of filter Fi,j is

RNi⇥K⇥K , where K is the kernel size of the network∗. The ith layer of the network

W(i) could be represented by {Fi,j, 1 j Ni+1}. The tensor of connection of the

∗
Fully-connected layers equal to convolutional layers with k = 1

59

deep CNN network could be parameterized by {W(i)
2 RNi+1⇥Ni⇥K⇥K , 1 i L}.

5.3.2 Analysis of Norm-based Criterion

Figure 5.1 gives an illustration for the two requirements for successful utilization

of the norm-based criterion. However, these requirements may not always hold, and

it might lead to unexpected results. The details are illustrated in Figure 5.2, in which

the blue dashed curve and the green solid curve indicates the norm distribution in

ideal and real cases, respectively.

Figure 5.2 : Ideal and Reality of the norm-based criterion: (a) Small Norm Deviation

and (b) Large Minimum Norm. The blue dashed curve indicates the ideal norm

distribution, and the green solid curve denotes the norm distribution might occur

in real cases.

(1) Small Norm Deviation. The deviation of filter norm distributions might be

too small, which means the norm values are concentrated to a small interval, as

shown in Figure 5.2(a). A small norm deviation leads to a small search space, which

makes it di�cult to find an appropriate threshold to select filters to prune.

(2) Large Minimum Norm. The filters with the minimum norm may not be

arbitrarily small, as shown in the Figure 5.2(b), v00
1
>> v1 ! 0. Under this condition,

those filters considered as the least important still contribute significantly to the

network, which means every filter is highly informative. Therefore, pruning those

filters with minimum norm values will cast a negative e↵ect on the network.

60

5.3.3 Norm Statistics in Real Scenarios

In Figure 5.3, statistical information collected from pre-trained ResNet-110 on

CIFAR-10 and pre-trained ResNet-18 on ILSVRC-2012 demonstrates previous anal-

ysis. The small green vertical lines show each observation in this norm distribution,

and the blue curves denote the Kernel Distribution Estimate (KDE) [135], which

is a non-parametric way to estimate the probability density function of a random

variable. The norm distribution of first layer and last layer in both structures are

drawn. In addition, to clearly illustrate the relation between norm points, two dif-

ferent x-scale, i.e., linear x-scale and log x-scale, are presented.

(1) Small Norm Deviation in Network. For the first convolutional layer of

ResNet-110, as shown in Figure 5.3(b), there is a large quantity of filters whose

norms are concentrated around the magnitude of 10�6. For the last convolutional

layer of ResNet-110, as shown in Figure 5.3(c), the interval span of the value of

norm is roughly 0.3, which is much smaller than the interval span of the norm

of the first layer (1.7). For the last convolutional layer of ResNet-18, as shown

in Figure 5.3(g), most filter norms are between the interval [0.8, 1.0]. In all these

cases, filters are distributed too densely, which makes it di�cult to select a proper

threshold to distinguish the important filters from the others.

(2) Large Minimum Norm in Network. For the last convolutional layer of ResNet-

18, as shown in Figure 5.3(g), the minimum norm of these filters is around 0.8, which

is large comparing to filters in the first convolutional layer (Figure 5.3(e)). For the

last convolutional layer of ResNet-110, as shown in Figure 5.3(c), only one filter is

arbitrarily small, while the others are not. Under those circumstances, the filters

with minimum norms, although they are relatively less important according to the

norm-based criterion, still make significant contributions in the network.

61

(a) ResNet-110 (linear x-scale) (b) ResNet-110 (log x-scale)

(c) ResNet-110 (linear x-scale) (d) ResNet-110 (log x-scale)

(e) ResNet-18 (linear x-scale) (f) ResNet-18 (log x-scale)

(g) ResNet-18 (linear x-scale) (h) ResNet-18 (log x-scale)

Figure 5.3 : Norm distribution of filters from di↵erent layers of ResNet-110 on

CIFAR-10 and ResNet-18 on ILSVRC-2012. The small green vertical lines and blue

curves denote each norm and Kernel Distribution Estimate (KDE) of the norm

distribution, respectively.

62

5.3.4 Geometric Median

The central idea of geometric median [127] is as follows: given a set of n points

a(1), . . . , a(n) with each a(i) 2 Rd, find a point x⇤
2 Rd that minimizes the sum of

Euclidean distances to them:

x⇤ = argmin

x2Rd

f(x) where f(x)
def
=

X

i2[1,n]

kx� a(i)k2 (5.1)

where [1, n] = {1, ..., n}.

As the geometric median is a classic robust estimator of centrality for data in

Euclidean spaces [127], we can use the geometric median to get the common infor-

mation of all the filters within the single layer.

Geometric median is a non-trivial problem in computational geometry, the pre-

vious fastest running times for computing a (1 + ✏)-approximate geometric median

were eO(dn4/3
· ✏�8/3) by [136], O(nd log3(n/✏)) by [137], and this is time-consuming.

We also introduct how to reduce the computational cost in the following section.

5.3.5 Filter Pruning via Geometric Median

To get rid of the constraints in the norm-based criterion, we propose a new filter

pruning method inspired from geometric median.

xGM
= argmin

x2RNi⇥K⇥K

X

j
02[1,Ni+1]

kx� F
i,j

0k2, (5.2)

In the ith layer, find the filter(s) nearest to the geometric median in that layer:

Fi,j⇤ = argmin
F

i,j0
kF

i,j
0 � xGM

k2, s.t. j0 2 [1, Ni+1], (5.3)

then Fi,j⇤ can be represented by the other filters in the same layer, and therefore,

pruning them has little negative impacts on the network performance.

63

In our case, as the final result is in a list of known points, that is, the candidate

filters in ith layer. We could instead find which filter minimizes the summation of

the distance with other filters:

Fi,x⇤ =argmin
x

X

j
02[1,Ni+1]

kx� F
i,j

0k2, s.t. x2{Fi,1, ...,Fi,Ni+1}

def
= argmin

x

g(x), s.t. x2{Fi,1, ...,Fi,Ni+1}

(5.4)

Note that even if Fi,x⇤ is not included in the calculation of the geometric median

in Equation.5.4†, we could also achieve the same result.

In this setting, we want to find the filter

Fi,x⇤0 = argmin
x

g0(x), s.t. x2{Fi,1, ...,Fi,Ni+1} (5.5)

where

g0(x) =
X

j02[1,Ni+1],F
i,j

0 6=x

kx� F
i,j

0k2. (5.6)

For each x2{Fi,1, ...,Fi,Ni+1}:

g(x) =
X

j02[1,Ni+1]

kx� Fi,j0k2

=

X

j02[1,Ni+1],Fi,j0 6=x

kx� Fi,j0k2 + [kx� Fi,j0k2]F
i,j0=x

= g0(x)

(5.7)

So we could get:

g(x) = g0(x), 8 x2{Fi,1, ...,Fi,Ni+1}
(5.8)

†
To select multiple filters, we choose several x that makes g(x) to the smallest extent.

64

Algorithm 2 Algorithm Description of FPGM

Input: training data: X.

1: Given: pruning rate Pi

2: Initialize: model parameter W = {W(i), 0 i L}

3: for epoch = 1; epoch epochmax; epoch++ do

4: Update the model parameter W based on X

5: for i = 1; i L; i++ do

6: Find Ni+1Pi filters that satisfy Equation 5.4

7: Zeroize selected filters

8: end for

9: end for

10: Obtain the compact model W⇤ from W

Output: The compact model and its parameters W⇤

Thus, we have

Fi,x⇤ = argmin

x2{Fi,1,...,Fi,Ni+1
}
g(x) = argmin

x2{Fi,1,...,Fi,Ni+1
}
g0(x) = Fi,x⇤0 . (5.9)

Since the geometric median is a classic robust estimator of centrality for data

in Euclidean spaces [127], the selected filter(s), Fi,x⇤ , and left ones share the most

common information. This indicates the information of the filter(s) Fi,x⇤ could be

replaced by others. After fine-tuning, the network could easily recover its original

performance since the information of pruned filters can be represented by the re-

maining ones. Therefore, the filter(s) Fi,x⇤ could be pruned with negligible e↵ect on

the final result of the neural network. The FPGM is summarized in Algorithm 2.

65

5.3.6 Theoretical and Realistic Acceleration

5.3.6.1 Theoretical Acceleration

Suppose the shapes of input tensor I 2 Ni ⇥ Hi ⇥ Wi and output tensor O 2

Ni+1 ⇥Hi+1 ⇥Wi+1. Set the filter pruning rate of the ith layer to Pi, then Ni+1 ⇥Pi

filters should be pruned. After filter pruning, the dimension of input and output

feature map of the ith layer change to I0 2 [Ni ⇥ (1 � Pi)] ⇥ Hi ⇥ Wi and O0
2

[Ni+1 ⇥ (1� Pi)]⇥Hi+1 ⇥Wi+1, respectively.

If setting pruning rate for the (i + 1)th layer to Pi+1, then only (1 � Pi+1) ⇥

(1� Pi) of the original computation is needed. Finally, a compact model {W⇤(i)
2

RNi+1(1�Pi)⇥Ni(1�Pi�1)⇥K⇥K
} is obtained.

5.3.6.2 Realistic Acceleration

In the above analysis, only the FLOPs of convolution operations for computation

complexity comparison is considered, which is common in previous works [1, 6].

This is because other operations such as batch normalization (BN) and pooling are

insignificant comparing to convolution operations.

However, non-tensor layers (e.g., BN and pooling layers) also need the inference

time on GPU [19], and influence the realistic acceleration. Besides, the wide gap

between the theoretical and realistic acceleration could also be restricted by the IO

delay, bu↵er switch, and e�ciency of BLAS libraries. We compare the theoretical

and practical acceleration in Table 5.5.

66

Depth Method Fine-tune?Baseline acc. (%)Accelerated acc. (%)Acc. # (%)FLOPsFLOPs #(%)

20

SFP [6] 7 92.20 (±0.18) 90.83 (±0.31) 1.37 2.43E7 42.2

Ours (FPGM-only 30%) 7 92.20 (±0.18) 91.09 (±0.10) 1.11 2.43E7 42.2

Ours (FPGM-only 40%) 7 92.20 (±0.18) 90.44 (±0.20) 1.76 1.87E7 54.0

Ours (FPGM-mix 40%) 7 92.20 (±0.18) 90.62 (±0.17) 1.58 1.87E7 54.0

32

MIL [104] 7 92.33 90.74 1.59 4.70E7 31.2

SFP [6] 7 92.63 (±0.70) 92.08 (±0.08) 0.55 4.03E7 41.5

Ours (FPGM-only 30%) 7 92.63 (±0.70) 92.31 (±0.30) 0.32 4.03E7 41.5

Ours (FPGM-only 40%) 7 92.63 (±0.70) 91.93 (±0.03) 0.70 3.23E7 53.2

Ours (FPGM-mix 40%) 7 92.63 (±0.70) 91.91 (±0.21) 0.72 3.23E7 53.2

56

PFEC [1] 7 93.04 91.31 1.75 9.09E7 27.6

CP [14] 7 92.80 90.90 1.90 – 50.0

SFP [6] 7 93.59 (±0.58) 92.26 (±0.31) 1.33 5.94E7 52.6

Ours (FPGM-only 40%) 7 93.59 (±0.58) 92.93 (±0.49) 0.66 5.94E7 52.6

Ours (FPGM-mix 40%) 7 93.59 (±0.58) 92.89 (±0.32) 0.70 5.94E7 52.6

PFEC [1] 3 93.04 93.06 -0.02 9.09E7 27.6

CP [14] 3 92.80 91.80 1.00 – 50.0

AMC [138] 3 92.80 91.90 0.90 – 50.0

Ours (FPGM-only 40%) 3 93.59 (±0.58) 93.49 (±0.13) 0.10 5.94E7 52.6

Ours (FPGM-mix 40%) 3 93.59 (±0.58) 93.26 (±0.03) 0.33 5.94E7 52.6

110

MIL [104] 7 93.63 93.44 0.19 - 34.2

PFEC [1] 7 93.53 92.94 0.61 1.55E8 38.6

SFP [6] 7 93.68 (±0.32) 93.38 (±0.30) 0.30 1.50E8 40.8

Ours (FPGM-only 40%) 7 93.68 (±0.32) 93.73 (±0.23) -0.05 1.21E8 52.3

Ours (FPGM-mix 40%) 7 93.68 (±0.32) 93.85 (±0.11) -0.17 1.21E8 52.3

PFEC [1] 3 93.53 93.30 0.20 1.55E8 38.6

NISP [17] 3 – – 0.18 – 43.8

Ours (FPGM-only 40%) 3 93.68 (±0.32) 93.74 (±0.10) -0.16 1.21E8 52.3

Table 5.1 : Comparison of pruned ResNet on CIFAR-10. In “Fine-tune?” column,

“3” and “7” indicates whether to use the pre-trained model as initialization or not,

respectively. The “Acc. #” is the accuracy drop between pruned model and the

baseline model, the smaller, the better.

67

Depth Method

Fine-

tune?

Baseline

top-1

acc.(%)

Accelerated

top-1

acc.(%)

Baseline

top-5

acc.(%)

Accelerated

top-5

acc.(%)
Top-1

acc. #(%)

Top-5

acc. #(%) FLOPs#(%)

18

MIL [104] 7 69.98 66.33 89.24 86.94 3.65 2.30 34.6

SFP [6] 7 70.28 67.10 89.63 87.78 3.18 1.85 41.8

Ours (FPGM-only 30%) 7 70.28 67.78 89.63 88.01 2.50 1.62 41.8

Ours (FPGM-mix 30%) 7 70.28 67.81 89.63 88.11 2.47 1.52 41.8

Ours (FPGM-only 30%) 3 70.28 68.34 89.63 88.53 1.94 1.10 41.8

Ours (FPGM-mix 30%) 3 70.28 68.41 89.63 88.48 1.87 1.15 41.8

34

SFP [6] 7 73.92 71.83 91.62 90.33 2.09 1.29 41.1

Ours (FPGM-only 30%) 7 73.92 71.79 91.62 90.70 2.13 0.92 41.1

Ours (FPGM-mix 30%) 7 73.92 72.11 91.62 90.69 1.81 0.93 41.1

PFEC [1] 3 73.23 72.17 – – 1.06 – 24.2

Ours (FPGM-only 30%) 3 73.92 72.54 91.62 91.13 1.38 0.49 41.1

Ours (FPGM-mix 30%) 3 73.92 72.63 91.62 91.08 1.29 0.54 41.1

50

SFP [6] 7 76.15 74.61 92.87 92.06 1.54 0.81 41.8

Ours (FPGM-only 30%) 7 76.15 75.03 92.87 92.40 1.12 0.47 42.2

Ours (FPGM-mix 30%) 7 76.15 74.94 92.87 92.39 1.21 0.48 42.2

Ours (FPGM-only 40%) 7 76.15 74.13 92.87 91.94 2.02 0.93 53.5

ThiNet [19] 3 72.88 72.04 91.14 90.67 0.84 0.47 36.7

SFP [6] 3 76.15 62.14 92.87 84.60 14.01 8.27 41.8

NISP [17] 3 – – – – 0.89 – 44.0

CP [14] 3 – – 92.20 90.80 – 1.40 50.0

Ours (FPGM-only 30%) 3 76.15 75.59 92.87 92.63 0.56 0.24 42.2

Ours (FPGM-mix 30%) 3 76.15 75.50 92.87 92.63 0.65 0.21 42.2

Ours (FPGM-only 40%) 3 76.15 74.83 92.87 92.32 1.32 0.55 53.5

101

Rethinking [20] 3 77.37 75.27 – – 2.10 – 47.0

Ours (FPGM-only 30%) 3 77.37 77.32 93.56 93.56 0.05 0.00 42.2

Table 5.2 : Comparison of pruned ResNet on ILSVRC-2012. “Fine-tune?” and

”acc. #” have the same meaning with Table 3.1.

68

5.4 Experiments

We evaluate FPGM for single-branch network (VGGNet [118]), and multiple-

branch network (ResNet) on two benchmarks: CIFAR-10 [70] and ILSVRC-2012 [105]‡.

The CIFAR-10 [70] dataset contains 60, 000 32 ⇥ 32 color images in 10 di↵erent

classes, in which 50, 000 training images and 10, 000 testing images are included.

ILSVRC-2012 [105] is a large-scale dataset containing 1.28 million training images

and 50k validation images of 1,000 classes.

5.4.1 Experimental Settings

Training setting. On CIFAR-10, the parameter setting is the same as [113]

and the training schedule is the same as [114]. In the ILSVRC-2012 experiments,

we use the default parameter settings which is same as [61, 113]. Data argumen-

tation strategies for ILSVRC-2012 is the same as PyTorch [115] o�cial examples.

We analyze the di↵erence between starting from scratch and the pre-trained model.

For pruning the model from scratch, We use the normal training schedule without

additional fine-tuning process. For pruning the pre-trained model, we reduce the

learning rate to one-tenth of the original learning rate. To conduct a fair compari-

son of pruning scratch and pre-trained models, we use the same training epochs to

train/fine-tune the network. The previous work [1] might use fewer epochs to fine-

tune the pruned model, but it converges too early, and its accuracy can not improve

even with more epochs, which can be shown in section 5.4.2.

Pruning setting. In the filter pruning step, we simply prune all the weighted

layers with the same pruning rate at the same time, which is the same as [6].

Therefore, only one hyper-parameter Pi = P is needed to balance the acceleration

‡
As stated in [1], “comparing with AlexNet or VGG (on ILSVRC-2012), both VGG (on CIFAR-

10) and Residual networks have fewer parameters in the fully connected layers”, which makes

pruning filters in those networks challenging.

69

and accuracy. The pruning operation is conducted at the end of every training

epoch. Unlike previous work [1], sensitivity analysis is not essential in FPGM to

achieve good performances, which will be demonstrated in later sections.

Apart from FPGM only criterion, we also use a mixture of FPGM and previous

norm-based method [6] to show that FPGM could serve as a supplement to previous

methods. FPGM only criterion is denoted as “FPGM-only”, the criterion combining

the FPGM and norm-based criterion is indicated as “FPGM-mix”. “FPGM-only

40%” means 40% filters of the layer are selected with FPGM only, while “FPGM-

mix 40%” means 30% filters of the layer are selected with norm-based criterion [6],

and the remaining 10% filters are selected with FPGM. We compare FPGM with

previous acceleration algorithms, e.g., MIL [104], PFEC [1], CP [14], ThiNet [19],

SFP [6], NISP [17], Rethinking [20]. Not surprisingly, our FPGM method achieves

the state-of-the-art result.

5.4.2 Single-Branch Network Pruning

VGGNet on CIFAR-10. As the training setup is not publicly available for [1],

we re-implement the pruning procedure and achieve similar results to the original

paper. The result of pruning pre-trained and scratch model is shown in Table 5.3

and Table 5.4, respectively. Not surprisingly, FPGM achieves better performance

than [1] in both settings.

5.4.3 Multiple-Branch Network Pruning

ResNet on CIFAR-10. For the CIFAR-10 dataset, we test our FPGM on

ResNet-20, 32, 56 and 110 with two di↵erent pruning rates: 30% and 40%.

As shown in Table 5.1, our FPGM achieves the state-of-the-art performance. For

example, MIL [104] without fine-tuning accelerates ResNet-32 by 31.2% speedup

ratio with 1.59% accuracy drop, but our FPGM without fine-tuning achieves 53.2%

70

Model \ Acc (%) Baseline
Pruned

w.o. FT

FT

40 epochs

FT

160 epochs

PFEC [1]

93.58

(±0.03)

77.45

(±0.03)

93.22

(±0.03)

93.28

(±0.07)

Ours

93.58

(±0.03)

80.38

(±0.03)

93.24

(±0.01)

94.00

(±0.13)

Table 5.3 : Pruning pre-trained VGGNet on CIFAR-10. “w.o.” means “without”

and “FT” means “fine-tuning” the pruned model.

Model SA Baseline Pruned From Scratch FLOPs#(%)

PFEC [1] Y 93.58 (±0.03) 93.31 (±0.02) 34.2

Ours Y 93.58 (±0.03) 93.54 (±0.08) 34.2

Ours N 93.58 (±0.03) 93.23 (±0.13) 35.9

Table 5.4 : Pruning scratch VGGNet on CIFAR-10. “SA” means “sensitivity analy-

sis”. Without sensitivity analysis, FPGM can still achieve comparable performances

comparing to [1]; after introducing sensitivity analysis, FPGM can surpass [1].

speedup ratio with even 0.19% accuracy improvement. Comparing to SFP [6], when

pruning 52.6% FLOPs of ResNet-56, our FPGM has only 0.66% accuracy drop,

which is much less than SFP [6] (1.33%). For pruning the pre-trained ResNet-110,

our method achieves a much higher (52.3% v.s. 38.6%) acceleration ratio with 0.16%

performance increase, while PFEC [1] harms the performance with lower acceleration

ratio. These results demonstrate that FPGM can produce a more compressed model

with comparable or even better performances.

ResNet on ILSVRC-2012. For the ILSVRC-2012 dataset, we test our FPGM

71

Model

Baseline

time (ms)

Pruned

time (ms)

Realistic

Acc.(%)

Theoretical

Acc.(%)

ResNet-18 37.05 26.77 27.7 41.8

ResNet-34 63.89 45.24 29.2 41.1

ResNet-50 134.57 83.22 38.2 53.5

ResNet-101 219.70 147.45 32.9 42.2

Table 5.5 : Comparison on the theoretical and realistic acceleration. Only the time

consumption of the forward procedure is considered.

on ResNet-18, 34, 50 and 101 with pruning rates 30% and 40%. Same with [6], we

do not prune the projection shortcuts for simplification.

Table 5.2 shows that FPGM outperforms previous methods on ILSVRC-2012

dataset, again. For ResNet-18, pure FPGM without fine-tuning achieves the same

inference speedup with [6], but its accuracy exceeds by 0.68%. FPGM-only with fine-

tuning could even gain 0.60% improvement over FPGM-only without fine-tuning,

thus exceeds [6] by 1.28%. For ResNet-50, FPGM with fine-tuning achieves more

inference speedup than CP [14], but our pruned model exceeds their model by 0.85%

on the accuracy. Moreover, for pruning a pre-trained ResNet-101, FPGM reduces

more than 40% FLOPs of the model without top-5 accuracy loss and only negligible

(0.05%) top-1 accuracy loss. In contrast, the performance degradation is 2.10% for

Rethinking [20]. Compared to the norm-based criterion, Geometric Median (GM)

explicitly utilizes the relationship between filters, which is the main cause of its

superior performance.

To compare the theoretical and realistic acceleration, we measure the forward

time of the pruned models on one GTX1080 GPU with a batch size of 64. The

72

(a) Di↵erent pruning intervals (b) Di↵erent pruned FLOPs

Figure 5.4 : Accuracy of ResNet-110 on CIFAR-10 regarding di↵erent hyper-

parameters. Solid line and shadow denotes the mean values and standard deviation

of three experiments, respectively.

results § are shown in Table 5.5. As discussed in the above section, the gap between

the theoretical and realistic model may come from the limitation of IO delay, bu↵er

switch, and e�ciency of BLAS libraries.

5.4.4 Ablation Study

Influence of Pruning Interval In our experiment setting, the interval of prun-

ing equals to one, i.e., we conduct our pruning operation at the end of every training

epoch. To explore the influence of pruning interval, we change the pruning interval

from one epoch to ten epochs. We use the ResNet-110 under pruning rate 40% as

the baseline, as shown in Fig. 5.4(a). The accuracy fluctuation along with the dif-

ferent pruning intervals is less than 0.3%, which means the performance of pruning

is not sensitive to this parameter. Note that fine-tuning this parameter could even

achieve better performance.

§
Optimization of the addition of ResNet shortcuts and convolutional outputs would also a↵ect

the results.

73

Varying Pruned FLOPs We change the ratio of Pruned FLOPs for ResNet-

110 to comprehensively understand FPGM, as shown in Fig. 5.4(b). When the

pruned FLOPs is 18% and 40%, the performance of the pruned model even exceeds

the baseline model without pruning, which shows FPGM may have a regularization

e↵ect on the neural network.

Influence of Distance Type We use `1-norm and cosine distance to replace

the distance function in Equation 5.4. We use the ResNet-110 under pruning rate

40% as the baseline, the accuracy of the pruned model is 93.73 ± 0.23 %. The

accuracy based on `1-norm and cosine distance is 93.87 ± 0.22 % and 93.56 ± 0.13,

respectively. Using `1-norm as the distance of filter would bring a slightly better

result, but cosine distance as distance would slightly harm the performance of the

network.

Combining FPGM with Norm-based Criterion We analyze the e↵ect of

combining FPGM and previous norm-based criterion. For ResNet-110 on CIFAR-10,

FPGM-mix is slightly better than FPGM-only. For ResNet-18 on ILSVRC-2012, the

performances of FPGM-only and FPGM-mix are almost the same. It seems that the

norm-based criterion and FPGM together can boost the performance on CIFAR-10,

but not on ILSVRC-2012. We believe that this is because the two requirements for

the norm-based criterion are met on some layers of CIFAR-10 pre-trained network,

but not on that of ILSVRC-2012 pre-trained network, which is shown in Figure 5.3.

5.4.5 Feature Map Visualization

We visualize the feature maps of the first layer of the first block of ResNet-50.

The feature maps with red titles (7,23,27,46,56,58) correspond to the selected fil-

ter activation when setting the pruning rate to 10%. These selected feature maps

contain outlines of the bamboo and the panda’s head and body, which can be re-

placed by remaining feature maps: (5,12,16,18,22, et. al.) containing outlines of the

74

bamboo, and (0,4,33,34,47, et. al.) containing the outline of panda.

0 1 2 3 4 5 6 7

8 9 1 0 1 1 1 2 1 3 1 4 1 5

1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3

2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1

3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9

4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7

4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5

5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3

Figure 5.5 : Input image (left) and visualization of feature maps (right) of ResNet-

50-conv1. Feature maps with red bounding boxes are the channels to be pruned.

5.5 Conclusion

In this paper, we elaborate on the underlying requirements for norm-based filter

pruning criterion and point out their limitations. To solve this, we propose a new

filter pruning strategy based on the geometric median, named FPGM, to acceler-

ate the deep CNNs. Unlike the previous norm-based criterion, FPGM explicitly

considers the mutual relations between filters. Thanks to this, FPGM achieves the

state-of-the-art performance in several benchmarks.

75

Chapter 6

Learning Filter Pruning Criteria

6.1 Introduction

Figure 6.1 : (a) Previous filter pruning methods manually select a criterion and

apply it to all layers; (b) our pruning method learns appropriate criteria for different

layers based on the filter distribution. In the blue dashed box, the solid boxes of

different colors denote different pruning criteria. The yellow boxes without shadow

correspond to unpruned layers of the network, while the ones with shadow are the

layers pruned by a selected pruning criterion.

Convolutional neural networks have achieved significant advancement in various

computer vision research applications [61, 118, 139]. However, most of these man-

76

ually designed architectures, e.g., VGG [118], ResNet [61], usually come with the

enormous model size and heavy computation cost. It is hard to deploy these models

in scenarios demanding a real-time response. Recently, studies on model compres-

sion and acceleration are emerging. Due to its e�cacy, the pruning strategy attracts

attention in previous studies [1, 4, 7].

Recent developments on pruning can be divided into two categories, i.e., weight

pruning [4], and filter pruning [1]. Filter pruning is preferred compared to weight

pruning because filter pruning could make the pruned model more structural and

achieve practical acceleration [7]. The existing filter pruning methods follow a three-

stage pipeline. (1) Training : training a large model on the target dataset. (2)

Pruning : based on a particular criterion, unimportant filters from the pre-trained

model are pruned. (3) Fine-tuning (retraining): the pruned model is retrained to

recover the original performance. During the three stages, select an appropriate

pruning criterion is the key ingredient.

However, the previous works have a few drawbacks and might not be the best

choice in real scenarios. First, previous works manually specify a pruning criterion

and utilize the same pruning criterion for di↵erent layers. As shown in [140], di↵er-

ent layers have di↵erent filter distributions and various functions. The lower layers

tend to extract coarse level features, such as lines, dots, and curves, while the higher

layers tend to extract fine level features, such as common objects and shapes. In

this situation, fixing one pruning criterion for all the functional layers may not be

suitable. Second, prevailing methods prune the network in a greedy layer-by-layer

manner, i.e., the pruning process at di↵erent layers is independent of each other.

Considering that during training and inference, the filters of all the layers work col-

laboratively to make a final prediction, it is natural to suggest to conduct pruning

in a collaborative, not an independent, manner. In other words, it is preferred that

the filter importance of all layers could be evaluated concurrently.

77

We propose Learning Filter Pruning Criteria (LFPC) to solve the mentioned

problems. The core component of LFPC is a Di↵erentiable Criteria Sampler (DCS),

which aims to sample di↵erent criteria for di↵erent layers. This sampler, since it

is di↵erentiable, can be updated e�ciently to find the appropriate criteria. First,

DCS initializes a learnable criteria probability for all layers. For every layer, DCS

conducts criteria forward to get the criteria feature map based on the filters and

criteria probability. The process of criteria forward is shown in Sec. 6.3.2.3. After

criteria forward for all the layers, we get the criteria loss and utilize it as a su-

pervision signal. The criteria loss can be back-propagated to update the criteria

probability distribution to fit the filter distribution of the network better. Di↵erent

from previous layer-by-layer pruning works, our LFPC can consider all the layers

and all the pruning criteria simultaneously through the criteria loss. After finishing

training the DCS, the optimized criteria servers as the pruning criteria for the net-

work, as shown in Fig. 6.1. After pruning, we fine-tune the pruned model once to

get an e�cient and accurate model.

Contributions. Contributions are summarized as follows:

(1) We propose an e↵ective learning framework, Learning Filter Pruning Criteria

(LFPC). This framework can learn to select the most appropriate pruning criteria for

each functional layer. Besides, the proposed Di↵erentiable Criteria Sampler (DCS)

can be trained end-to-end and consider all the layers concurrently during pruning.

To the best of our knowledge, this is the first work in this research direction.

(2) The experiment on three benchmarks demonstrates the e↵ectiveness of our

LFPC. Notably, it accelerates ResNet-110 by two times, with even 0.31% relative ac-

curacy improvement on CIFAR-10. Additionally, we reduce more than 60% FLOPs

on ResNet-50 with only 0.83% top-5 accuracy loss.

78

6.2 Related Work

Previous work on pruning can be categorized into weight pruning and filter prun-

ing. Weight pruning [4,5,66,126,132–134] focuses on pruning fine-grained weight of

filters, so that leading to unstructured sparsity in models. In contrast, filter prun-

ing [1] could achieve the structured sparsity, so the pruned model could take full

advantage of high-e�ciency Basic Linear Algebra Subprograms (BLAS) libraries to

achieve better acceleration.

Considering how to evaluate the filter importance, we can roughly divide the fil-

ter pruning methods into two categories, i.e., weight-based criteria, and activation-

based criteria. Furthermore, the pruning algorithms could also be roughly grouped

by the frequency of pruning, i.e., greedy pruning, and one-shot pruning. We illus-

trate the categorization in Tab. 6.1.

Algorithms

Criteria

W | A

Frequency

O | G

PFEC [1], SFP [6], FPGM [7] W O

RSA [20], PRE [16] W G

SLIM [15], PFA [8], NISP [17],

CCP [12], GAL [23] A O

CP [14], SLIM [15], ThiNet [19],

PRE [16], DCP [21], LPF [22],

AOFP [18], GATE [13]

A G

Table 6.1 : Di↵erent categories of filter pruning algorithms. “W” and “A” denote

the weight-based and activation-based criteria. “O” and “G” indicate the one-shot

and greedy pruning.

79

Weight-based Criteria. Some methods [1, 6, 7, 20, 29, 141] utilize the weights of

the filters to determine the importance of the filters. [1] prunes the filters with small

`1-norm. [6] utilizes `2-norm criterion to select filters and prune those selected filters

softly. [20] introduces sparsity on the scaling parameters of batch normalization (BN)

layers to prune the network. [7] claims that the filters near the geometric median

should be pruned. All the works utilize the same pruning criteria for di↵erent layers

and do not take into account that di↵erent layers have various functions and di↵erent

filter distributions.

Activation-based Criteria. Some works [8, 12, 14–17, 19, 21–24, 27, 71, 138, 142]

utilize the training data and filter activations to determine the pruned filters. [8]

adopts the Principal Component Analysis (PCA) method to specify which part of

the network should be preserved. [19] proposes to use the information from the next

layer to guide the filter selection. [71] minimizes the reconstruction error of training

set sample activations and applies Singular Value Decomposition (SVD) to obtain

a decomposition of filters. [73] explores the linear relationship in di↵erent feature

maps to eliminate the redundancy in convolutional filters.

Greedy and One-shot Pruning. Greedy pruning [13, 18], or oracle pruning,

means the pruning and retraining should be operated for multiple times. Although

greedy pruning is beneficial for accuracy, it is time-consuming and requires a large

number of computation resources. In contrast, one-shot pruning [1, 7] prunes the

network once and retrained once to recover the accuracy. It is more e�cient than

the greedy pruning, but it requires careful pruning criteria selection. We focus on

one-shot pruning in this paper.

Other Pruning and Searching Methods. Some works utilize reinforcement

learning [22, 138] or meta-learning [143] for pruning. In contrast, we focus on

learning the proper pruning criteria for di↵erent layers via the di↵erential sampler.

80

[144] proposes centripetal SGD to make several filters to converge into a single

point. [17] is a global pruning method, but the importance of pruned neurons is not

propagated. The idea of our learning criteria shares some similarities with the Neural

Architecture Search (NAS) works [75, 145] and Autoaugment [146], the di↵erence

is that our search space is the pruning criteria instead of network architectures or

augmentation policies.

6.3 Methodology

6.3.1 Preliminaries

We assume that a neural network has L layers, and we represent the weight for

lth convolutional layers as W(l)
2 RK⇥K⇥C

(l)
I

⇥C
(l)
O , where K is the kernel size , C(l)

I

and C(l)

O
is the number of input and output channels, respectively. In this way,

W(l)

i
2 RK⇥K⇥C

(l)
I represents the ith filter of lth convolutional layer. We denote the

I and O as the input and output feature maps, and I 2 C(l)

I
⇥ H(l)

I
⇥ W (l)

I
and

O 2 C(l)

O
⇥ H(l)

O
⇥W (l)

O
, where H()

⇤ and W ()

⇤ is the height and width of the feature

map, respectively. The convolutional operation of the ith layer can be written as:

Oi = W
(l)

i
⇤ I for 1 i C(l)

O
, (6.1)

Assume the filter set F consists all the filters in the network:

F =

n
W

(l)

i
, i 2 [1, C(l)

O
], l 2 [1, L]

o
(6.2)

We divide F into two disjoint subsets: the kept filter set K and removed filter

set R, and we have:

K [R = F , K \R = ;. (6.3)

Now our target becomes clear. Filter pruning aims to minimize the loss function

value under sparsity constraints on filters. Given a dataset D = {(xn,yn)}Nn=1

81

where xn denotes the nth input and yn is the corresponding output, the constrained

optimization problem can be formulated as:

min
K

L(K;D) = min
K

1

N

NX

n=1

L(K; (xn,yn))

s.t.
C (K)

C (F)
 r

(6.4)

where L(·) is a standard loss function (e.g., cross-entropy loss), C (·) is the computa-

tion cost of the network built from the filter set, and r is the ratio of the computation

cost of between pruned network and the original unpruned network.

6.3.2 Learning Filter Pruning Criteria

In this section, we illustrate our proposed LFPC, which can automatically and

adaptively choose an appropriate criterion for each layer based on their respective

filter distribution. The overall learning process is shown in Fig. 6.2.

6.3.2.1 Pruning Criteria

For simplicity, we introduce the pruning criteria based on lth layer. The filters

in lth layer are denoted as a filter set F
(l) =

n
W(l)

i
, i 2 [1, C(l)

O
]
o
. In lth layer, a

pruning criterion, denoted as Crit(l)(·), is utilized to get the importance scores for

the filters. Then we have

score(l) = Crit
(l)
(F

(l)
) (6.5)

where score(l) 2 RC
(l)
O is the importance score vector of the filters in lth layer. For

example, `1-norm criteria [1] could be formulated as:

Crit
(l)
(F

(l)
) =

n
Crit

(l)
(W

(l)

i
) = kW

(l)

i
k1 for i 2 [1, C(l)

O
]

o
(6.6)

Then filter pruning is conducted based on score(l):

82

������ ����	
� ��	��

������ ���� ��	���

�� ��
��� �����

�	���� �	�����

�	���� �	�����

�������� �	�����

�������� �	�����

�������� ��������

�������� �����

�������� �������
��	�

��������
��������
� ������

��
���� ���� ��������

��������
�	��

Figure 6.2 : Criteria forward and backward in the network. Grey boxes are the

normal filters. The probability distribution of criteria for three layers are initialized,

as shown in the big orange shadow. After pruning with four criteria, we obtain

four “pruned versions” for every layer, which are denoted as boxes in purple, green,

orange, and blue color. These filters are utilized to conduct criteria forward. Then

we get the criteria loss on the validation set to update the “criteria distribution”.

keepid(l) = Topk(score(l), n(l))

K
(l)

= Prune(F
(l), keepid(l)),

(6.7)

where n(l) is the number of filters to be kept, and Topk(·) returns the indexes of the

k most important filter based on their importance scores. The indexes are denoted

as keepid(l). Given keepid(l), Prune(·) keeps the critical filters with the indexes

specified in keepid(l), and prunes the other filters. The filter set after pruning is

denoted as K(l).

83

Figure 6.3 : Criteria forward within a layer. Boxes of di↵erent colors indicate the

di↵erent pruning criteria. First, we evaluate the importance of the filter based on

di↵erent criteria. Second, we prune the filter with small importance scores and get

four versions of pruned layers with various probabilities. After that, the output

feature map is the aligned weighted sum of four feature maps of the pruned layers.

6.3.2.2 Criteria Space Complexity

If we want to keep n(l) filters in lth layer, which has totally C(l)

O
filters, then

the number of selection could be

✓
C(l)

O

n(l)

◆
=

C
(l)
O

!

n(l)! (C
(l)
O

�n(l))!
, where

✓◆
denotes the

combination [147]. For those frequently used CNN architectures, the number of

selections might be surprisingly big. For example, pruning 10 filters from a 64-

filter-layer has

✓
64

10

◆
= 151, 473, 214, 816 selections. This number would increase

dramatically if the more layers are considered. Therefore, it is impossible to learn

the pruning criteria from scratch. Fortunately, with the help of the proposed criteria

of previous works [1,7], we could reduce the criteria space complexity from
�
C

(l)
O

n(l)

�
to

S, which is the number of criteria that we adopted.

6.3.2.3 Di↵erentiable Criteria Sampler

Assuming there are S candidate criteria in the criteria space, we could use ↵(l)
2

RS to indicate the distribution of the possible criteria for lth layer. The probability

of choosing the ith criterion can be formulated as:

pi =
exp

⇣
↵(l)

i

⌘

P
S

j=1
exp

⇣
↵(l)

j

⌘ where 1 i S (6.8)

84

However, since Eq. 6.8 needs to sample from a discrete probability distribution,

we cannot back-propagate gradients through pi to ↵(l)

i
. To allow back-propagation,

inspired from [117], we apply Gumbel-Softmax [148, 149] to reformulate Eq. 6.8 as

Eq. 6.9:

p̂i =
exp ((log (pi) + oi) /⌧)P
S

j=1
exp ((log (pj) + oj) /⌧)

s.t. oi = � log(� log(u)) & u ⇠ U(0, 1)

(6.9)

where U(0, 1) is the uniform distribution between 0 and 1, u is a sample from the

distributio U(0, 1), and ⌧ is the softmax temperature. We denote p̂ = [p̂1, . . . , p̂j, . . .]

as the Gumbel-softmax distribution. Change the parameter ⌧ would lead to di↵er-

ent p̂. When ⌧ ! 1, p̂ becomes a uniform distribution. When ⌧ ! 0, samples

from p̂ become one-shot, and they are identical to the samples from the categorical

distribution [148].

Criteria Forward. The illustration of criteria forward for lth layer is shown in

Fig 6.3. For simplicity, we rewrite the Eq. 6.5 and Eq. 6.7 asK(l) = g(F (l),Crit(l), n(l)).

For lth layer, it has S sampled “pruned version” which can be formulated as:

K
(l)

s = g(F (l),Crit(l)s , n(l)) for s 2 [1, S] (6.10)

where Crit(l)
s

denotes the process of utilizing sth pruning criterion to get the im-

portance scores for the filters in lth layer, and K
(l)

s is the kept filter set under sth

criterion. To comprehensively consider the contribution of every criterion during

training, the output feature map is defined as the Aligned Weighted Sum (AWS) of

the feature maps from di↵erent K(l)

s , which can be formulated as:

O
AWS

=

SX

s=1

Align(p̂s ⇥ Ôs),

Align(Ôs,i) = Ô
0

s,keepid
(l)
s [i]

i 2 [1, n(l)].

(6.11)

85

where OAWS is the criteria feature map of the layer, p̂s is the probability for sth

criteria, ⇥ denotes the scalar multiplication, Ôs is the output feature map of K(l)

s ,

and Ô
0
s
is the aligned feature. For the second formulation, keepid(l)s [i] is the ith

element of the keepid (Eq. 6.7) under sth criteria in lth layer. To explain the Align(·)

function, we take the third figure of Fig. 6.3 for example. The first channel of purple

network could only be added with the first channel of orange network, not the green

and blue one. This operation can avoid the interference of the information from

di↵erent channels. Further we have:

Ôs =
⇥
Ôs,1, Ôs,2, ..., Ôs,n(l)

⇤
,

Ôs,i = K
(l)

s,i
⇤ I, s 2 [1, S], i 2 [1, n(l)],

(6.12)

where Ôs,i is the ith output feature of K(l)

s , and ⇤ is the convolution operation. After

criteria forward for all the layers, we could get the criteria loss, as shown in Fig. 6.2.

Training Objectives. For a L-layer network, the criteria parameter ↵ =
�
↵(1),↵(2), ...,↵(L)

. We aim to find a proper ↵ to give us guidance about which

criterion is suitable for di↵erent layers. Specifically, ↵ is found by minimizing the

validation loss Lval after trained the criteria network ✓↵ by minimizing the training

loss Ltrain:

min
↵

Lval (✓
⇤
↵
,↵)

s.t. ✓⇤
↵
= argmin

✓↵

Ltrain(✓↵,↵),
(6.13)

where ✓⇤
↵
is the optimized criteria network under the optimized criteria set ↵. The

training loss is the cross-entropy classification loss of the networks. To further con-

sider the computation cost of the pruned network, the penalty for the computation

cost is also included in the validation loss:

Lval = Lcrit + �compLcomp, (6.14)

86

where Lcrit is the standard classification loss of the criteria network, namely the

criteria loss, and Lcomp is the computation loss of the pruned network. �comp is

a balance of these two losses, whose details can be found in the supplementary

material. In this way, we could get the optimized criteria parameters ↵ for the

network under di↵erent computation constraints.

Criteria Backward. We backward Lval in Eq. 6.14 to ↵ to update these pa-

rameters collaboratively at the same time. The illustration of this process is shown

in Fig. 6.2.

After DCS Training. By choosing the criterion with the maximum probability,

we get the final criteria set T for all the layers. Then we conduct a conventional

pruning operation based on the optimized criteria T to get the pruned network.

The pruned network is then retrained to get the final accurate pruned model.

6.4 Experiments

6.4.1 Experimental Setting

Datasets. In this section, we validate the e↵ectiveness of our acceleration

method on three benchmark datasets, CIFAR-10, CIFAR-100 [70], and ILSVRC-

2012 [105]. The CIFAR-10 dataset contains 50, 000 training images and 10, 000 test-

ing images, in total 60, 000 32⇥ 32 color images in 10 di↵erent classes. CIFAR-100

has 100 classes, and the number of images is the same as CIFAR-10. ILSVRC-

2012 [105] contains 1.28 million training images and 50k validation images of 1, 000

classes.

Architecture Setting. As ResNet has the shortcut structure, existing works [14,

19,104] claim that ResNet has less redundancy than VGGNet [118] and accelerating

ResNet is more di�cult than accelerating VGGNet. Therefore, we follow [151] to

focus on pruning the challenging ResNet.

87

Depth Method Init pretrain Baseline acc. (%) Pruned acc. (%) Acc. # (%) FLOPs FLOPs #(%)

32

MIL [104] 7 92.33 90.74 1.59 4.70E7 31.2

SFP [6] 7 92.63 (±0.70) 92.08 (±0.08) 0.55 4.03E7 41.5

FPGM [7] 7 92.63 (±0.70) 92.31 (±0.30) 0.32 4.03E7 41.5

Ours 7 92.63 (±0.70) 92.12 (±0.32) 0.51 3.27E7 52.6

56

PFEC [1] 7 93.04 91.31 1.75 9.09E7 27.6

Ours 7 93.59 (±0.58) 93.56 (±0.29) 0.03 6.64E7 47.1

CP [14] 7 92.80 90.90 1.90 – 50.0

SFP [6] 7 93.59 (±0.58) 92.26 (±0.31) 1.33 5.94E7 52.6

FPGM [7] 7 93.59 (±0.58) 92.89 (±0.32) 0.70 5.94E7 52.6

Ours 7 93.59 (±0.58) 93.34 (±0.08) 0.25 5.91E7 52.9

PFEC [1] 3 93.04 93.06 -0.02 9.09E7 27.6

NISP [17] 3 – – 0.03 – 42.6

Ours 3 93.59 (±0.58) 93.72 (±0.29) -0.13 6.64E7 47.1

CP [14] 3 92.80 91.80 1.00 – 50.0

AMC [138] 3 92.80 91.90 0.90 – 50.0

FPGM [7] 3 93.59 (±0.58) 93.26 (±0.03) 0.33 5.94E7 52.6

Ours 3 93.59 (±0.58) 93.24 (±0.17) 0.35 5.91E7 52.9

110

PFEC [1] 7 93.53 92.94 0.61 1.55E8 38.6

MIL [104] 7 93.63 93.44 0.19 - 34.2

SFP [6] 7 93.68 (±0.32) 93.38 (±0.30) 0.30 1.50E8 40.8

Rethink [150] 7 93.77 (±0.23) 93.70 (±0.16) 0.07 1.50E8 40.8

FPGM [7] 7 93.68 (±0.32) 93.73 (±0.23) -0.05 1.21E8 52.3

Ours 7 93.68 (±0.32) 93.79 (±0.38) -0.11 1.01E8 60.3

PFEC [1] 3 93.53 93.30 0.20 1.55E8 38.6

NISP [17] 3 – – 0.18 – 43.8

GAL [23] 3 93.26 92.74 0.81 – 48.5

FPGM [7] 3 93.68 (±0.32) 93.74 (±0.10) -0.16 1.21E8 52.3

Ours 3 93.68 (±0.32) 93.07 (±0.15) 0.61 1.01E8 60.3

Table 6.2 : Comparison of the pruned ResNet on CIFAR-10. In “Init pretrain”

column, “3” and “7” indicate whether to use the pre-trained model as initialization

or not, respectively. The “Acc. #” is the accuracy drop between pruned model and

the baseline model, the smaller, the better. A negative value in “Acc. #” indicates

an improved model accuracy.

88

Normal Training Setting. For ResNet on CIFAR-10 and CIFAR-100, we

utilize the same training schedule as [114]. In the CIFAR experiments, we run each

setting three times and report the “mean ± std”. In the ILSVRC-2012 experiments,

we use the default parameter settings, which are the same as [61,113], and the same

data argumentation strategies as the o�cial PyTorch [115] examples.

DCS training Setting. The weight-based criteria are selected as our candidate

criteria for their e�ciency. Specifically, `1-norm [1], `2-norm [6] and geometric me-

dian based [7] criteria. The criteria could be formulated as Crit(l)(W(l)

i
) = kW(l)

i
kp

and Crit(l)(W(l)

i
) = 2

r
PC

(l)
O

j=1

���W(l)

i
�W(l)

j

���
2

for i 2 [1, C(l)

O
]. Note that our frame-

work is able to extend to more criteria.

We set desired FLOPs according to compared pruning algorithms and set �comp

of Eq. 6.14 as 2. We randomly split half of the training set as the validation set for

Eq. 6.13. We optimize the criteria parameters via Adam, and we use the constant

learning rate of 0.001 and a weight decay of 0.001. On CIFAR, we train the DCS

for 600 epochs with a batch size of 256. On ILSVRC-2012, we train the DCS for 35

epochs with a batch size of 256. The ⌧ in Eq. 6.9 is linearly decayed from 5 to 0.1.

During training DCS, we fix the pre-trained weights [151] to reduce overfitting.

Pruning Setting. After training DCS, we prune the network with the opti-

mized criteria and fine-tune the network with the full training set. We analyze the

di↵erence between pruning a scratch model and the pre-trained model. For pruning

the scratch model, we utilize the regular training schedule without additional fine-

tuning. For pruning the pre-trained model, we reduce the learning rate to one-tenth

of the original learning rate. To conduct a fair comparison, we use the same baseline

model as [7] for pruning. During retraining, we use the cosine scheduler [151, 152]

for a stable result. The pruning rate of every layer is sampled in the same way as

89

DCS∗, so we could search the ratio automatically and adaptively [151].

We compare our method with existing state-of-the-art acceleration algorithms,

e.g., MIL [104], PFEC [1], CP [14], ThiNet [19], SFP [6], NISP [17], FPGM [7],

LFC [153], ELR [73], GAL [23], IMP [27], DDS [24]. Experiments show that our

LFPC achieves a comparable performance with those works. Our experiments are

based on the PyTorch [115] framework. No significant performance di↵erence has

been observed with the PaddlePaddle framework.

6.4.2 ResNet on CIFAR-10

Depth Method

Init

Pretrain

Baseline

top-1

acc.(%)

Pruned

top-1

acc.(%)

Baseline

top-5

acc.(%)

Pruned

top-5

acc.(%)
Top-1

acc. #(%)

Top-5

acc. #(%)

FLOPs#
(%)

50

SFP [6] 7 76.15 74.61 92.87 92.06 1.54 0.81 41.8

FPGM [7] 7 76.15 74.13 92.87 91.94 2.02 0.93 53.5

Ours 7 76.15 74.18 92.87 91.92 1.97 0.95 60.8

DDS [24] 3 76.12 74.18 92.86 91.91 1.94 0.95 31.1

ThiNet [19] 3 72.88 72.04 91.14 90.67 0.84 0.47 36.7

SFP [6] 3 76.15 62.14 92.87 84.60 14.01 8.27 41.8

NISP [17] 3 – – – – 0.89 – 44.0

IMP [27] 3 76.18 74.50 1.68 45.0

CP [14] 3 – – 92.20 90.80 – 1.40 50.0

LFC [153] 3 75.30 73.40 92.20 91.40 1.90 0.80 50.0

ELR [73] 3 – – 92.20 91.20 – 1.00 50.0

FPGM [7] 3 76.15 74.83 92.87 92.32 1.32 0.55 53.5

Ours 3 76.15 74.46 92.87 92.04 1.69 0.83 60.8

Table 6.3 : Comparison of the pruned ResNet on ImageNet. “Init Pretrain” and

”acc. #” have the same meaning with Table 3.1.

For the CIFAR-10 dataset, we test our LFPC on ResNet with depth 32, 56,

and 110. As shown in Tab. 6.2, the experiment results validate the e↵ectiveness of

∗
See supplementary material for details.

90

our method. For example, MIL [104] accelerates the random initialized ResNet-32

by 31.2% speedup ratio with 1.59% accuracy drop, but our LFPC achieves 52.6%

speedup ratio with only 0.51% accuracy drop. When we achieve similar accuracy

with FPGM [7] on ResNet-32, our acceleration ratio is much larger than FPGM [7].

Comparing to SFP [6], when we prune similar FLOPs of the random initialized

ResNet-56, our LFPC has 1.07% accuracy improvement over SFP [6]. For pruning

the pre-trained ResNet-56, our method achieves a higher acceleration ratio than

CP [14] with a 0.65% accuracy increase over CP [14]. Comparing to PFEC [1], our

method accelerates the random initialized ResNet-110 by 60.3% speedup ratio with

even 0.11% accuracy improvement, while PFEC [1] achieves 21.7% less acceleration

ratio with 0.61% accuracy drop.

The reason for our superior result is that our proposed method adaptively selects

suitable criteria for each functional layer based on their respective filter distribution.

On the contrary, none of previous works [1, 6, 14] did this. We notice that pruning

from a scratch model sometimes achieves a slightly better performance than pruning

a pre-trained model, which is consistent with [150]. Note that we achieve a higher ac-

celeration ratio than [150] on ResNet-110 with similar accuracy. We conjecture that

the optimized criteria might change the random initialization to “biased” random

initialization, which is beneficial to the final performance. This result is consistent

with the conclusion of [154] that a proper initialization is critical for the network.

Criteria Visualization. The learned pruning criteria for ResNet-56 on CIFAR-

10 is shown in Figure 6.4. The blue, orange and green denote pruning this layer with

`1-norm, `2-norm and geometric median, respectively. The pruned network achieve

93.54(±0.14)% accuracy with pruning 53.0% FLOPs. In this figure, we find that

the GM-based criterion is adopted more at higher layers, while the `p-norm-based

criteria are preferred at lower layers. An explanation is that filters of higher layers

tend to extract semantic information, and their activations are semantically related

91

Figure 6.4 : Visualization of the learned criteria and kept filters for ResNet-56 on

CIFAR-10. The grey strip indicates the layers before pruning. The blue, orange and

green color denote `1-norm, `2-norm and geometric median criteria, respectively. For

example, the bottom green strip means that for all the 64 filters in 55th layer, GM

criterion is automatically selected to prune half of those filters, base on the filter

distribution on that layer.

to each other [155]. Therefore, our LFPC chooses the relation-based criteria instead

of magnitude-based criteria when pruning higher layers. †

6.4.3 ResNet on CIFAR-100

The results of pruning ResNet-56 on CIFAR-100 is shown in Tab. 6.4. We only

list a few methods as other methods have no experiment results on CIFAR-100.

When achieving a similar ratio of acceleration, our LFPC could obtain much higher

accuracies than the candidate algorithms [6] and [7]. This result again validates the

e↵ectiveness of our method.

†
GM is a relation-based criterion, while `p-norm is a magnitude-based criterion. See supple-

mentary material for di↵erent filter distribution.

92

Depth Method

Pruned

Acc.(%)

Acc.

(%) FLOPs

FLOPs

(%)

56

MIL [104] 68.37 2.96 7.63E7 39.3%

SFP [6] 68.79 2.61 5.94E7 52.6%

FPGM [7] 69.66 1.75 5.94E7 52.6%

Ours 70.83 0.58 6.08E7 51.6%

Table 6.4 : Comparison of the pruned ResNet-56 on CIFAR-100.

6.4.4 ResNet on ILSVRC-2012

For the ILSVRC-2012 dataset, we test our method on ResNet-50. Same as [7], we

do not prune the projection shortcuts. Tab. 6.3 shows that our LPFC outperforms

existing methods on ILSVRC-2012. For the random initialized ResNet-50, when

our LFPC prunes 7.3% more FLOPs than FPGM [7], the accuracy is even higher

than FPGM [7]. For pruning the pre-trained ResNet-50, we achieve 92.04% top-

5 accuracy when we prune 60.8% FLOPs. While the previous methods (CP [14],

LFC [153], ELR [73]) have lower top-5 accuracy when pruning less FLOPs (50%).

ThiNet [19] also has a lower accuracy than our LFPC when its acceleration ratio is

lower than ours. The superior performance comes from that our method considers

the di↵erent filter distribution of di↵erent layers.

6.4.5 More Explorations

Adversarial Criteria. To further validate the e↵eteness of our LFPC, we add

the adversarial criteria, which is the adversarial version of the current pruning cri-

teria, to our system. For example, conventional norm-based criteria keep the filters

with large `p-norm. In contrast, adversarial norm-based criteria keep the filters with

93

Figure 6.5 : Visualization of the conventional and adversarial criteria for ResNet-56

on CIFAR-10. The grey strip indicates the layers before pruning. Di↵erent blue and

green colors represent di↵erent pruning criteria.

small `p-norm, which could be formulate as Crit(l)(W(l)

i
) = 1

kW(l)
i

kp
for i 2 [1, C(l)

O
].

The learned criteria for ResNet-56 on CIFAR-10 are shown in Fig. 6.5. In this

experiment, we utilize four criteria, including `1-norm, `2-norm, adversarial `1-norm,

adversarial `2-norm. As shown in Tab. 6.5, for all the 55 criteria for ResNet-56, the

adversarial criteria only account for a small proportion (16.4%). This means that

our LFPC successfully selects conventional criteria and circumvents the adversarial

criteria, which would be another evidence of the e↵ectiveness of our LFPC.

Criteria During Training The learned criteria during training DCS is shown

in Fig. 6.6. A small strip of a specific color means the layer of the network utilizes

a corresponding pruning criterion at the current epoch. We find that the sampler

gradually converges to a regular pattern of criteria, which provides stable guidance

for the next pruning step.

Retraining Scheduler. We compare the cosine scheduler [152] and step sched-

94

Setting

Adversarial

criteria (%)

Conventional

criteria(%)

FLOPs

#(%)

Accuracy

(%)

w Adv 16.4% 83.6% 58.0 93.09 (±0.09)

w/o Adv 0 100% 53.0 93.45 (±0.13)

Table 6.5 : Analysis of adversarial criteria. “w Adv” and “w/o Adv” denote con-

taining the adversarial criteria or not, respectively.

Figure 6.6 : The learned criteria during training the criteria sampler. The L1,

L2, and GM denote conventional `1-norm, `2-norm, and geometric median criteria,

respectively.

uler [7] during retraining. When pruning 47.6% FLOPs of the ResNet-56, cosine

scheduler can achieve 93.56(±0.15)% accuracy, while step scheduler can obtain

93.54(±0.16)% accuracy. It shows that LFPC can achieve a slightly stable result

with a cosine scheduler.

95

6.5 Conclusion

In this paper, we propose a new learning filter pruning criteria (LFPC) framework

for deep CNNs acceleration. Di↵erent from the existing methods, LFPC explicitly

considers the di↵erence between layers and adaptively selects a set of suitable crite-

ria for di↵erent layers. To learn the criteria e↵ectively, we utilize Gumbel-softmax

to make the criteria sampler process di↵erentiable. LFPC achieves comparable per-

formance with state-of-the-art methods in several benchmarks.

96

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we investigate the filter pruning methods for accelerating deep

neural networks. We contribute in four aspects of filter pruning.

• Pruning mechanism.

We propose a soft filter pruning (SFP) approach improve the pruning mecha-

nism when accelerating the deep CNNs. During the training procedure, SFP

allows the pruned filters to be updated. As a result, the wrongly pruned filters

would have a chance to come back. Also, this soft manner can maintain the

model capacity and thus achieve the superior performance.

• Pruning ratio.

We propose an asymptotic soft filter pruning approach (ASFP) to asymptot-

ically adjust the pruning rate. As a result, the sudden information loss is

avoided and the asymptotic pruning could make the pruning process more

stable. Therefore, our ASFP could achieve superior performance.

• Pruning criteria.

We elaborate on the underlying requirements for norm-based filter pruning

criterion and point out their limitations. To solve this, we propose a new filter

pruning strategy based on the geometric median, named FPGM, to accelerate

the deep CNNs. Unlike the previous norm-based criterion, FPGM explicitly

97

considers the mutual relations between filters. Thanks to this, FPGM achieves

the state-of-the-art performance in several benchmarks.

• Automatic pruning.

We propose a new learning filter pruning criteria (LFPC) framework to ex-

plicitly consider the di↵erence between layers and adaptively selects a set

of suitable criteria for di↵erent layers. To learn the criteria e↵ectively, we

utilize Gumbel-softmax to make the criteria sampler process di↵erentiable.

LFPC achieves comparable performance with state-of-the-art methods in sev-

eral benchmarks.

7.2 Future Work

There are several recommendations for future research.

• More pruning methods. First, the theoretical demonstration of the information

loss of the network after pruning need to be investigated. Second, the schedule

of the pruning rate is hand-crafted and may not be the best schedule, so this

direction can be explored. Third, we could consider utilizing more kinds of

criteria into LFPC. Fourth, filter ranking strategies and filter pruning ratios

could be optimized jointly. Moreover, it is meaningful to adopt the proposed

method to recent compact ConvNets such as MobileNets.

• Combination with other parallel acceleration algorithms. Our pruning meth-

ods can be combined with other acceleration algorithms, e.g., matrix decom-

position and low-precision weights, to further improve the performance. Also,

Neural architecture search is another meaningful direction that can be com-

bined with pruning.

• Applying hardware-aware techniques to other applications. Natural language

processing (NLP) has become a crucial research direction for the interac-

98

tions between computers and human language. As the language models such

as BERT and GPT are becoming larger, low-latency inference on resource-

constrained hardware platforms desires more attention. Applying deep neural

networks to IoT devices could bring about a generation of applications capable

of performing complex sensing and recognition tasks. Wearable devices like

fitbits and smartwatches provide crucial healthcare services such as position

tracking, heart rate monitoring, and sleep monitoring. Hardware-aware tech-

niques can provide fast inference in these applications. Moreover, the small

energy consumption means our approach can o↵er a longer operation time.

• Pruned Network Safety. Deep neural networks are vulnerable to adversarial

attacks, and this may cause a serious problem in scenarios such as self-driving

cars making a bad reaction. Therefore, special attention should be paid to the

safety of machine learning algorithms and the robustness of neural network

models.

• Pruned Network Privacy. Model privacy is the protection of intellectual prop-

erty since a model can be stolen outright or can be reverse-engineered based

on its outputs. The challenges of preserving model privacy on hardware are

driving the development of new applicable algorithms, where I have a keen

interest.

99

Bibliography

[1] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters

for e�cient ConvNets,” in Proc. Int. Conf. Learn. Represent., 2017.

[2] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in Proc.

Adv. Neural Inf. Process. Syst., 1990, pp. 598–605.

[3] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity

in deep neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2016.

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and

connections for e�cient neural network,” in Proc. Adv. Neural Inf. Process.

Syst., 2015.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep

neural networks with pruning, trained quantization and hu↵man coding,” in

Proc. Int. Conf. Learn. Represent., 2015.

[6] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning for

accelerating deep convolutional neural networks,” in Proc. Int. Joint Conf.

Artif. Intell., 2018.

[7] Y. He, P. Liu, Z. Wang, and Y. Yang, “Pruning filter via geometric median

for deep convolutional neural networks acceleration,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), 2019.

[8] X. Suau, L. Zappella, V. Palakkode, and N. Apostolo↵, “Principal filter

analysis for guided network compression,” arXiv preprint arXiv:1807.10585,

100

2018.

[9] H. Zhuo, X. Qian, Y. Fu, H. Yang, and X. Xue, “Scsp: Spectral clustering

filter pruning with soft self-adaption manners,” arXiv preprint

arXiv:1806.05320, 2018.

[10] Y. He, Y. Ding, P. Liu, L. Zhu, H. Zhang, and Y. Yang, “Learning filter

pruning criteria for deep convolutional neural networks acceleration,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020.

[11] T.-W. Chin, R. Ding, C. Zhang, and D. Marculescu, “Towards e�cient

model compression via learned global ranking,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), 2020.

[12] H. Peng, J. Wu, S. Chen, and J. Huang, “Collaborative channel pruning for

deep networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 5113–5122.

[13] Z. You, K. Yan, J. Ye, M. Ma, and P. Wang, “Gate decorator: Global filter

pruning method for accelerating deep convolutional neural networks,” arXiv

preprint arXiv:1909.08174, 2019.

[14] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep

neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2017.

[15] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning e�cient

convolutional networks through network slimming,” in Proc. IEEE Int. Conf.

Comput. Vis. (ICCV), 2017.

[16] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning

convolutional neural networks for resource e�cient transfer learning,” in

Proc. Int. Conf. Learn. Represent., 2017.

101

[17] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.

Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance

score propagation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), 2018.

[18] X. Ding, G. Ding, Y. Guo, J. Han, and C. Yan, “Approximated oracle filter

pruning for destructive cnn width optimization,” in Proc. Int. Conf. Mach.

Learn., 2019.

[19] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method for

deep neural network compression,” in Proc. IEEE Int. Conf. Comput. Vis.

(ICCV), 2017.

[20] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, “Rethinking the

smaller-norm-less-informative assumption in channel pruning of convolution

layers,” in Proc. Int. Conf. Learn. Represent., 2018.

[21] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and

J. Zhu, “Discrimination-aware channel pruning for deep neural networks,” in

Proc. Adv. Neural Inf. Process. Syst., 2018.

[22] Q. Huang, K. Zhou, S. You, and U. Neumann, “Learning to prune filters in

convolutional neural networks,” in 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV). IEEE, 2018, pp. 709–718.

[23] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann,

“Towards optimal structured cnn pruning via generative adversarial

learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

2019, pp. 2790–2799.

[24] Z. Huang and N. Wang, “Data-driven sparse structure selection for deep

neural networks,” in Eur. Conf. Comput. Vis., 2018, pp. 304–320.

102

[25] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational

convolutional neural network pruning,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), 2019, pp. 2780–2789.

[26] J. Li, Q. Qi, J. Wang, C. Ge, Y. Li, Z. Yue, and H. Sun, “Oicsr:

Out-in-channel sparsity regularization for compact deep neural networks,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2019, pp.

7046–7055.

[27] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance

estimation for neural network pruning,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), 2019, pp. 11 264–11 272.

[28] D. Mehta, K. I. Kim, and C. Theobalt, “On implicit filter level sparsity in

convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), 2019, pp. 520–528.

[29] Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, and Y. Yang, “Asymptotic soft

filter pruning for deep convolutional neural networks,” IEEE Trans. Cybern.,

vol. 50, no. 8, pp. 3594–3604, 2019.

[30] Y. Zhou, Y. Zhang, Y. Wang, and Q. Tian, “Accelerate cnn via recursive

bayesian pruning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), 2019, pp. 3306–3315.

[31] S. Guo, Y. Wang, Q. Li, and J. Yan, “Dmcp: Di↵erentiable markov channel

pruning for neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), 2020.

[32] L. Liebenwein, C. Baykal, H. Lang, D. Feldman, and D. Rus, “Provable filter

pruning for e�cient neural networks,” in Proc. Int. Conf. Learn. Represent.,

2020.

103

[33] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and S. Han,

“Apq: Joint search for network architecture, pruning and quantization

policy,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020,

pp. 2078–2087.

[34] S. Gao, F. Huang, J. Pei, and H. Huang, “Discrete model compression with

resource constraint for deep neural networks,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit. (CVPR), 2020.

[35] T. Li, J. Li, Z. Liu, and C. Zhang, “Few sample knowledge distillation for

e�cient network compression,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), 2020, pp. 14 639–14 647.

[36] Y. Li, S. Gu, C. Mayer, L. V. Gool, and R. Timofte, “Group sparsity: The

hinge between filter pruning and decomposition for network compression,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2020, pp.

8018–8027.

[37] J. Guo, W. Ouyang, and D. Xu, “Multi-dimensional pruning: A unified

framework for model compression,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), 2020, pp. 1508–1517.

[38] J.-H. Luo and J. Wu, “Neural network pruning with residual-connections

and limited-data,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), 2020, pp. 1458–1467.

[39] J. T. C. Min and M. Motani, “Dropnet: Reducing neural network complexity

via iterative pruning,” in Proc. Int. Conf. Mach. Learn., 2020.

[40] M. Kang and B. Han, “Operation-aware soft channel pruning using

di↵erentiable masks,” in Proc. Int. Conf. Mach. Learn., 2020.

104

[41] M. Ye, C. Gong, L. Nie, D. Zhou, A. Klivans, and Q. Liu, “Good

subnetworks provably exist: Pruning via greedy forward selection,” in Proc.

Int. Conf. Mach. Learn., 2020.

[42] M. Lin, R. Ji, Y. Zhang, B. Zhang, Y. Wu, and Y. Tian, “Channel pruning

via automatic structure search,” in Proc. Int. Joint Conf. Artif. Intell., 2020.

[43] Y. Wang, Y. Lu, and T. Blankevoort, “Di↵erentiable joint pruning and

quantization for hardware e�ciency,” in Eur. Conf. Comput. Vis., 2020.

[44] Y. Li, S. Gu, K. Zhang, L. Van Gool, and R. Timofte, “Dhp: Di↵erentiable

meta pruning via hypernetworks,” in Eur. Conf. Comput. Vis., 2020.

[45] X. Ning, T. Zhao, W. Li, P. Lei, Y. Wang, and H. Yang, “Dsa: More e�cient

budgeted pruning via di↵erentiable sparsity allocation,” in Eur. Conf.

Comput. Vis., 2020.

[46] B. Li, B. Wu, J. Su, G. Wang, and L. Lin, “Eagleeye: Fast sub-net evaluation

for e�cient neural network pruning,” in Eur. Conf. Comput. Vis., 2020.

[47] W. Kim, S. Kim, M. Park, and G. Jeon, “Neuron merging: Compensating

for pruned neurons,” in Proc. Adv. Neural Inf. Process. Syst., 2020.

[48] T. Zhuang, Z. Zhang, Y. Huang, X. Zeng, K. Shuang, and X. Li,

“Neuron-level structured pruning using polarization regularizer,” in Proc.

Adv. Neural Inf. Process. Syst., 2020.

[49] Y. Tang, Y. Wang, Y. Xu, D. Tao, C. Xu, C. Xu, and C. Xu, “Scop:

Scientific control for reliable neural network pruning,” in Proc. Adv. Neural

Inf. Process. Syst., 2020.

[50] J. Chen, S. Chen, and S. J. Pan, “Storage e�cient and dynamic flexible

runtime channel pruning via deep reinforcement learning,” in Proc. Adv.

105

Neural Inf. Process. Syst., 2020.

[51] B. R. Bartoldson, A. S. Morcos, A. Barbu, and G. Erlebacher, “The

generalization-stability tradeo↵ in neural network pruning,” in Proc. Adv.

Neural Inf. Process. Syst., 2020.

[52] F. Meng, H. Cheng, K. Li, H. Luo, X. Guo, G. Lu, and X. Sun, “Pruning

filter in filter,” in Proc. Adv. Neural Inf. Process. Syst., 2020.

[53] Q. Li, C. Li, and H. Chen, “Incremental filter pruning via random walk for

accelerating deep convolutional neural networks,” in Proceedings of the 13th

International Conference on Web Search and Data Mining, 2020, pp.

358–366.

[54] ——, “Filter pruning via probabilistic model-based optimization for

accelerating deep convolutional neural networks,” in Proceedings of the 14th

ACM International Conference on Web Search and Data Mining, 2021, pp.

653–661.

[55] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional

neural networks with low rank expansions,” in BMVC, 2014.

[56] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolutional

networks for classification and detection,” IEEE T-PAMI, 2016.

[57] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun, “E�cient and accurate

approximations of nonlinear convolutional networks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), 2015.

[58] C. Tai, T. Xiao, Y. Zhang, X. Wang et al., “Convolutional neural networks

with low-rank regularization,” in Proc. Int. Conf. Learn. Represent., 2016.

106

[59] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey,

“Faster cnns with direct sparse convolutions and guided pruning,” in Proc.

Int. Conf. Learn. Represent., 2017.

[60] J.-T. Chien and Y.-T. Bao, “Tensor-factorized neural networks,” IEEE

Trans. Neural Netw. Learn. Syst., vol. 29, no. 5, pp. 1998–2011, 2018.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

2016.

[62] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” in

Proc. Int. Conf. Learn. Represent., 2017.

[63] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network

quantization: Towards lossless cnns with low-precision weights,” in Proc. Int.

Conf. Learn. Represent., 2017.

[64] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,

“Binarized neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2016,

pp. 4107–4115.

[65] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:

Imagenet classification using binary convolutional neural networks,” in Proc.

Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[66] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for e�cient

DNNs,” in Proc. Adv. Neural Inf. Process. Syst., 2016.

[67] V. Lebedev and V. Lempitsky, “Fast ConvNets using group-wise brain

damage,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

2016.

107

[68] K. Ullrich, E. Meeds, and M. Welling, “Soft weight-sharing for neural

network compression,” in Proc. Int. Conf. Learn. Represent., 2017.

[69] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha↵ner, “Gradient-based learning

applied to document recognition,” Proc. of the IEEE, vol. 86, no. 11, pp.

2278–2324, 1998.

[70] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” 2009.

[71] A. Dubey, M. Chatterjee, and N. Ahuja, “Coreset-based neural network

compression,” arXiv preprint arXiv:1807.09810, 2018.

[72] Y. He and S. Han, “ADC: Automated deep compression and acceleration

with reinforcement learning,” in Eur. Conf. Comput. Vis., 2018.

[73] D. Wang, L. Zhou, X. Zhang, X. Bai, and J. Zhou, “Exploring linear

relationship in feature map subspace for convnets compression,” arXiv

preprint arXiv:1803.05729, 2018.

[74] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric

median for deep convolutional neural networks acceleration,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., 2019, pp. 4340–4349.

[75] H. Liu, K. Simonyan, and Y. Yang, “Darts: Di↵erentiable architecture

search,” in Proc. Int. Conf. Learn. Represent., 2019.

[76] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “E�cient neural

architecture search via parameters sharing,” in ICML, 2018.

[77] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Smash: one-shot model

architecture search through hypernetworks,” in ICML, 2017.

108

[78] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,

Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in

Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2019, pp. 1314–1324.

[79] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V.

Le, “Mnasnet: Platform-aware neural architecture search for mobile,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2019, pp. 2820–2828.

[80] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture search

on target task and hardware,” arXiv preprint arXiv:1812.00332, 2018.

[81] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,

Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware e�cient convnet design via

di↵erentiable neural architecture search,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp.

10 734–10 742.

[82] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,

T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An

image is worth 16x16 words: Transformers for image recognition at scale,”

arXiv preprint arXiv:2010.11929, 2020.

[83] B. Heo, S. Yun, D. Han, S. Chun, J. Choe, and S. J. Oh, “Rethinking spatial

dimensions of vision transformers,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2021, pp. 11 936–11 945.

[84] B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou, and

M. Douze, “Levit: a vision transformer in convnet’s clothing for faster

109

inference,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2021, pp. 12 259–12 269.

[85] Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, “Dynamicvit:

E�cient vision transformers with dynamic token sparsification,” Advances in

neural information processing systems, vol. 34, 2021.

[86] Y. Liang, G. Chongjian, Z. Tong, Y. Song, J. Wang, and P. Xie, “Evit:

Expediting vision transformers via token reorganizations,” in International

Conference on Learning Representations, 2021.

[87] M. Zhu, K. Han, Y. Tang, and Y. Wang, “Visual transformer pruning,”

arXiv e-prints, pp. arXiv–2104, 2021.

[88] M. Chen, H. Peng, J. Fu, and H. Ling, “Autoformer: Searching transformers

for visual recognition,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021, pp. 12 270–12 280.

[89] W. Chen, W. Huang, X. Du, X. Song, Z. Wang, and D. Zhou, “Auto-scaling

vision transformers without training,” in ICLR, 2022.

[90] S. Yu, T. Chen, J. Shen, H. Yuan, J. Tan, S. Yang, J. Liu, and Z. Wang,

“Unified visual transformer compression,” in International Conference on

Learning Representations, 2021.

[91] H. Yang, H. Yin, P. Molchanov, H. Li, and J. Kautz, “Nvit: Vision

transformer compression and parameter redistribution,” arXiv preprint

arXiv:2110.04869, 2021.

[92] R.-T. Wu, A. Singla, M. R. Jahanshahi, E. Bertino, B. J. Ko, and D. Verma,

“Pruning deep convolutional neural networks for e�cient edge computing in

condition assessment of infrastructures,” Computer-Aided Civil and

Infrastructure Engineering, vol. 34, no. 9, pp. 774–789, 2019.

110

[93] G. Nadizar, E. Medvet, F. A. Pellegrino, M. Zullich, and S. Nichele, “On the

e↵ects of pruning on evolved neural controllers for soft robots,” in

Proceedings of the Genetic and Evolutionary Computation Conference

Companion, 2021, pp. 1744–1752.

[94] G. Nadizar, E. Medvet, H. H. Ramstad, S. Nichele, F. A. Pellegrino, and

M. Zullich, “Merging pruning and neuroevolution: towards robust and

e�cient controllers for modular soft robots,” The Knowledge Engineering

Review, vol. 37, 2022.

[95] R. Shi, T. Li, and Y. Yamaguchi, “An attribution-based pruning method for

real-time mango detection with yolo network,” Computers and Electronics in

Agriculture, vol. 169, p. 105214, 2020.

[96] D. Wu, S. Lv, M. Jiang, and H. Song, “Using channel pruning-based yolo v4

deep learning algorithm for the real-time and accurate detection of apple

flowers in natural environments,” Computers and Electronics in Agriculture,

vol. 178, p. 105742, 2020.

[97] S. Chen, R. Zhan, W. Wang, and J. Zhang, “Learning slimming sar ship

object detector through network pruning and knowledge distillation,” IEEE

Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, vol. 14, pp. 1267–1282, 2020.

[98] A. Negi, P. Chauhan, K. Kumar, and R. Rajput, “Face mask detection

classifier and model pruning with keras-surgeon,” in 2020 5th IEEE

International Conference on Recent Advances and Innovations in

Engineering (ICRAIE). IEEE, 2020, pp. 1–6.

[99] C. Gamanayake, L. Jayasinghe, B. K. K. Ng, and C. Yuen, “Cluster pruning:

An e�cient filter pruning method for edge ai vision applications,” IEEE

111

Journal of Selected Topics in Signal Processing, vol. 14, no. 4, pp. 802–816,

2020.

[100] Y. Zhou, G. G. Yen, and Z. Yi, “Evolutionary compression of deep neural

networks for biomedical image segmentation,” IEEE transactions on neural

networks and learning systems, vol. 31, no. 8, pp. 2916–2929, 2019.

[101] M. Hajabdollahi, R. Esfandiarpoor, P. Khadivi, S. M. R. Soroushmehr,

N. Karimi, and S. Samavi, “Simplification of neural networks for skin lesion

image segmentation using color channel pruning,” Computerized Medical

Imaging and Graphics, vol. 82, p. 101729, 2020.

[102] L. Chen, L. Zhao, and C. Y.-C. Chen, “Enhancing adversarial defense for

medical image analysis systems with pruning and attention mechanism,”

Medical physics, vol. 48, no. 10, pp. 6198–6212, 2021.

[103] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015.

[104] X. Dong, J. Huang, Y. Yang, and S. Yan, “More is less: A more complicated

network with less inference complexity,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), 2017.

[105] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein et al., “ImageNet large scale visual

recognition challenge,” Int. J. Comput. Vis., 2015.

[106] G. Kang, J. Li, and D. Tao, “Shakeout: A new approach to regularized deep

neural network training,” IEEE T-PAMI, 2017.

[107] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

112

object detection with region proposal networks,” in Proc. Adv. Neural Inf.

Process. Syst., 2015.

[108] X. Dong, S.-I. Yu, X. Weng, S.-E. Wei, Y. Yang, and Y. Sheikh,

“Supervision-by-Registration: An unsupervised approach to improve the

precision of facial landmark detectors,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), 2018.

[109] T. Shen, T. Zhou, G. Long, J. Jiang, and C. Zhang, “Bi-directional block

self-attention for fast and memory-e�cient sequence modeling,” in Proc. Int.

Conf. Learn. Represent., 2018.

[110] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang, “Image clustering using

local discriminant models and global integration,” IEEE T-IP, 2010.

[111] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “Disan:

Directional self-attention network for rnn/cnn-free language understanding,”

in AAAI, 2018.

[112] X. Dong, D. Meng, F. Ma, and Y. Yang, “A dual-network progressive

approach to weakly supervised object detection,” in ACM Multimedia, 2017.

[113] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual

networks,” in Eur. Conf. Comput. Vis., 2016.

[114] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in BMVC, 2016.

[115] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic di↵erentiation in

pytorch,” in Proc. Adv. Neural Inf. Process. Syst. Workshop, 2017.

[116] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process.

113

Syst., 2012.

[117] X. Dong and Y. Yang, “Searching for a robust neural architecture in four

gpu hours,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

2019, pp. 1761–1770.

[118] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in Proc. Int. Conf. Learn. Represent., 2015.

[119] C. Szegedy, V. Vanhoucke, S. Io↵e, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., 2016, pp. 2818–2826.

[120] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An

energy-e�cient reconfigurable accelerator for deep convolutional neural

networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[121] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “E�cient processing of deep

neural networks: A tutorial and survey,” Proc. IEEE, vol. 105, no. 12, pp.

2295–2329, 2017.

[122] B. Hassibi and D. G. Stork, “Second order derivatives for network pruning:

Optimal brain surgeon,” in Proc. Adv. Neural Inf. Process. Syst., 1993, pp.

164–171.

[123] R. Reed, “Pruning algorithms-a survey,” IEEE T-NN, 1993.

[124] L. Zeng and X. Tian, “Accelerating convolutional neural networks by

removing interspatial and interkernel redundancies,” IEEE Trans. Cybern.,

vol. 50, no. 2, pp. 452–464, 2018.

[125] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in

Proc. Int. Conf. Learn. Represent., 2015.

114

[126] M. A. Carreira-Perpinán and Y. Idelbayev, ““learning-compression”

algorithms for neural net pruning,” in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. (CVPR), 2018.

[127] P. T. Fletcher, S. Venkatasubramanian, and S. Joshi, “Robust statistics on

riemannian manifolds via the geometric median,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), 2008.

[128] S. Son, S. Nah, and K. Mu Lee, “Clustering convolutional kernels to

compress deep neural networks,” in Eur. Conf. Comput. Vis., 2018.

[129] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural

network,” in NIPS, 2015.

[130] J. Kim, S. Park, and N. Kwak, “Paraphrasing complex network: Network

compression via factor transfer,” in Proc. Adv. Neural Inf. Process. Syst.,

2018.

[131] Z. Liu, J. Xu, X. Peng, and R. Xiong, “Frequency-domain dynamic pruning

for convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,

2018.

[132] F. Tung and G. Mori, “Clip-q: Deep network compression learning by

in-parallel pruning-quantization,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), 2018.

[133] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang, “A

systematic dnn weight pruning framework using alternating direction

method of multipliers,” Eur. Conf. Comput. Vis., 2018.

[134] X. Dong, S. Chen, and S. Pan, “Learning to prune deep neural networks via

layer-wise optimal brain surgeon,” in Proc. Adv. Neural Inf. Process. Syst.,

2017, pp. 4857–4867.

115

[135] B. W. Silverman, Density estimation for statistics and data analysis.

Routledge, 2018.

[136] H. H. Chin, A. Madry, G. L. Miller, and R. Peng, “Runtime guarantees for

regression problems,” in Proceedings of the 4th conference on Innovations in

Theoretical Computer Science. ACM, 2013, pp. 269–282.

[137] M. B. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sidford, “Geometric

median in nearly linear time,” in Proceedings of the forty-eighth annual ACM

symposium on Theory of Computing. ACM, 2016, pp. 9–21.

[138] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for

model compression and acceleration on mobile devices,” in Proceedings of the

European Conference on Computer Vision (Eur. Conf. Comput. Vis.), 2018,

pp. 784–800.

[139] K. Tang, Y. Niu, J. Huang, J. Shi, and H. Zhang, “Unbiased scene graph

generation from biased training,” in CVPR, 2020.

[140] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Understanding

neural networks through deep visualization,” ICML Deep Learning

Workshop, 2015.

[141] Y. He, P. Liu, L. Zhu, and Y. Yang, “Meta filter pruning to accelerate deep

convolutional neural networks,” arXiv preprint arXiv:1904.03961, 2019.

[142] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating

convolutional networks via global & dynamic filter pruning.” in IJCAI, 2018.

[143] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, T. K.-T. Cheng, and J. Sun,

“Metapruning: Meta learning for automatic neural network channel

pruning,” arXiv preprint arXiv:1903.10258, 2019.

116

[144] X. Ding, G. Ding, Y. Guo, and J. Han, “Centripetal sgd for pruning very

deep convolutional networks with complicated structure,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. (CVPR), 2019, pp. 4943–4953.

[145] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement

learning,” arXiv preprint arXiv:1611.01578, 2016.

[146] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,

“Autoaugment: Learning augmentation strategies from data,” in CVPR,

2019.

[147] A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of

combinatorial proof. MAA, 2003, no. 27.

[148] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with

gumbel-softmax,” in Proc. Int. Conf. Learn. Represent., 2017.

[149] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A

continuous relaxation of discrete random variables,” in Proc. Int. Conf.

Learn. Represent., 2017.

[150] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of

network pruning,” arXiv preprint arXiv:1810.05270, 2018.

[151] X. Dong and Y. Yang, “Network pruning via transformable architecture

search,” in Proc. Adv. Neural Inf. Process. Syst., 2019.

[152] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm

restarts,” in Proc. Int. Conf. Learn. Represent., 2017.

[153] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “Leveraging filter

correlations for deep model compression,” arXiv preprint arXiv:1811.10559,

2018.

117

[154] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,

trainable neural networks,” in Proc. Int. Conf. Learn. Represent., 2019.

[155] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint

arXiv:1312.6199, 2013.

	Title Page
	Certificate of Authorship/Originality
	 Acknowledgments
	 List of Publications
	Contents
	 List of Figures
	 List of Tables
	Abstract
	1 Introduction
	1.1 Background
	1.2 Thesis Organization

	2 Related Works
	2.1 Matrix Decomposition
	2.2 Low Precision
	2.3 Weight Pruning
	2.4 Filter Pruning
	2.5 Neural Architecture Search
	2.6 Vision Transformer Compression
	2.7 Applications

	3 Soft Filter Pruning
	3.1 Introduction
	3.2 Related Works
	3.3 Methodology
	3.3.1 Preliminaries
	3.3.2 Soft Filter Pruning (SFP)
	3.3.3 Computation Complexity Analysis

	3.4 Evaluation and Results
	3.4.1 Benchmark Datasets and Experimental Setting
	3.4.2 ResNet on CIFAR-10
	3.4.3 ResNet on ILSVRC-2012
	3.4.4 Ablation Study

	3.5 Conclusion

	4 Asymptotic Soft Filter Pruning
	4.1 Introduction
	4.2 Related Work
	4.2.1 Matrix Decomposition
	4.2.2 Low Precision
	4.2.3 Weight Pruning
	4.2.4 Filter Pruning

	4.3 Methodology
	4.3.1 Preliminary
	4.3.2 Pruning with Hard Manner
	4.3.3 Pruning with Soft Manner
	4.3.4 Asymptotic Soft Filter Pruning (ASFP)
	4.3.4.1 Asymptotic Filter Selection
	4.3.4.2 Filter Pruning
	4.3.4.3 Reconstruction
	4.3.4.4 Obtaining Compact Model

	4.3.5 Pruning Strategy for Convolutional Network
	4.3.6 Computation Complexity Analysis
	4.3.6.1 Theoretical Speedup Analysis
	4.3.6.2 Realistic Speedup Analysis

	4.4 Experiment
	4.4.1 Benchmark Datasets and Experimental Setting
	4.4.2 VGGNet on CIFAR-10
	4.4.3 ResNet on CIFAR-10
	4.4.4 ResNet on ILSVRC-2012
	4.4.5 Comparing SFP and ASFP
	4.4.6 Ablation Study
	4.4.6.1 Filter Selection Criteria
	4.4.6.2 Varying Pruned FLOPs
	4.4.6.3 Selection of the Pruned Layers
	4.4.6.4 Sensitivity of the ASFP Interval
	4.4.6.5 Sensitivity of Parameter D of ASFP

	4.5 Conclusion

	5 Filter Pruning via Geometric Median
	5.1 Introduction
	5.2 Related Works
	5.3 Methodology
	5.3.1 Preliminaries
	5.3.2 Analysis of Norm-based Criterion
	5.3.3 Norm Statistics in Real Scenarios
	5.3.4 Geometric Median
	5.3.5 Filter Pruning via Geometric Median
	5.3.6 Theoretical and Realistic Acceleration
	5.3.6.1 Theoretical Acceleration
	5.3.6.2 Realistic Acceleration

	5.4 Experiments
	5.4.1 Experimental Settings
	5.4.2 Single-Branch Network Pruning
	5.4.3 Multiple-Branch Network Pruning
	5.4.4 Ablation Study
	5.4.5 Feature Map Visualization

	5.5 Conclusion

	6 Learning Filter Pruning Criteria
	6.1 Introduction
	6.2 Related Work
	6.3 Methodology
	6.3.1 Preliminaries
	6.3.2 Learning Filter Pruning Criteria
	6.3.2.1 Pruning Criteria
	6.3.2.2 Criteria Space Complexity
	6.3.2.3 Differentiable Criteria Sampler

	6.4 Experiments
	6.4.1 Experimental Setting
	6.4.2 ResNet on CIFAR-10
	6.4.3 ResNet on CIFAR-100
	6.4.4 ResNet on ILSVRC-2012
	6.4.5 More Explorations

	6.5 Conclusion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	 Bibliography

