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ABSTRACT

Spatial-temporal graph modeling is an important task to analyze the spatial rela-
tions and temporal trends of components in a system. It aims to model the dynamic
node-level inputs by assuming inter-dependency between connected nodes. A basic

assumption behind spatial-temporal graph modeling is that a node’s future information
is conditioned on its historical information as well as its neighbors’ historical information.
Therefore how to capture spatial and temporal dependencies simultaneously becomes a
primary challenge. Current studies on spatial-temporal graph modeling face four major
shortcomings: 1) Most graph neural networks only focus on the low frequency band of
graph signals; 2) Current studies assume the graph structure of data reflects the genuine
dependency relationships among nodes; 3) Existing studies on spatial-temporal graph
neural networks are not applicable to pure multivariate time series data due to the
absence of a predefined graph and lack of a general framework; 4) Existing approaches
either model spatial-temporal dependencies locally or model spatial correlations and
temporal correlations separately. The aim of this thesis is to study spatial-temporal data
from the perspective of deep learning on graphs. I have studied the research objective in
deep depth with four research questions: (1) How to coordinate the low, middle, and high
frequency band of graph signals in graph convolution networks. (2) How to model spatial-
temporal graph data effectively and efficiently; (3) How to handle spatial dependencies
when a graph is totally missing, incomplete or inaccurate in spatial-temporal graph
modeling; (4) In contrast to traditional spatial-temporal graph neural networks that
handle spatial dependencies and temporal dependencies in separate, how to unify space
and time as a whole in message passing. To address the aforementioned four research
problems, I proposed four algorithms or models that can achieve satisfactory results.
Specifically, I proposed an Automatic Graph Convolutional Network to learn graph fre-
quency bands for graph convolution filters automatically; I introduced an efficient and
effective framework that integrates diffusion graph convolution and dilated temporal
convolution to capture spatial-temporal dependencies simultaneously. I developed a
novel joint-learning algorithm that can capture spatial-temporal dependencies and learn
latent graph structures at the same time; I designed a unified graph neural network
that captures the inner spatial-temporal dependencies without compromising space-time
integrity. To validate the proposed methods, I have conducted experiments on real-world
datasets with a range of tasks including node classification, graph classification, and
spatial-temporal graph forecasting. Experimental results demonstrate the effectiveness
of the proposed methods.
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1
INTRODUCTION

1.1 Background

The recent success of neural networks has boosted research on pattern recognition

and data mining. Many machine learning tasks such as object detection [4, 5],

machine translation [6, 7], and speech recognition [8], which once heavily relied

on handcrafted feature engineering to extract informative feature sets, has recently

been revolutionized by various end-to-end deep learning paradigms, e.g., convolutional

neural networks (CNNs) [9], recurrent neural networks (RNNs) [10], and autoencoders

[11]. The success of deep learning in many domains is partially attributed to the rapidly

developing computational resources (e.g., GPU), the availability of big training data, and

the effectiveness of deep learning to extract latent representations from Euclidean data

(e.g., images, text, and videos). Taking image data as an example, we can represent an

image as a regular grid in the Euclidean space. A convolutional neural network (CNN)

is able to exploit the shift-invariance, local connectivity, and compositionality of image

data [12]. As a result, CNNs can extract local meaningful features that are shared with

the entire data sets for various image analyses.

While deep learning effectively captures hidden patterns of Euclidean data, there is

an increasing number of applications where data are represented in the form of graphs.

For examples, in e-commence, a graph-based learning system can exploit the interactions

between users and products to make highly accurate recommendations. In chemistry,

molecules are modeled as graphs, and their bioactivity needs to be identified for drug
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CHAPTER 1. INTRODUCTION

discovery. In a citation network, papers are linked to each other via citationships and

they need to be categorized into different groups. The complexity of graph data has

imposed significant challenges on existing machine learning algorithms. As graphs can

be irregular, a graph may have a variable size of unordered nodes, and nodes from a

graph may have a different number of neighbors, resulting in some important operations

(e.g., convolutions) being easy to compute in the image domain, but difficult to apply

to the graph domain. Furthermore, a core assumption of existing machine learning

algorithms is that instances are independent of each other. This assumption no longer

holds for graph data because each instance (node) is related to others by links of various

types, such as citations, friendships, and interactions. Recently, there is increasing

interest in extending deep learning approaches for graph data. Motivated by CNNs,

RNNs, and autoencoders from deep learning, new generalizations and definitions of

important operations have been rapidly developed over the past few years to handle the

complexity of graph data. For example, a graph convolution can be generalized from a 2D

convolution. As illustrated in Figure 1.1, an image can be considered as a special case of

graphs where pixels are connected by adjacent pixels. Similar to 2D convolution, one may

perform graph convolutions by taking the weighted average of a node’s neighborhood

information.

With the advance of graph neural networks, spatial-temporal graph modeling has

received increasing attention. It aims to model the dynamic node-level inputs by assum-

ing inter-dependency between connected nodes. Spatial-temporal graph modeling has

wide applications in solving complex system problems such as traffic speed forecasting

[13], taxi demand prediction [14], human action recognition [15], pedestrian trajectory

prediction [16], person re-identification [17], and driver maneuver anticipation [18]. For

a concrete example, in traffic speed forecasting, speed sensors on roads of a city form

a graph where the edge weights are judged by two nodes’ Euclidean distance. As the

traffic congestion on one road could cause lower traffic speeds on its incoming roads, it

is natural to consider the underlying graph structure of the traffic system as the prior

knowledge of inter-dependency relationships among nodes when modeling time series

data of the traffic speed on each road.

A basic assumption behind spatial-temporal graph modeling is that a node’s future

information is conditioned on its historical information as well as its neighbors’ historical

information. Therefore how to capture spatial and temporal dependencies simultaneously

becomes a primary challenge. Recent studies on spatial-temporal graph modeling mainly

follow two directions. They either integrate graph convolution networks (GCN) into

2



1.1. BACKGROUND

(a) 2D Convolution. Analogous to a
graph, each pixel in an image is taken
as a node where neighbors are deter-
mined by the filter size. The 2D convo-
lution takes the weighted average of
pixel values of the red node along with
its neighbors. The neighbors of a node
are ordered and have a fixed size.

(b) Graph Convolution. To get a hidden
representation of the red node, one sim-
ple solution of the graph convolutional
operation is to take the average value of
the node features of the red node along
with its neighbors. Different from im-
age data, the neighbors of a node are
unordered and variable in size.

Figure 1.1: 2D Convolution vs. Graph Convolution.

recurrent neural networks (RNN) [13, 19] or into convolution neural networks (CNN)

[15, 20].

While having shown the effectiveness of introducing the graph structure of data into

a model, these approaches face four major shortcomings.

1. Most graph neural networks only focus on the low frequency band of graph signals.

However, the middle and high frequency band of graph signals should not be ignored

because they may contain useful information as well. Besides, the bandwidth of current

GNNs is fixed. Parameters of a graph convolutional filter only transform graph inputs

without changing the curvature of a graph convolutional filter function. Therefore, the

cut-off frequency or the bandwidth of a graph convolutional filter remains unchanged

throughout learning. In reality, we are uncertain about whether we should retain or cut

off the frequency at a certain point unless we have expert domain knowledge.

2. Current studies assume the graph structure of data reflects the genuine dependency

relationships among nodes. However, there are circumstances when a connection does

not entail the inter-dependency relationship between two nodes and when the inter-

dependency relationship between two nodes exists but a connection is missing. To give

3



CHAPTER 1. INTRODUCTION

each circumstance an example, let us consider a recommendation system. In the first

case, two users are connected, but they may have distinct preferences over products.

In the second case, two users may share a similar preference, but they are not linked

together. To a broader context, this problem is related to weakly-supervised learning

where given labels are not always ground truth.

3. Existing studies on spatial-temporal graph neural networks are not applicable to

pure multivariate time series data due to the absence of a predefined graph and lack of

a general framework. Spatial-temporal graph neural networks take multivariate time

series and an external graph structure as inputs, and they aim to predict future values or

labels of multivariate time series. Spatial-temporal graph neural networks have achieved

significant improvements compared to methods that do not utilize structural information.

However, existing GNN approaches rely heavily on a pre-defined graph structure in order

to perform time series forecasting. In most cases, multivariate time series does not have

an explicit graph structure. The relationships among variables have to be discovered

from data rather than being provided as ground truth knowledge.

4. Existing approaches either model spatial-temporal dependencies locally or model

spatial correlations and temporal correlations separately. They prevent a node from

being directly aware of its neighborhood long-range historical information. In fact, a

node’s current state may depend on its neighbors’ previous states within a certain period

of time. The rise of a node’s curve may exert influence on its neighbors several time steps

later because of physical distance. For example, traffic congestion of a road will cause

another congestion of its nearby roads 15 minutes later. It suggests that treating spatial

correlations and temporal correlations locally or separately is inappropriate.

1.2 Research Objectives

The main research objective of this research is to study spatial-temporal data from the

perspective of deep learning on graphs: (1) How to coordinate the low, middle, and high

frequency band of graph signals in graph convolution networks. (2) How to model spatial-

temporal graph data effectively and efficiently; (3) How to handle spatial dependencies

when a graph is totally missing, incomplete or inaccurate in spatial-temporal graph

modeling; (4) In contrast to traditional spatial-temporal graph neural networks that

handle spatial dependencies and temporal dependencies in separate, how to unify space

and time as a whole in message passing.

To achieve the research objective, the following lists the conducted studies and

4
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planned studies.

• conduct studies on the automatic learning of graph frequency bands for graph

convolution filters. I propose an Automatic Graph Convolutional Network (Au-

toGCN) with three novel graph convolutional filters, a low-pass linear filter, a

high-pass linear filter, and a middle-pass quadratic filter. While capturing the

whole spectrum of graph signals, AutoGCN ends up with a spatial form without

performing eigendecomposition. I enable the proposed graph convolution filters to

control their bandwidth and magnitude automatically by updating the curvature

and scope of filter functions during training. I empirically show that all three graph

filters contribute to model performance. Experimental results show that AutoGCN

achieves significant improvement over baseline methods that only function as

low-pass filters on medium-scale datasets for both node classification and graph

prediction tasks.

• conduct studies on an effective and efficient framework to capture spatial-temporal

dependencies simultaneously. The core idea is to assemble the proposed graph

convolution with dilated casual convolution in a way that each graph convolution

layer tackles spatial dependencies of nodes’ information extracted by dilated casual

convolution layers at different granular levels. I evaluate my proposed model on

traffic datasets and achieve state-of-the-art results with low computation costs.

• conduct studies on learning graph structure when the spatial dependency is un-

known for multivariate time series data. I propose a novel graph learning module

to learn hidden spatial dependencies among variables. My method opens a new

door for GNN models to handle data without explicit graph structure. I present

a joint framework for modeling multivariate time series data and learning graph

structure. My framework is more generic than any existing spatial-temporal graph

neural network as it can handle multivariate time series with or without a pre-

defined graph structure. Experimental results show that my method outperforms

the state-of-the-art methods on 3 of 4 benchmark datasets and achieves on-par per-

formance with other GNNs on two traffic datasets which provide extra structural

information.

• conduct studies on a simple and powerful framework named TraverseNet that

captures the inner spatial-temporal dependencies without compromising space-

time integrity. I propose a message traverse layer, effectively unifying space and
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CHAPTER 1. INTRODUCTION

time in message passing by traversing information of a node’s neighbors’ past

to the node’s present. I construct TraverseNet with message traverse layers and

validate the significance of the message traverse mechanism with experimental

studies.

1.3 Content and Organization

This thesis is organized as follows:

• Chapter 2: This chapter presents a survey of deep learning on graphs.

• Chapter 3: This chapter introduces a novel graph convolutional network that can

adapt graph frequency automatically.

• Chapter 4: This chapter proposes a convolution-based spatial-temporal graph

neural network that is both efficient and effective.

• Chapter 5: This chapter addresses the problem that the graph is unknown in

spatial-temporal modeling.

• Chapter 6: This chapter introduces a spatial-temporal graph neural network that

unifies space and time.

• Chapter 7: This chapter provides a brief summary of the thesis contents as well as

its contributions.

• Chapter 8: This chapter points out several future directions of research on spatial-

temporal graph modeling.
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LITERATURE REVIEW

There are a limited number of existing reviews on the topic of graph neural net-

works (GNNs). Using the term geometric deep learning, Bronstein et al. [12] give

an overview of deep learning methods in the non-Euclidean domain, including

graphs and manifolds. Although it is the first review on GNNs, this survey mainly

reviews convolutional GNNs. Hamilton et al. [21] cover a limited number of GNNs with

a focus on addressing the problem of network embedding. Battaglia et al. [22] position

graph networks as the building blocks for learning from relational data, reviewing part

of GNNs under a unified framework. Lee et al. [23] conduct a partial survey of GNNs

which apply different attention mechanisms. In summary, existing surveys only include

some of the GNNs and examine a limited number of works, thereby missing more recent

development of GNNs. This chapter provides a comprehensive overview of GNNs, for

both interested researchers who want to enter this rapidly developing field and experts

who would like to compare GNN models. To cover a broader range of methods, this

chapter considers GNNs as all deep learning approaches for graph data.

This chapter makes notable contributions summarized as follows:

• New taxonomy I propose a new taxonomy of graph neural networks. Graph

neural networks are categorized into four groups: recurrent graph neural networks,

convolutional graph neural networks, graph autoencoders, and spatial-temporal

graph neural networks.

• Comprehensive review I provide the most comprehensive overview of modern
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CHAPTER 2. LITERATURE REVIEW

deep learning techniques for graph data. For each type of graph neural network, I

provide detailed descriptions of representative models, make the necessary com-

parison, and summarise the corresponding algorithms.

• Abundant resources I collect abundant resources on graph neural networks,

including state-of-the-art models, benchmark data sets, open-source codes, and

practical applications. This chapter can be used as a hands-on guide for under-

standing, using, and developing different deep learning approaches for various

real-life applications.

• Future directions I discuss theoretical aspects of graph neural networks, analyze

the limitations of existing methods, and suggest four possible future research direc-

tions in terms of model depth, scalability trade-off, heterogeneity, and dynamicity.

2.1 Background

A brief history of graph neural networks (GNNs) Sperduti et al. (1997) [24] first

applied neural networks to directed acyclic graphs, which motivated early studies on

GNNs. The notion of graph neural networks was initially outlined in Gori et al. (2005)

[25] and further elaborated in Scarselli et al. (2009) [26], and Gallicchio et al. (2010) [27].

These early studies fall into the category of recurrent graph neural networks (RecGNNs).

They learn a target node’s representation by propagating neighbor information in an

iterative manner until a stable fixed point is reached. This process is computationally

expensive, and recently there have been increasing efforts to overcome these challenges

[28, 29].

Encouraged by the success of CNNs in the computer vision domain, a large num-

ber of methods that re-define the notion of convolution for graph data are developed

in parallel. These approaches are under the umbrella of convolutional graph neural

networks (ConvGNNs). ConvGNNs are divided into two main streams, the spectral-

based approaches and the spatial-based approaches. The first prominent research on

spectral-based ConvGNNs was presented by Bruna et al. (2013) [30], which developed

a graph convolution based on the spectral graph theory. Since this time, there have

been increasing improvements, extensions, and approximations on spectral-based Con-

vGNNs [1, 31–33]. The research of spatial-based ConvGNNs started much earlier than

spectral-based ConvGNNs. In 2009, Micheli et al. [34] first addressed graph mutual

dependency by architecturally composite non-recursive layers while inheriting ideas of

8
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message passing from RecGNNs. However, the importance of this work was overlooked.

Until recently, many spatial-based ConvGNNs (e.g., [35–37]) emerged. The timeline of

representative RecGNNs and ConvGNNs is shown in the first column of Table 2.2. Apart

from RecGNNs and ConvGNNs, many alternative GNNs have been developed in the

past few years, including graph autoencoders (GAEs) and spatial-temporal graph neural

networks (STGNNs). These learning frameworks can be built on RecGNNs, ConvGNNs,

or other neural architectures for graph modeling. Details on the categorization of these

methods are given in Section 2.3.

Graph neural networks vs. network embedding The research on GNNs is

closely related to graph embedding or network embedding, another topic which attracts

increasing attention from both the data mining and machine learning communities

[21, 38–42]. Network embedding aims at representing network nodes as low-dimensional

vector representations, preserving both network topology structure and node content

information, so that any subsequent graph analytics task such as classification, cluster-

ing, and recommendation can be easily performed using simple off-the-shelf machine

learning algorithms (e.g., support vector machines for classification). Meanwhile, GNNs

are deep learning models aiming at addressing graph-related tasks in an end-to-end

manner. Many GNNs explicitly extract high-level representations. The main distinction

between GNNs and network embedding is that GNNs are a group of neural network

models which are designed for various tasks while network embedding covers various

kinds of methods targeting the same task. Therefore, GNNs can address the network

embedding problem through a graph autoencoder framework. On the other hand, net-

work embedding contains other non-deep learning methods such as matrix factorization

[43, 44] and random walks [45].

Graph neural networks vs. graph kernel methods Graph kernels are histori-

cally dominant techniques to solve the problem of graph classification [46–48]. These

methods employ a kernel function to measure the similarity between pairs of graphs so

that kernel-based algorithms like support vector machines can be used for supervised

learning on graphs. Similar to GNNs, graph kernels can embed graphs or nodes into

vector spaces by a mapping function. The difference is that this mapping function is

deterministic rather than learnable. Due to a pair-wise similarity calculation, graph

kernel methods suffer significantly from computational bottlenecks. GNNs, on one hand,

directly perform graph classification based on the extracted graph representations and

therefore are much more efficient than graph kernel methods. For a further review of

graph kernel methods, I refer the readers to [49].
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CHAPTER 2. LITERATURE REVIEW

Table 2.1: Commonly used notations.

Notations Descriptions

| · | The length of a set.
� Element-wise product.
G A graph.
V The set of nodes in a graph.
v A node v ∈V .
E The set of edges in a graph.
ei j An edge ei j ∈ E.
N(v) The neighbors of a node v.
A The graph adjacency matrix.
AT The transpose of the matrix A.
An,n ∈ Z The nth power of A.
[A,B] The concatenation of A and B.
D The degree matrix of A. Dii =∑n

j=1 Ai j.
n The number of nodes, n = |V |.
m The number of edges, m = |E|.
d The dimension of a node feature vector.
b The dimension of a hidden node feature vector.
c The dimension of an edge feature vector.
X ∈Rn×d The feature matrix of a graph.
x ∈Rn The feature vector of a graph in the case of d = 1.
xv ∈Rd The feature vector of the node v.
Xe ∈Rm×c The edge feature matrix of a graph.
xe

(v,u) ∈Rc The edge feature vector of the edge (v,u).
X(t) ∈Rn×d The node feature matrix of a graph at the time step t.
H ∈Rn×b The node hidden feature matrix.
hv ∈Rb The hidden feature vector of node v.
k The layer index
t The time step/iteration index
σ(·) The sigmoid activation function.
σh(·) The tangent hyperbolic activation function.
W,Θ,w,θ Learnable model parameters.

2.2 Definition

Throughout this chapter, I use bold uppercase characters to denote matrices and bold

lowercase characters denote vectors. Unless particularly specified, the notations used

in this chapter are illustrated in Table 2.1. Now I define the minimal set of definitions

required to understand this chapter.
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Definition 1 (Graph). A graph is represented as G = (V ,E) where V is the set of n
vertices or nodes (I will use nodes throughout this work), and E is the set of m edges.
Let vi ∈ V to denote a node and ei j = (vi,vj) ∈ E to denote an edge pointing from vj to
vi. The neighborhood of a node v is defined as N(v) = {u ∈ V |(v,u) ∈ E}. The adjacency
matrix A is a n×n matrix with Ai j = 1 if ei j ∈ E and Ai j = 0 if ei j ∉ E. A graph may have
node attributes X 1, where X ∈Rn×d is a node feature matrix with xv ∈Rd representing
the feature vector of a node v. Meanwhile, a graph may have edge attributes Xe, where
Xe ∈Rm×c is an edge feature matrix with xe

v,u ∈Rc representing the feature vector of an
edge (v,u).

Definition 2 (Directed Graph). A directed graph is a graph with all edges directed from
one node to another. An undirected graph is considered as a special case of directed graphs
where there is a pair of edges with inverse directions if two nodes are connected. A graph
is undirected if and only if the adjacency matrix is symmetric.

Definition 3 (Spatial-Temporal Graph). A spatial-temporal graph is an attributed graph
where the node attributes change dynamically over time. The spatial-temporal graph is
defined as G(t) = (V,E,X(t)) with X(t) ∈Rn×d.

2.3 Categorization and Frameworks

In this section, I present my taxonomy of graph neural networks (GNNs), as shown

in Table 2.2. I categorize graph neural networks (GNNs) into recurrent graph neural

networks (RecGNNs), convolutional graph neural networks (ConvGNNs), graph autoen-

coders (GAEs), and spatial-temporal graph neural networks (STGNNs). Figure 2.1 gives

examples of various model architectures. In the following, I give a brief introduction of

each category.

2.3.1 Taxonomy of Graph Neural Networks (GNNs)

Recurrent graph neural networks (RecGNNs) mostly are pioneer works of graph

neural networks. RecGNNs aim to learn node representations with recurrent neural

architectures. They assume a node in a graph constantly exchanges information/message

with its neighbors until a stable equilibrium is reached. RecGNNs are conceptually

1Such graph is referred to an attributed graph in literature.
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(a) A ConvGNN with multiple graph convolutional layers. A graph convolutional layer encapsu-
lates each node’s hidden representation by aggregating feature information from its neighbors.
By stacking multiple layers, the final hidden representation of each node receives messages from
a further neighborhood.

(b) A ConvGNN with pooling and readout layers for graph classification [32]. A graph convo-
lutional layer is followed by a pooling layer to coarsen a graph into sub-graphs so that node
representations on coarsened graphs represent higher graph-level representations. A readout
layer summarizes the final graph representation by taking the sum/mean of hidden representa-
tions of sub-graphs.

(c) A GAE for network embedding [69]. The encoder uses graph convolutional layers to get a
network embedding for each node. The decoder reconstructs the graph adjacency matrix given
network embeddings. The network is trained by minimizing the discrepancy between the real
adjacency matrix and the reconstructed adjacency matrix.

(d) A STGNN for spatial-temporal graph forecasting [79]. The graph convolutional layer operates
on A and X (t) to capture the spatial dependency, while the 1D-CNN layer slides over X along
the time axis to capture the temporal dependency. The output layer is a linear transformation,
generating a prediction for each node, such as its future value at the next time step.

Figure 2.1: Different graph neural network models built with graph convolutional layers.
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Table 2.2: Taxonomy and representative publications of Graph Neural Networks (GNNs)

Category Publications

Recurrent Graph Neural Networks (RecGNNs) [26–29]

Spectral methods [1, 30–33, 50, 51]

Convolutional Graph Neural Networks (ConvGNNs) Spatial methods
[2, 34–37, 52, 53]
[54–60]
[3, 61–66]

Graph Autoencoders (GAEs)
Network Embedding [67–72]
Graph Generation [73–78]

Spatial-temporal Graph Neural Networks (STGNNs) [13, 15, 18, 19, 79–81]

important and inspired later research on convolutional graph neural networks. In par-

ticular, the idea of message passing is inherited by spatial-based convolutional graph

neural networks.

Convolutional graph neural networks (ConvGNNs) generalize the operation of

convolution from grid data to graph data. The main idea is to generate a node v’s

representation by aggregating its own features xv and neighbors’ features xu, where

u ∈ N(v). Different from RecGNNs, ConvGNNs stack multiple graph convolutional layers

to extract high-level node representations. ConvGNNs play a central role in building up

many other complex GNN models. Figure 2.1a shows a ConvGNN for node classification.

Figure 2.1b demonstrates a ConvGNN for graph classification.

Graph autoencoders (GAEs) are unsupervised learning frameworks which encode

nodes/graphs into a latent vector space and reconstruct graph data from the encoded

information. GAEs are used to learn network embeddings and graph generative dis-

tributions. For network embedding, GAEs learn latent node representations through

reconstructing graph structural information such as the graph adjacency matrix. For

graph generation, some methods generate nodes and edges of a graph step by step

while other methods output a graph all at once. Figure 2.1c presents a GAE for network

embedding.

Spatial-temporal graph neural networks (STGNNs) aim to learn hidden patterns

from spatial-temporal graphs, which become increasingly important in a variety of

applications such as traffic speed forecasting [13], driver maneuver anticipation [18], and

human action recognition [15]. The key idea of STGNNs is to consider spatial dependency

and temporal dependency at the same time. Many current approaches integrate graph

convolutions to capture spatial dependency with RNNs or CNNs to model the temporal

dependency. Figure 2.1d illustrates a STGNN for spatial-temporal graph forecasting.
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2.3.2 Frameworks

With the graph structure and node content information as inputs, the outputs of GNNs

can focus on different graph analytics tasks with one of the following mechanisms:

• Node-level outputs relate to node regression and node classification tasks. RecGNNs

and ConvGNNs can extract high-level node representations by information propa-

gation/graph convolution. With a multi-perceptron or a softmax layer as the output

layer, GNNs are able to perform node-level tasks in an end-to-end manner.

• Edge-level outputs relate to the edge classification and link prediction tasks. With

two nodes’ hidden representations from GNNs as inputs, a similarity function or a

neural network can be utilized to predict the label/connection strength of an edge.

• Graph-level outputs relate to the graph classification task. To obtain a compact

representation on the graph level, GNNs are often combined with pooling and read-

out operations. Detailed information about pooling and readouts will be reviewed

in Section 2.5.3.

Training Frameworks. Many GNNs (e.g., ConvGNNs) can be trained in a (semi-

) supervised or purely unsupervised way within an end-to-end learning framework,

depending on the learning tasks and label information available at hand.

• Semi-supervised learning for node-level classification. Given a single net-

work with partial nodes being labeled and others remaining unlabeled, ConvGNNs

can learn a robust model that effectively identifies the class labels for the unlabeled

nodes [1]. To this end, an end-to-end framework can be built by stacking a couple of

graph convolutional layers followed by a softmax layer for multi-class classification.

• Supervised learning for graph-level classification. Graph-level classification

aims to predict the class label(s) for an entire graph [61, 63, 82, 83]. The end-to-end

learning for this task can be realized with a combination of graph convolutional

layers, graph pooling layers, and/or readout layers. While graph convolutional

layers are responsible for exacting high-level node representations, graph pooling

layers play the role of down-sampling, which coarsens each graph into a sub-

structure each time. A readout layer collapses node representations of each graph

into a graph representation. By applying a multi-layer perceptron and a softmax

layer to graph representations, we can build an end-to-end framework for graph

classification. An example is given in Fig 2.1b.
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• Unsupervised learning for graph embedding. When no class labels are avail-

able in graphs, we can learn the graph embedding in a purely unsupervised way in

an end-to-end framework. These algorithms exploit edge-level information in two

ways. One simple way is to adopt an autoencoder framework where the encoder

employs graph convolutional layers to embed the graph into the latent represen-

tation upon which a decoder is used to reconstruct the graph structure [69, 70].

Another popular way is to utilize the negative sampling approach which samples a

portion of node pairs as negative pairs while existing node pairs with links in the

graphs are positive pairs. Then a logistic regression layer is applied to distinguish

between positive and negative pairs [52].

In Table 2.3, I summarize the main characteristics of representative RecGNNs and

ConvGNNs. Input sources, pooling layers, readout layers, and time complexity are

compared among various models. In more detail, I only compare the time complexity of

the message passing/graph convolution operation in each model. As methods in [30] and

[31] require eigenvalue decomposition, the time complexity is O(n3). The time complexity

of [55] is also O(n3) due to the node pair-wise shortest path computation. Other methods

incur equivalent time complexity, which is O(m) if the graph adjacency matrix is sparse

and is O(n2) otherwise. This is because in these methods the computation of each node

vi ’s representation involves its di neighbors, and the sum of di over all nodes exactly

equals the number of edges. The time complexity of several methods is missing in Table

2.3. These methods either lack a time complexity analysis in their papers or report the

time complexity of their overall models or algorithms.

2.4 Recurrent Graph Neural Networks

Recurrent graph neural networks (RecGNNs) are mostly pioneer works of GNNs. They

apply the same set of parameters recurrently over nodes in a graph to extract high-level

node representations. Constrained by computational power, earlier research mainly

focused on directed acyclic graphs [24, 84].

Graph Neural Network (GNN*2) proposed by Scarselli et al. extends prior recurrent

models to handle general types of graphs, e.g., acyclic, cyclic, directed, and undirected

graphs [26]. Based on an information diffusion mechanism, GNN* updates nodes’ states

2As GNN is used to represent broad graph neural networks in this chapter, I name this particular
method GNN* to avoid ambiguity.
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Table 2.3: Summary of RecGNNs and ConvGNNs. Missing values (“-") in pooling and
readout layers indicate that the method only experiments on node-level/edge-level tasks.

Approach Category Inputs Pooling Readout Time Complexity

GNN* (2009) [26] RecGNN A, X , X e - a dummy super node O(m)

GraphESN (2010) [27] RecGNN A, X - mean O(m)

GGNN (2015) [28] RecGNN A, X - attention sum O(m)

SSE (2018) [29] RecGNN A, X - - -

Spectral CNN (2014) [30] Spectral-based ConvGNN A, X spectral clustering+max pooling max O(n3)

Henaff et al. (2015) [31] Spectral-based ConvGNN A, X spectral clustering+max pooling O(n3)

ChebNet (2016) [32] Spectral-based ConvGNN A, X efficient pooling sum O(m)

GCN (2017) [1] Spectral-based ConvGNN A, X - - O(m)

CayleyNet (2017) [33] Spectral-based ConvGNN A, X mean/graclus pooling - O(m)

AGCN (2018) [50] Spectral-based ConvGNN A, X max pooling sum O(n2)

DualGCN (2018) [51] Spectral-based ConvGNN A, X - - O(m)

NN4G (2009) [34] Spatial-based ConvGNN A, X - sum/mean O(m)

DCNN (2016) [35] Spatial-based ConvGNN A, X - mean O(n2)

PATCHY-SAN (2016) [36] Spatial-based ConvGNN A, X , X e - sum -

MPNN (2017) [37] Spatial-based ConvGNN A, X , X e - attention sum/set2set O(m)

GraphSage (2017) [52] Spatial-based ConvGNN A, X - - -

GAT (2017) [2] Spatial-based ConvGNN A, X - - O(m)

MoNet (2017) [53] Spatial-based ConvGNN A, X - - O(m)

LGCN (2018) [54] Spatial-based ConvGNN A, X - - -

PGC-DGCNN (2018) [55] Spatial-based ConvGNN A, X sort pooling attention sum O(n3)

CGMM (2018) [56] Spatial-based ConvGNN A, X , X e - sum -

GAAN (2018) [57] Spatial-based ConvGNN A, X - - O(m)

FastGCN (2018) [58] Spatial-based ConvGNN A, X - - -

StoGCN (2018) [59] Spatial-based ConvGNN A, X - - -

Huang et al. (2018) [60] Spatial-based ConvGNN A, X - - -

DGCNN (2018) [61] Spatial-based ConvGNN A, X sort pooling - O(m)

DiffPool (2018) [63] Spatial-based ConvGNN A, X differential pooling mean O(n2)

GeniePath (2019) [64] Spatial-based ConvGNN A, X - - O(m)

DGI (2019) [65] Spatial-based ConvGNN A, X - - O(m)

GIN (2019) [66] Spatial-based ConvGNN A, X - sum O(m)

ClusterGCN (2019) [3] Spatial-based ConvGNN A, X - - -

by exchanging neighborhood information recurrently until a stable equilibrium is reached.

A node’s hidden state is recurrently updated by

(2.1) h(t)
v = ∑

u∈N(v)
f (xv,xe

(v,u),xu,h(t−1)
u ),

where f (·) is a parametric function, and h(0)
v is initialized randomly. The sum operation

enables GNN* to be applicable to all nodes, even if the number of neighbors differs and

no neighborhood ordering is known. To ensure convergence, the recurrent function f (·)
must be a contraction mapping, which shrinks the distance between two points after
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projecting them into a latent space. In the case of f (·) being a neural network, a penalty

term has to be imposed on the Jacobian matrix of parameters. When a convergence

criterion is satisfied, the last step node hidden states are forwarded to a readout layer.

GNN* alternates the stage of node state propagation and the stage of parameter gradient

computation to minimize a training objective. This strategy enables GNN* to handle

cyclic graphs. In follow-up works, Graph Echo State Network (GraphESN) [27] extends

echo state networks to improve the training efficiency of GNN*. GraphESN consists of

an encoder and an output layer. The encoder is randomly initialized and requires no

training. It implements a contractive state transition function to recurrently update

node states until the global graph state reaches convergence. Afterward, the output layer

is trained by taking the fixed node states as inputs.

Gated Graph Neural Network (GGNN) [28] employs a gated recurrent unit (GRU)

[85] as a recurrent function, reducing the recurrence to a fixed number of steps. The

advantage is that it no longer needs to constrain parameters to ensure convergence. A

node hidden state is updated by its previous hidden states and its neighboring hidden

states, defined as

(2.2) h(t)
v =GRU(h(t−1)

v ,
∑

u∈N(v)
Wh(t−1)

u ),

where h(0)
v = xv. Different from GNN* and GraphESN, GGNN uses the back-propagation

through time (BPTT) algorithm to learn the model parameters. This can be problematic

for large graphs, as GGNN needs to run the recurrent function multiple times over all

nodes, requiring the intermediate states of all nodes to be stored in memory.

Stochastic Steady-state Embedding (SSE) proposes a learning algorithm that is more

scalable to large graphs [29]. SSE updates node hidden states recurrently in a stochastic

and asynchronous fashion. It alternatively samples a batch of nodes for state update and

a batch of nodes for gradient computation. To maintain stability, the recurrent function

of SSE is defined as a weighted average of the historical states and new states, which

takes the form

(2.3) h(t)
v = (1−α)h(t−1)

v +αW1σ(W2[xv,
∑

u∈N(v)
[h(t−1)

u ,xu]]),

where α is a hyper-parameter, and h(0)
v is initialized randomly. While conceptually

important, SSE does not theoretically prove that the node states will gradually converge

to fixed points by applying Equation 2.3 repeatedly.

17



CHAPTER 2. LITERATURE REVIEW

(a) Recurrent Graph Neural Networks (RecGNNs).
RecGNNs use the same graph recurrent layer (Grec)
in updating node representations.

(b) Convolutional Graph Neural Networks (Con-
vGNNs). ConvGNNs use a different graph convolu-
tional layer (Gconv) in updating node representations.

Figure 2.2: RecGNNs v.s. ConvGNNs

2.5 Convolutional Graph Neural Networks

Convolutional graph neural networks (ConvGNNs) are closely related to recurrent

graph neural networks. Instead of iterating node states with contractive constraints,

ConvGNNs address the cyclic mutual dependencies architecturally using a fixed number

of layers with different weights in each layer. This key distinction is illustrated in Figure

2.2. As graph convolutions are more efficient and convenient to composite with other

neural networks, the popularity of ConvGNNs has been rapidly growing in recent years.

ConvGNNs fall into two categories, spectral-based and spatial-based. Spectral-based

approaches define graph convolutions by introducing filters from the perspective of graph

signal processing [86] where the graph convolutional operation is interpreted as removing

noises from graph signals. Spatial-based approaches inherit ideas from RecGNNs to

define graph convolutions by information propagation. Since GCN [1] bridged the gap

between spectral-based approaches and spatial-based approaches, spatial-based methods

have developed rapidly recently due to its attractive efficiency, flexibility, and generality.

2.5.1 Spectral-based ConvGNNs

Background Spectral-based methods have a solid mathematical foundation in graph

signal processing [86–88]. They assume graphs to be undirected. The normalized graph

Laplacian matrix is a mathematical representation of an undirected graph, defined as

L = In −D− 1
2 AD− 1

2 , where D is a diagonal matrix of node degrees, Dii = ∑
j(Ai, j). The
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normalized graph Laplacian matrix possesses the property of being real symmetric

positive semidefinite. With this property, the normalized Laplacian matrix can be fac-

tored as L = UΛUT , where U = [u0,u1, · · · ,un−1] ∈ Rn×n is the matrix of eigenvectors

ordered by eigenvalues and Λ is the diagonal matrix of eigenvalues (spectrum), Λii =λi.

The eigenvectors of the normalized Laplacian matrix form an orthonormal space, in

mathematical words UTU = I. In graph signal processing, a graph signal x ∈ Rn is a

feature vector of all nodes of a graph where xi is the value of the ith node. The graph
Fourier transform to a signal x is defined as F (x)=UTx, and the inverse graph Fourier

transform is defined as F−1(x̂)=Ux̂, where x̂ represents the resulted signal from the

graph Fourier transform. The graph Fourier transform projects the input graph signal

to the orthonormal space where the basis is formed by eigenvectors of the normalized

graph Laplacian. Elements of the transformed signal x̂ are the coordinates of the graph

signal in the new space so that the input signal can be represented as x=∑
i x̂iui, which

is exactly the inverse graph Fourier transform. Now the graph convolution of the input

signal x with a filter g ∈Rn is defined as

(2.4)
x∗G g=F−1(F (x)�F (g))

=U(UTx�UTg),

where � denotes the element-wise product. If we denote a filter as gθ = diag(UTg), then

the spectral graph convolution is simplified as

(2.5) x∗G gθ =UgθUTx.

Spectral-based ConvGNNs all follow this definition. The key difference lies in the choice

of the filter gθ.

Spectral Convolutional Neural Network (Spectral CNN) [30] assumes the filter

gθ = Θ(k)
i, j is a set of learnable parameters and considers graph signals with multiple

channels. The graph convolutional layer of Spectral CNN is defined as

(2.6) H(k)
:, j =σ(

fk−1∑
i=1

UΘ(k)
i, j U

TH(k−1)
:,i ) ( j = 1,2, · · · , fk),

where k is the layer index, H(k−1) ∈ Rn× fk−1 is the input graph signal, H(0) = X, fk−1 is

the number of input channels and fk is the number of output channels, Θ(k)
i, j is a diagonal

matrix filled with learnable parameters. Due to the eigen-decomposition of the Laplacian

matrix, Spectral CNN faces three limitations. First, any perturbation to a graph results

in a change of eigenbasis. Second, the learned filters are domain dependent, meaning
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they cannot be applied to a graph with a different structure. Third, eigen-decomposition

requires O(n3) computational complexity. In follow-up works, ChebNet [32] and GCN [1]

reduce the computational complexity to O(m) by making several approximations and

simplifications.

Chebyshev Spectral CNN (ChebNet) [32] approximates the filter gθ by Chebyshev

polynomials of the diagonal matrix of eigenvalues, i.e, gθ = ∑K
i=0θiTi(Λ̃), where Λ̃ =

2Λ/λmax −In, and the values of Λ̃ lie in [−1,1]. The Chebyshev polynomials are defined

recursively by Ti(x)= 2xTi−1(x)−Ti−2(x) with T0(x)= 1 and T1(x)= x. As a result, the

convolution of a graph signal x with the defined filter gθ is

(2.7) x∗G gθ =U(
K∑

i=0
θiTi(Λ̃))UTx,

where L̃ = 2L/λmax − In. As Ti(L̃) = UTi(Λ̃)UT , which can be proven by induction on i,
ChebNet takes the form,

(2.8) x∗G gθ =
K∑

i=0
θiTi(L̃)x,

As an improvement over Spectral CNN, the filters defined by ChebNet are localized in

space, which means filters can extract local features independently of the graph size.

The spectrum of ChebNet is mapped to [−1,1] linearly. CayleyNet [33] further applies

Cayley polynomials which are parametric rational complex functions to capture narrow

frequency bands. The spectral graph convolution of CayleyNet is defined as

(2.9) x∗G gθ = c0x+2Re{
r∑

j=1
c j(hL− iI) j(hL+ iI)− jx},

where Re(·) returns the real part of a complex number, c0 is a real coefficent, c j is a

complex coefficent, i is the imaginary number, and h is a parameter which controls

the spectrum of a Cayley filter. While preserving spatial locality, CayleyNet shows that

ChebNet can be considered as a special case of CayleyNet.

Graph Convolutional Network (GCN) [1] introduces a first-order approximation of

ChebNet. Assuming K = 1 and λmax = 2 , Equation 2.8 is simplified as

(2.10) x∗G gθ = θ0x−θ1D− 1
2 AD− 1

2 x.

To restrain the number of parameters and avoid over-fitting, GCN further assume

θ = θ0 =−θ1, leading to the following definition of a graph convolution,

(2.11) x∗G gθ = θ(In+D− 1
2 AD− 1

2 )x.
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To allow multi-channels of inputs and outputs, GCN modifies Equation 2.11 into a

compositional layer, defined as

(2.12) H=X∗G gΘ = f (ĀXΘ),

where Ā = In +D− 1
2 AD− 1

2 and f (·) is an activation function. Using In +D− 1
2 AD− 1

2 em-

pirically causes numerical instability to GCN. To address this problem, GCN applies a

normalization trick to replace Ā= In+D− 1
2 AD− 1

2 by Ā= D̃− 1
2 ÃD̃− 1

2 with Ã=A+In and

D̃ii =∑
j Ãi j. Being a spectral-based method, GCN can be also interpreted as a spatial-

based method. From a spatial-based perspective, GCN can be considered as aggregating

feature information from a node’s neighborhood. Equation 2.12 can be expressed as

(2.13) hv = f (ΘT(
∑

u∈{N(v)∪v}
Āv,uxu)) ∀v ∈V .

Several recent works made incremental improvements over GCN [1] by exploring

alternative symmetric matrices. Adaptive Graph Convolutional Network (AGCN) [50]

learns hidden structural relations unspecified by the graph adjacency matrix. It con-

structs a so-called residual graph adjacency matrix through a learnable distance function

which takes two nodes’ features as inputs. Dual Graph Convolutional Network (DGCN)

[51] introduces a dual graph convolutional architecture with two graph convolutional

layers in parallel. While these two layers share parameters, they use the normalized

adjacency matrix Ā and the positive pointwise mutual information (PPMI) matrix which

captures nodes co-occurrence information through random walks sampled from a graph.

The PPMI matrix is defined as

(2.14) PPMIv1,v2 = max(log(
count(v1,v2) · |D|

count(v1)count(v2)
),0),

where v1,v2 ∈V , |D| =∑
v1,v2 count(v1,v2) and the count(·) function returns the frequency

that node v and/or node u co-occur/occur in sampled random walks. By ensembling

outputs from dual graph convolutional layers, DGCN encodes both local and global

structural information without the need to stack multiple graph convolutional layers.

2.5.2 Spatial-based ConvGNNs

Analogous to the convolutional operation of a conventional CNN on an image, spatial-

based methods define graph convolutions based on a node’s spatial relations. Images

can be considered as a special form of graphs with each pixel representing a node. Each

pixel is directly connected to its nearby pixels, as illustrated in Figure 1.1a. A filter is
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applied to a 3×3 patch by taking the weighted average of pixel values of the central

node and its neighbors across each channel. Similarly, the spatial-based graph convo-

lutions convolve the central node’s representation with its neighbors’ representations

to derive the updated representation for the central node, as illustrated in Figure 1.1b.

From another perspective, spatial-based ConvGNNs share the same idea of information

propagation/message passing with RecGNNs. The spatial graph convolutional operation

essentially propagates node information along edges.

Neural Network for Graphs (NN4G) [34], proposed in parallel with GNN*, is the

first work towards spatial-based ConvGNNs. Distinctively different from RecGNNs,

NN4G learns graph mutual dependency through a compositional neural architecture

with independent parameters at each layer. The neighborhood of a node can be extended

through incremental construction of the architecture.

NN4G performs graph convolutions by summing up a node’s neighborhood infor-

mation directly. It also applies residual connections and skip connections to memorize

information over each layer. As a result, NN4G derives its next layer node states by

(2.15) h(k)
v = f (W(k)T

xv +
k−1∑
i=1

∑
u∈N(v)

Θ(k)T
h(k−1)

u ),

where f (·) is an activation function and h(0)
v = 0. Equation 2.15 can also be written in a

matrix form:

(2.16) H(k) = f (XW(k) +
k−1∑
i=1

AH(k−1)Θ(k)),

which resembles the form of GCN [1]. One difference is that NN4G uses the unnormalized

adjacency matrix which may potentially cause hidden node states to have extremely

different scales. Contextual Graph Markov Model (CGMM) [56] proposes a probabilistic

model inspired by NN4G. While maintaining spatial locality, CGMM has the benefit of

probabilistic interpretability.

Diffusion Convolutional Neural Network (DCNN) [35] regards graph convolutions

as a diffusion process. It assumes information is transferred from one node to one of its

neighboring nodes with a certain transition probability so that information distribution

can reach equilibrium after several rounds. DCNN defines the diffusion graph convolution

as

(2.17) H(k) = f (W(k) �PkX),
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where f (·) is an activation function and the probability transition matrix P ∈ Rn×n is

computed by P = D−1A. Note that in DCNN, the hidden representation matrix H(k)

remains the same dimension as the input feature matrix X and is not a function of its

previous hidden representation matrix H(k−1). DCNN concatenates H(1),H(2), · · · ,H(K)

together as the final model outputs. As the stationary distribution of a diffusion process

is a summation of power series of probability transition matrices, Diffusion Graph

Convolution (DGC) [13] sums up outputs at each diffusion step instead of concatenation.

It defines the diffusion graph convolution by

(2.18) H=
K∑

k=0
f (PkXW(k)),

where W(k) ∈ RD×F and f (·) is an activation function. Using the power of a transition

probability matrix implies that distant neighbors contribute very little information to a

central node. PGC-DGCNN [55] increases the contributions of distant neighbors based on

shortest paths. It defines a shortest path adjacency matrix S( j). If the shortest path from

a node v to a node u is of length j, then S( j)
v,u = 1 otherwise 0. With a hyperparameter r to

control the receptive field size, PGC-DGCNN introduces a graph convolutional operation

as follows

(2.19) H(k) =∥r
j=0 f ((D̃( j))−1S( j)H(k−1)W( j,k)),

where D̃( j)
ii =∑

l S( j)
i,l , H(0) =X, and ∥ represents the concatenation of vectors. The calcu-

lation of the shortest path adjacency matrix can be expensive with O(n3) at maximum.

Partition Graph Convolution (PGC) [15] partitions a node’s neighbors into Q groups

based on certain criteria not limited to shortest paths. PGC constructs Q adjacency

matrices according to the defined neighborhood by each group. Then, PGC applies GCN

[1] with a different parameter matrix to each neighbor group and sums the results:

(2.20) H(k) =
Q∑

j=1
Ā( j)H(k−1)W( j,k),

where H(0) =X, Ā( j) = ˜(D( j))−
1
2 Ã( j) ˜(D( j))−

1
2 and Ã( j) =A( j) +I.

Message Passing Neural Network (MPNN) [37] outlines a general framework of

spatial-based ConvGNNs. It treats graph convolutions as a message passing process in

which information can be passed from one node to another along edges directly. MPNN

runs K-step message passing iterations to let information propagate further. The message

passing function (namely the spatial graph convolution) is defined as

(2.21) h(k)
v =Uk(h(k−1)

v ,
∑

u∈N(v)
Mk(h(k−1)

v ,h(k−1)
u ,xe

vu)),
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where h(0)
v = xv, Uk(·) and Mk(·) are functions with learnable parameters. After deriving

the hidden representations of each node, h(K)
v can be passed to an output layer to perform

node-level prediction tasks or to a readout function to perform graph-level prediction

tasks. The readout function generates a representation of the entire graph based on node

hidden representations. It is generally defined as

(2.22) hG = R(h(K)
v |v ∈G),

where R(·) represents the readout function with learnable parameters. MPNN can cover

many existing GNNs by assuming different forms of Uk(·), Mk(·), and R(·), such as [1, 89–

91]. However, Graph Isomorphism Network (GIN) [66] finds that previous MPNN-based

methods are incapable of distinguishing different graph structures based on the graph

embedding they produced. To amend this drawback, GIN adjusts the weight of the

central node by a learnable parameter ε(k). It performs graph convolutions by

(2.23) h(k)
v = MLP((1+ε(k))h(k−1)

v + ∑
u∈N(v)

h(k−1)
u ),

where MLP(·) represents a multi-layer perceptron.

As the number of neighbors of a node can vary from one to a thousand or even

more, it is inefficient to take the full size of a node’s neighborhood. GraphSage [52]

adopts sampling to obtain a fixed number of neighbors for each node. It performs graph

convolutions by

(2.24) h(k)
v =σ(W(k) · fk(h(k−1)

v , {h(k−1)
u ,∀u ∈ SN (v)})),

where h(0)
v = xv, fk(·) is an aggregation function, SN (v) is a random sample of the node

v’s neighbors. The aggregation function should be invariant to the permutations of node

orderings such as a mean, sum or max function.

Graph Attention Network (GAT) [2] assumes contributions of neighboring nodes

to the central node are neither identical like GraphSage [52], nor pre-determined like

GCN [1] (this difference is illustrated in Figure 2.3). GAT adopts attention mechanisms

to learn the relative weights between two connected nodes. The graph convolutional

operation according to GAT is defined as,

(2.25) h(k)
v =σ(

∑
u∈N (v)∪v

α(k)
vuW(k)h(k−1)

u ),

where h(0)
v = xv. The attention weight α(k)

vu measures the connective strength between the

node v and its neighbor u:

(2.26) α(k)
vu = sof tmax(g(aT[W(k)h(k−1)

v ||W(k)h(k−1)
u )),
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(a) GCN [1] explicitly assigns a non-
parametric weight ai j = 1	

deg(vi)deg(vj)
to the neighbor vj of vi during the ag-
gregation process.

(b) GAT [2] implicitly captures the
weight ai j via an end-to-end neural net-
work architecture, so that more impor-
tant nodes receive larger weights.

Figure 2.3: Differences between GCN [1] and GAT [2]

where g(·) is a LeakyReLU activation function and a is a vector of learnable parameters.

The softmax function ensures that the attention weights sum up to one over all neighbors

of the node v. GAT further performs the multi-head attention to increase the model’s

expressive capability. This shows an impressive improvement over GraphSage on node

classification tasks. While GAT assumes the contributions of attention heads are equal,

Gated Attention Network (GAAN) [57] introduces a self-attention mechanism which com-

putes an additional attention score for each attention head. Apart from applying graph

attention spatially, GeniePath [64] further proposes an LSTM-like gating mechanism

to control information flow across graph convolutional layers. There are other graph

attention models which might be of interest [92, 93]. However, they do not belong to the

ConvGNN framework.

Mixture Model Network (MoNet) [53] adopts a different approach to assign different

weights to a node’s neighbors. It introduces node pseudo-coordinates to determine the

relative position between a node and its neighbor. Once the relative position between

two nodes is known, a weight function maps the relative position to the relative weight

between these two nodes. In such a way, the parameters of a graph filter can be shared

across different locations. Under the MoNet framework, several existing approaches for

manifolds such as Geodesic CNN (GCNN) [94], Anisotropic CNN (ACNN) [95], Spline
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Table 2.4: Time and memory complexity comparison for ConvGNN training algorithms
(summarized by [3]). n is the total number of nodes. m is the total number of edges. K is
the number of layers. s is the batch size. r is the number of neighbors being sampled for
each node. For simplicity, the dimensions of the node hidden features remain constant,
denoted by d.

Complexity GCN [1] GraphSage [52] FastGCN [58] StoGCN [59] Cluster-GCN [3]

Time O(Kmd+Knd2) O(rK nd2) O(Krnd2) O(Kmd+Knd2 + rK nd2) O(Kmd+Knd2)
Memory O(Knd+Kd2) O(srK d+Kd2) O(Ksrd+Kd2) O(Knd+Kd2) O(Ksd+Kd2)

CNN [96], and for graphs such as GCN [1], DCNN [35] can be generalized as special

instances of MoNet by constructing nonparametric weight functions. MoNet additionally

proposes a Gaussian kernel with learnable parameters to learn the weight function

adaptively.

Another distinct line of works achieves weight sharing across different locations by

ranking a node’s neighbors based on certain criteria and associating each ranking with a

learnable weight. PATCHY-SAN [36] orders neighbors of each node according to their

graph labelings and selects the top q neighbors. Graph labelings are essentially node

scores which can be derived by node degree, centrality, and Weisfeiler-Lehman color

[97, 98]. As each node now has a fixed number of ordered neighbors, graph-structured

data can be converted into grid-structured data. PATCHY-SAN applies a standard 1D

convolutional filter to aggregate neighborhood feature information where the order of

the filter’s weights corresponds to the order of a node’s neighbors. The ranking criterion

of PATCHY-SAN only consider graph structures, which require heavy computation for

data processing. Large-scale Graph Convolutional Network (LGCN) [54] ranks a node’s

neighbors based on node feature information. For each node, LGCN assembles a feature

matrix which consists of its neighborhood and sorts this feature matrix along each

column. The first q rows of the sorted feature matrix are taken as the input data for the

central node.

Improvement in terms of training efficiency Training ConvGNNs such as GCN [1]

usually is required to save the whole graph data and intermediate states of all nodes into

memory. The full-batch training algorithm for ConvGNNs suffers significantly from the

memory overflow problem, especially when a graph contains millions of nodes. To save

memory, GraphSage [52] proposes a batch-training algorithm for ConvGNNs. It samples

a tree rooted at each node by recursively expanding the root node’s neighborhood by K
steps with fixed sample size. For each sampled tree, GraphSage computes the root node’s

hidden representation by hierarchically aggregating hidden node representations from
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bottom to top.

Fast Learning with Graph Convolutional Network (FastGCN) [58] samples a fixed

number of nodes for each graph convolutional layer instead of sampling a fixed number

of neighbors for each node like GraphSage [52]. It interprets graph convolutions as

integral transforms of embedding functions of nodes under probability measures. Monte

Carlo approximation and variance reduction techniques are employed to facilitate the

training process. As FastGCN samples nodes independently for each layer, between-

layers connections are potentially sparse. Huang et al. [60] propose an adaptive layer-wise

sampling approach where node sampling for the lower layer is conditioned on the top one.

This method achieves higher accuracy compared to FastGCN at the cost of employing a

much more complicated sampling scheme.

In another work, Stochastic Training of Graph Convolutional Networks (StoGCN)

[59] reduces the receptive field size of a graph convolution to an arbitrarily small scale

using historical node representations as a control variate. StoGCN achieves comparable

performance even with two neighbors per node. However, StoGCN still has to save

intermediate states of all nodes, which is memory-consuming for large graphs.

Cluster-GCN [3] samples a subgraph using a graph clustering algorithm and performs

graph convolutions to nodes within the sampled subgraph. As the neighborhood search

is also restricted within the sampled subgraph, Cluster-GCN is capable of handling

larger graphs and using deeper architectures at the same time, in less time and with less

memory. Cluster-GCN notably provides a straightforward comparison of time complexity

and memory complexity for existing ConvGNN training algorithms. I analyze its results

based on Table 2.4.

In Table 2.4, GCN [1] is the baseline method which conducts the full-batch training.

GraphSage saves memory at the cost of sacrificing time efficiency. Meanwhile, the time

and memory complexity of GraphSage grows exponentially with an increase of K and

r. The time complexity of Sto-GCN is the highest, and the bottleneck of the memory

remains unsolved. However, Sto-GCN can achieve satisfactory performance with very

small r. The time complexity of Cluster-GCN remains the same as the baseline method

since it does not introduce redundant computations. Of all the methods, Cluster-GCN

realizes the lowest memory complexity.

Comparison between spectral and spatial models Spectral models have a theoret-

ical foundation in graph signal processing. By designing new graph signal filters (e.g.,

Cayleynets [33]), one can build new ConvGNNs. However, spatial models are preferred

over spectral models due to efficiency, generality, and flexibility issues. First, spectral
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models are less efficient than spatial models. Spectral models either need to perform

eigenvector computation or handle the whole graph at the same time. Spatial models

are more scalable to large graphs as they directly perform convolutions in the graph

domain via information propagation. The computation can be performed in a batch of

nodes instead of the whole graph. Second, spectral models which rely on a graph Fourier

basis generalize poorly to new graphs. They assume a fixed graph. Any perturbations

to a graph would result in a change of eigenbasis. Spatial-based models, on the other

hand, perform graph convolutions locally on each node where weights can be easily

shared across different locations and structures. Third, spectral-based models are limited

to operating on undirected graphs. Spatial-based models are more flexible to handle

multi-source graph inputs such as edge inputs [26, 37, 90, 99, 100], directed graphs

[13, 35], signed graphs [101], and heterogeneous graphs [102, 103], because these graph

inputs can be incorporated into the aggregation function easily.

2.5.3 Graph Pooling Modules

After a GNN generates node features, we can use them for the final task. But using

all these features directly can be computationally challenging, thus, a down-sampling

strategy is needed. Depending on the objective and the role it plays in the network,

different names are given to this strategy: (1) the pooling operation aims to reduce the

size of parameters by down-sampling the nodes to generate smaller representations and

thus avoid overfitting, permutation invariance, and computational complexity issues; (2)

the readout operation is mainly used to generate graph-level representation based on

node representations. Their mechanism is very similar. In this chapter, I use pooling to

refer to all kinds of down-sampling strategies applied to GNNs.

In some earlier works, the graph coarsening algorithms use eigen-decomposition

to coarsen graphs based on their topological structure. However, these methods suffer

from the time complexity issue. The Graclus algorithm [104] is an alternative of eigen-

decomposition to calculate a clustering version of the original graph. Some recent works

[33] employed it as a pooling operation to coarsen graphs.

Nowadays, mean/max/sum pooling is the most primitive and effective way to imple-

ment down-sampling since calculating the mean/max/sum value in the pooling window

is fast:

(2.27) hG = mean/max/sum(h(K)
1 ,h(K)

2 , ...,h(K)
n ),

where K is the index of the last graph convolutional layer.
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Henaff et al. [31] show that performing a simple max/mean pooling at the beginning

of the network is especially important to reduce the dimensionality in the graph domain

and mitigate the cost of the expensive graph Fourier transform operation. Furthermore,

some works [28, 37, 55] also use attention mechanisms to enhance the mean/sum pooling.

Even with attention mechanisms, the reduction operation (such as sum pooling) is not

satisfactory since it makes the embedding inefficient: a fixed-size embedding is generated

regardless of the graph size. Vinyals et al. [105] propose the Set2Set method to generate

a memory that increases with the size of the input. It then implements an LSTM that

intends to integrate order-dependent information into the memory embedding before a

reduction is applied that would otherwise destroy that information.

Defferrard et al. [32] address this issue in another way by rearranging nodes of a

graph in a meaningful way. They devise an efficient pooling strategy in their approach

ChebNet. Input graphs are first coarsened into multiple levels by the Graclus algorithm

[104]. After coarsening, the nodes of the input graph and its coarsened version are

rearranged into a balanced binary tree. Arbitrarily aggregating the balanced binary tree

from bottom to top will arrange similar nodes together. Pooling such a rearranged signal

is much more efficient than pooling the original.

Zhang et al. [61] propose the DGCNN with a similar pooling strategy named Sort-

Pooling which performs pooling by rearranging nodes to a meaningful order. Different

from ChebNet [32], DGCNN sorts nodes according to their structural roles within the

graph. The graph’s unordered node features from spatial graph convolutions are treated

as continuous WL colors [97], and they are then used to sort nodes. In addition to sorting

the node features, it unifies the graph size to q by truncating/extending the node feature

matrix. The last n− q rows are deleted if n > q, otherwise q−n zero rows are added.

The aforementioned pooling methods mainly consider graph features and ignore

the structural information of graphs. Recently, a differentiable pooling (DiffPool) [63] is

proposed, which can generate hierarchical representations of graphs. Compared to all

previous coarsening methods, DiffPool does not simply cluster the nodes in a graph but

learns a cluster assignment matrix S at layer k referred to as S(k) ∈Rnk×nk+1, where nk

is the number of nodes at the kth layer. The probability values in matrix S(k) are being

generated based on node features and topological structure using

(2.28) S(k) = sof tmax(ConvGNNk(A(k),H(k))).

The core idea of this is to learn comprehensive node assignments which consider both

topological and feature information of a graph, so Equation 2.28 can be implemented
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with any standard ConvGNNs. However, the drawback of DiffPool is that it generates

dense graphs after pooling and thereafter the computational complexity becomes O(n2).

Most recently, the SAGPool [106] approach is proposed, which considers both node

features and graph topology and learns the pooling in a self-attention manner.

Overall, pooling is an essential operation to reduce graph size. How to improve the

effectiveness and computational complexity of pooling is an open question for investiga-

tion.

2.5.4 Discussion of Theoretical Aspects

I discuss the theoretical foundation of graph neural networks from different perspectives.

Shape of receptive field The receptive field of a node is the set of nodes that contribute

to the determination of its final node representation. When compositing multiple spatial

graph convolutional layers, the receptive field of a node grows one step ahead towards

its distant neighbors each time. Micheli [34] proved that a finite number of spatial

graph convolutional layers exists such that for each node v ∈ V the receptive field of

node v covers all nodes in the graph. As a result, a ConvGNN is able to extract global

information by stacking local graph convolutional layers.

VC dimension The VC dimension is a measure of model complexity defined as the

largest number of points that can be shattered by a model. There are few works on

analyzing the VC dimension of GNNs. Given the number of model parameter p and

the number of nodes n, Scarselli et al. [107] derive that the VC dimension of a GNN*

[26] is O(p4n2) if it uses the sigmoid or tangent hyperbolic activation and is O(p2n) if it

uses the piecewise polynomial activation function. This result suggests that the model

complexity of a GNN* [26] increases rapidly with p and n if the sigmoid or tangent

hyperbolic activation is used.

Graph isomorphism Two graphs are isomorphic if they are topologically identical.

Given two non-isomorphic graphs G1 and G2, Xu et al. [66] prove that if a GNN maps G1

and G2 to different embeddings, these two graphs can be identified as non-isomorphic by

the Weisfeiler-Lehman (WL) test of isomorphism [97]. They show that common GNNs

such as GCN [1] and GraphSage [52] are incapable of distinguishing different graph

structures. Xu et al. [66] further prove if the aggregation functions and the readout

functions of a GNN are injective, the GNN is at most as powerful as the WL test in

distinguishing different graphs.
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Table 2.5: Main characteristics of selected GAEs

Approaches Inputs Encoder Decoder Objective

DNGR (2016) [67] A a multi-layer perceptron a multi-layer perceptron reconstruct the PPMI matrix

SDNE (2016) [68] A a multi-layer perceptron a multi-layer perceptron preserve node 1st-order and 2nd-order proximity

GAE* (2016) [69] A, X a ConvGNN a similarity measure reconstruct the adjacency matrix

VGAE (2016) [69] A, X a ConvGNN a similarity measure learn the generative distribution of data

ARVGA (2018) [70] A, X a ConvGNN a similarity measure learn the generative distribution of data adversarially

DNRE (2018) [71] A an LSTM network an identity function recover network embedding

NetRA (2018) [72] A an LSTM network an LSTM network recover network embedding with adversarial training

DeepGMG (2018) [73] A, X , X e a RecGNN a decision process maximize the expected joint log-likelihood

GraphRNN (2018) [74] A a RNN a decision process maximize the likelihood of permutations

GraphVAE (2018) [75] A, X , X e a ConvGNN a multi-layer perceptron optimize the reconstruction loss

RGVAE (2018) [76] A, X , X e a CNN a deconvolutional net optimize the reconstruction loss with validity constraints

MolGAN (2018) [77] A, X , X e a ConvGNN a multi-layer perceptron optimize the generative adversarial loss and the RL loss

NetGAN (2018) [78] A an LSTM network an LSTM network optimize the generative adversarial loss

Equivariance and invariance A GNN must be an equivariant function when per-

forming node-level tasks and must be an invariant function when performing graph-

level tasks. For node-level tasks, let f (A,X) ∈ Rn×d be a GNN and Q be any permu-

tation matrix that changes the order of nodes. A GNN is equivariant if it satisfies

f (QAQT ,QX)=Q f (A,X). For graph-level tasks, let f (A,X) ∈ Rd. A GNN is invariant if

it satisfies f (QAQT ,QX)= f (A,X). In order to achieve equivariance or invariance, com-

ponents of a GNN must be invariant to node orderings. Maron et al. [108] theoretically

study the characteristics of permutation invariant and equivariant linear layers for

graph data.

Universal approximation It is well known that multi-perceptron feedforward neural

networks with one hidden layer can approximate any Borel measurable functions [109].

The universal approximation capability of GNNs has seldom been studied. Hammer et al.

[110] prove that cascade correlation can approximate functions with structured outputs.

Scarselli et al. [111] prove that a RecGNN [26] can approximate any function that

preserves unfolding equivalence up to any degree of precision. Two nodes are unfolding

equivalent if their unfolding trees are identical where the unfolding tree of a node is

constructed by iteratively extending a node’s neighborhood at a certain depth. Xu et

al. [66] show that ConvGNNs under the framework of message passing [37] are not

universal approximators of continuous functions defined on multisets. Maron et al. [108]

prove that an invariant graph network can approximate an arbitrary invariant function

defined on graphs.
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2.6 Graph autoencoders

Graph autoencoders (GAEs) are deep neural architectures which map nodes into a latent

feature space and decode graph information from latent representations. GAEs can be

used to learn network embeddings or generate new graphs. The main characteristics of

selected GAEs are summarized in Table 2.5. In the following, I provide a brief review of

GAEs from two perspectives, network embedding and graph generation.

2.6.1 Network Embedding

A network embedding is a low-dimensional vector representation of a node which pre-

serves a node’s topological information. GAEs learn network embeddings using an

encoder to extract network embeddings and using a decoder to enforce network embed-

dings to preserve the graph topological information such as the PPMI matrix and the

adjacency matrix.

Earlier approaches mainly employ multi-layer perceptrons to build GAEs for network

embedding learning. Deep Neural Network for Graph Representations (DNGR) [67]

uses a stacked denoising autoencoder [112] to encode and decode the PPMI matrix via

multi-layer perceptrons. Concurrently, Structural Deep Network Embedding (SDNE) [68]

uses a stacked autoencoder to preserve the node first-order proximity and second-order

proximity jointly. SDNE proposes two loss functions on the outputs of the encoder and

the outputs of the decoder separately. The first loss function enables the learned network

embeddings to preserve the node first-order proximity by minimizing the distance be-

tween a node’s network embedding and its neighbors’ network embeddings. The first loss

function L1st is defined as

(2.29) L1st =
∑

(v,u)∈E
Av,u||enc(xv)− enc(xu)||2,

where xv =Av,: and enc(·) is an encoder which consists of a multi-layer perceptron. The

second loss function enables the learned network embeddings to preserve the node

second-order proximity by minimizing the distance between a node’s inputs and its

reconstructed inputs. Concretely, the second loss function L2nd is defined as

(2.30) L2nd = ∑
v∈V

||(dec(enc(xv))−xv)�bv||2,

where bv,u = 1 if Av,u = 0, bv,u =β> 1 if Av,u = 1, and dec(·) is a decoder which consists

of a multi-layer perceptron.
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DNGR [67] and SDNE [68] only consider node structural information which is about

the connectivity between pairs of nodes. They ignore nodes may contain feature informa-

tion that depicts the attributes of nodes themselves. Graph Autoencoder (GAE*3) [69]

leverages GCN [1] to encode node structural information and node feature information

at the same time. The encoder of GAE* consists of two graph convolutional layers, which

takes the form

(2.31) Z= enc(X,A)=Gconv( f (Gconv(A,X;Θ1));Θ2),

where Z denotes the network embedding matrix of a graph, f (·) is a ReLU activation func-

tion and the Gconv(·) function is a graph convolutional layer defined by Equation 2.12.

The decoder of GAE* aims to decode node relational information from their embeddings

by reconstructing the graph adjacency matrix, which is defined as

(2.32) Âv,u = dec(zv,zu)=σ(zT
v zu),

where zv is the embedding of node v. GAE* is trained by minimizing the negative cross

entropy given the real adjacency matrix A and the reconstructed adjacency matrix Â.

Simply reconstructing the graph adjacency matrix may lead to overfitting due to the

capacity of the autoencoders. Variational Graph Autoencoder (VGAE) [69] is a variational

version of GAE to learn the distribution of data. VGAE optimizes the variational lower

bound L:

(2.33) L = Eq(Z|X,A)[log p(A|Z)]−KL[q(Z|X,A)||p(Z)],

where KL(·) is the Kullback-Leibler divergence function which measures the distance

between two distributions, p(Z) is a Gaussian prior p(Z) = ∏n
i=1 p(zi) = ∏n

i=1 N(zi|0,I),

p(Ai j = 1|zi,z j)= dec(zi,z j)=σ(zT
i z j), q(Z|X,A)=∏n

i=1 q(zi|X,A), with q(zi|X,A)= N(zi

|μi,diag(σ2
i )). The mean vector μi is the ith row of an encoder’s outputs defined by

Equation 2.31 and logσi is derived similarly as μi with another encoder. According to

Equation 2.33, VGAE assumes the empirical distribution q(Z|X,A) should be as close

as possible to the prior distribution p(Z). To further enforce the empirical distribution

q(Z|X,A) approximate the prior distribution p(Z), Adversarially Regularized Variational

Graph Autoencoder (ARVGA) [70, 113] employs the training scheme of a generative

adversarial networks (GAN) [114]. A GAN plays a competition game between a generator

3I name it GAE* to avoid ambiguity in this chapter.
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and a discriminator in training generative models. A generator tries to generate ‘fake

samples’ to be as real as possible while a discriminator attempts to distinguish the ‘fake

samples’ from real ones. Inspired by GANs, ARVGA endeavors to learn an encoder that

produces an empirical distribution q(Z|X,A) which is indistinguishable from the prior

distribution p(Z).

Similar as GAE*, GraphSage [52] encodes node features with two graph convolu-

tional layers. Instead of optimizing the reconstruction error, GraphSage shows that the

relational information between two nodes can be preserved by negative sampling with

the loss:

(2.34) L(zv)=−log(dec(zv,zu))−QEvn∼Pn(v) log(−dec(zv,zvn)),

where node u is a neighbor of node v, node vn is a distant node to node v and is sampled

from a negative sampling distribution Pn(v), and Q is the number of negative samples.

This loss function essentially enforces close nodes to have similar representations and

distant nodes to have dissimilar representations. DGI [65] alternatively drives local

network embeddings to capture global structural information by maximizing local mutual

information. It shows a distinct improvement over GraphSage [52] experimentally.

For the aforementioned methods, they essentially learn network embeddings by

solving a link prediction problem. However, the sparsity of a graph causes the number of

positive node pairs to be far less than the number of negative node pairs. To alleviate the

data sparsity problem in learning network embedding, another line of works converts a

graph into sequences by random permutations or random walks. In such a way, those

deep learning approaches which are applicable to sequences can be directly used to

process graphs. Deep Recursive Network Embedding (DRNE) [71] assumes a node’s

network embedding should approximate the aggregation of its neighborhood network

embeddings. It adopts a Long Short-Term Memory (LSTM) network [10] to aggregate a

node’s neighbors. The reconstruction error of DRNE is defined as

(2.35) L = ∑
v∈V

||zv −LSTM({zu|u ∈ N(v)})||2,

where zv is the network embedding of node v obtained by a dictionary look-up, and

the LSTM network takes a random sequence of node v’s neighbors ordered by their

node degree as inputs. As suggested by Equation 2.35, DRNE implicitly learns network

embeddings via an LSTM network rather than using the LSTM network to generate

network embeddings. It avoids the problem that the LSTM network is not invariant

to the permutation of node sequences. Network Representations with Adversarially
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Regularized Autoencoders (NetRA) [72] proposes a graph encoder-decoder framework

with a general loss function, defined as

(2.36) L =−Ez∼Pdata(z)(dist(z,dec(enc(z)))),

where dist(·) is the distance measure between the node embedding z and the recon-

structed z. The encoder and decoder of NetRA are LSTM networks with random walks

rooted on each node v ∈ V as inputs. Similar to ARVGA [70], NetRA regularizes the

learned network embeddings within a prior distribution via adversarial training. Al-

though NetRA ignores the node permutation variant problem of LSTM networks, the

experimental results validate the effectiveness of NetRA.

2.6.2 Graph Generation

With multiple graphs, GAEs are able to learn the generative distribution of graphs

by encoding graphs into hidden representations and decoding a graph structure given

hidden representations. The majority of GAEs for graph generation is designed to solve

the molecular graph generation problem, which has a high practical value in drug

discovery. These methods either propose a new graph in a sequential manner or in a

global manner.

Sequential approaches generate a graph by proposing nodes and edges step by step.

Gomez et al. [115], Kusner et al. [116], and Dai et al. [117] model the generation process

of a string representation of molecular graphs named SMILES with deep CNNs and

RNNs as the encoder and the decoder respectively. While these methods are domain-

specific, alternative solutions are applicable to general graphs by means of iteratively

adding nodes and edges to a growing graph until a certain criterion is satisfied. Deep

Generative Model of Graphs (DeepGMG) [73] assumes the probability of a graph is the

sum over all possible node permutations:

(2.37) p(G)=∑
π

p(G,π),

where π denotes a node ordering. It captures the complex joint probability of all nodes

and edges in the graph. DeepGMG generates graphs by making a sequence of decisions,

namely whether to add a node, which node to add, whether to add an edge, and which

node to connect to the new node. The decision process of generating nodes and edges

is conditioned on the node states and the graph state of a growing graph updated by a

RecGNN. In another work, GraphRNN [74] proposes a graph-level RNN and an edge-

level RNN to model the generation process of nodes and edges. The graph-level RNN
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adds a new node to a node sequence each time while the edge-level RNN produces a

binary sequence indicating connections between the new node and the nodes previously

generated in the sequence.

Global approaches output a graph all at once. Graph Variational Autoencoder (Graph-

VAE) [75] models the existence of nodes and edges as independent random variables. By

assuming the posterior distribution qφ(z|G) defined by an encoder and the generative

distribution pθ(G|z) defined by a decoder, GraphVAE optimizes the variational lower

bound:

(2.38) L(φ,θ;G)= Eqφ(z|G)[− log pθ(G|z)]+KL[qφ(z|G)||p(z)],

where p(z) follows a Gaussian prior, φ and θ are learnable parameters. With a ConvGNN

as the encoder and a simple multi-layer perception as the decoder, GraphVAE outputs

a generated graph with its adjacency matrix, node attributes and edge attributes. It

is challenging to control the global properties of generated graphs, such as graph con-

nectivity, validity, and node compatibility. Regularized Graph Variational Autoencoder

(RGVAE) [76] further imposes validity constraints on a graph variational autoencoder

to regularize the output distribution of the decoder. Molecular Generative Adversarial

Network (MolGAN) [77] integrates convGNNs [118], GANs [119] and reinforcement

learning objectives to generate graphs with the desired properties. MolGAN consists of a

generator and a discriminator, competing with each other to improve the authenticity

of the generator. In MolGAN, the generator tries to propose a fake graph along with

its feature matrix while the discriminator aims to distinguish the fake sample from

the empirical data. Additionally, a reward network is introduced in parallel with the

discriminator to encourage the generated graphs to possess certain properties according

to an external evaluator. NetGAN [78] combines LSTMs [10] with Wasserstein GANs

[120] to generate graphs from a random-walk-based approach. NetGAN trains a gen-

erator to produce plausible random walks through an LSTM network and enforces a

discriminator to identify fake random walks from the real ones. After training, a new

graph is derived by normalizing a co-occurrence matrix of nodes computed based on

random walks produced by the generator.

In brief, sequential approaches linearize graphs into sequences. They can lose struc-

tural information due to the presence of cycles. Global approaches produce a graph all at

once. They are not scalable to large graphs as the output space of a GAE is up to O(n2).
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2.7 Spatial-temporal Graph Neural Networks

Graphs in many real-world applications are dynamic both in terms of graph structures

and graph inputs. Spatial-temporal graph neural networks (STGNNs) occupy important

positions in capturing the dynamicity of graphs. Methods under this category aim to

model the dynamic node inputs while assuming interdependency between connected

nodes. For example, a traffic network consists of speed sensors placed on roads where edge

weights are determined by the distance between pairs of sensors. As the traffic condition

of one road may depend on its adjacent roads’ conditions, it is necessary to consider spatial

dependency when performing traffic speed forecasting. As a solution, STGNNs capture

spatial and temporal dependencies of a graph simultaneously. The task of STGNNs can

be forecasting future node values or labels, or predicting spatial-temporal graph labels.

STGNNs follow two directions, RNN-based methods and CNN-based methods.

Most RNN-based approaches capture spatial-temporal dependencies by filtering

inputs and hidden states passed to a recurrent unit using graph convolutions [13, 19, 57].

To illustrate this, suppose a simple RNN takes the form

(2.39) H(t) =σ(WX(t) +UH(t−1) +b),

where X(t) ∈ Rn×d is the node feature matrix at time step t. After inserting graph

convolution, Equation 2.39 becomes

(2.40) H(t) =σ(Gconv(X(t),A;W)+Gconv(H(t−1),A;U)+b),

where Gconv(·) is a graph convolutional layer. Graph Convolutional Recurrent Network

(GCRN) [19] combines a LSTM network with ChebNet [32]. Diffusion Convolutional

Recurrent Neural Network (DCRNN) [13] incorporates a proposed diffusion graph con-

volutional layer (Equation 2.18) into a GRU network. In addition, DCRNN adopts an

encoder-decoder framework to predict the future K steps of node values.

Another parallel work uses node-level RNNs and edge-level RNNs to handle different

aspects of temporal information. Structural-RNN [18] proposes a recurrent framework

to predict node labels at each time step. It comprises two kinds of RNNs, namely a

node-RNN and an edge-RNN. The temporal information of each node and each edge is

passed through a node-RNN and an edge-RNN respectively. To incorporate the spatial

information, a node-RNN takes the outputs of edge-RNNs as inputs. Since assuming

different RNNs for different nodes and edges significantly increases model complexity,

it instead splits nodes and edges into semantic groups. Nodes or edges in the same

semantic group share the same RNN model, which saves the computational cost.
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RNN-based approaches suffer from time-consuming iterative propagation and gradi-

ent explosion/vanishing issues. As alternative solutions, CNN-based approaches tackle

spatial-temporal graphs in a non-recursive manner with the advantages of parallel

computing, stable gradients, and low memory requirements. As illustrated in Fig 2.1d,

CNN-based approaches interleave 1D-CNN layers with graph convolutional layers to

learn temporal and spatial dependencies respectively. Assume the inputs to a spatial-

temporal graph neural network is a tensor X ∈ RT×n×d, the 1D-CNN layer slides over

X[:,i,:] along the time axis to aggregate temporal information for each node while the

graph convolutional layer operates on X[i,:,:] to aggregate spatial information at each

time step. CGCN [79] integrates 1D convolutional layers with ChebNet [32] or GCN [1]

layers. It constructs a spatial-temporal block by stacking a gated 1D convolutional layer,

a graph convolutional layer and another gated 1D convolutional layer in a sequential

order. ST-GCN [15] composes a spatial-temporal block using a 1D convolutional layer

and a PGC layer (Equation 2.20).

Previous methods all use a pre-defined graph structure. They assume the pre-defined

graph structure reflects the genuine dependency relationships among nodes. However,

with many snapshots of graph data in a spatial-temporal setting, it is possible to learn

latent static graph structures automatically from data. To realize this, Graph WaveNet

[80] proposes a self-adaptive adjacency matrix to perform graph convolutions. The self-

adaptive adjacency matrix is defined as

(2.41) Aadp = Sof tMax(ReLU(E1ET
2 )),

where the SoftMax function is computed along the row dimension, E1 denotes the source

node embedding and E2 denotes the target node embedding with learnable parameters.

By multiplying E1 with E2, one can get the dependency weight between a source node

and a target node. With a complex CNN-based spatial-temporal neural network, Graph

WaveNet performs well without being given an adjacency matrix.

Learning latent static spatial dependencies can help researchers discover inter-

pretable and stable correlations among different entities in a network. However, in some

circumstances, learning latent dynamic spatial dependencies may further improve model

precision. For example, in a traffic network, the travel time between two roads may

depend on their current traffic conditions. GaAN [57] employs attention mechanisms

to learn dynamic spatial dependencies through an RNN-based approach. An attention

function is used to update the edge weight between two connected nodes given their

current node inputs. ASTGCN [81] further includes a spatial attention function and a
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temporal attention function to learn latent dynamic spatial dependencies and temporal

dependencies through a CNN-based approach. The common drawback of learning latent

spatial dependencies is that it needs to calculate the spatial dependency weight between

each pair of nodes, which costs O(n2).

2.8 Applications

As graph-structured data are ubiquitous, GNNs have a wide variety of applications.

In this section, I summarize the benchmark graph data sets, evaluation methods, and

open-source implementation, respectively. I detail practical applications of GNNs in

various domains.

2.8.1 Data Sets

I mainly sort data sets into four groups, namely citation networks, biochemical graphs,

social networks, and others. In Table 2.6, I summarize selected benchmark data sets.

More details is given in Supplementary Material A.1.

Table 2.6: Summary of selected benchmark data sets.

Category Data set Source # Graphs # Nodes(Avg.) # Edges (Avg.) #Features # Classes Citation

Citation
Networks

Cora [121] 1 2708 5429 1433 7
[1, 2, 33, 35, 51, 53, 54]
[58–60, 62, 65, 69, 70]

Citeseer [121] 1 3327 4732 3703 6
[1, 2, 51, 54, 59, 60, 62]
[65, 69, 70]

Pubmed [121] 1 19717 44338 500 3
[1, 2, 29, 35, 51, 53, 54]
[58, 60, 62, 64, 65, 69, 70]
[78, 99]

DBLP (v11) [122] 1 4107340 36624464 - - [72, 78, 103]

Bio-
chemical
Graphs

PPI [123] 24 56944 818716 50 121
[2, 29, 52, 54, 57, 59, 64]
[3, 65, 72]

NCI-1 [124] 4110 29.87 32.30 37 2 [35, 36, 55, 61, 66, 100, 102]
MUTAG [125] 188 17.93 19.79 7 2 [35, 36, 55, 61, 66, 100]
D&D [126] 1178 284.31 715.65 82 2 [36, 55, 61, 63, 100, 102]
PROTEIN [127] 1113 39.06 72.81 4 2 [36, 55, 61, 63, 66]
PTC [128] 344 25.5 - 19 2 [35, 36, 55, 61, 66]
QM9 [129] 133885 - - - - [37, 77]
Alchemy [130] 119487 - - - - -

Social
Networks

Reddit [52] 1 232965 11606919 602 41 [52, 57–60, 65]
BlogCatalog [131] 1 10312 333983 - 39 [29, 64, 68, 72]

Others
MNIST [132] 70000 784 - 1 10 [30, 32, 33, 53, 100]
METR-LA [133] 1 207 1515 2 - [13, 57, 80]
Nell [134] 1 65755 266144 61278 210 [1, 51, 59]
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2.8.2 Evaluation & Open-source Implementations

Node classification and graph classification are common tasks to assess the performance

of RecGNNs and ConvGNNs.

Node Classification In node classification, most methods follow a standard split

of train/valid/test on benchmark data sets including Cora, Citeseer, Pubmed, PPI, and

Reddit. They reported the average accuracy or F1 score on the test data set over multiple

runs. A summarization of experimental results of methods can be found in Supplementary

Material A.2. It should be noted that these results do not necessarily represent a rigorous

comparison. Shchur et al. identified [135] two pitfalls in evaluating the performance

GNNs on node classification. First, using the same train/valid/test split throughout

all experiments underestimates the generalization error. Second, different methods

employed different training techniques such as hyper-parameter tuning, parameter

initialization, learning rate decay, and early stopping. For a relatively fair comparison, I

refer the readers to Shchur et al. [135].

Graph Classification In graph classification, researchers often adopt 10-fold cross

validation (cv) for model evaluation. However, as pointed out by [136], the experimental

settings are ambiguous and not unified across different works. In particular, [136]

raises the concern of the correct usage of data splits for model selection versus model

assessment. An often encountered problem is that the external test set of each fold is used

both for model selection and risk assessment. [136] compare GNNs in a standardized

and uniform evaluation framework. They apply an external 10 fold CV to get an estimate

of the generalization performance of a model and an inner holdout technique with a

90%/10% training/validation split for model selection. An alternative procedure would

be a double cv method, which uses an external k fold cv for model assessment and an

inner k fold cv for model selection. I refer the readers to [136] for a detailed and rigorous

comparison of GNN methods for graph classification.

Open-source implementations facilitate the work of baseline experiments in deep

learning research. In Supplementary Material A.3, I provide the hyperlinks of the open-

source implementations of the GNN models reviewed in this chapter. Noticeably, Fey et

al. [96] published a geometric learning library in PyTorch named PyTorch Geometric 4,

which implements many GNNs. Most recently, the Deep Graph Library (DGL) 5 [137] is

released which provides a fast implementation of many GNNs on top of popular deep

4https://github.com/rusty1s/pytorch_geometric
5https://www.dgl.ai/
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learning platforms such as PyTorch and MXNet.

2.8.3 Practical Applications

GNNs have many applications across different tasks and domains. Despite general tasks

which can be handled by each category of GNNs directly, including node classification,

graph classification, network embedding, graph generation, and spatial-temporal graph

forecasting, other general graph-related tasks such as node clustering [138], link predic-

tion [139], and graph partitioning [140] can also be addressed by GNNs. I detail some

applications based on the following research domains.

Computer vision Applications of GNNs in computer vision include scene graph genera-

tion, point clouds classification, and action recognition.

Recognizing semantic relationships between objects facilitates the understanding

of the meaning behind a visual scene. Scene graph generation models aim to parse an

image into a semantic graph which consists of objects and their semantic relationships

[141–143]. Another application inverses the process by generating realistic images given

scene graphs [144]. As natural language can be parsed as semantic graphs where each

word represents an object, it is a promising solution to synthesize images given textual

descriptions.

Classifying and segmenting points clouds enables LiDAR devices to ‘see’ the sur-

rounding environment. A point cloud is a set of 3D points recorded by LiDAR scans.

[145–147] convert point clouds into k-nearest neighbor graphs or superpoint graphs and

use ConvGNNs to explore the topological structure.

Identifying human actions contained in videos facilitates a better understanding of

video content from a machine aspect. Some solutions detect the locations of human joints

in video clips. Human joints which are linked by skeletons naturally form a graph. Given

the time series of human joint locations, [15, 18] apply STGNNs to learn human action

patterns.

Moreover, the number of applicable directions of GNNs in computer vision is still

growing. It includes human-object interaction [148], few-shot image classification [149–

151], semantic segmentation [152, 153], visual reasoning [154], and question answering

[155].

Natural language processing A common application of GNNs in natural language

processing is text classification. GNNs utilize the inter-relations of documents or words

to infer document labels [1, 2, 52].
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Despite the fact that natural language data exhibit a sequential order, they may also

contain an internal graph structure, such as a syntactic dependency tree. A syntactic

dependency tree defines the syntactic relations among words in a sentence. Marcheggiani

et al. [156] propose the Syntactic GCN which runs on top of a CNN/RNN sentence encoder.

The Syntactic GCN aggregates hidden word representations based on the syntactic

dependency tree of a sentence. Bastings et al. [157] apply the Syntactic GCN to the task

of neural machine translation. Marcheggiani et al. [158] further adopt the same model

as Bastings et al. [157] to handle the semantic dependency graph of a sentence.

Graph-to-sequence learning learns to generate sentences with the same meaning

given a semantic graph of abstract words (known as Abstract Meaning Representation).

Song et al. [159] propose a graph-LSTM to encode graph-level semantic information.

Beck et al. [160] apply a GGNN [28] to graph-to-sequence learning and neural machine

translation. The inverse task is sequence-to-graph learning. Generating a semantic or

knowledge graph given a sentence is very useful in knowledge discovery [161, 162].

Traffic Accurately forecasting traffic speed, volume or the density of roads in traffic

networks is fundamentally important in a smart transportation system. [13, 57, 79]

address the traffic prediction problem using STGNNs. They consider the traffic network

as a spatial-temporal graph where the nodes are sensors installed on roads, the edges are

measured by the distance between pairs of nodes, and each node has the average traffic

speed within a window as dynamic input features. Another industrial-level application

is taxi-demand prediction. Given historical taxi demands, location information, weather

data, and event features, Yao et al. [14] incorporate LSTM, CNN and network embeddings

trained by LINE [163] to form a joint representation for each location to predict the

number of taxis demanded for a location within a time interval.

Recommender systems Graph-based recommender systems take items and users as

nodes. By leveraging the relations between items and items, users and users, users and

items, as well as content information, graph-based recommender systems are able to

produce high-quality recommendations. The key to a recommender system is to score the

importance of an item to a user. As a result, it can be cast as a link prediction problem.

To predict the missing links between users and items, Van et al. [164] and Ying et al.

[165] propose a GAE which uses ConvGNNs as encoders. Monti et al. [166] combine

RNNs with graph convolutions to learn the underlying process that generates the known

ratings.

Chemistry In the field of chemistry, researchers apply GNNs to study the graph struc-
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ture of molecules/compounds. In a molecule/compound graph, atoms are considered as

nodes, and chemical bonds are treated as edges. Node classification, graph classification,

and graph generation are the three main tasks targeting molecular/compound graphs

in order to learn molecular fingerprints [89, 90], to predict molecular properties [37], to

infer protein interfaces [167], and to synthesize chemical compounds [73, 77, 168].

Federated learning Federated Learning is a new machine learning paradigm that can

collaboratively learn an intelligent model with privacy preserving. It has been broadly

applied to various industry sectors, such as finance [169, 170], healthcare [171, 172], and

smartphones [173–175]. GCN can be applied to enhance the learning process of the FL

system by leveraging the structural information among distributed clients [176] which

used to be heterogeneous [177] and with hidden community structures [178, 179].

Others The application of GNNs is not limited to the aforementioned domains and tasks.

There have been explorations of applying GNNs to a variety of problems such as program

verification [28], program reasoning [180], social influence prediction [181], adversarial

attacks prevention [182], electrical health records modeling [183, 184], brain networks

[185], event detection [186], and combinatorial optimization [187].
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BEYOND LOW-PASS FILTERING: GRAPH

CONVOLUTIONALNETWORKS WITH AUTOMATIC

FILTERING

3.1 Motivation

Over the past years, convolutional neural networks and recurrent neural networks have

achieved great success on grid data such as images and sequences. Moving forward, the

focus of research gradually shifts from regular grid data to irregular non-Euclidean data

[12]. Being an important kind of non-Euclidean data, graphs are ubiquitous in the real

world, such as cyber networks and social networks. Graph data describes the relationship,

association, or interaction among different entities. To extract latent representations

from data, graph neural networks [188, 189], in particular graph convolutional networks,

are developed specifically for graphs. Graph neural networks not only have leveled

up benchmarks on conventional graph-related tasks [37, 75, 113, 138, 139, 190–192],

but also has been proven to be helpful in solving many deep learning problems where

structural dependencies exist [80, 145, 156, 165, 193].

Among graph neural networks, the study of graph convolutional networks is built

upon the foundation of graph signal processing. With the eigen-decomposition of the

graph Laplacian matrix, a graph convolutional filter can be defined as a function of

frequency (eigenvalue). Through proper design of the filter function, a graph convo-

lutional filter can be viewed from the spatial domain - it smooths a node’s inputs by
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(a) An example of a low-pass
filter. It smooths the node self
information by taking the av-
erage of its neighboring infor-
mation into account.

(b) An example of a high-pass
filter. It computes the differ-
ence between the node self in-
formation with its neighbor-
ing information.

(c) An example of a middle-
pass filter. It integrates a
node self information with its
second hop neighborhood in-
formation.

Figure 3.1: Illustration of low-pass, high-pass filters, and middle-pass filters.

aggregating information from the node’s neighborhood. Due to the advantage of efficiency,

generality, and flexibility, there is a trend of designing graph convolutional networks

directly on spatial domains without considering their spectral properties. As a result,

these spatial-designed approaches may only focus on the low frequency band of graph

signals [194]. However, the middle and high frequency band of graph signals should not

be ignored because they may contain useful information as well.

To consider low, middle, high frequency band of graph signals at the same time, we

need to return back to spectral-based approaches. As a spectral-designed graph convolu-

tional filter is defined by a function of frequency, it can theoretically extract information

on any frequency band. Pioneer works of spectral graph convolutional networks are

computationally inefficient due to eigen-decomposition of the graph Laplacian matrix

[30]. Defferrard et al. [32] proposed ChebNet with the filter function defined as Cheby-

shev polynomials. With graph Fourier transform and inverse graph Fourier transform,

the graph convolutional operation essentially is reduced to multiplying linear trans-

formed graph inputs with non-linear transformed graph Laplacian matrix. In this way,

eigen-decomposition is not necessarily required. The graph kernel of ChebNet involves

computing higher orders of the graph Laplacian matrix. Kipf et al. [1] further propose

GCN which is a first-order approximation of ChebNet with a renormalization trick.

Despite that GCN improves over ChebNet in terms of efficiency, GCN is shown to be a

low-pass filter [194]. Follow-up works of GCN also remain the same problem [50, 51, 195].

Most recently, Balcilar et al. [194] propose DSGCN with arbitrary graph convolutional

filter functions, while taking low, middle, and high frequency band of graph signals into

consideration. However, filter functions of DSGCN are customized differently according

to datasets without any rules to follow. It requires tremendous effort to find the optimal
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filter function manually for a new dataset. More importantly, the bandwidth of graph

convolutional filters of DSGCN is fixed, which also applies to other existing spectral

graph convolutions. Parameters of a graph convolutional filter only transform graph

inputs without changing the curvature of a graph convolutional filter function. Therefore,

the cut-off frequency or the bandwidth of a graph convolutional filter remains unchanged

throughout learning. In reality, we are uncertain about whether we should retain or cut

off the frequency at a certain point unless we have expert domain knowledge.

In this chapter, I aim to design a graph convolutional network that can capture

the whole spectrum of graph signals in a more efficient and effective way. My method

consists of three graph convolutional filters, a low-pass, a middle-pass, and a high-pass

filter. To avoid eigen-decomposition, I limit the choice of filter functions within linear and

quadratic forms of the graph Laplacian matrix. More specifically, the low-pass and high-

pass filters are designed to be linear functions while the middle-pass filter has a quadratic

form. The roles of low-pass, high-pass, and middle-pass filter are illustrated in Figure 3.1.

Different from existing spectral-based methods, I introduce extra parameters to control

the curvature and scope of all three filters. As a benefit, the bandwidth and magnitude

of my graph convolutional filters can be adjusted automatically during training.

The main contributions of this chapter are summarized as follows,

• I propose an Automatic Graph Convolutional Network (AutoGCN) with three novel

graph convolutional filters, a low-pass linear filter, a high-pass linear filter, and a

middle-pass quadratic filter. While capturing the whole spectrum of graph signals,

AutoGCN ends up with a spatial form without performing eigen-decomposition.

• I enable the proposed graph convolutional filters to control their bandwidth and

magnitude automatically by updating the curvature and scope of filter functions

during training. I empirically show that all three graph filters contribute to model

performance.

• Experimental results show that AutoGCN achieves significant improvement over

baseline methods that only function as low-pass filters on medium-scale datasets

for both node classification and graph prediction tasks.

My source codes are publicly available at https://github.com/nnzhan/AutoGCN.git.

The rest of this chapter is organized as follows. In Section 3.2, I summarize current

works of graph convolutional networks. In Section 3.3, I formally define my problems.

In Section 3.4, I provide the background knowledge about spectral-rooted spatial graph
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convolution. In Section 3.5, I present my method named automatic graph convolution

in detail. In Section 3.6, I report the experimental results of my method on both node

classification and graph prediction tasks. Finally, in Section 3.7, I make a conclusion of

this chapter.

3.2 Related Work to AutoGCN

The study of graph convolutional networks is rooted in graph signal processing or

spectral graph theory [86]. By defining the graph Fourier transform and the inverse

graph Fourier transform of a graph signal, the convolution between a graph signal and

a filter can be derived by the convolution theorem where the Fourier transform of the

convolution of two signals equals the elementwise product of their Fourier transforms.

With this theorem, Bruna et al. [30] define graph convolutional filters as functions of

eigenvalues of the graph Laplacian matrix. Eigen-decomposition of a graph Laplacian

matrix is computationally expensive. To bypass this bottleneck, Defferrard et al. [32]

show that a filter function defined on the eigenvalues is equivalent to the same function

defined on the graph Laplacian matrix. Based on this result, various of filter functions

which are defined on the graph Laplacian matrix directly have been proposed such

as Chebyshev polynomials [32], a first-order approximation of Chebyshev polynomials

[1], and Cayley polynomials [196]. Besides graph Fourier transform, another line of

works defines graph convolution through graph wavelet transform [197, 198]. These

methods are localized in the vertex domain and do not require eigen-decomposition as

well. However, complex operations on the graph Laplacian matrix still impede model

efficiency due to higher-order computation.

Concurrently, despite graph convolution, message passing has mostly dominated

the recent development of graph neural networks due to its efficiency, generality, and

flexibility. The basic idea is to propagate graph signals along graph structures. By

iterating the propagation step multiple times, a node can broaden its neighborhood to the

entire graph. Earlier schemes of graph message passing follow the recurrent architecture,

where the parameters are shared across multiple propagation steps [26, 28, 29]. These

methods update node states recursively until steady states are reached. On the other

side, compositional schemes modularize message passing as a neural network layer to

improve model pluggability and capacity [34]. Gilmer et al. [37] formalize the message

passing framework with two components, a propagator and a updator. The propagator

summarizes information for a node based on its neighborhood context. The updator
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transforms the collected information with learnable parameters. The most intuitive

propagate function is the mean function, which takes the average of the center node

information and its neighborhood information. Various improvements are made over

the mean aggregate function by refining edge weights through normalization [1] and

diffusion [35], assigning learnable weights to neighbors [2, 53], introducing a scalar

parameter to pass graph isomorphism test [199], teleporting back to a node’s initial

information to avoid the over-smoothing problem [200]. Some other advanced works focus

on designing complex architectures of graph neural networks by increasing network

depth and receptive field size [201–203]. Graph neural networks based on message

passing do not consider spectral properties of the message passing operations, namely

graph convolution. Wu et al. [195] prove that stacking multiple GCN with identity

activation is a low-pass filter. Balcilar et al. [194] show that most graph neural networks

are essentially low-pass filters. In parallel to graph convolution transforms, graph wavelet

transforms decompose graph signals in multi-scale [204, 205]. These works also consider

the high-frequency part of graph signals, but they lack the ability to automatically adjust

the bandwidth of graph signals based on data.

3.3 Problem Formulation

Attributed graph. An attributed graph G = (V ,E,X) consists of a set of nodes V , a set

of edges E, and a node feature matrix X ∈Rn×d where n is the number of nodes for the

graph G and d is the feature dimension. The structural information of the graph G can

be encoded by a graph adjacency matrix A ∈Rn×n. If there exists a connection (vi,vj) ∈ E,

then Ai j �= 0, otherwise Ai j = 0. In this chapter, I only consider undirected attributed

graphs. In this case, A is symmetric.

Node-level prediction. The node-level prediction task forecasts a label for each

node in a graph. It aims to learn a mapping f :(A,X) → Y ∈ Rn×c. For node regression

problems, c = 1. For node classification problems, c equals the number of classes.

Graph-level prediction. The graph-level prediction task forecasts a label for each

graph in a data set. It aims to learn a mapping f :(A,X)→Y ∈R1×c. For graph regression

problems, c = 1. For graph classification problems, c equals the number of classes.
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3.4 Spectral-Rooted Spatial Graph Convolution

Graph convolutional networks generally fall into spectral-based approaches and spatial-

based approaches. Several representative methods such as ChebNet [32] and GCN [1]

take roots in the spectral domain while ending up with spatial forms. As a key benefit,

they avoid the computation of eigen-decomposition of the graph Laplacian matrix in order

to perform graph convolution. Most recently, Balcilar et al. [194] connect spectral-based

approaches and spatial-based approaches by a uniform formula, which is defined as

(3.1) H(l+1) =σ(
K∑

k=1
C(k)H(l)W(l,k))

with the graph convolutional kernel set to

(3.2) C(k) =Udiag(Fk(λ))UT

where Fk(·) is the filter function, U and λ denote the eigenvectors and the eigenvalues

of the normalized graph Laplacian matrix L = I−D− 1
2 AD− 1

2 respectively, D is a diag-

nal matrix with Dii = ∑
j Ai j, W(l,k) is a learnable parameter matrix, H(l) is the node

representation matrix at layer l, H(1) =X, K is the number of filter functions, and σ(·)
represents the activation function. With Equation 3.1 and 3.2, spectral-based apporaches

can be designed by defining new filter functions, and spatial-based approaches can be

analyzed from the spectral domain by computing the frequency profile (the filter function)

of the convolutional kernel C(k), using

(3.3) Fk(λ)= diag(UTC(k)U).

Under this framework, ChebNet takes the filter function F1(λ)= 1, F2(λ)= 2λ/λmax−
1, and Fk(λ) = 2F2(λ)Fk−1(λ)−Fk−2(λ). As L = Udiag(λ)UT , the convolutional kernel

of ChebNet, i.e. C(k), results in a polynomial function of L with order k−1. Taking

higher orders of L is computationally expensive. GCN simplifies ChebNet with first order

approximation by setting K = 2, λmax = 2, and W(l,1) =−W(l,2). The form of GCN is then

derived as,

H(l+1) =σ(IH(l)W(l,1) − (L−I)H(l)W(l,1))(3.4)

=σ((I+D− 1
2 AD− 1

2 )H(l)W(l,1))(3.5)

With a renormalization trick to avoid numerical instabilities, GCN replaces I+D− 1
2 AD− 1

2

by D̃− 1
2 (A+I)D̃− 1

2 , where D̃ii =∑
j Ai j +1. Proved by Balcilar et al. [194], the frequency
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profile of GCN can be approximated by F(λ)= 1−λd̄/(1+ d̄). This corresponds to a low-

pass filter with the cut-off frequency (1+ d̄)/d̄. Although GCN is simple and robust, it only

contains a single low-pass filter. It is incapable of capturing potential patterns in middle

and high frequency bands. DSGCN [194] incorporates low-pass, middle-pass and high-

pass filters by proposing a set of customized filter functions F(λ) for a particular dataset.

For example, DSGCN proposes four filter functions for the CORA dataset. They are

F1(λ) = (1−λ/λmax)5, F2(λ) = exp(−0.25(0.25λmax −λ)2), F3(λ) = exp(−0.25(0.5λmax −
λ)2), and F4(λ) = exp(−0.25(0.75λmax −λ)2). While capturing customized frequency

band of graph signals, DSGCN needs to calculate eigenvalues and eigenvectors, causing

scalability issues. Furthermore, the filter functions of DSGCN are manually designed. It

lacks an automatic mechanism to learn the optimal frequency profile of filters based on

data.

3.5 Automatic Graph Convolution

Based on spectral-rooted spatial graph convolution, I propose Automatic Graph Con-

volution that automatically selects low-pass, middle-pass, and high-pass filters with

optimal frequency profiles. To avoid heavy computations of eigenvalues or higher orders

of the graph Laplacian matrix L, I restrict the search of filter functions within linear and

quadratic forms. In the following, I first introduce the proposed low-pass, high-pass, and

middle-pass filters, and then elaborate on the design of my proposed graph convolution.

My low-pass and high-pass filters are designed to be a linear function of λ. I introduce

two adjustable parameters to control the magnitude and the cut-off frequency of a filter

function. I propose the low-pass linear filter function as

(3.6) Flow(λ)= p(1−aλ),

where the parameter p > 0 controls the magnitude of the frequency profile and the

parameter a ∈ (0,1) determines the cut-off frequency. The reason I constrain the scope of

the parameter a within a ∈ (0,1) is based on the assumption that λmax = 2, , as the upper

bound of eigenvalues is 2. When a approaches to 1, at least half of the lower spectrum

can be retained. If a approaches to 0, the slope of the low-pass filter function will become

flatter in a decreasing manner. In Figure 3.2a, I give examples of the frequency profiles of

low-pass linear filters with three different settings. Inserting Equation 3.6 into Equation

3.2, the graph convolutional kernel of the low-pass linear filter is derived as

(3.7) Clow(p,a)= p(aÃ+ (1−a)I)
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(c) The frequency profiles of
the middle-pass filters.

Figure 3.2: Frequency profiles of low-pass, high-pass, and middle-pass filters with three different
settings. The horizontal axis is λ, ranging from 0 to 2. The vertical axis is the magnitude, which
is the absolute value of the filter function.

where Ã=D− 1
2 AD− 1

2 . The derivation process can be found in Appendix B. According

to Equation 3.7, the low-pass linear filter essentially aggregates a node’s self-information

with its neighborhood information. It is reasonable for graph data which follows the

homophily assumption that connected nodes share similar features. From a spatial

perspective, the parameter p controls the contribution weight of a low-pass filter, and a
adjusts the confidence level of the homophily assumption.

Different from a low-pass filter, the spectrum of a high-pass filter should be retained

in a increasing manner. I propose the high-pass linear filter function as

(3.8) Fhigh(λ)= p(aλ+1−2a),

where p > 0 and a ∈ (0,1). We can easily derive that when λ = 2, the filter function

achieves the highest magnitude p and when λ decreases to 2−1/a, it reaches 0. In

Figure 3.2b, I give examples of the frequency profiles of high-pass linear filters with

three different settings. Placing Equation 3.8 into Equation 3.2, the graph convolutional

kernel of the proposed high-pass linear filter is derived as

(3.9) Chigh(p,a)= p(−aÃ+ (1−a)I).

I provide the details of derivation in Appendix B. From Equation 3.9, the high-pass filter

computes the difference between the self-information and neighborhood information. It

highlights the features of a node that are distinct from its neighbors.

The middle-pass filter cuts off frequency values at low and high end. Due to linear

functions are incapable of capturing this property, I assume the middle-pass filter

function has a quadratic form. I propose the middle-pass quadratic filter function as

(3.10) Fmid(λ)= p((λ−1)2 −a),
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where p > 0 and a ∈ (0,1]. The proposed middle-pass filter cuts off frequency at λ= 1±	
a ,

and reaches its maximum at λ= 1. Figure 3.2c shows examples of the frequency profiles of

the middle-pass filters with three different settings. Taking Equation 3.10 into Equation

3.2, the graph convolutional kernel of the proposed middle-pass filter is derived as,

(3.11) Cmid(p,a)= p(Ã2 −aI).

Viewing from a spatial perspective, my middle-pass filter can be interpreted as

differentiating a node’s self-information from its two-hop neighborhood information.

Theorem 1. Assume a set of base low-pass linear filter functions with Fi(λ) = 1−aiλ

(i = 1,2, · · · ,K), ai ∈ (0,1), the linear combination of the set of base low-pass linear filter
functions, F(λ) = ∑

piFi(λ), with pi > 0, is a low-pass linear filter with p̃ = ∑
pi and

ã =∑
piai/

∑
pi.

Proof.

F(λ)=∑
piFi(λ)(3.12)

=∑
pi(1−aiλ)(3.13)

=∑
pi × (1−

∑
piai∑
pi

λ)(3.14)

Let p̃ =∑
pi, and ã =∑

piai/
∑

pi,

F(λ)= p̃(1− ãλ)(3.15)

I now prove p̃ > 0, and ã ∈ (0,1).

p̃ =∑
pi >min(pi)> 0(3.16)

As pi > 0,

ã =∑
piai/

∑
pi ≥

∑
pi min(ai)/

∑
pi = min(ai)> 0(3.17)

ã =∑
piai/

∑
pi ≤

∑
pi max(ai)/

∑
pi = max(ai)< 1(3.18)

Therefore, 0< ã < 1.

With pi > 0 and 0< ã < 1, Equation 3.15 fulfills the defintion of my proposed low-pass

linear filter.

�
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Theorem 2. Assume a set of base high-pass linear filter functions with Fi(λ)= aiλ+1−
2ai (i = 1,2, · · · ,K), ai ∈ (0,1), the linear combination of the set of base high-pass linear
filter functions, F(λ)=∑

i piFi(λ), with pi > 0, is a high-pass linear filter with p̃ =∑
pi

and ã =∑
piai/

∑
pi.

Proof.

F(λ)=∑
piFi(λ)(3.19)

=∑
pi(aiλ+1−2ai)(3.20)

= (
∑

pi)× (
∑

piai∑
pi

λ+1−2
∑

piai∑
pi

)(3.21)

Let p̃ =∑
pi, and ã =∑

piai/
∑

pi,

F(λ)= p̃(ãλ+1−2ã)(3.22)

As p̃ > 0 and ã ∈ (0,1), Equation 3.22 fulfills the defintion of my proposed high-pass filter.

�

Theorem 3. Assume a set of base middle-pass quadratic filter functions with Fi(λ) =
(λ−1)2−ai (i = 1,2, · · · ,K), ai ∈ (0,1], the linear combination of the set of base middle-pass
quadratic filter functions, F(λ)=∑

i piFi(λ), with pi > 0, is a middle-pass quadratic filter
with p̃ =∑

pi and ã =∑
piai/

∑
pi.

Proof.

F(λ)=∑
piFi(λ)(3.23)

=∑
pi((λ−1)2 −ai)(3.24)

= (
∑

pi)× ((λ−1)2 −
∑

piai∑
pi

)(3.25)

(3.26)

Let p̃ =∑
pi, and ã =∑

piai/
∑

pi,

F(λ)= p̃((λ−1)2 − ã)(3.27)

As p̃ > 0 and ã ∈ (0,1], Equation 3.27 fulfills the defintion of my proposed middle-pass

filter. �
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Over-parameterization of low-pass, high-pass, and middle-pass filter func-
tions. For a single low-pass, high-pass, or a middle-pass filter, to learn the scalar param-

eter p and a by gradient descent is not robust. As p and a are both one-dimensional, the

distance between two local optimums for these two parameters is quite small compared

to points in higher-dimensional space. Therefore p and a can be easily shifted from one

local optimum point to another in each learning iteration. To address this issue, I over-

parameterize the proposed filter functions by a linear combination of base filter functions.

According to Theorem 1, 2, and 3, the linear combination of base filter functions still lies in

the definition of my proposed filter functions. Concretely, I set the over-parameterized low-

pass, high-pass, and middle-pass filter functions as Flow(λ)=∑K
i=1 pi(1−aiλ), Fhigh(λ)=∑K

i=1 pi(aiλ+1−2ai), and Fmid(λ)=∑K
i=1 pi((λ−1)2−ai), where K denotes the number of

base filter functions, pi is a learnable parameter constrained by pi > 0, {ai, i = 1,2, · · · ,K}

are set to a fixed value, which equally spaced across (0,1) for low-pass and high-pass filter

functions, and across (0,1] for middle-pass filter functions. For example, if K = 3 and

ai ∈ (0,1), then {a1,a2,a3} is set to {0+ε,0.5−ε,1−ε} with ε set to an infinitely small value.

By setting a large K , I essentially over-parameterize and transform the proposed filter

functions from learning two single parameters (p and a) to learning a set of parameters

({pi, i = 1,2, · · · ,K}). In this way, the model generalization power is enhanced.

Complementary gating. Gating mechanisms are widely used in neural networks

to control information flow and increase non-linearity. Without additional parameters,

I introduce a complementary gating mechanism. The idea is to weigh the importance

of one graph convolutional filter given the other twos. I assume that if one of the three

graph convolutional filters contributes to the learning objective, the role of the other

twos will be less important. Combining all components, I reach to my proposed graph

convolution named Automatic Graph Convolution in its spatial form:

H(l+1) =σ(H(l)
low �σ(H(l)

high +H(l)
mid)+

H(l)
high �σ(H(l)

low +H(l)
mid)+H(l)

mid �σ(H(l)
low +H(l)

high))

where � denotes the elementwise product, H(l)
f =C(l)

f H(l)W(l)
f , C(l)

f =Udiag(Ff (λ))UT ,

and f ∈ {low,mid,high}. To form a graph convolutional network, the automatic graph

convolution can be performed multiple times attached with an output layer in the end.

For node prediction tasks, the output layer can be an MLP (multi-layer perceptron). For

graph prediction tasks, the output layer can be a sum/mean operation to read out graph

representations, followed by an MLP layer.
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Scalability analysis. As AutoGCN realizes a simple form in spatial domain without

eigendecomposition, the computation complexity of AutoGCN is with the same magnitude

as GCN [1], i.e. O(M), where M is the number of edges. Concretely, the computation com-

plexity of the low-pass, middle-pass, high-pass filters of AutoGCN is O(M),O(2M),O(M)

respectively. Therefore, the overall computation complexity of AutoGCN is O(4M).

Overall, the benefit of AutoGCN can be understood in three aspects. First, AutoGCN

captures the full spectrum of graph signals with a minimal set of graph convolutional

filters, namely a low-pass filter, a high-pass filter, and a middle-pass filter. This enhances

model expressivity compared to GCNs which only contain a low-pass filter. Second,

AutoGCN is able to adjust the bandwidth and magnitude of its filter functions adaptively

based on data. It could be extremely helpful when the distribution of data lies far from my

prior knowledge. Third, AutoGCN achieves a simple form in the spatial domain. The low-

pass filter can be considered as smoothing a node’s self-information with its neighborhood

information, the high-pass filter can be regarded as obtaining the difference between

a node’s self-information and its neighborhood information, and the middle-pass filter

can be taken as distinguishing a node’s self-information from its 2nd-hop neighborhood

information. All three filters enrich the feature representations of nodes in a different

way.

3.6 Experiments

I implement AutoGCN using PyTorch within a graph neural network benchmarking

framework [206] based on DGL [137]. As pointed out by Dwivedi et al. [206], previous

popular graph datasets such as Cora and Tu datasets are small and more likely to be

overfitted, making it hard to identify the contribution of new methods. In this chapter, I

choose medium-scale graph datasets. To validate the effectiveness of my AutoGCN, I test

its performance on node and graph prediction tasks.

3.6.1 Node Classification

Datasets. I use six datasets: PUBMED, SBM-PATTERN, SBM-CLUSTER, Arxiv-year,

YelpChi and Squirrel. PUBMED is a citation network consisting of 19,717 documents

with 7 class labels. The feature of each document is a bag-of-words representation of

dimension 500. I adopt the preprocessed version of PUBMED from DGL [137]. SBM-

PATTERN and SBM-CLUSTER are synthesized graph datasets [206]. They are gener-
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Table 3.1: Summary of node classification datasets. The number of training graphs,
validiation graphs, and test graphs for PUBMED, Arxiv-year, YelphChi, and Squirrel are
missing because they only contain a single graph.

# Nodes # Edges # Features # Class # Train Graphs # Val Graphs # Test Graphs
PUBMED 19717 44338 500 7 - - -
SBM-PATTERN 50-180 4749 on average 3 2 10000 2000 2000
SBM-CLUSTER 40-190 4302 on average 7 6 10000 1000 1000
Arxiv-year 169343 1166243 128 5 - - -
YelpChi 45954 3846979 32 2 - - -
Squirrel 5201 216933 2089 5 - - -

ated by the stochastic block model with a probability p that two nodes are connected

if they belong to the same community and a probability q that two nodes are linked if

they fall into different communities. The node features of SBM-PATTERN and SBM-

CLUSTER are uniformly generated from a vocabulary of {1,2,3}. The task of SBM-

PATTERN is to predict whether a node belongs to a graph pattern. The task of SBM-

CLUSTER is to classify nodes to their belonged clusters. For Arxiv-year, YelpChi and

Squirrel, they are three non-homophilous graph datasets adopted from [207]. In a non-

homophilous graph, connected nodes are not evidently more likely to share the same

label. The summary statistics for these three datasets are provided in Table 3.1.

Experimental Settings. The training loss for all three datasets is the cross-entropy

loss. I report the averaged accuracy on test data over 5 runs with 5 different seeds. For

PUBMED, in each run, the dataset is randomly split into train, valid, and test data by

60%, 20%, 20%. For SBM-PATTERN and SBM-CLUSTER, I follow the same data split as

[206]. For Arxiv-year, YelpChi, and Squirrel, I follow [207] to split the datasets into train,

valid, and test data with a ratio of 2:1:1. I utilize the validation set to select the best

model among all epochs in each run. For PUBMED, the default hyperparameter setting

is used for each baseline model. For SBM-PATTERN, I choose 4 layers for all methods

with a fixed budget of around 100k parameters. For SBM-CLUSTER, I set 8 layers for all

methods with a fixed budget of around 200k parameters. For Arxiv-year, YelpChi, and

Squirrel, I set 2 layers for all methods with a fixed budget of around 100k parameters.

Residual connections, batch normalizations, and graph size normalizations [206] are

employed for all methods on SBM-PATTERN SBM-CLUSTER, Arxiv-year, Yelp-Chi, and

Squirrel. Other hyperparameter settings are provided in Table 3.5. All experiments are

conducted using a single Titan XP GPU card.

Baselines. I compare AutoGCN against nine methods: MLP, ChebNet [32], GCN [1],

SGC [195], DSGCN [194], APGCN [208], GIN [199], GraphSage [52], GAT [209], and

MoNet [53]. I use the DGL built-in implementations of graph convolutional layers for
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GCN, GraphSage, GAT and MoNet. For MLP and GIN, I adopt the implementations

provided by Dwivedi et al. [206]. For ChebNet, I implement it with a second-order ap-

proximation and set λmax = 2. For DSGCN, I use its original TensorFlow implementation.

Due to DSGCN does not provide a general rule to design customized graph convolutional

filters for new datasets, I only test DSGCN on the PUBMED dataset with its default

setting.

Results & Discussion. Table 3.2 shows the experimental results for node classifica-

tion tasks. On all datasets except SBM-PATTERN, AutoGCN significantly outperforms

baseline methods that only work as a low-pass filter including GCN, SGC, GraphSage,

and GAT. I observe that the experimental result of APGCN on SBM-PATTERN out-

performs other baseline method. However, the performance of APGCN is not robust

across all datasets. Besides, I observe that DSGCN does not perform well as expected

on the PUBMED dataset. The same phenomenon also applies to GAT. In its original

chapter, GAT evidently outperforms GCN on PUBMED. However, my experiment shows

a different conclusion. This is partly due to the original data split of PUBMED used

by GAT and DSGCN is not big enough to evaluate graph neural network models. The

original data split consists of 140 nodes for training, 500 nodes for validation, and 1000

nodes for testing [1]. Therefore, it may easily drive the design of graph neural networks

to overfit the small dataset.

3.6.2 Graph Prediction

Datasets. I use three medium-scale datasets for graph prediction [206]: ZINC, MNIST,

and CIFAR10. ZINC is a molecular graph dataset. The task is to regress a molecular

property called the constrained solubility [210]. For each molecular graph, node features

are the type of atoms. MNIST and CIFAR10 are image classification datasets from

computer vision. They are converted from images to graphs by representing nodes using

super-pixels and constructing edges using k-nearest neighbors. The summary of statistics

for these three datasets is provided in Table 3.3.

Experimental Settings. The training loss and the evaluation metric for ZINC data

is the mean absolute error (MAE). For MNIST and CIFAR10, the training objective

is the cross-entropy loss, and the evaluation metric is the accuracy score. I report the

averaged evaluation metrics over test data over 5 runs with 5 different seeds. For all

three datasets, I follow the same data split as [206]. I utilize the validation set to select

the best model among all epochs in each run. The same output layer is employed for

all baseline methods. It reads out the graph representation by taking the average over

58



3.6. EXPERIMENTS

Table 3.2: Performance on node classification tasks. Results on test sets are averaged
over 5 runs with 5 different seeds. OOM stands for out of memory.

Model
PUBMED SBM-PATTERN SBM-CLUSTER

ACC #Param s/epoch ACC #Param s/epoch ACC #Param s/epoch

MLP 0.493 ± 0.164 9019 0.0074 0.505 ± 0.000 108112 7.6688 0.223 ± 0.003 201900 10.0579

GIN [199] 0.871 ± 0.004 16161 0.0097 0.863 ± 0.000 101764 17.7936 0.663 ± 0.010 207412 16.7895

GraphSage [52] 0.868 ± 0.006 16134 0.0126 0.663 ± 0.002 106563 12.6709 0.666 ± 0.018 205675 15.1923

GAT [209] 0.856 ± 0.005 32460 0.0285 0.780 ± 0.004 109936 29.5291 0.675 ± 0.006 205548 39.0724

MoNet [53] 0.847 ± 0.006 9903 3.6768 0.864 ± 0.000 104135 856.5839 0.663 ± 0.009 203299 803.4355

ChebNet [32] 0.886 ± 0.006 24201 0.0226 0.857 ± 0.000 103703 15.7381 0.734 ± 0.004 202435 15.4712

GCN [1] 0.866 ± 0.005 8105 0.0112 0.855 ± 0.000 106463 12.4331 0.645 ± 0.007 199015 14.7601

SGC [195] 0.866 ± 0.004 8067 0.0049 0.835 ± 0.001 108112 7.2495 0.475 ± 0.001 201900 5.7526

APGCN [208] 0.851 ± 0.005 32263 0.0447 1.000 ± 0.000 106124 7.7181 0.345 ± 0.002 202868 13.0703

DSGCN [194] 0.853 ± 0.007 9080 19.7565 - - - - - -

AutoGCN 0.893 ± 0.005 24297 0.0372 0.859 ± 0.000 103895 20.7730 0.741 ± 0.002 202819 20.3951

Model
Arxiv-year YelpChi Squirrel

ACC #Param s/epoch ACC #Param s/epoch ACC #Param s/epoch

MLP 0.346 ± 0.001 107695 0.0525 0.854 ± 0.006 102062 0.0128 0.195 ± 0.006 104213 0.0041

GIN [199] 0.440 ± 0.003 104578 0.1200 0.855 ± 0.005 105013 0.0553 0.265 ± 0.024 101908 0.0111

GraphSage [52] 0.446 ± 0.002 103710 0.0984 0.854 ± 0.006 103324 0.0757 0.330 ± 0.018 101770 0.0118

GAT [209] 0.297 ± 0.017 101652 0.2460 OOM OOM OOM 0.272 ± 0.008 103220 0.0159

MoNet [53] 0.408 ± 0.016 103522 28.8757 OOM OOM OOM 0.277 ± 0.053 107921 5.2633

ChebNet [32] 0.483 ± 0.001 101007 0.1198 0.880 ± 0.004 105066 0.1189 0.297 ± 0.006 101391 0.0251

GCN [1] 0.452 ± 0.001 101135 0.0784 0.854 ± 0.005 102006 0.0569 0.273 ± 0.013 103119 0.0069

SGC [195] 0.399 ± 0.001 109355 0.1060 0.854 ± 0.005 100802 0.0826 0.253 ± 0.009 102917 0.0047

APGCN [208] 0.325 ± 0.006 100107 0.1137 0.854 ± 0.006 100805 0.1515 0.195 ± 0.013 102923 0.0260

DSGCN [194] - - - - - - - - -

AutoGCN 0.485 ± 0.001 101151 0.1761 0.888 ± 0.006 105210 0.1504 0.337 ± 0.026 101607 0.0364

Table 3.3: Summary of graph prediction datasets.

# Train Graphs # Val Graphs # Test Graphs # Nodes # Features # Class
Zinc 10000 1000 100 9-37 28 -
MNIST 55000 5000 10000 40-75 3 10
CIFAR10 45000 5000 10000 85-150 5 10
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Table 3.4: Performance on graph prediction tasks. Results on test sets are averaged over
5 runs with 5 different seeds.

Model
ZINC MINST CIFAR10

MAE #Param s/epoch ACC #Param s/epoch ACC #Param s/epoch

MLP 0.713 ± 0.001 204897 1.6209 0.951 ± 0.003 202383 36.6067 0.536 ± 0.007 202707 48.5513

GIN [199] 0.249 ± 0.008 204727 5.3311 0.974 ± 0.001 211078 59.0530 0.651 ± 0.005 211298 74.2930

GraphSage [52] 0.378 ± 0.015 207845 3.5253 0.977 ± 0.001 205457 45.2319 0.669 ± 0.002 205677 57.7408

GAT [209] 0.424 ± 0.006 208545 5.6672 0.966 ± 0.001 205248 70.3261 0.632 ± 0.008 205552 92.0455

MoNet [53] 0.340 ± 0.008 205074 8.9661 0.942 ± 0.004 203121 655.3304 0.623 ± 0.003 203301 926.6127

ChebNet [32] 0.254 ± 0.008 204210 4.4090 0.974 ± 0.002 202257 42.5235 0.677 ± 0.004 202437 63.5918

GCN [1] 0.314 ± 0.009 201975 3.2912 0.911 ± 0.002 198717 47.9303 0.551 ± 0.004 199017 57.0702

SGC [195] 0.725 ± 0.005 199575 1.0961 0.956 ± 0.002 196317 21.4136 0.542 ± 0.003 196617 21.8775

APGCN [208] 0.819 ± 0.004 199726 2.2744 0.958 ± 0.002 204766 39.6259 0.523 ± 0.009 205056 67.6515

AutoGCN 0.225 ± 0.006 204594 4.8771 0.978 ± 0.001 202641 59.3858 0.678 ± 0.002 202821 77.5203

all node features from the last layer and passes it to an MLP. For all three datasets, I

set 8 layers for all methods with a fixed budget of around 200k parameters. Residual

connections, bach normalizations, and graph size normalizations are employed for all

methods on all three datasets. Other hyperparameter settings can be found in Table 3.5.

All experiments are conducted using a single Titan XP GPU card.

Results & Discussion. Table 3.4 shows the experimental results of graph classifica-

tion tasks. According to Table 3.4, AutoGCN outperforms baseline methods on all three

datasets. The effectiveness of the introduction of automatic graph convolutional filter

functions can be inferred from the comparison between ChebNet and AutoGCN. In fact,

the graph convolutional kernels of both methods contain a zeroth-order, first-order, and

second-order of the graph Laplacian matrix. Correspondingly, ChebNet consists of an

all-pass filter, a low-high-pass filter, and a middle-pass filter. The main difference lies in

that AutoGCN adjusts frequency profiles of graph convolutional filters adaptively accord-

ing to data inputs. Though the performance difference between AutoGCN and ChebNet

is smaller than the gap between AutoGCN and other baseline methods, according to

Table 3.2 and Table 3.4, AutoGCN consistently outperforms ChebNet over all datasets,

showing the effectiveness of my proposed method.

Baselines. The choice of baseline methods is the same as that in the node classifica-

tion task.
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Table 3.5: Hyperparameter settings for all experiments. L is the number of layers; hidden
is the dimension of hidden features; init lr is the initial learning rate, patience is the
decay patience, min lr is the stopping lr, weight decay is the weight decay rate, all
experiments have lr reduce factor 0.5.

Dataset Model Hyperparameters Learning Setup
L hidden dropout Other init lr patience min lr weight decay

P
U

B
M

E
D

MLP 4 16 0.5 - 1e-2 - - 5e-4
GIN 1 16 0.5 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-2 - - 5e-4
GraphSage 1 16 0.5 sage_aggregator:mean 1e-2 - - 5e-4
GAT 1 8 0.6 n_heads:8;self_loop:true 1e-2 - - 5e-4
MoNet 1 16 0.5 kernel:3; pseudo_dim_MoNet:2 1e-2 - - 5e-4
ChebNet 1 16 0.5 K:2 1e-2 - - 5e-4
GCN 1 16 0.5 - 1e-2 - - 5e-4
DSGCN 1 16 0.25 - 1e-2 - - 5e-4
SGC 1 16 0.5 - 1e-2 - - 5e-4
APGCN 1 64 0.5 n_iter:10; prop_penalty: 0.05; 1e-2 - - 5e-4
AutoGCN 1 16 0.5 K:16 1e-2 - - 5e-4

SB
M

-P
A

T
T

E
R

N

MLP 4 152 0 - 1e-3 5 1e-5 0
GIN 4 110 0 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-3 5 1e-5 0
GraphSage 4 110 0 sage_aggregator:mean 1e-3 5 1e-5 0
GAT 4 19 0 n_heads:8;self_loop:true 1e-3 5 1e-5 0
MoNet 4 90 0 kernel:3; pseudo_dim_MoNet:2 1e-3 5 1e-5 0
ChebNet 4 90 0 K:2 1e-3 5 1e-5 0
GCN 4 150 0 - 1e-3 5 1e-5 0
SGC 4 152 0 - 1e-2 5 1e-5 0
APGCN 4 170 0 n_iter:10; prop_penalty: 0.05; 1e-2 5 1e-5 0
AutoGCN 4 90 0 K:16 1e-3 5 1e-5 0

SB
M

-C
L

U
ST

E
R

MLP 8 152 0 - 1e-3 5 1e-5 0
GIN 8 110 0 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-3 5 1e-5 0
GraphSage 8 110 0 sage_aggregator:mean 1e-3 5 1e-5 0
GAT 8 19 0 n_heads:8;self_loop:true 1e-3 5 1e-5 0
MoNet 8 90 0 kernel:3; pseudo_dim_MoNet:2 1e-3 5 1e-5 0
ChebNet 8 90 0 K:2 1e-3 5 1e-5 0
GCN 8 150 0 - 1e-3 5 1e-5 0
SGC 8 152 0 - 1e-2 5 1e-5 0
APGCN 8 162 0 n_iter:10; prop_penalty: 0.05; 1e-2 5 1e-5 0
AutoGCN 8 90 0 K:16 1e-3 5 1e-5 0

A
rx

iv
-y

ea
r

MLP 2 220 0.5 - 1e-2 - - 5e-4
GIN 2 170 0.5 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-2 - - 5e-4
GraphSage 2 170 0.5 sage_aggregator:mean 1e-2 - - 5e-4
GAT 2 32 0.5 n_heads:8;self_loop:true 1e-2 - - 5e-4
MoNet 2 115 0.5 kernel:3; pseudo_dim_MoNet:2 1e-2 - - 5e-4
ChebNet 2 128 0.5 K:2 1e-2 - - 5e-4
GCN 2 256 0.5 - 1e-2 - - 5e-4
SGC 2 270 0.5 - 1e-2 - - 5e-4
APGCN 2 256 0.5 n_iter:10; prop_penalty: 0.05; 1e-2 - - 5e-4
AutoGCN 2 128 0.5 K:16 1e-2 - - 5e-4

Ye
lp

-c
hi

MLP 2 240 0.5 - 1e-2 - - 5e-4
GIN 2 210 0.5 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-2 - - 5e-4
GraphSage 2 210 0.5 sage_aggregator:mean 1e-2 - - 5e-4
GAT 2 32 0.5 n_heads:8;self_loop:true 1e-2 - - 5e-4
MoNet 2 115 0.5 kernel:3; pseudo_dim_MoNet:2 1e-2 - - 5e-4
ChebNet 2 170 0.5 K:2 1e-2 - - 5e-4
GCN 2 300 0.5 - 1e-2 - - 5e-4
SGC 2 300 0.5 - 1e-2 - - 5e-4
APGCN 2 300 0.5 n_iter:10; prop_penalty: 0.05; 1e-2 - - 5e-4
AutoGCN 2 165 0.5 K:16 1e-2 - - 5e-4

Sq
ui

rr
el

MLP 2 48 0.5 - 1e-2 - - 5e-4
GIN 2 24 0.5 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-2 - - 5e-4
GraphSage 2 24 0.5 sage_aggregator:mean 1e-2 - - 5e-4
GAT 2 6 0.5 n_heads:8;self_loop:true 1e-2 - - 5e-4
MoNet 2 45 0.5 kernel:3; pseudo_dim_MoNet:2 1e-2 - - 5e-4
ChebNet 2 16 0.5 K:2 1e-2 - - 5e-4
GCN 2 48 0.5 - 1e-2 - - 5e-4
SGC 2 48 0.5 - 1e-2 - - 5e-4
APGCN 2 48 0.5 n_iter:10; prop_penalty: 0.05; 1e-2 - - 5e-4
AutoGCN 2 13 0.5 K:16 1e-2 - - 5e-4

ZI
N

C

MLP 8 152 0 - 1e-3 10 1e-5 0
GIN 8 110 0 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-3 10 1e-5 0
GraphSage 8 110 0 sage_aggregator:mean 1e-3 10 1e-5 0
GAT 8 19 0 n_heads:8;self_loop:true 1e-3 10 1e-5 0
MoNet 8 90 0 kernel:3; pseudo_dim_MoNet:2 1e-3 10 1e-5 0
ChebNet 8 90 0 K:2 1e-3 10 1e-5 0
GCN 8 150 0 - 1e-3 10 1e-5 0
SGC 8 150 0 - 1e-2 10 1e-5 0
APGCN 8 150 0 n_iter:10; prop_penalty: 0.05; 1e-2 10 1e-5 0
AutoGCN 8 90 0 K:16 1e-3 10 1e-5 0

M
N

IS
T

MLP 8 162 0.1 - 1e-3 5 1e-5 0
GIN 8 110 0.1 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-3 5 1e-5 0
GraphSage 8 110 0.1 sage_aggregator:mean 1e-3 5 1e-5 0
GAT 8 19 0.1 n_heads:8;self_loop:true 1e-3 5 1e-5 0
MoNet 8 90 0.1 kernel:3; pseudo_dim_MoNet:2 1e-3 5 1e-5 0
ChebNet 8 90 0.1 K:2 1e-3 5 1e-5 0
GCN 8 150 0.1 - 1e-3 5 1e-5 0
SGC 8 150 0.1 - 1e-2 5 1e-5 0
APGCN 8 256 0.1 n_iter:10; prop_penalty: 0.05; 1e-2 5 1e-5 0
AutoGCN 8 90 0.1 K:16 1e-3 5 1e-5 0

C
IF

A
R

10

MLP 8 162 0.1 - 1e-3 5 1e-5 0
GIN 8 110 0.1 n_mlp_GIN:2; learn_eps_GIN:True; neighbor_aggr_GIN:sum 1e-3 5 1e-5 0
GraphSage 8 110 0.1 sage_aggregator:mean 1e-3 5 1e-5 0
GAT 8 19 0.1 n_heads:8;self_loop:true 1e-3 5 1e-5 0
MoNet 8 90 0.1 kernel:3; pseudo_dim_MoNet:2 1e-3 5 1e-5 0
ChebNet 8 90 0.1 K:2 1e-3 5 1e-5 0
GCN 8 150 0.1 - 1e-3 5 1e-5 0
SGC 8 150 0.1 - 1e-2 5 1e-5 0
APGCN 8 256 0.1 n_iter:10; prop_penalty: 0.05; 1e-2 5 1e-5 0
AutoGCN 8 90 0.1 K:16 1e-3 5 1e-5 0
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Table 3.6: Ablation study.

Data AutoGCN w/o low w/o high w/o middle w/o over w/o par w/o gate

SBM-CLUSTER 74.104 ± 0.151 72.168 ± 0.232 73.748 ± 0.181 71.924 ± 0.329 73.559 ± 0.283 73.450 ± 0.438 73.991 ± 0.206

ZINC 0.225 ± 0.009 0.253 ± 0.011 0.253 ± 0.010 0.242 ± 0.015 0.233 ± 0.003 0.231 ± 0.007 0.248 ± 0.006

3.6.3 Ablation Study

I conduct an ablation study on SBM-CLUSTER and ZINC to validate the effectiveness

of key components that contribute to the improvement of my proposed model. I name

AutoGCN without different components as follows - w/o low: AutoGCN without the

low-pass linear filter; w/o high: AutoGCN without the high-pass linear filter; w/o
middle: AutoGCN without the middle-pass quadratic filter; w/o over: AutoGCN without

over-parameterizing filter functions; w/o par: AutoGCN without parameterizing filter

functions. I set p = 1,a = 0.5 as fixed values for the low-pass filter, the high-pass filter, and

the middle-pass filter; w/o gate: AutoGCN without the complementary gate. I simply

sum up the outputs of three graph convolutional filters in each layer. For w/o low, w/o
high, and w/o middle, I increase the hidden feature dimension to keep approximately

the same number of parameters as AutoGCN. I run each experiment five times and

report the averaged evaluation metrics with standard deviation on test data. Table 3.6

reports the experimental results of the ablation study. It shows that any absence of a key

component reduces the performance of AutoGCN.

3.6.4 Limitation

While being adaptive to frequency bandwidth, the flexibility of AutoGCN in adjusting

filtering functions is limited. The linear and quadratic functions of AutoGCN are only

approximating low-pass, mid-pass and high-pass filters. On the one side, each type of

filter functions still contain other frequency bands which are not desired. For example,

the designed low-pass frequency functions also has a small portion of mid-frequency

bands and high-frequency bands. On the other side, if we choose to cut-off the frequency

for the corresponding filters, the model cannot be simplified to first-order and second-

order of the adjacency matrix, and thus such alternative model is no longer scalable.

3.6.5 Analysis of Model Depth.

Graph convolutional networks often face the over-smoothing problem. In theory, as the

number of hidden layers goes to infinity, node features of a graph will converge to a
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Figure 3.3: Comparison analysis of model depth between AutoGCN and GCN.

fixed point [62]. A solution to mitigate the over-smoothing problem is to add residual

connections to each layer. Figure 3.3 plots the performance curve of GCN and AutoGCN

on SBM-CLUSTER and ZINC as the number of layers is increased from 2 to 16 every

two steps. I run each experiment five times and report the averaged evaluation metrics

with standard deviation on test data. With the increase in the number of layers, the

performance of GCN and AutoGCN is also enhanced. It demonstrates the usefulness of

residual connections in designing deep graph convolutional networks. Note that it may be

argued that the significant improvement of AutoGCN over GCN is mainly attributed to

the fact that each layer of AutoGCN receives a broader range of neighborhood information

because of the second-order of the graph Laplacian matrix. It is suspected that comparing

AutoGCN with GCN or other methods under the same number of layers may not be

a fair option. However, if we look at Figure 3.3, a deeper GCN still cannot compete

with a shallower AutoGCN. For example, a four-layer of GCN performs much worse

than a two-layer of AutoGCN , even the depth of node information aggregation for both

models is 4. This may suggest that the second-order of graph Laplacian matrix not only

broadens a node’s neighborhood, but also works as a middle-pass filter to filter low and

high frequency of graph signals.

3.7 Summary

This chapter proposes a graph convolutional network that captures the full spectrum of

graph signals with automatic filtering. My method AutoGCN consists of three different

forms of graph convolutional filters: the low-pass filter, the high-pass filter, and the

middle-pass filter. All three filters enrich node feature representations in a different way.

In each filter, I introduce two parameters to control the magnitude and the curvature of
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its frequency profile. It enables AutoGCN to update its parameterized filter functions

based on data. My experiments show that AutoGCN achieves significant improvement

over baseline methods that only work as low-pass filters.
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4
GRAPH WAVENET FOR DEEP SPATIAL-TEMPORAL

GRAPH MODELING

4.1 Motivation

Spatial-temporal graph modeling has received increasing attention with the advance

of graph neural networks. It aims to model the dynamic node-level inputs by assuming

inter-dependency between connected nodes, as demonstrated by Figure 4.1. Spatial-

temporal graph modeling has wide applications in solving complex system problems such

as traffic speed forecasting [13], taxi demand prediction [14], human action recognition

[15], and driver maneuver anticipation [18]. For a concrete example, in traffic speed

forecasting, speed sensors on roads of a city form a graph where the edge weights are

judged by two nodes’ Euclidean distance. As the traffic congestion on one road could cause

lower traffic speed on its incoming roads, it is natural to consider the underlying graph

structure of the traffic system as the prior knowledge of inter-dependency relationships

among nodes when modeling time series data of the traffic speed on each road.

A basic assumption behind spatial-temporal graph modeling is that a node’s future

information is conditioned on its historical information as well as its neighbors’ historical

information. Therefore how to capture spatial and temporal dependencies simultaneously

becomes a primary challenge. Recent studies on spatial-temporal graph modeling mainly

follow two directions. They either integrate graph convolution networks (GCN) into

recurrent neural networks (RNN) [13, 19] or into convolution neural networks (CNN)
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Figure 4.1: Spatial-temporal graph modeling. Each circle represents a node. Each node
has dynamic input features. The aim is to model each node’s dynamic features given the
graph structure.

[15, 20]. While having shown the effectiveness of introducing the graph structure of data

into a model, these approaches face two major shortcomings.

First, these studies assume the graph structure of data reflects the genuine depen-

dency relationships among nodes. However, there are circumstances when a connection

does not entail the inter-dependency relationship between two nodes and when the

inter-dependency relationship between two nodes exists but a connection is missing. To

give each circumstance an example, let us consider a recommendation system. In the

first case, two users are connected, but they may have distinct preferences over products.

In the second case, two users may share a similar preference, but they are not linked

together. Zhang et al [57] used attention mechanisms to address the first circumstance

by adjusting the dependency weight between two connected nodes, but they failed to

consider the second circumstance.

Second, current studies for spatial-temporal graph modeling are ineffective to learn

temporal dependencies. RNN-based approaches suffer from time-consuming iterative

propagation and gradient explosion/vanishing for capturing long-range sequences [13, 19,

57]. On the contrary, CNN-based approaches enjoy the advantages of parallel computing,

stable gradients and low memory requirement [15, 20]. However, these works need to

use many layers in order to capture very long sequences because they adopt standard

1D convolution whose receptive field size grows linearly with an increase in the number

of hidden layers.

In this work, I present a CNN-based method named Graph WaveNet, which addresses

the two shortcomings I have aforementioned. I propose a graph convolution layer in
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which a self-adaptive adjacency matrix can be learned from the data through end-

to-end supervised training. In this way, the self-adaptive adjacency matrix preserves

hidden spatial dependencies. Motivated by WaveNet [211], I adopt stacked dilated casual

convolutions to capture temporal dependencies. The receptive field size of stacked dilated

casual convolution networks grows exponentially with an increase in the number of

hidden layers. With the support of stacked dilated casual convolutions, Graph WaveNet

is able to handle spatial-temporal graph data with long-range temporal sequences

efficiently and effectively. The main contributions of this work are as follows:

• I construct a self-adaptive adjacency matrix which preserves hidden spatial de-

pendencies. My proposed self-adaptive adjacency matrix is able to uncover unseen

graph structures automatically from the data without any guidance of prior knowl-

edge. Experiments validate that my method improves the results when spatial

dependencies are known to exist but are not provided.

• I present an effective and efficient framework to capture spatial-temporal depen-

dencies simultaneously. The core idea is to assemble my proposed graph convolution

with dilated casual convolution in a way that each graph convolution layer tackles

spatial dependencies of nodes’ information extracted by dilated casual convolution

layers at different granular levels.

• I evaluate my proposed model on traffic datasets and achieve state-of-the-art

results with low computation costs. The source codes of Graph WaveNet are publicly

available from https://github.com/nnzhan/Graph-WaveNet.

4.2 Related Works to Graph WaveNet

The majority of Spatial-temporal Graph Networks follow two directions, namely, RNN-

based and CNN-based approaches. One of the early RNN-based methods captured spatial-

temporal dependencies by filtering inputs and hidden states passed to a recurrent unit

using graph convolution [19]. Later works adopted different strategies such as diffusion

convolution [13] and attention mechanisms [57] to improve model performance. Another

parallel work used node-level RNNs and edge-level RNNs to handle different aspects of

temporal information [18]. The main drawbacks of RNN-based approaches are that it

becomes inefficient for long sequences and its gradients are more likely to explode when

they are combined with graph convolution networks. CNN-based approaches combine a
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graph convolution with a standard 1D convolution [15, 20]. While being computationally

efficient, these two approaches have to stack many layers or use global pooling to expand

the receptive field of a neural network model.

4.3 Methodology

In this section, I first give the mathematical definition of the problem I am addressing in

this chapter. Next, I describe two building blocks of my framework, the graph convolution

layer (GCN) and the temporal convolution layer (TCN). They work together to capture

the spatial-temporal dependencies. Finally, I outline the architecture of my framework.

4.3.1 Problem Definition

A graph is represented by G = (V ,E) where V is the set of nodes and E is the set of

edges. The adjacency matrix derived from a graph is denoted by A ∈RN×N . If vi,vj ∈V
and (vi,vj) ∈ E, then Ai j is one otherwise it is zero. At each time step t, the graph G
has a dynamic feature matrix X(t) ∈ RN×D . In this chapter, the feature matrix is used

interchangeably with graph signals. Given a graph G and its historical S step graph

signals, my problem is to learn a function f which is able to forecast its next T step

graph signals. The mapping relation is represented as follows

(4.1) [X(t−S):t,G]
f−→X(t+1):(t+T),

where X(t−S):t ∈RN×D×S and X(t+1):(t+T) ∈RN×D×T .

4.3.2 Graph Convolution Layer

Graph convolution is an essential operation to extract a node’s features given its struc-

tural information. Kipf et al [212] proposed a first approximation of Chebyshev spectral

filter [32]. From a spatial-based perspective, it smoothed a node’s signal by aggregating

and transforming its neighborhood information. The advantages of their method are that

it is a compositional layer, its filter is localized in space, and it supports multi-dimensional

inputs. Let Ã ∈RN×N denote the normalized adjacency matrix with self-loops, X ∈RN×D

denote the input signals, Z ∈RN×M denote the output, and W ∈RD×M denote the model

parameter matrix, in [212] the graph convolution layer is defined as
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(4.2) Z= ÃXW.

Li et al [13] proposed a diffusion convolution layer which proves to be effective in spatial-

temporal modeling. They modeled the diffusion process of graph signals with K finite

steps. I generalize its diffusion convolution layer into the form of Equation 4.2, which

results in,

(4.3) Z=
K∑

k=0
PkXWk,

where Pk represents the power series of the transition matrix. In the case of an undi-

rected graph, P = A/rowsum(A). In the case of a directed graph, the diffusion process

have two directions, the forward and backward directions, where the forward transition

matrix P f = A/rowsum(A) and the backward transition matrix Pb = AT/rowsum(AT).

With the forward and the backward transition matrix, the diffusion graph convolution

layer is written as

(4.4) Z=
K∑

k=0
Pk

f XWk1 +Pk
bXWk2.

4.3.2.1 Self-adaptive Adjacency Matrix

In my work, I propose a self-adaptive adjacency matrix Ãadp. This self-adaptive adjacency

matrix does not require any prior knowledge and is learned end-to-end through stochastic

gradient descent. In doing so, I let the model discover hidden spatial dependencies by

itself. I achieve this by randomly initializing two node embedding dictionaries with

learnable parameters E1,E2 ∈RN×c. I propose the self-adaptive adjacency matrix as

(4.5) Ãadp = Sof tMax(ReLU(E1ET
2 )).

I name E1 as the source node embedding and E2 as the target node embedding. By

multiplying E1 and E2, I derive the spatial dependency weights between the source nodes

and the target nodes. I use the ReLU activation function to eliminate weak connections.

The SoftMax function is applied to normalize the self-adaptive adjacency matrix. The

normalized self-adaptive adjacency matrix, therefore, can be considered as the transition

matrix of a hidden diffusion process. By combining pre-defined spatial dependencies and
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self-learned hidden graph dependencies, I propose the following graph convolution layer

(4.6) Z=
K∑

k=0
Pk

f XWk1 +Pk
bXWk2 + Ãk

aptXWk3.

When the graph structure is unavailable, I propose to use the self-adaptive adjacency

matrix alone to capture hidden spatial dependencies, i.e.,

(4.7) Z=
K∑

k=0
Ãk

aptXWk.

It is worth noting that my graph convolution falls into spatial-based approaches.

Although I use graph signals interchangeably with node feature matrix for consistency,

my graph convolution in Equation 4.7 indeed is interpreted as aggregating transformed

feature information from different orders of neighborhoods.

4.3.3 Temporal Convolution Layer

I adopt the dilated causal convolution [213] as my temporal convolution layer (TCN)

to capture a node’s temporal trends. Dilated causal convolution networks allow an

exponentially large receptive field by increasing the layer depth. As opposed to RNN-

based approaches, dilated casual convolution networks are able to handle long-range

sequences properly in a non-recursive manner, which facilitates parallel computation

and alleviates the gradient explosion problem. The dilated causal convolution preserves

the temporal causal order by padding zeros to the inputs so that predictions made on

the current time step only involve historical information. As a special case of standard

1D-convolution, the dilated causal convolution operation slides over inputs by skipping

values with a certain step, as illustrated by Figure 4.2. Mathematically, given a 1D

sequence input x ∈RT and a filter f ∈RK , the dilated causal convolution operation of x
with f at step t is represented as

(4.8) x� f(t)=
K−1∑
s=0

f(s)x(t−d× s),

where d is the dilation factor which controls the skipping distance. By stacking dilated

causal convolution layers with dilation factors in increasing order, the receptive field of a

model grows exponentially. It enables dilated causal convolution networks to capture

longer sequences with less layers, which saves computation resources.
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Figure 4.2: Dilated casual convolution with kernel size 2. With a dilation factor k, it
picks inputs every k step and applies the standard 1D convolution to the selected inputs.

Gated TCN. Gating mechanisms are critical in recurrent neural networks. They have

been shown to be powerful to control information flow through layers for temporal

convolution networks as well [214]. A simple Gated TCN only contains an output gate.

Given the input X ∈ RN×D×S, it takes the form

(4.9) h= g(Θ1�X +b)�σ(Θ2�X +c),

where Θ1, Θ2, b and c are model parameters, � is the element-wise product, g(·) is an

activation function of the outputs, and σ(·) is the sigmoid function which determines

the ratio of information passed to the next layer. I adopt Gated TCN in my model to

learn complex temporal dependencies. Although I empirically set the tangent hyperbolic

function as the activation function g(·), other forms of Gated TCN can be easily fitted

into my framework, such as an LSTM-like Gated TCN [215].

4.3.4 Framework of Graph WaveNet

I present the framework of Graph WaveNet in Figure 4.3. It consists of stacked spatial-

temporal layers and an output layer. A spatial-temporal layer is constructed by a graph

convolution layer (GCN) and a gated temporal convolution layer (Gated TCN) which

consists of two parallel temporal convolution layers (TCN-a and TCN-b). By stacking

multiple spatial-temporal layers, Graph WaveNet is able to handle spatial dependencies

at different temporal levels. For example, at the bottom layer, GCN receives short-term
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Data #Nodes #Edges #Time Steps
METR-LA 207 1515 34272
PEMS-BAY 325 2369 52116

Table 4.1: Summary statistics of METR-LA and PEMS-BAY.

temporal information while at the top layer GCN tackles long-term temporal information.

The inputs h to a graph convolution layer in practice are three-dimension tensors with

size [N,C,L] where N is the number of nodes, and C is the hidden dimension, L is the

sequence length. I apply the graph convolution layer to each of h[:, :, i] ∈RN×C.

I choose to use mean absolute error (MAE) as the training objective of Graph WaveNet,

which is defined by

(4.10) L(X̂(t+1):(t+T);Θ)= 1
TND

i=T∑
i=1

j=N∑
j=1

k=D∑
k=1

|X̂(t+i)
jk −X(t+i)

jk |

Unlike previous works such as [13, 20], my Graph WaveNet outputs X̂(t+1):(t+T) as a

whole rather than generating X̂(t) recursively through T steps. It addresses the problem

of inconsistency between training and testing due to the fact that a model learns to

make predictions for one step during training and is expected to produce predictions

for multiple steps during inference. To achieve this, I artificially design the receptive

field size of Graph WaveNet equals the sequence length of the inputs so that in the last

spatial-temporal layer the temporal dimension of the outputs exactly equals to one. After

that I set the number of output channels of the last layer as a factor of step length T to

get my desired output dimension.

4.4 Experiments

I verify Graph WaveNet on two public traffic network datasets, METR-LA and PEMS-

BAY released by Li et al [13]. METR-LA records four months of statistics on traffic

speed on 207 sensors on the highways of Los Angeles County. PEMS-BAY contains six

months of traffic speed information on 325 sensors in the Bay area. I adopt the same data

pre-processing procedures as in [13]. The readings of the sensors are aggregated into

5-minutes windows. The adjacency matrix of the nodes is constructed by road network

distance with a thresholded Gaussian kernel [216]. Z-score normalization is applied

to inputs. The datasets are split in chronological order with 70% for training, 10% for

validation and 20% for testing. Detailed dataset statistics are provided in Table 4.1.
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Figure 4.3: The framework of Graph WaveNet. It consists of K spatial-temporal layers
on the left and an output layer on the right. The inputs are first transformed by a linear
layer and then passed to the gated temporal convolution module (Gated TCN) followed by
the graph convolution layer (GCN). Each spatial-temporal layer has residual connections
and is skip-connected to the output layer.

4.4.1 Baselines

I compare Graph WaveNet with the following models.

• ARIMA. Auto-Regressive Integrated Moving Average model with Kalman filter

[13].

• FC-LSTM Recurrent neural network with fully connected LSTM hidden units [13].

• WaveNet. A convolution network architecture for sequence data [211].

• DCRNN. Diffusion convolution recurrent neural network [13], which combines

graph convolution networks with recurrent neural networks in an encoder-decoder

manner.

• GGRU. Graph gated recurrent unit network [57]. Recurrent-based approaches.

GGRU uses attention mechanisms in graph convolution.

73



CHAPTER 4. GRAPH WAVENET FOR DEEP SPATIAL-TEMPORAL GRAPH
MODELING

Data Models
15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

M
E

T
R

-L
A

ARIMA [13] 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40%
FC-LSTM [13] 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
WaveNet [211] 2.99 5.89 8.04% 3.59 7.28 10.25% 4.45 8.93 13.62%
DCRNN [13] 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
GGRU [57] 2.71 5.24 6.99% 3.12 6.36 8.56% 3.64 7.65 10.62%
STGCN [20] 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%
Graph WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%

P
E

M
S-

B
A

Y

ARIMA [13] 1.62 3.30 3.50% 2.33 4.76 5.40% 3.38 6.50 8.30%
FC-LSTM [13] 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
WaveNet [211] 1.39 3.01 2.91% 1.83 4.21 4.16% 2.35 5.43 5.87%
DCRNN [13] 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
GGRU [57] - - - - - - - - -
STGCN [20] 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%
Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%

Table 4.2: Performance comparison of Graph WaveNet and other baseline models. Graph
WaveNet achieves the best results on both datasets.

• STGCN. Spatial-temporal graph convolution network [20], which combines graph

convolution with 1D convolution.

4.4.2 Experimental Setups

My experiments are conducted under a computer environment with one Intel(R) Core(TM)

i9-7900X CPU @ 3.30GHz and one NVIDIA Titan Xp GPU card. To cover the input se-

quence length, I use eight layers of Graph WaveNet with a sequence of dilation factors

1,2,1,2,1,2,1,2. I use Equation 4.4 as my graph convolution layer with a diffusion step

K = 2. I randomly initialize node embeddings by a uniform distribution with a size of 10. I

train my model using Adam optimizer with an initial learning rate of 0.001. Dropout with

p=0.3 is applied to the outputs of the graph convolution layer. The evaluation metrics I

choose include mean absolute error (MAE), root mean squared error (RMSE), and mean

absolute percentage error (MAPE). Missing values are excluded both from training and

testing.

4.4.3 Experimental Results

Table 4.2 compares the performance of Graph WaveNet and baseline models for 15

minutes, 30 minutes and 60 minutes ahead prediction on METR-LA and PEMS-BAY

datasets. Graph WaveNet obtains superior results on both datasets. It outperforms tem-
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Dataset Model Name Adjacency Matrix Configuration Mean MAE Mean RMSE Mean MAPE

METR-
LR

Identity [I] 3.58 7.18 10.21%
Forward-only [P] 3.13 6.26 8.65%
Adaptive-only [Ãadp] 3.10 6.21 8.68%
Forward-backward [P f , Pb] 3.08 6.13 8.25%
Forward-backward-adaptive [P f , Pb, Ãadp ] 3.04 6.09 8.23%

PEMS-
BAY

Identity [I] 1.80 4.05 4.18%
Forward-only [P f ] 1.62 3.61 3.72%
Adaptive-only [Ãadp] 1.61 3.63 3.59%
Forward-backward [P f , Pb] 1.59 3.55 3.57%
Forward-backward-adaptive [P f , Pb, Ãadp ] 1.58 3.52 3.55%

Table 4.3: Experimental results of different adjacency matrix configurations. The forward-
backward-adaptive model achieves the best results on both datasets. The adaptive-only
model achieves nearly the same performance with the forward-only model.
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Figure 4.4: Comparison of prediction curves between WaveNet and Graph WaveNet for
60 minutes ahead prediction on a snapshot of the test data of METR-LA.

poral models including ARIMA, FC-LSTM, and WaveNet by a large margin. Compared

to other spatial-temporal models, Graph WaveNet surpasses the previous convolution-

based approach STGCN significantly and excels recurrent-based approaches DCRNN

and GGRU at the same time. In respect of the second-best model GGRU, Graph WaveNet

achieves small improvement over GGRU on the 15-minute horizons; however, realizes a

bigger enhancement on the 60-minute horizons. My architecture is more capable of de-

tecting spatial dependencies at each temporal stage. GGRU uses recurrent architectures

in which parameters of the GCN layer are shared across all recurrent units. In contrast,

Graph WaveNet employs stacked spatial-temporal layers which contain separate GCN

layers with different parameters. Therefore each GCN layer in Graph WaveNet is able to

focus on its own range of temporal inputs.

I plot 60-minutes-ahead predicted values v.s real values of Graph WaveNet and
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(a) The heatmap of the learned self-
adaptive adjacency matrix for the first
50 nodes.

(b) The geographical location of a part
of nodes marked on Google Maps.

Figure 4.5: The learned self-adaptive adjacency matrix.

WaveNet on a snapshot of the test data in Figure 4.4. It shows that Graph WaveNet

generates more stable predictions than WaveNet. In particular, there is a red sharp spike

produced by WaveNet, which deviates far from real values. On the contrary, the curve of

Graph WaveNet goes in the middle of real values all the time.

4.4.3.1 Effect of the Self-Adaptive Adjacency Matrix

To verify the effectiveness of my proposed adaptive adjacency matrix, I conduct experi-

ments with Graph WaveNet using five different adjacency matrix configurations. Table

4.3 shows the average score of MAE, RMSE, and MAPE over 12 prediction horizons. I

find that the adaptive-only model works even better than the forward-only model with

mean MAE. When the graph structure is unavailable, Graph WaveNet would still be able

to realize a good performance. The forward-backward-adaptive model achieves the lowest

scores on all three evaluation metrics. It indicates that if graph structural information is

given, adding the self-adaptive adjacency matrix could introduce new and useful informa-

tion to the model. In Figure 4.5, I further investigate the learned self-adaptive adjacency

matrix under the configuration of the forward-backward-adaptive model trained on the

METR-LA dataset. According to Figure 4.5a, some columns have more high-value points

than others such as column 9 in the left box compared to column 47 in the right box.

It suggests that some nodes are influential to most nodes in a graph while other nodes

have weaker impacts. Figure 4.5b confirms my observation. It can be seen that node 9

locates nearby the intersection of several main roads while node 47 lies in a single road.
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4.5. SUMMARY

Model
Computation Time

Training(s/epoch) Inference(s)

DCRNN 249.31 18.73
STGCN 19.10 11.37
Graph WaveNet 53.68 2.27

Table 4.4: The computation cost on the METR-LA dataset.

4.4.3.2 Computation Time

I compare the computation cost of Graph WaveNet with DCRNN and STGCN on the

METR-LA dataset in Table 4.4. Graph WaveNet runs five times faster than DCRNN

but two times slower than STGCN in training. For inference, I measure the total time

cost of each model on the validation data. Graph WaveNet is the most efficient of all at

the inference stage. This is because that Graph WaveNet generates 12 predictions in

one run while DCRNN and STGCN have to produce the results conditioned on previous

predictions.

4.5 Summary

In this chapter, I present a novel model for spatial-temporal graph modeling. My model

captures spatial-temporal dependencies efficiently and effectively by combining graph

convolution with dilated casual convolution. I propose an effective method to learn

hidden spatial dependencies automatically from the data. This opens up a new direction

in spatial-temporal graph modeling where the dependency structure of a system is

unknown but needs to be discovered. On two public traffic network datasets, Graph

WaveNet achieves state-of-the-art results. In future work, I will study scalable methods

to apply Graph WaveNet on large-scale datasets and explore approaches to learn dynamic

spatial dependencies.
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5
CONNECTING THE DOTS: MULTIVARIATE TIME SERIES

FORECASTING WITH GRAPH NEURAL NETWORKS

5.1 Motivation

Modern societies have benefited from a wide range of sensors to record changes in tem-

perature, price, traffic speed, electricity usage, and many other forms of data. Recorded

time series from different sensors can form multivariate time series data and can be in-

terlinked. For example, the rise in daily temperature may cause an increase in electricity

usage. To capture systematic trends over a group of dynamically changing variables, the

problem of multivariate time series forecasting has been studied for at least sixty years.

It has seen tremendous applications in the domains of economics, finance, bioinformatics,

and traffic.

Multivariate time series forecasting methods inherently assume interdependencies

among variables. In other words, each variable depends not only on its historical values

but also on other variables. However, existing methods do not exploit latent interdepen-

dencies among variables efficiently and effectively. Statistical methods, such as vector

auto-regressive model (VAR) and Gaussian process model (GP), assume a linear depen-

dency among variables. The model complexity of statistical methods grows quadratically

with the number of variables. They face the problem of overfitting with a large number

of variables. Recently developed deep-learning-based methods, including LSTNet [217]

and TPA-LSTM [218], are powerful to capture non-linear patterns. LSTNet encodes
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short-term local information into low dimensional vectors using 1D convolutional neu-

ral networks and decodes the vectors through a recurrent neural network. TPA-LSTM

processes the inputs by a recurrent neural network and employs a convolutional neural

network to calculate the attention score across multiple steps. LSTNet and TPA-LSTM

do not model the pair-wise dependencies among variables explicitly, which weakens

model interpretability.

Graphs are a special form of data which describes the relationships between different

entities. Recently, graph neural networks have achieved great success in handling graph

data due to their permutation-invariance, local connectivity, and compositionality. By

propagating information through structures, graph neural networks allow each node in

a graph to be aware of its neighborhood context. Multivariate time series forecasting can

be viewed naturally from a graph perspective. Variables from multivariate time series

can be considered as nodes in a graph, and they are interlinked through their hidden

dependency relationships. It follows that modeling multivariate time series data using

graph neural networks can be a promising way to preserve their temporal trajectory

while exploiting the interdependency among time series.

The most suitable type of graph neural networks for multivariate time series is

spatial-temporal graph neural networks. Spatial-temporal graph neural networks take

multivariate time series and an external graph structure as inputs, and they aim to

predict future values or labels of multivariate time series. Spatial-temporal graph neural

networks have achieved significant improvements compared to methods that do not

utilize structural information. However, these approaches still fall short for modeling

multivariate time series due to the following challenges:

• Challenge 1: Unknown Graph Structure. Existing GNN approaches rely heavily

on a pre-defined graph structure in order to perform time series forecasting. In

most cases, multivariate time series does not have an explicit graph structure. The

relationships among variables have to be discovered from data rather than being

provided as ground truth knowledge.

• Challenge 2: Graph Learning & GNN Learning. Even though a graph structure is

available, most GNN approaches focus only on message passing (GNN Learning)

and overlook the fact that the graph structure is not optimal and should be updated

during training. The question then is how to simultaneously learn the graph

structure and the GNN for time series in an end-to-end framework.
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In this chapter, I propose a novel approach to overcome these challenges. As demon-

strated by Figure 5.1, my framework consists of three core components - the graph

learning layer, the graph convolution module, and the temporal convolution module.

For Challenge 1, I propose a novel graph learning layer, which extracts a sparse graph

adjacency matrix adaptively based on data. Furthermore, I develop a graph convolution

module to address the spatial dependencies among variables, given the adjacency matrix

computed by the graph learning layer. This is designed specifically for directed graphs

and avoids the over-smoothing problem that frequently occurs in graph convolutional

networks. Finally, I propose a temporal convolution module to capture temporal pat-

terns by modified 1D convolutions. It can both discover temporal patterns with multiple

frequencies and process very long sequences.

As all parameters are learnable through gradient descent, the proposed framework

is able to model multivariate time series data and learn the internal graph structure

simultaneously in an end-to-end manner (for Challenge 2). To reduce the difficulty of

solving a highly non-convex optimization problem and to reduce memory occupation in

processing large graphs, I propose a learning algorithm that uses a curriculum learning

strategy to find a better local optimum and splits multivariate time series into subgroups

during training. The advantages here are that my proposed framework is generally

applicable to both small and large graphs, short and long time series, with and
without externally defined graph structures. In summary, my main contributions

are as follows:

• To the best of my knowledge, this is the first study on multivariate time series data

generally from a graph-based perspective with graph neural networks.

• I propose a novel graph learning module to learn hidden spatial dependencies

among variables. My method opens a new door for GNN models to handle data

without explicit graph structure.

• I present a joint framework for modeling multivariate time series data and learning

graph structures. My framework is more generic than any existing spatial-temporal

graph neural network as it can handle multivariate time series with or without a

pre-defined graph structure.

• Experimental results show that my method outperforms the state-of-the-art meth-

ods on 3 of 4 benchmark datasets and achieves on-par performance with other

GNNs on two traffic datasets which provide extra structural information.
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Figure 5.1: A concept map of my proposed framework.

5.2 Backgrounds

5.2.1 Multivariate Time Series Forecasting

Time series forecasting has been studied for a long time. The majority of existing methods

follow a statistical approach. The auto-regressive integrated moving average (ARIMA)

[219] generalizes a family of a linear model, including auto-regressive (AR), moving

average (MA), and auto-regressive moving average (ARMA). The vector auto-regressive

model (VAR) extends the AR model to capture the linear interdependencies among multi-

ple time series. Similarly, the vector auto-regressive moving average model (VARMA)

is proposed as a multivariate version of the ARMA model. Gaussian process (GP), as a

Bayesian approach, models the distribution of a multivariate variable over functions.

GP can be applied naturally to model multivariate time series data [220]. Although

statistical models are widely used in time series forecasting due to their simplicity and

interpretability, they make strong assumptions with respect to a stationary process and

they do not scale well to multivariate time series data. Deep-learning-based approaches

are free from stationary assumptions and they are effective methods to capture non-

linearity. Lai et al. [217] and Shih et al. [218] are the first two deep-learning-based

models designed for multivariate time series forecasting. They employ convolutional

neural networks to capture local dependencies among variables and recurrent neural

networks to preserve long-term temporal dependencies. Convolutional neural networks

encapsulate interactions among variables into a global hidden state. Therefore, they

cannot fully exploit latent dependencies between pairs of variables.
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5.2.2 Graph Neural Networks

Graph neural networks have enjoyed great success in handling spatial dependencies

among entities in a network. Graph neural networks assume that the state of a node

depends on the states of its neighbors. To capture this type of spatial dependency, various

kinds of graph neural networks have been developed through message passing [37],

information propagation [221], and graph convolution [1]. Sharing similar roles, they

essentially capture a node’s high-level representation by passing information from a

node’s neighbors to the node itself. Most recently, we have seen the emergence of a

type of graph neural networks known as spatial-temporal graph neural networks. This

form of neural networks is proposed initially to solve the problem of traffic prediction

[13, 20, 80, 222, 223] and skeleton-based action recognition [15, 224]. The inputs to

spatial-temporal graph neural networks are multivariate time series with an external

graph structure which describes the relationships among variables in multivariate time

series. For spatial-temporal graph neural networks, spatial dependencies among nodes

are captured by graph convolutions, while temporal dependencies among historical states

are preserved by recurrent neural networks [13, 19] or 1D convolutions [15, 20]. Although

existing spatial-temporal graph neural networks have achieved significant improvements

compared to methods without using a graph structure, they are incapable of handling

pure multivariate time series data effectively due to the absence of a pre-defined graph

and lack of a general framework.

5.3 Problem Formulation

In this chapter, I focus on the task of multivariate time series forecasting. Let zt ∈RN de-

note the value of a multivariate variable of dimension N at time step t, where zt[i] ∈ R de-

note the value of the ith variable at time step t. Given a sequence of historical P time steps

of observations on a multivariate variable, X= {zt1,zt2, · · · ,ztP }, my goal is to predict the

Q-step-away value of Y= {ztP+Q }, or a sequence of future values Y= {ztP+1,ztP+2, · · · ,ztP+Q }.

More generally, the input signals can be coupled with other auxiliary features such as

time of the day, day of the week, and day of the season. Concatenating the input signals

with auxiliary features, I assume the inputs instead are X = {St1,St2, · · · ,StP } where

Sti ∈RN×D , D is the feature dimension, the first column of Sti equals to zti , and the rest

are auxiliary features. I aim to build a mapping f (·) from X to Y by minimizing the

absolute loss with l2 regularization.
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Graphs describe the relationships among entities in a network. I give a formal

definition of graph-related concepts below.

Definition 4 (Graph). A graph is formulated as G = (V ,E) where V is the set of nodes,
and E is the set of edges. I use N to denote the number of nodes in a graph.

Definition 5 (Node Neighborhood). Let v ∈V to denote a node and e = (v,u) ∈ E to denote
an edge pointing from u to v. The neighborhood of a node v is defined as N(v) = {u ∈
V |(v,u) ∈ E}.

Definition 6 (Adjacency Matrix). The adjacency matrix is a mathematical representation
of a graph, denoted as A ∈ RN×N with Ai j = c > 0 if (vi,vj) ∈ E and Ai j = 0 if (vi,vj) ∉ E.

From a graph-based perspective, I consider variables in multivariate time series as

nodes in graphs. I describe the relationships among nodes using the graph adjacency

matrix. The graph adjacency matrix is not given by the multivariate time series data in

most cases and will be learned by my model.

5.4 Framework of MTGNN

5.4.1 Model Architecture

I first elaborate on the general framework of my model. As illustrated in Figure 5.2,

MTGNN on the highest level consists of a graph learning layer, m graph convolution
modules, m temporal convolution modules, and an output module. To discover hidden

associations among nodes, a graph learning layer computes a graph adjacency matrix,

which is later used as an input to all graph convolution modules. Graph convolution

modules are interleaved with temporal convolution modules to capture spatial and

temporal dependencies respectively. Figure 5.3 gives a demonstration of how a temporal

convolution module and a graph convolution module collaborate with each other. To

avoid the problem of gradient vanishing, residual connections are added from the inputs

of a temporal convolution module to the outputs of a graph convolution module. Skip

connections are added after each temporal convolution module. To get the final outputs,

the output module projects the hidden features to the desired output dimension. In more

detail, the core components of my model are illustrated in the following:
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Figure 5.2: The framework of MTGNN. A 1×1 standard convolution first projects the in-
puts into a latent space. Afterward, temporal convolution modules and graph convolution
modules are interleaved with each other to capture temporal and spatial dependencies
respectively. The hyper-parameter, dilation factor d, which controls the receptive field
size of a temporal convolution module, is increased at an exponential rate of q. The
graph learning layer learns the hidden graph adjacency matrix, which is used by graph
convolution modules. Residual connections and skip connections are added to the model
to avoid the problem of gradient vanishing. The output module projects hidden features
to the desired dimension to get the final results.

Figure 5.3: A demonstration of how a temporal convolution module and a graph convolution
module collaborate with each other. A temporal convolution module filters the inputs by sliding
a 1D window over the time and node axes, as denoted by the red. A graph convolution module
filters the inputs at each step, denoted by the blue.
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5.4.2 Graph Learning Layer

The graph learning layer learns a graph adjacency matrix adaptively to capture the

hidden relationships among time series data. To construct a graph, existing studies mea-

sure the similarity between pairs of nodes by a distance metric, such as dot product and

Euclidean distance [13]. This leads inevitably to the problem of high time and space com-

plexity with O(N2). It means the computation and memory cost grows quadratically with

the increase of graph size. This restricts the model’s capability of handling larger graphs.

To address this limitation, I adopt a sampling approach, which only calculates pair-wise

relationships among a subset of nodes. This cuts off the bottleneck of computation and

memory in each minibatch. More details will be provided in Section 5.4.6.

Another problem is that existing distance metrics are often symmetric or bi-directional.

In multivariate time series forecasting, I expect that the change of a node’s condition

causes the change of another node’s condition such as traffic flow. Therefore the learned

relation is supposed to be uni-directional. My proposed graph learning layer is specifically

designed to extract uni-directional relationships, illustrated as follows:

M1 = tanh(αE1Θ1)(5.1)

M2 = tanh(αE2Θ2)(5.2)

A= ReLU(tanh(α(M1MT
2 −M2MT

1 )))(5.3)

f or i = 1,2, · · · , N(5.4)

idx= argtopk(A[i, :])(5.5)

A[i,−idx]= 0,(5.6)

where E1,E2 represents randomly initialized node embeddings, which are learnable

during training, Θ1,Θ2 are model parameters, α is a hyper-parameter for controlling

the saturation rate of the activation function, and argtopk(·) returns the index of

the top-k largest values of a vector. The asymmetric property of my proposed graph

adjacency matrix is achieved by Equation 5.3. The subtraction term and the ReLU

activation function regularize the adjacency matrix so that if Avu is positive, its diagonal

counterpart Auv will be zero. Equation 5.5-5.6 is a strategy to make the adjacency matrix

sparse while reducing the computation cost of the following graph convolution. For each

node, I select its top-k closest nodes as its neighbors. While retaining the weights for

connected nodes, I set the weights of non-connected nodes as zero.

Incorporate External Data. The inputs to the graph learning layer are not limited to

node embeddings. In case that external knowledge about the attributes of each node is
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(a) GC module (b) Mix-hop propagation layer

Figure 5.4: Graph convolution and mix-hop propagation layer.

given, I can also set E1 =E2 =Z, where Z is a static node feature matrix. Some works

have considered capturing dynamic spatial dependencies [224, 225]. In other words,

they dynamically adjust the weight of two connected nodes based on temporal inputs.

However, assuming dynamic spatial dependencies makes the model extremely hard to

converge when we need to learn the graph structure at the same time. The advantage of

my approach is that we can learn stable and interpretable node relationships over the

period of the training dataset. Once the model is trained in an online learning version,

my graph adjacency matrix is also adaptable to change as new training data updates the

model parameters.

5.4.3 Graph Convolution Module

The graph convolution module aims to fuse a node’s information with its neighbors’

information to handle spatial dependencies in a graph. The graph convolution module

consists of two mix-hop propagation layers to process inflow and outflow information

passed through each node separately. The net inflow information is obtained by adding

the outputs of the two mix-hop propagation layers. Figure 5.4 shows the architecture of

the graph convolution module and the mix-hop propagation layer.

Mix-hop Propagation Layer. Given a graph adjacency matrix, I propose the mix-

hop propagation layer to handle information flow over spatially dependent nodes. The

proposed mix-hop propagation layer consists of two steps - the information propagation

step and the information selection step. I first give the mathematical form of these two

steps and then illustrate my motivations. The information propagation step is defined as
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follows:

(5.7) H(k) =βHin + (1−β)ÃH(k−1),

where β is a hyper parameter, which controls the ratio of retaining the root node’s original

states. The information selection step is defined as follows

(5.8) Hout =
K∑

i=0
H(k)W(k),

where K is the depth of propagation, Hin represents the input hidden states outputted by

the previous layer, Hout represents the output hidden states of the current layer, H(0) =
Hin, Ã= D̃−1(A+I), and D̃ii = 1+∑

j Ai j. In Figure 5.4b, I demonstrate the information

propagation step and information selection step in the proposed mix-hop propagation

layer. It first propagates information horizontally and selects information vertically.

The information propagation step propagates node information along with the given

graph structure recursively. A severe limitation of graph convolutional networks is that

node hidden states converge to a single point as the number of graph convolution layers

goes to infinity. This is because the graph convolutional network with many layers

reaches the random walk’s limit distribution regardless of the initial node states. To

address this problem, motivated by Klicpera et al. [221], I retain a proportion of nodes’

original states during the propagation process so that the propagated node states can

both preserve locality and explore a deep neighborhood. However, if I only apply Equation

5.7, some node information will be lost. Under the extreme circumstance that no spatial

dependencies exist, aggregating neighborhood information simply adds useless noises to

each node. Therefore, the information selection step is introduced to filter out important

information produced at each hop. According to Equation 5.8, the parameter matrix W(k)

functions as a feature selector. When the given graph structure does not entail spatial

dependencies, Equation 5.8 is still able to preserve the original node-self information by

adjusting W(k) to 0 for all k > 0.

Connection to existing works. The idea of mix-hop has been explored by [226] and [227].

Kapoor et al. [226] concatenate information from different hops. Chen et al. [227] propose

an attention mechanism to weight information among different hops. They both apply

GCN for information propagation. However, as GCN faces the over-smoothing problem,

information from higher hops may not or negatively contribute to the overall performance.

To avoid this, my approach keeps a balance between local and neighborhood information.

Furthermore, Kapoor et al. [226] show that their proposed model with two mix-hop layers

has the capability to represent the delta difference between two consecutive hops. My
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(a) TC module (b) Dilated inception layer

Figure 5.5: The temporal convolution and dilated inception layer.

approach can achieve the same effect with only one mix-hop propagation layer. Suppose

K = 2, W(0) = 0, W(1) =−1, and W(2) = 1, then

(5.9) Hout =Δ(H(2),H(1))=H2 −H1.

From this perspective, using summation is more efficient to represent all linear interac-

tions of different hops compared with the concatenation method.

5.4.4 Temporal Convolution Module

The temporal convolution module applies a set of standard dilated 1D convolution filters

to extract high-level temporal features. This module consists of two dilated inception

layers. One dilated inception layer is followed by a tangent hyperbolic activation function

and works as a filter. The other layer is followed by a sigmoid activation function and

functions as a gate to control the amount of information that the filter can pass to the

next module. Figure 5.5 shows the architecture of the temporal convolution module and

the dilated inception layer.

Dilated Inception Layer The temporal convolution module captures sequential pat-

terns of time series data through 1D convolutional filters. To come up with a temporal

convolution module that is able to both discover temporal patterns with various ranges

and handle very long sequences, I propose the dilated inception layer which combines

two widely applied strategies from convolutional neural networks, i.e., using filters with

multiple sizes [228] and applying dilated convolution [213].

First, choosing the right kernel size is a challenging problem for convolutional net-

works. The filter size can be too large to represent short-term signal patterns subtly, or
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too small to discover long-term signal patterns sufficiently. In image processing, a widely

employed strategy is called inception, which concatenates the outputs of 2D convolution

filters with three different kernel sizes, 1×1, 3×3, and 5×5. Moving from 2D images

to 1D time series, the set of 1×1, 1×3, and 1×5 filter sizes do not suit the nature of

temporal signals. As temporal signals tend to have several inherent periods such as 7, 12,

24, 28, and 60, a stack of inception layers with filter size 1×1, 1×3, and 1×5 cannot well

encompass those periods. Alternatively, I propose a temporal inception layer consisting

of four filter sizes, viz. 1×2, 1×3, 1×6, and 1×7. The aforementioned periods can all be

covered by the combination of these filter sizes. For example, to represent the period 12,

a model can pass the inputs through a 1×7 filter from the first temporal inception layer

followed by a 1×6 filter from the second temporal inception layer.

Second, the receptive field size of a convolutional network grows in a linear pro-

gression with the depth of the network and the kernel size of the filter. Consider a

convolutional network with m 1D convolution layers of kernel size c, the receptive field

size of the convolutional network is,

(5.10) R = m(c−1)+1.

To process very long sequences, it requires either a very deep network or very large

filters. I adopt dilated convolution to reduce model complexity. Dilated convolution

operates a standard convolution filter on down-sampled inputs with a certain frequency.

For example, where the dilation factor is 2, it applies standard convolution on inputs

sampled every two steps. Following [211], I let the dilation factor for each layer increase

exponentially at a rate of q (q > 1). Suppose the initial dilation factor is 1, the receptive

field size of a m layer dilated convolutional network with kernel size c is

(5.11) R = 1+ (c−1)(qm −1)/(q−1).

This indicates that the receptive field size of the network also grows exponentially with

an increase in the number of hidden layers at the rate of q. Therefore, using this dilation

strategy can capture much longer sequences than proceeding without it.

Formally, combining inception and dilation, I propose the dilated inception layer,

demonstrated by Figure 5.5b. Given a 1D sequence input z ∈RT and filters consisting of

f1×2 ∈R2, f1×3 ∈R3, f1×6 ∈R6, and f1×7 ∈R7, my dilated inception layer takes the form,

(5.12) z= concat(z� f1×2,z� f1×3,z� f1×6,z� f1×7),
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where the outputs of the four filters are truncated to the same length according to the

largest filter and concatenated across the channel dimension, and the dilated convolution

denoted by z� f1×k is defined as

(5.13) z� f1×k(t)=
k−1∑
s=0

f1×k(s)z(t−d× s),

where d is the dilation factor.

5.4.5 Skip Connection Layer & Output Module

Skip connection layers are essentially 1×Li standard convolutions where Li is the

sequence length of the inputs to the ith skip connection layer. It standardizes information

that jumps to the output module to have the same sequence length 1. The output module

consists of two 1×1 standard convolution layers, transforming the channel dimension of

the inputs to the desired output dimension. In case we want to predict a certain future

step only, the desired output dimension is 1. When we want to predict Q consecutive

steps, the desired output dimension is Q.

5.4.6 Proposed Learning Algorithm

I propose a learning algorithm to enhance my model’s capability of handling large graphs

and stabilizing in a better local optimum. Training on a graph often requires storing

all node intermediate states into memory. If a graph is large, it will face the problem of

memory overflow. Most relevant to us, Chiang et al. [3] propose a sub-graph training

algorithm to tackle the memory bottleneck. They apply a graph clustering algorithm

to partition a graph into sub-graphs and train a graph convolutional network on the

partitioned sub-graphs. In my problem, it is not practical to cluster nodes based on their

topological information because my model learns the latent graph structure at the same

time. Alternatively, in each iteration, I randomly split the nodes into several groups and

let the algorithm learn a sub-graph structure based on the sampled nodes. This gives

each node the full possibility of being assigned with another node in one group so that

the similarity score between these two nodes can be computed and updated. As a side

benefit, if I split the nodes into s groups, I can reduce the time and space complexity

of my graph learning layer from O(N2) to (N/s)2 in each iteration. After training, as

all node embeddings are well-trained, a global graph can be constructed to fully utilize

spatial relationships. Although it is computationally expensive, the adjacency matrix

can be pre-computed in parallel before making predictions.
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Algorithm 1 The learning algorithm of MTGNN.
1: Input: The dataset O, node set V , the initialized MTGNN model f (·) with Θ, learning rate γ,

batch size b, step size s, split size m (default=1).
2: set iter = 1, r = 1
3: repeat
4: sample a batch (X ∈ Rb×T×N×D ,Y ∈ Rb×T ′×N ) from O.
5: random split the node set V into m groups, ∪m

i=1Vi =V .
6: if iter%s == 0 and r <= T ′ then
7: r = r+1
8: end if
9: for i in 1:m do

10: compute Ŷ = f (X [:, :, id(Vi), :];Θ)
11: compute L = loss(Ŷ [:, : r, :],Y [:, : r, id(Vi)])
12: compute the stochastic gradient of Θ according to L.
13: update model parameters Θ according to their gradients and the learning rate γ.
14: end for
15: iter = iter+1.
16: until convergence

The second consideration of my proposed algorithm is to facilitate my model to

stabilize in a better local optimum. In the task of multi-step forecasting, I observe that

long-term predictions often achieve greater improvements than those in the short-term

in terms of model performance. I believe the reason is that my model predicts multi-

steps altogether, and long-term predictions produce a much higher loss than short-term

predictions. As a result, to minimize the overall loss, the model focuses more on improving

the accuracy of long-term predictions. To address this issue I propose a curriculum
learning strategy for the multi-step forecasting task. The algorithm starts with solving

the easiest problem, predicting the next one-step only. It is very advantageous for the

model to find a good starting point. With the increase in iteration numbers, I increase

the prediction length of the model gradually so that the model can learn the hard task

step by step. Covering all this, my algorithm is given in Algorithm 1. Further complexity

analysis of my model can be found in Appendix C.

5.5 Experimental Studies

I validate MTGNN on two tasks - both single-step and multi-step forecasting. First, I

compare the performance of MTGNN with other multivariate time series models on

four benchmark datasets for multivariate time series forecasting, where the aim is to

predict a single future step. Furthermore, to show how well MTGNN performs, compared
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Table 5.1: Dataset statistics.

Datasets # Samples # Nodes Sample Rate Input Length Output Length

traffic 17,544 862 1 hour 168 1
solar-energy 52,560 137 10 minutes 168 1
electricity 26,304 321 1 hour 168 1
exchange-rate 7,588 8 1 day 168 1

metr-la 34272 207 5 minutes 12 12
pems-bay 52116 325 5 minutes 12 12

with other spatial-temporal graph neural networks which, in contrast, use pre-defined

graph structural information, I evaluate MTGNN on two benchmark datasets for spatial-

temporal graph neural networks, where the aim is to predict multiple future steps.

Further results on parameter study can be found in Appendix C.

5.5.1 Experimental Setting

5.5.1.1 Data

In Table 5.1, I summarize statistics of benchmark datasets. Details of these datasets are

introduced below.

Single-step forecasting

• Traffic: the traffic dataset from the California Department of Transportation con-

tains road occupancy rates measured by 862 sensors in San Francisco Bay area

freeways during 2015 and 2016.

• Solar-Energy: the solar-energy dataset from the National Renewable Energy Labo-

ratory contains the solar power output collected from 137 PV plants in Alabama

State in 2007.

• Electricity: the electricity dataset from the UCI Machine Learning Repository

contains electricity consumption for 321 clients from 2012 to 2014.

• Exchange-Rate: the exchange-rate dataset contains the daily exchange rates of

eight foreign countries including Australia, British, Canada, Switzerland, China,

Japan, New Zealand, and Singapore ranging from 1990 to 2016.
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Following [217], I split these four datasets into a training set (60%), validation set (20%),

and test set (20%) in chronological order. The input sequence length is 168 and the output

sequence length is 1. Models are trained independently to predict the target future step

(horizon) 3, 6, 12, and 24.

Multi-step forecasting

• METR-LA: the METR-LA dataset from the Los Angeles Metropolitan Transporta-

tion Authority contains average traffic speed measured by 207 loop detectors on

the highways of Los Angeles County ranging from Mar 2012 to Jun 2012.

• PEMS-BAY: the PEMS-BAY dataset from California Transportation Agencies

(CalTrans) contains average traffic speed measured by 325 sensors in the Bay Area

ranging from Jan 2017 to May 2017.

Following [13], I split these two datasets into a training set (70%), validation set (20%),

and test set (10%) in chronological order. The input sequence length is 12, and the target

sequence contains the next 12 future steps. The time of the day is used as an auxiliary

feature for the inputs. For the selected baseline methods, the pairwise road network

distances are used as the pre-defined graph structure.

5.5.1.2 Experimental Setup

I use five evaluation metrics, including Mean Absolute Error (MAE), Root Mean Squared

Error (RMSE), Mean Absolute Percentage Error (MAPE), Root Relative Squared Er-

ror (RRSE), and Empirical Correlation Coefficient (CORR). For RMSE, MAE, MAPE,

and RRSE, lower values are better. For CORR, higher values are better. I repeat the

experiment 10 times and report the average value of evaluation metrics. The model is

trained by the Adam optimizer with gradient clip 5. The learning rate is 0.001. The

l2 regularization penalty is 0.0001. Dropout with 0.3 is applied after each temporal

convolution module. Layernorm is applied after each graph convolution module. The

depth of the mix-hop propagation layer is set to 2. The retain ratio from the mix-hop

propagation layer is set to 0.05. The saturation rate of the activation function from

the graph learning layer is set to 3. The dimension of node embeddings is 40. Other

hyper-parameters are reported according to different tasks.

Single-step forecasting I use 5 graph convolution modules and 5 temporal convolu-

tion modules with the dilation exponential factor 2. The starting 1×1 convolution has 1
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input channel and 16 output channels. The graph convolution module and the temporal

convolution modules both have 16 output channels. The skip connection layers all have

32 output channels. The first layer of the output module has 64 output channels and the

second layer of the output module has 1 output channel. The number of training epochs

is 30. For Traffic, Solar-Energy, and Electricity, the number of neighbors for each node is

20. For Exchange-Rate, the number of neighbors for each node is 8. The batch size is set

to 4. For the MTGNN+sampling model, I split the nodes of a graph into three partitions

randomly with a batch size of 16. Following [217], I use RSE and CORR as evaluation

metrics.

Multi-step forecasting I use 3 graph convolution modules and 3 temporal convolution

modules with the dilation exponential factor 1. The starting 1×1 convolution has 2 input

channels and 32 output channels. The graph convolution module and the temporal

convolution module both have 32 output channels. The skip connection layers all have

64 output channels. The first layer of the output module has 128 output channels and its

second layer has 12 output channels. The number of neighbors for each node is 20. The

number of training epochs is 100. The batch size is set to 64. Following [13], I use MAE,

RMSE , and MAPE as evaluation metrics.

5.5.2 Baseline Methods for Comparision

MTGNN and MTGNN+sampling are my models to be evaluated. MTGNN is my proposed

model. MTGNN+sampling is my proposed model trained on a sampled subset of a graph

in each iteration. Baseline methods are summarized in the following:

5.5.2.1 Single-step forecasting

• AR: An auto-regressive model.

• VAR-MLP: A hybrid model of the multilayer perception (MLP) and auto-regressive

model (VAR) [229].

• GP: A Gaussian Process time series model [230, 231].

• RNN-GRU: A recurrent neural network with fully connected GRU hidden units.

• LSTNet: A deep neural network, which combines convolutional neural networks

and recurrent neural networks [217].
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• TPA-LSTM: An attention-recurrent neural network [218].

5.5.2.2 Multi-step forecasting

• DCRNN: A diffusion convolutional recurrent neural network, which combines

diffusion graph convolutions with recurrent neural networks [13].

• STGCN: A spatial-temporal graph convolutional network, which incorporates graph

convolutions with 1D convolutions [20].

• Graph WaveNet: A spatial-temporal graph convolutional network, which integrates

diffusion graph convolutions with 1D dilated convolutions [80].

• ST-MetaNet: A sequence-to-sequence architecture, which employs meta networks

to generate parameters [232].

• GMAN: A graph multi-attention network with spatial and temporal attentions

[222].

• MRA-BGCN: A multi-range attentive bicomponent GCN [223].

5.5.3 Main Results

Table 5.2 and Table 5.3 provide the main experimental results of MTGNN and MT-

GNN+sampling. I observe that MTGNN achieves state-of-the-art results on most of

the tasks, and the performance of MTGNN only degrades marginal when it samples

sub-graphs for training. In the following, I discuss experimental results of single-step

and multi-step forecasting respectively.

5.5.3.1 Single-step forecasting

In this experiment, I compare MTGNN with other multivariate time series models.

Table 5.2 shows the experimental results for the single-step forecasting task. In general,

my MTGNN achieves state-of-the-art results over almost all horizons on Solar-Energy,

Traffic, and Electricity data. In particular, on Traffic data, the improvement of MTGNN

in terms of RSE is significant. MTGNN lowers down RSE by 7.24%, 3.88%, 4.83% over

the horizons of 3, 12, 24 on the traffic data. The main reason why MTGNN improves

the results of traffic data evidently is that the nature of traffic data is better suited for

my model assumption about the spatial-temporal dependencies. Obviously, the future
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Table 5.2: Baseline comparison under single-step forecasting for multivariate time series
methods.

Dataset Solar-Energy Traffic Electricity Exchange-Rate

Horizon Horizon Horizon Horizon

Methods Metrics 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

AR RSE 0.2435 0.3790 0.5911 0.8699 0.5991 0.6218 0.6252 0.63 0.0995 0.1035 0.1050 0.1054 0.0228 0.0279 0.0353 0.0445
CORR 0.9710 0.9263 0.8107 0.5314 0.7752 0.7568 0.7544 0.7519 0.8845 0.8632 0.8591 0.8595 0.9734 0.9656 0.9526 0.9357

VARMLP RSE 0.1922 0.2679 0.4244 0.6841 0.5582 0.6579 0.6023 0.6146 0.1393 0.1620 0.1557 0.1274 0.0265 0.0394 0.0407 0.0578
CORR 0.9829 0.9655 0.9058 0.7149 0.8245 0.7695 0.7929 0.7891 0.8708 0.8389 0.8192 0.8679 0.8609 0.8725 0.8280 0.7675

GP RSE 0.2259 0.3286 0.5200 0.7973 0.6082 0.6772 0.6406 0.5995 0.1500 0.1907 0.1621 0.1273 0.0239 0.0272 0.0394 0.0580
CORR 0.9751 0.9448 0.8518 0.5971 0.7831 0.7406 0.7671 0.7909 0.8670 0.8334 0.8394 0.8818 0.8713 0.8193 0.8484 0.8278

RNN-GRU RSE 0.1932 0.2628 0.4163 0.4852 0.5358 0.5522 0.5562 0.5633 0.1102 0.1144 0.1183 0.1295 0.0192 0.0264 0.0408 0.0626
CORR 0.9823 0.9675 0.9150 0.8823 0.8511 0.8405 0.8345 0.8300 0.8597 0.8623 0.8472 0.8651 0.9786 0.9712 0.9531 0.9223

LSTNet-skip RSE 0.1843 0.2559 0.3254 0.4643 0.4777 0.4893 0.4950 0.4973 0.0864 0.0931 0.1007 0.1007 0.0226 0.0280 0.0356 0.0449
CORR 0.9843 0.9690 0.9467 0.8870 0.8721 0.8690 0.8614 0.8588 0.9283 0.9135 0.9077 0.9119 0.9735 0.9658 0.9511 0.9354

TPA-LSTM RSE 0.1803 0.2347 0.3234 0.4389 0.4487 0.4658 0.4641 0.4765 0.0823 0.0916 0.0964 0.1006 0.0174 0.0241 0.0341 0.0444
CORR 0.9850 0.9742 0.9487 0.9081 0.8812 0.8717 0.8717 0.8629 0.9439 0.9337 0.9250 0.9133 0.9790 0.9709 0.9564 0.9381

MTGNN RSE 0.1778 0.2348 0.3109 0.4270 0.4162 0.4754 0.4461 0.4535 0.0745 0.0878 0.0916 0.0953 0.0194 0.0259 0.0349 0.0456
CORR 0.9852 0.9726 0.9509 0.9031 0.8963 0.8667 0.8794 0.8810 0.9474 0.9316 0.9278 0.9234 0.9786 0.9708 0.9551 0.9372

MTGNN+sampling RSE 0.1875 0.2521 0.3347 0.4386 0.4170 0.4435 0.4469 0.4537 0.0762 0.0862 0.0938 0.0976 0.0212 0.0271 0.0350 0.0454
CORR 0.9834 0.9687 0.9440 0.8990 0.8960 0.8815 0.8793 0.8758 0.9467 0.9354 0.9261 0.9219 0.9788 0.9704 0.9574 0.9382

traffic occupancy rate of a road not only depends on its past but also on its connected

roads’ occupancy rates. MTGNN fails to make improvements on the exchange-rate data,

possibly due to the smaller graph size and fewer training examples of exchange-rate

data.

5.5.3.2 Multi-step forecasting

In this experiment, I compare MTGNN with other spatial-temporal graph neural network

models. Table 5.3 shows the experimental results for the task of multi-step forecasting.

The significance of MTGNN lies in that it achieves on-par performance with state-of-the-

art spatial-temporal graph neural networks without using a pre-defined graph, while

DCRNN, STGCN, and MRA-BGCN fully rely on pre-defined graphs. Graph Wavenet pro-

poses a self-adaptive adjacency matrix, but it needs to combine with a pre-defined graph

in order to achieve optimal performance. ST-MetaNet employs attention mechanisms to

adjust the edge weights of a pre-defined graph. GMAN leverages node2vec algorithm

to preserve node structural information while performing attention mechanisms. When

a graph is not defined, these methods cannot model multivariate times series data

efficiently.
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Table 5.3: Baseline comparison under multi-step forecasting for spatial-temporal graph
neural networks.

Horizon 3 Horizon 6 Horizon 12
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%
Graph WaveNet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
ST-MetaNet 2.69 5.17 6.91% 3.10 6.28 8.57% 3.59 7.52 10.63%
MRA-BGCN 2.67 5.12 6.80% 3.06 6.17 8.30% 3.49 7.30 10.00%
GMAN 2.77 5.48 7.25% 3.07 6.34 8.35% 3.40 7.21 9.72%

MTGNN 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87%
MTGNN+sampling 2.76 5.34 5.18% 3.11 6.32 8.47% 3.54 7.38 10.05%
PEMS-BAY
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%
Graph WaveNet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
ST-MetaNet 1.36 2.90 2.82% 1.76 4.02 4.00% 2.20 5.06 5.45%
MRA-BGCN 1.29 2.72 2.90% 1.61 3.67 3.80% 1.91 4.46 4.60%
GMAN 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%

MTGNN 1.32 2.79 2.77% 1.65 3.74 3.69% 1.94 4.49 4.53%
MTGNN+sampling 1.34 2.83 2.83% 1.67 3.79 3.78% 1.95 4.49 4.62%

5.5.4 Parameter Study

I conduct a parameter study on eight core hyper-parameters which influence the model

complexity of MTGNN. I list these hyper-parameters as follows: Number of layers, the

number of temporal convolution modules, ranges from 1 to 6; number of filters, the

number of output channels for temporal convolution modules and graph convolution

modules, ranges from 4 to 128; number of neighbors, the parameter k in Equation 5.5,

ranges from 10 to 60; saturation rate, the parameter α in Equation 5.1, 5.2, and 5.3,

ranges from 0.5 to 5; retain ratio of mix-hop propagation layer, the parameter β in

Equation 5.7, ranges from 0 to 0.8; depth of mix-hop propagation layer, the parameter K
in Equation 5.8, ranges from 1 to 6.

I repeat each experiment 10 times with 50 epochs each time and report the average of

MAE with a standard deviation over 10 runs on the validation set. I change the parameter

under investigation and fix other parameters in each experiment. Figure 5.6 shows the

experimental results of my parameter study. As shown in Figure 5.6a and Figure 5.6b,

increasing the number of layers and filters enhances my model’s expressive capacity,

98



5.5. EXPERIMENTAL STUDIES

while reducing the MAE loss. Figure 5.6c shows that a small number of neighbors gives

better results. It is possibly because a node may only depend on a limited number of

other nodes, and increasing its neighborhood merely introduces noises to the model.

The model performance is not sensitive to the saturation rate, as shown in Figure 5.6d.

However, a large saturation rate can impose values of the adjacency matrix produced

by the graph learning layer approach to 0 or 1. As shown in Figure 5.6e, a high retain

ratio degrades the model performance significantly. I think it is because by default the

propagation depth of the mix-hop propagation layer is set to 2, and as a result, keeping a

high proportion of root information constrains a node from exploring its neighborhood.

Figure 5.6f shows that it is enough to propagate node information with 2 or 3 steps. With

the increase of the depth of propagation, the proposed mix-hop propagation layer does

not suffer from the over-smoothing problem incurred by information aggregation. With

the depth of propagation equal to 6, it has the lowest mean MAE with a larger variation.

5.5.5 Ablation Study

I conduct an ablation study on the METR-LA data to validate the effectiveness of key

components that contribute to the improved outcomes of my proposed model. I name

MTGNN without different components as follows:

• w/o GC: MTGNN without the graph convolution module. I replace the graph

convolution module with a linear layer.

• w/o Mix-hop: MTGNN without the information selection step in the mix-hop

propagation layer. I pass the outputs of the information propagation step to the

next module directly.

• w/o Inception: MTGNN without inception in the dilated inception layer. While

keeping the same number of output channels, I use a single 1×7 filter only.

• w/o CL: MTGNN without curriculum learning. I train MTGNN without gradually

increasing the prediction length.

I repeat each experiment 10 times with 50 epochs per repetition and report the

average of MAE, RMSE, MAPE with a standard deviation over 10 runs on the validation

set in Table 5.4. The introduction of graph convolution modules significantly improves

the results as it enables information flow among isolated but interdependent nodes.

The effect of mix-hop is evident as well: it validates that the use of mix-hop is helpful
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(a) Number of layers (b) Number of filters

(c) Number of neighbors (d) Saturation rate

(e) Retain ratio (f) Depth of propagation

Figure 5.6: Parameter Study. X-axis is the parameter to be studied. Y-axis is the MAE score.
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Table 5.4: Ablation study.

Methods MTGNN w/o GC w/o Mix-hop w/o Inception w/o CL

MAE 2.7715±0.0119 2.8953±0.0054 2.7975±0.0089 2.7772±0.0100 2.7828±0.0105

RMSE 5.8070±0.0512 6.1276±0.0339 5.8549±0.0474 5.8251±0.0429 5.8248±0.0366

MAPE 0.0778±0.0009 0.0831±0.0009 0.0779±0.0009 0.0778±0.0010 0.0784±0.0009

for selecting useful information at each information propagation step in the mix-hop

propagation layer. The effect of inception is significant in terms of RMSE, but marginal

in terms of MAE. This is because using a single 1×7 filter has half more parameters

than using a combination of 1×2,1×3,1×5,1×7 filters under the condition that the

number of output channels for the dilated inception layer remains the same. Lastly, my

curriculum learning strategy proves to be effective. It enables my model to converge

quickly to an optimum that fits for the easiest task, and fine-tune parameters step by

step as the level of learning difficulty increases.

5.5.6 Study of the Graph Learning Layer

To validate the effectiveness of my proposed graph learning layer, I conduct a study

which experiments with different ways of constructing a graph adjacency matrix. Table

5.5 shows different forms of A with experimental results tested on the validation set of

the METR-LA data averaged on 10 runs. Predefined-A is constructed by road network

distance [13]. Global-A assumes the adjacency matrix is a parameter matrix, which

contains N2 parameters. Motivated by [80], Undirected-A and Directed-A are computed

by the similarity scores of node embeddings. Motivated by [224, 225], Dynamic-A assumes

the spatial dependency at each time step is dependent on its node inputs. Uni-directed-A

is my proposed method. According to Table 5.5, my proposed uni-directed-A achieves the

lowest mean MAE, RMSE, and MAPE. It improves over predefined-A, undirected-A, and

dynamic-A significantly. My uni-directed-A improves over undirected-A and directed-A

marginally in terms of MAE and MAPE but proves to be more robust due to a lower

RMSE.

I further investigate the learned graph adjacency matrix via a case study. In Figure

5.7a, I plot the raw time series of node 55 and its pre-defined top-3 neighbors. In Figure

5.7b, I chart the raw time series of node 55 and its learned top-3 neighbors. Figure 5.7c

shows the geo-location of these nodes, with green nodes representing the central node’s

learned top-3 neighbors and yellow nodes representing the central node’s pre-defined
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(a) Time series of node 55 and its top-3 neigh-
bors given by the pre-defined A. The blue line
represents node 55.

(b) Time series of node 55 and its top-3 neigh-
bors given by the learned A. The blue line
represents node 55.

(c) Node locations of node 55 and its neighbors marked on Google Maps. Yellow nodes represent
node 55’s top-3 neighbors given by the pre-defined A. Green nodes represent node 55’s top-3
neighbors given by the learned A.

Figure 5.7: Case study

top-3 neighbors. I observe that the central node’s pre-defined top-3 neighbors are much

closer to the node itself on the map. As a result, their time series are more correlated

simultaneously, as shown by the red circles in Figure 5.7a. On the contrary, the central

node’s learned top-3 neighbors distribute further away from it but still lie on the same

road it follows. According to Figure 5.7b, time series of the learned top-3 neighbors are

more capable of indicating extreme traffic conditions of the central node in advance.

5.5.7 Complexity Analysis

I analyze the time complexity of the main components of the proposed model MTGNN,

which is summarized in Table 5.6. The time complexity of the graph learning layer is
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Table 5.5: Comparison of different graph learning methods.

Methods Equation MAE RMSE MAPE

Pre-defined-A - 2.9017±0.0078 6.1288±0.0345 0.0836±0.0009

Global-A A= ReLU(W) 2.8457±0.0107 5.9900±0.0390 0.0805±0.0009

Undirected-A A= ReLU(tanh(α(M1MT
1 ))) 2.7736±0.0185 5.8411±0.0523 0.0783±0.0012

Directed-A A= ReLU(tanh(α(M1MT
2 ))) 2.7758±0.0088 5.8217±0.0451 0.0783±0.0006

Dynamic-A At = Sof tMax(tanh(XtW1)tanh(WT
2 XT

t )) 2.8124±0.0102 5.9189±0.0281 0.0794±0.0008

Uni-directed-A (mine) A= ReLU(tanh(α(M1MT
2 −M2MT

1 ))) 2.7715±0.0119 5.8070±0.0512 0.0778±0.0009

Components Time Complexity

Graph Learning Layer O(Ns1s2 +N2s2)

Graph Convolution Module O(K(Md1 +Nd1d2)

Temporal Convolution Module O(Nlci co/d)

Table 5.6: Time Complexity Analysis

(O(Ns1s2+N2s2)) where N denotes the number of nodes, s1 represents the dimension

of node input feature vectors, and s2 represents the dimension of node hidden feature

vectors. Treating s1 and s2 as constants, the time complexity of the graph learning

layer becomes O(N2). It is attributed to the pairwise computation of node hidden feature

vectors. The graph convolution module incurs O(K(Md1+Nd1d2) time complexity, where

K is the propagation depth, N is the number of nodes, d1 denotes the input dimension

of node states, d2 denotes the output dimension of node states. Regarding K , d1 and d2

as constants, the time complexity of the graph convolution module turns to O(M). This

result comes from the fact that in the information propagation step, each node receives

information from its neighbors and the sum of the number of neighbors of each node

exactly equals the number of edges. The time complexity of the temporal convolution

module equals to O(Nlci co/d), where l is the input sequence length, ci is the number of

input channels, co is the number of output channels, and d is the dilation factor. The

time complexity of the temporal convolution module mainly depends on N × l, which is

the size of the input feature map.
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5.6 Summary

In this chapter, I introduce a novel framework for multivariate time series forecasting.

To the best of my knowledge, I am the first to address the multivariate time series

forecasting problem via a graph-based deep learning approach. I propose an effective

method to exploit the inherent dependency relationships among multiple time series.

My method demonstrates superb performance in a variety of multivariate time series

forecasting tasks and opens a new door to use GNNs to handle diverse non-structural

data.
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6
TRAVERSENET: UNIFYING SPACE AND TIME IN

MESSAGE PASSING

6.1 Motivation

Spatial-temporal graphs are ubiquitous in the present world (e.g., EEG signals recogni-

tion [233], skeleton-based action recognition [15], and traffic networks [232]). Spatial-

temporal graph modeling assumes that the nodes in a topological structure contain

spatial-temporal attributes and a node’s future pattern is subject to its neighbors’ histori-

cal results as well as its own past records. The traffic network is a quintessential example.

The traffic conditions on a particular road at a given time depend not only on that road’s

previous traffic conditions but also on the traffic conditions of its adjacent roads several

minutes ago, as it takes time for vehicles to flow from one point to the next. Hence, how

to effectively exploit and preserve both spatial and temporal inner-dependency turns

into an essential challenge to answer.

A natural approach is to stack graph convolutional networks (GCNs) and recurrent

neural networks (RNNs) to jointly capture spatial topology and temporal sequence in

a spatial-temporal graph (ST-Graph) [13, 19, 57]. While effective in fusing topological

information into temporal sequence learning, RNN-based frameworks are inefficient

in capturing long-range spatial-temporal dependencies. As illustrated by Figure 6.1a,

during each recurrent step, they only allow a node to be aware of its neighbors’ current

inputs and its neighbors’ previous hidden states. Information loss is inevitable when
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(a) RNN-based Methods. The node v receives raw
information of its neighbor u at the current step
and latent information from the last time step.

(b) CNN-based Methods. The node v receives
information from its neighbor u at the current
time step and a short window of recent time
steps.

(c) Attention-based Methods. The node v re-
ceives information from its neighbor u at the
current time step and a conditional weighted
sum of information from recent time steps
based on the states between two sides.

(d) My method. The node v selectively receives
information of its neighbor u within a period
of time directly. The importance weight of
each time step is condition on the correspond-
ing states between two sides.

Figure 6.1: Message Passing Diagrams of Different STGNNs. The blue line denotes the time
series of a node v. The red line is the time series of its neighbor u. The arrows are used to
illustrate the message passing paradigms in different spatial-temporal approaches.
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processing long time series.

Meanwhile, capitalizing on parallel computing and stable convolutional propaga-

tion, CNN-based ST-Graph frameworks have received considerable attention [15, 20].

They stack temporal convolution layers and graph convolution layers to capture local

spatial-temporal dependencies. As illustrated in Figure 6.1b, they first use a small 1D

convolutional kernel to propagate node temporal information to the current time step,

then use the graph convolution to pass the aggregated temporal information of a node’s

neighbors to the node itself. To capture the long-range spatial-temporal dependencies,

they face the trade-off between kernel size and the number of layers. If a large 1D kernel

is used to retain long-range spatial-temporal relations, the model has to be shallow

because of a small number of layers. Alternatively, if a small kernel is used, a large

number of 1D CNN layers and graph convolutional layers are requested, resulting in

efficiency issues.

The attention mechanism is known for its efficiency of delivering important informa-

tion [234, 235]. A number of studies integrate spatial attentions with temporal attentions

for spatial-temporal data modeling [225, 236, 237]. The information flow diagram of

attention-based methods is similar to that of CNN-based methods. Instead of using

convolutional kernels, they apply attention mechanisms for information aggregation.

As illustrated by Figure 6.1c, they first use temporal attentions to aggregate important

historical information of a node u into its current step. Then they select important infor-

mation of a node v’s neighborhood by spatial attention and pass it to the node v itself.

The temporal attention weights of a node only depend on the node itself. When passing

the temporal information to its neighbors, its neighbors will receive the same temporal

information and cannot determine which period of information is more important to

themselves based on their own conditions.

To summarize, existing approaches either model spatial-temporal dependencies

locally or model spatial correlations and temporal correlations separately. They prevent

a node from being directly aware of its neighborhood long-range historical information.

In fact, a node‚Äôs current state may depend on its neighbors’ previous states within

a certain period of time. As illustrated by Figure 6.1d, the rise of a node’s curve may

exert influence on its neighbors several time steps later because of physical distance.

For example, traffic congestion of a road will cause another congestion of its nearby

roads 15 minutes later. It suggests that treating spatial correlations and temporal

correlations locally or separately is inappropriate. Additionally, existing ST-GNNs tend

to simply stack different layers (e.g., inception layer, dilated convolutional layer and
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RNN/CNN layer) together, resulting in overly-complex and cumbersome architecture.

Such construction confuses the significance and contribution of each kind of layers, and

further damages the space-time continuum as well as tears the space-time integrity.

To overcome the above challenges, I present TraverseNet, a novel spatial-temporal

neural network for structured data. TraverseNet processes a spatial-temporal graph as

an inseparable entity. My specially designed message traverse layer enables a node to

be wise to a period of information from its neighborhood explicitly. I leverage attention

mechanisms to select influential neighboring conditions of a node. Instead of attending

the central node’s current state with its neighbors‚Äô concurrent states, I attend a

node‚Äôs current state over each of its neighbors‚Äô historical states within a certain

period of time. By building connections from each neighbor‚Äôs past to the central

node‚Äôs present, a node‚Äôs neighborhood information no matter in the past or in the

present is traversed efficiently and effectively.

The main contributions of this chapter are as follows:

• I propose TraverseNet, a simple and powerful framework that captures the inner

spatial-temporal dependencies without compromising space-time integrity.

• I propose a message traverse layer, effectively unifying space and time in message

passing by traversing information of a node’s neighbors’ past to the node’s present.

• I construct TraverseNet with message traverse layers and validate the significance

of message traverse mechanism with an experimental study.

6.2 Background and Related Work to TraverseNet

6.2.1 Definitions and Notations

A graph G = (V ,E), where V is the set of nodes and E is the set of edges, is a math-

ematical description of structured data consisting of entities and relationships. I let

v ∈V to represent a node and e = (v,u) ∈ E to denote an directed edge from u to v. The

neighborhood of a node v is the set of nodes N(v)= {u ∈V |(v,u) ∈ E} that points to node v.

The adjacency matrix A is an another way that defines a graph with a dense matrix. It

is an N by N matrix with Ai j = 1 if (vi,vj) ∈ E and Ai j = 0 if (vi,vj) ∉ E, where N is the

number of nodes. I let Xt ∈RN×D to denote the node feature matrix at time step t.

The goal of spatial-temporal graph forecasting is to predict each node’s future values

given its historical sequential data and the topological graph structure. Formally, the
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spatial-temporal graph forecasting problem is defined as finding a mapping from the

input values to the target values:

(6.1) [Xt0,Xt1, · · · ,Xtp ;G]
f−→ [Xtp+1,Xtp+2, · · ·Xtp+q ].

6.2.2 Related work

Standard graph neural networks assume that the input node features are static and

only consider spatial information flow. When the node features dynamically change over

time, a group of methods under the name of spatial-temporal graph neural networks
can handle the data more effectively. I divide existing spatial-temporal graph neural

networks into three categories: recurrent-based methods, convolution-based methods,

and attention-based methods.

6.2.2.1 Recurrent-based STGNNs

Recurrent-based STGNNs simply assume a node‚Äôs current hidden state depends on

its own current inputs, its neighbors‚Äô current inputs, its own previous hidden states

and its neighbors‚Äô previous hidden states [13, 19, 57]. The form of recurrent-based

approaches can be conceptualized as

(6.2) Ht = RNN(GCN([Xt,Ht−1],A;Θ);U)

where Θ and U are model parameters, and Ht−1 represents the nodes’ previous hidden

state matrix. The previous hidden state of a node is essentially a memory vector of its

historical information. As the number of recurrent steps increases, the memory vector

will gradually forget information many steps before.

Another drawback of recurrent-based STGNNs is the high computation cost induced

by recurrent propagation accompanied by graph convolution. Many recent studies follow

a convolution-based approach.

6.2.2.2 Convolution-based STGNNs

Convolution-based STGNNs take advantage of the efficiency and shift-invariance prop-

erty of convolutional neural networks [80, 193, 238]. They interleave temporal convolu-

tions with graph convolutions to handle temporal correlations and spatial dependencies

respectively. The core difference to recurrent-based methods is that they replace recur-

rent neural networks with temporal convolution networks (TCN) for capturing temporal
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patterns, illustrated as the following,

(6.3) Z=GCN(TCN(∥T
t=1 Xt;Θ),A;U)

where ∥ represents concatenation, Z ∈ RN×D×(T−c+1), T is the sequence length, and c is

the kernel size of the temporal convolution. The information flow of an STGNN layer

occurs first temporally then spatially. Such models are against nature, where an object

moves in space and time simultaneously.

6.2.2.3 Attention-based STGNNs

Similar to convolution-based approaches, attention-based STGNNs treat spatial depen-

dencies and temporal correlations in separate steps [225, 236, 237],

(6.4) Z= SA(∥T
t=1 T A(Xt;Θ),A);U)

where SA(·) is a spatial attention layer and T A(·) is an temporal attention layer. The

motivation of attention-based methods is that node spatial dependency and temporal

dependency could be dynamically changing over time. The spatial attention layer first

updates the graph adjacency matrix by computing the distance between a query node’s

input and a key node’s input, then performs message passing. The temporal convolution

layer computes a weighted sum of a node’s historical state based on attention scores.

6.2.2.4 Other relevant works.

Song et al. [239] propose a localized spatial-temporal graph convolution network (STS-

GCN) that synchronously capture consecutive local spatial-temporal correlations. Li et

al. [240] propose the Spatial-Temporal Fusion Graph Neural Networks (STFGNN) that

considers pre-defined spatial dependencies, pre-computed time series similarities, and

local temporal dependencies. Both STSGCN and STFGNN are not efficient to transfer

the historical information of a node’s neighbor to the node itself due to local connections

and fixed dependency weights.

6.3 TraverseNet

To enable the direct flow of information both in space and time, I propose a novel

spatial-temporal graph neural network named TraverseNet. The proposed design of
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Figure 6.2: A demonstration of message traverse layer. The node v has two neighbors u1
and u2. Each node has four consecutive states at t1, t2, t3, t4. The message traverse layer
allows the node v at a certain time step to receive information from its own previous
time steps as well as its neighbors’ previous time steps.

Figure 6.3: The model framework of TraverseNet. The TraverseNet mainly consists of
three parts, the pre-processing layer, the message traverse layer, and the post-processing
layer. The inputs is a sequence of node feature matrix Xt1 , Xt2 , · · · , Xtp . The pre-processing
MLP layer projects the input feature matrices to a latent feature space. The message
traverse layer propagates information across space and time. The post-processing layer
projects the nodes hidden states to the output space.

TraverseNet is simple. Apart from multi-layer perceptrons (MLPs), TraverseNet only

contains my newly proposed message traverse layers. In the following, I introduce the

message traverse layer and present the model framework of TraverseNet.

6.3.1 Message Traverse Layer

Conventional graph convolution layers or message passing layers only pass nodes’ neigh-

borhood information across space, ignoring temporal dynamics. I propose the message
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traverse layer, a message passing layer that allows node neighborhood information to be

simultaneously delivered across space and time. As demonstrated by Figure 6.2, node v
has two neighbors u1 and u2. States of u1 prior to t4 can traverse to the state of node v
at t4 directly. This is in fundamental contrast to existing spatial-temporal works, where

node v at t4 can only receive information of node u1 and u2 from their concurrent time

step t4. The spatial-temporal dependency between two nodes may change from time to

time depending on their states. I further leverage the attention mechanism to select im-

portant neighborhood information and to handle dynamic spatial-temporal dependencies.

Formally, the message traverse layer updates the state of node v for each time step from

t = 0 to t = p−1 by

(6.5) h(k)
vt

= ∑
u∈N(v)∪v

α(k)
r (c(k)

(v→v)t
,c(k)

(u→v)t
)W(k)

s c(k)
(u→v)t

,

where h0
vt
= xvt , k denote the index of layers, and σ(·) denote an activation function. The

function α(k)
r (·, ·) is an attention function of the form

(6.6) α(k)
r (zq,zo)=

exp(σ(γ(k)T
[Θ(k)

iq zq||Θ(k)
io zo]))∑

o∈S exp(σ(γ(k)T [Θ(k)
iq zq||Θ(k)

io zo]))
,

where Θ, W, and γ represent model parameters. The term c(k)
(v→v)t

represents the latent

information received by node v from its own time steps prior to time t. It is calculated as

a weighted sum of its own historical states

(6.7) c(k)
(v→v)t

=
Q∑

m=0
α(k)

c (h(k−1)
vt

,h(k−1)
vt−m

)W(k)
c h(k−1)

vt−m
,

The term c(k)
(u→v)t

denotes the latent information received by node v from its neighbor u’s

previous time steps prior to time t. To assess the importance of each state of neighbor u,

I involve the state of node v at the current time step as a query in the attention function

(6.8) c(k)
(u→v)t

=
Q∑

m=0
α(k)

e (h(k−1)
vt

,h(k−1)
ut−m

)W(k)
e h(k−1)

ut−m
.

The attention functions α(k)
c (·, ·) and α(k)

e (·, ·) have the same form as α(k)
r (·, ·). The hyper-

parameter Q controls the time-window size within which a node receives information

from its neighbor’s past states. I differentiate the node itself from its neighborhood

set because the node’s own information has a decisive influence on its predictions for

sequence forecasting. The computation complexity of the proposed message traverse
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layer is O(M× p×Q), where M denotes the number of edges including self-loops and p
is the input sequence length.

The message traverse layer is a generalization of both spatial attention layers and

temporal attention layers. Specifically, if the neighborhood set of the node v is empty,

then Equation 6.5 reduces to a temporal attention layer

(6.9) h(k)
vt

=W(k)
s

Q∑
m=0

α(k)
c (h(k−1)

vt
,h(k−1)

vt−m
)W(k)

c h(k−1)
vt−m

.

Alternatively, if the window size Q is set to 0, then Equation 6.5 becomes a spatial
attention layer

(6.10) h(k)
vt

= ∑
u∈N(v)∪v

α(k)
r (c(k)

(v→v)t
,c(k)

(u→v)t
)W(k)

s c(k)
(u→v)t

,

where

c(k)
(v→v)t

=W(k)
c h(k−1)

vt
(6.11)

c(k)
(u→v)t

=W(k)
e h(k−1)

ut
.(6.12)

In contrary to existing works that interleave spatial computations with temporal com-

putations, the proposed message traverse layer handles spatial-temporal dependency

as a whole. The message traverse layer can not be separated into a spatial attention

layer and a temporal attention layer. It is mainly because I assume the spatial-temporal

dependency between a node’s state at time step t and its neighbor’s state at time step

t−m is dynamic. I use the state of the central node v at time step t as a query to assess

the importance of its neighboring node u’s historical states at each time step. Overall

this design shortens the path length of message passing and enables a node to be aware

of its neighborhood variation at firsthand.

6.3.2 Model Framework

As the message traverse layer is sufficient to capture spatial-temporal dependencies,

I design a framework named TraverseNet that is simple and powerful to accomplish

the spatial-temporal graph forecasting task. In Figure 6.3, I present the framework of

TraverseNet. The TraverseNet consists of three parts, the pre-processing layer, a stack

of message traverse layers, and the post-processing layer. The pre-processing layer is a

feedforward layer which projects node feature matrix at each time step to a latent space.

Next I capture nodes’ spatial-temporal dependencies by message traverse layers. Finally,
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I use the post-processing layer to map node hidden states to the output space. The post-

processing layer contains a 1× p standard convolutional layer followed by a feedforward

layer. Suppose the inputs of node v to the post-processing layer is zv =∥p−1
i=0 h′(K−1)

vi
, where

zv ∈Rd×1×p, and p is the input sequence length. The 1× p standard convolutional layer

is used to squeeze the third dimension of the inputs zv to 1. Afterward, the feedforward

layer is applied to generate the prediction z′
v ∈ Rq for node v, where q is the output

sequence length. In addition, residual connections and batch normalization are applied

to message traverse layers to improve model robustness. In particular, as the inputs of

each node may have very different scales, I let the batch normalization scale the hidden

features on the node dimension.

6.3.3 Optimization & Implementation

I optimize model parameters of TraverseNet end-to-end by minimizing the Mean Absolute

Error (MAE) loss with gradient descent. The MAE is defined as

(6.13) L =Average

(
p+q∑

i=p+1
|Xti − X̂ti |

)
.

I implement TraverseNet with Pytorch and DGL [137]. In more detail, I first construct

a heterogeneous graph by treating each node at each time step as a unique node and

creating connections as illustrated by Figure 6.2. The state of each node at a certain time

step is linked to its historical states as well its neighbors’ historical states within a time

window Q. The constructed graph is in a sparse form thus efficient for computation. I

implement the message traverse layer by customizing the HeterGraphConv module of

DGL. The code is publicly available at https://github.com/nnzhan/TraverseNet.

6.4 Experimental Studies

6.4.1 Dataset

I follow the experimental setup in [239]. I use three traffic datasets, PEMS-03, PEMS-04,

and PEMS-08, in my experiments. These datasets contain traffic signals of road sensors

aggregated every five minutes collected by the Caltrans Performance Measurement

Systems in different districts of California. I provide summary statistics of each dataset

in Table 6.1. Two tasks, i.e. traffic flow prediction and traffic speed prediction, are

evaluated using these datasets. I predict the next twelve steps traffic speed/flow given
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Table 6.1: Dataset statistics.

Datasets # Sensors Sampling rate # Time steps Signals

PEMS03 358 5 mins 26209 F
PEMS04 307 5 mins 16992 F,S,O
PEMS08 170 5 mins 17856 F,S,O

In column titled “Signals”, F represents traffic flow, S represents traffic
speed, and O represents traffic occupancy rate.

the previous twelve steps of traffic signals and the traffic graph. I construct the traffic

graph by regarding each sensor as a node and connecting two sensors if they are on the

same road. As data pre-processing, I standardize the inputs to have zero mean and unit

variance by

(6.14) X̃= X −mean(X )
std(X )

.

To check if the datasets exhibit spatial-temporal dependencies, I plot time lags v.s. cross-

correlations of pairs of connected nodes and pairs of far-away nodes (i.e. more than nine

hops away) for each dataset respectively.

The cross-correlation between a sequence {x1, x2, · · · , xL} and a sequence {y1, y2, · · · , yL}

at time lag k is essentially the correlation between the sequence y and the sequence x
shifted k steps back:

(6.15) C =
1
L

∑L
t=k xt−k yt − 1

L2
∑L

t=k xt−k
∑L

t=k yt√
1
L

∑L
t=k x2

t−k − ( 1
L

∑L
t=k xt−k)2

√
1
L

∑L
t=k y2

t − ( 1
L

∑L
t=k yt)2

Figure 6.4 and Figure 6.5 presents my analysis. In Figure 6.4a, 6.4b and 6.4c, it shows

that the cross-correlations between pairs of connected nodes are always higher than the

cross-correlations between pairs of far-away nodes across all time lags and datasets. Dig

into detail, I plot the distribution of peak points of cross-correlation curves between pairs

of connected nodes for each datasets, as shown by Figure 6.5a, 6.5b, 6.5c. The majority of

two connected nodes‚Äô cross-correlations peak at time lag 0 and 1. However, there is

still a small a amount of nodes of which the cross-correlation values peak at higher time

lags. In particular, for PEMS-04 and PEMS-08, there are 5% and 10% of connected nodes

of which the cross-correlation peak at time 11. This is suggests that it is reasonable to

consider spatial-temporal dependencies.
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(a) PEMS-03 (b) PEMS-04 (c) PEMS-08

Figure 6.4: Cross-correlations between pairs of connected nodes and between pairs of far-away
nodes. The x-axis is the time lag. The y-axis is the mean of correlation coefficients with standard
deviation.

(a) PEMS-03 (b) PEMS-04 (c) PEMS-08

Figure 6.5: The distribution of peak points of cross-correlation plots between pairs of connected
nodes. The x-axis is the time lag. The y-axis is the proportion.

Table 6.2: Performance comparison.

Task Models
PEMS-03 PEMS-04 PEMS-08

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

T
ra

ffi
c

F
lo

w

GRU 20.01 ± 0.02 19.82 ± 0.06 32.52 ± 0.10 24.84 ± 0.04 16.98 ± 0.09 38.87 ± 0.08 18.86 ± 0.05 12.07 ± 0.05 30.25 ± 0.05
DCRNN 16.37 ± 0.05 15.96 ± 0.10 28.37 ± 0.33 24.85 ± 0.12 16.94 ± 0.16 38.95 ± 0.14 17.82 ± 0.13 11.39 ± 0.10 27.69 ± 0.16
STGCN 19.58 ± 0.15 20.17 ± 0.36 32.57 ± 0.85 23.96 ± 0.07 17.40 ± 0.58 36.94 ± 0.14 18.75 ± 0.15 13.00 ± 0.44 28.49 ± 0.10
ASTGCN 18.19 ± 0.22 18.47 ± 0.54 30.58 ± 0.48 22.91 ± 0.44 16.96 ± 0.54 35.60 ± 0.75 18.74 ± 0.41 12.23 ± 0.30 28.80 ± 0.72
Graph WaveNet 16.74 ± 0.05 18.56 ± 1.66 27.75 ± 0.13 20.95 ± 0.09 14.55 ± 0.17 32.64 ± 0.11 15.66 ± 0.08 10.31 ± 0.11 24.59 ± 0.12
STSGCN 17.77 ± 0.20 17.28 ± 0.06 28.93 ± 0.34 22.61 ± 0.07 14.90 ± 0.05 35.15 ± 0.13 17.92 ± 0.14 11.60 ± 0.14 27.48 ± 0.21
STFGNN 16.56 ± 0.32 16.09 ± 0.16 28.60 ± 0.23 21.47 ± 0.10 14.10 ± 0.08 33.57 ± 0.11 17.75 ± 0.15 11.23 ± 0.09 27.64 ± 0.23
TraverseNet 15.44 ± 0.10 16.41 ± 0.87 24.75 ± 0.32 19.86 ± 0.11 14.38 ± 0.79 31.54 ± 0.28 15.68 ± 0.12 10.87 ± 0.05 24.62 ± 0.13

T
ra

ffi
c

Sp
ee

d

GRU - - - 2.34 ± 0.07 5.03 ± 0.08 5.09 ± 0.02 1.80 ± 0.03 3.59 ± 0.06 3.99 ± 0.04
DCRNN - - - 2.24 ± 0.06 5.05 ± 0.33 4.89 ± 0.18 1.72 ± 0.04 3.75 ± 0.15 3.75 ± 0.09
STGCN - - - 1.80 ± 0.01 3.87 ± 0.03 4.09 ± 0.04 1.52 ± 0.01 3.28 ± 0.05 3.65 ± 0.05
ASTGCN - - - 1.78 ± 0.02 3.87 ± 0.12 3.97 ± 0.12 1.51 ± 0.04 3.41 ± 0.10 3.67 ± 0.12
Graph WaveNet - - - 1.61 ± 0.00 3.39 ± 0.02 3.71 ± 0.01 1.34 ± 0.00 2.97 ± 0.05 3.36 ± 0.04
STSGCN - - - 1.96 ± 0.06 4.28 ± 0.16 4.30 ± 0.09 1.73 ± 0.07 3.80 ± 0.21 3.87 ± 0.15
STFGNN - - - 1.79 ± 0.03 3.89 ± 0.08 4.03 ± 0.05 1.54 ± 0.01 3.36 ± 0.02 3.62 ± 0.02
TraverseNet - - - 1.59 ± 0.00 3.37 ± 0.02 3.67 ± 0.01 1.35 ± 0.01 3.02 ± 0.05 3.44 ± 0.04

Results of best-performing method is shown in bold font.

6.4.2 Baseline Methods

Seven baseline methods are selected in my experiments. Except STSGCN and STFGNN,

I implement all baseline methods in a unified framework. As it is difficult to merge

STSGCN and STFGNN into my framework, I directly use the codes of STSGCN and

STFGNN in experiments. I give a short description of each baseline method in the

following:
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• GRU a sequence-to-sequence model [241] consists of GRU units [85], not consider-

ing spatial dependency.

• DCRNN [13] that adopts LSTMs and diffusion graph convolution in a seq-to-seq

framework.

• STGCN [20] that combines gated temporal convolution with graph convolution to

capture spatial dependencies and temporal dependencies respectively.

• ASTGCN [225] that interleaves spatial attentions with temporal attentions to

capture dynamic spatial dependencies and temporal dependencies.

• Graph WaveNet [80] that integrates WaveNet with graph convolution.

• STSGCN [239] that considers spatial-temporal dependencies in local adjacent time

steps.

• STFGNN [240] that considers pre-defined spatial dependencies, pre-computed time

series similarities, and local temporal dependencies.

6.4.3 Experimental Setting

I conduct the experiments on the AWS cloud with the p3.8xlarge instance. I train the

proposed TraverseNet with the Adam optimizer on a single 16GB Tesla V100 GPU. I

split the datasets into train, validation, and test data with a ratio of 6:2:2. I set the

number of training epochs to 50, the learning rate to 0.001, the weight decay rate to

0.00001, and the dropout rate to 0.1. I set the number of layers to 3, the hidden feature

dimension to 64, and the window size Q to 12. For other baseline methods, I use the

default parameters settings reported in their papers. Each experiment is repeated 5

times and the mean of evaluation metrics including Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) on test data are

reported based on the best model on validation data.

6.4.4 Overall Results

Table 6.2 presents the main experimental results of my TraverseNet compared with

baseline methods. There are missing values on PEMS-03 for the traffic speed prediction

because PEMS-03 does not contain traffic speed information. Among all methods, Tra-

verseNet achieves the lowest MAE and RMSE on PEMS-03 and PEMS-04 for traffic flow
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Table 6.3: Ablation study.

w/o spatial info w/o st traversing w/o attention w/o residual w/o norm default

MAE 15.95 ± 0.12 15.84 ± 0.07 15.69 ± 0.11 17.01 ± 0.02 15.76 ± 0.10 15.68 ± 0.12
MAPE 10.83 ± 0.20 11.05 ± 0.27 10.56 ± 0.13 13.31 ± 0.90 10.86 ± 0.19 10.87 ± 0.05
RMSE 24.99 ± 0.12 24.80 ± 0.07 24.66 ± 0.15 26.24 ± 0.26 24.82 ± 0.10 24.62 ± 0.13

The results were obtained on the PEMS-08 dataset.

prediction and on PEMS-04 for traffic speed prediction. It achieves the second lowest

MAE, MAPE, and RMSE on PEMS-08 for both traffic flow prediction and traffic speed

prediction–though the performance gap between the top two methods is extremely small.

I believe that the reason that Graph WaveNet performs slightly better than Tra-

verseNet on PEMS-08 is that the spatial signal on that dataset is weak. This is supported

by the results of the ablation study (cf. Table 6.3), which shows that the performance of

TraverseNet decreases only slightly when the spatial component of the model is removed.

For temporal patterns, the WaveNet component in Graph WaveNet is a very powerful

feature extractor for time series data and this is why its performance is somewhat

better than TraverseNet. Besides, TraverseNet significantly outperforms methods that

consider local message traversing between adjacent time steps across two connected

nodes including DCRNN, STSGCN, and STFGNN.

6.4.5 Ablation Study

I perform an ablation study to validate the effectiveness of the message traverse layer in

my model. I am mainly concerned about whether the spatial-temporal message traverse

layer is effective and whether the attention mechanism in the message traverse layer is

useful. To answer these questions, I compare my TraverseNet model with five different

settings listed below:

• w/o spatial information. I only use temporal information, which means the

neighborhood set of a node is empty.

• w/o st traversing (without spatial-temporal traversing). I handle spatial

dependencies and temporal dependencies separately by interleaving spatial atten-

tions with temporal attentions.

• w/o attention. I replace attention scores produced by the attention functions with

identical weights.
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• w/o residual. I cancel residual connections for message traversing layers and

MLP layers.

• w/o norm. I remove batch normalization after message traversing layers and MLP

layers.

I repeat each experiment 5 times. Table 6.3 reports the mean MAE, MAPE, and RMSE

with standard deviation on PEMS-08 test data. I observe that the involvement of spa-

tial information incrementally contributes to model performance. More importantly,

spatial-temporal traversing is superior to process spatial dependencies and temporal

dependencies separately based on the fact the performance of w/o st traversing is

lower than the performance of default. W/o attention nearly does not improve model

performance, suggesting that the effect of attention mechanisms is limited in time series

forecasting. Besides, according to Table 6.3, the effectiveness of residual connections and

batch normalization is verified.

6.4.6 Hyperparameter Study

To get an understanding of the effect of key hyper-parameters in TraverseNet, I study

the effect of varying one hyperparameter at a time whilst keeping others the same as

Section 6.4.3 except that the default number of layers is set to 1 on validation set of

PEMS-08. I vary the number of layers ranging from 1 to 6 by 1, the hidden feature

dimension ranging from 32 to 192 by 32, the window size ranging from 2 to 12 by 2, the

dropout rate ranging from 0 to 0.5 by 0.1, and both the learning rate and weight decay

among {1×10−6,1×10−5,1×10−4,1×10−3,1×10−2,1×10−1}. I run each experiment 5

times. The mean MAE with one standard deviation for each experiment is calculated.

Figure 5.6 plots the trends of model performance for each hyper-parameter. As the

number of layers or the window size increases, the model performance is gradually

improved. Increasing the number of layers or the window size enlarges the receptive field

of a node, thus a node can track longer and broader neighborhood history. The model

performance is not sensitive to the change of hidden dimension. I think it may be due to

the nature of time series data that the input dimension is thin so that a small hidden

feature dimension is enough to capture original information. Dropout and weight decay

are not necessary in my model since the model performance drops evidently when it

increases. Besides, the optimal learning rate is 0.01.
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(a) Number of layers (b) Hidden dimension (c) Window size

(d) Dropout rate (e) Learning rate (f) Weight decay

Figure 6.6: MAE plots for Parameter Study.

6.4.7 Case Study

I perform a case study to understand the effect of TraverseNet in capturing inner spatial-

temporal dependency. Figure 6.7a plots the time series of two neighboring nodes, node

15 and node 151 in PEMS-08. The blue line is the time series of the source node 15 and

the yellow line is the time series of the target node 151. I observe that the trend of node

151 follows the trend of node 15 with some extent of latency. For example, the blue line

of node 15 starts to drop sharply at step 2 while this phenomenon happens on the yellow

line of node 151 6 steps later. Figure 6.7b shows that it is not always the case that the

cross-correlation between time series of two neighboring nodes is the highest at time step

0. In fact, the time series of node 151 is mostly correlated with the time series of node

15 shifted 6 time steps. Figure 6.7c provides a heat-map which visualizes the attention

scores produced by TraverseNet in the first message traverse layer between these two

time series from time step 0 to time 12. It shows that the state of node 15 at time step

6, 7, and 8 is very important to the state of node 151 at time step 8, 9 and 10. This is

consistent with the fact the trend of node 15 at time 6,7,8 is similar to the trend of node

151 at time 8,9,10 from Figure 6.7a.

6.4.8 Computation Time

I compare the computation time of my method with baseline methods on PEMS04 and

PEMS08 data in Table 6.4. The training speed of DCRNN is the slowest while the

training speed of STGCN is the fastest. The running speed of my method stays in the

middle. Although the time complexity of the message traversing layer is O(M× p×Q),
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(a) Time series of two connected nodes that
contain inner spatial-temporal dependencies.

(b) Time lag v.s. cross-correlation of the two
time series in (a).

(c) Heatmap of attention scores.

Figure 6.7: Case study.
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Table 6.4: Comparison of running time.

Models
PEMS-04 PEMS-08

Training Inference Training Inference

DCRNN 314.08 s/epoch 52.35 s 145.40 s/epoch 24.19 s
STGCN 10.89 s/epoch 0.73 s 6.96 s/epoch 0.45 s
ASTGCN 24.11 s/epoch 2.89 s 16.41 s/epoch 1.89 s
Graph WaveNet 26.39 s/epoch 1.59s 16.94 s/epoch 0.91 s
STSGCN 66.12 s/epoch 6.01 s 36.79 s/epoch 3.27 s
STFGNN 45.03 s/epoch 5.19 s 24.17 s/epoch 2.82 s
TraverseNet 56.51 s/epoch 5.93 s 39.57 s/epoch 4.49 s

the speed of my model is still affordable due to an efficient sparse implementation

empowered by DGL.

6.5 Summary

In this chapter, I propose TraverseNet, a graph neural network that unifies space and

time. The proposed TraverseNet processes a spatial-temporal graph as an inseparable

whole. Through the proposed novel message traverse layers, information can be delivered

from the neighbors‚Äô past to the node‚Äôs present directly. This design shortens the path

length of message passing and enables a node to be aware of its neighborhood variation

at firsthand. Experimental results validate the effectiveness of my framework. As the

graph structure is determinant to a spatial-temporal forecasting model [193], I will

consider improving the efficiency of the message traversing by refining the underlying

explicit edge relationships in the future.
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FUTURE WORK

GNNs are proven to be powerful when there exist inter-dependencies in data. The

study of GNNs is still in a preliminary stage due to the complexity, heterogeneity,

and dynamicity. For future work, I think four directions are highly worth to

investigating.

Model depth The success of deep learning lies in deep neural architectures [242].

However, Li et al. show that the performance of a GNN drops dramatically with an

increase in the number of graph convolutional layers [62]. As graph convolutions push

representations of adjacent nodes closer to each other, in theory, with an infinite number

of graph convolutional layers, all nodes’ representations will converge to a single point

[62]. This also applies to STGNNs and raises the question of whether going deep is still

a good strategy for learning graph data.

Scalability trade-off The scalability of GNNs is gained at the price of corrupting graph

completeness. Whether using sampling or clustering, a model will lose part of the graph

information. By sampling, a node may lose information about its influential neighbors.

By clustering, a graph may be deprived of a distinct structural pattern. How to trade-off

algorithm scalability and graph integrity could be a future research direction.

Heterogeneity The majority of current STGNNs assume homogeneous graphs. It is

difficult to directly apply current STGNNs to heterogeneous graphs, which may contain

different types of nodes and edges, or different forms of node and edge inputs. Therefore,

new methods should be developed to handle heterogeneous graphs for spatial-temporal
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modeling.

Dynamicity Graphs are in nature dynamic in a way that nodes or edges may appear or

disappear, and that node/edge inputs may change time by time. New graph convolutions

are needed to adapt to the dynamicity of graphs. Although the dynamicity of graphs can

be partly addressed by STGNNs, few of them consider how to perform graph convolutions

in the case of dynamic spatial relations and continuous dynamicity.

124



C
H

A
P

T
E

R

8
CONCLUSION

The aim of this thesis is to study spatial-temporal data from the perspective of deep

learning on graphs. I have studied the research objective in deep depth with four

research questions: (1) How to coordinate the low, middle, and high frequency

band of graph signals in graph convolution networks. (2) How to model spatial-temporal

graph data effectively and efficiently; (3) How to handle spatial dependencies when a

graph is totally missing, incomplete or inaccurate in spatial-temporal graph modeling;

(4) In contrast to traditional spatial-temporal graph neural networks that handle spatial

dependencies and temporal dependencies in separate, how to unify space and time as a

whole in message passing.

To address the aforementioned four research problems, I proposed four algorithms

or models that can achieve satisfactory results. Specifically, I proposed an Automatic

Graph Convolutional Network for learning graph frequency bands for graph convolution

filters automatically; I introduced an efficient and effective framework that integrates

diffusion graph convolution and dilated temporal convolution to capture spatial-temporal

dependencies simultaneously. I developed a novel joint-learning algorithm that can

capture spatial-temporal dependencies and learn latent graph structures at the same

time; I designed a unified graph neural network that captures the inner spatial-temporal

dependencies without compromising space-time integrity. To validate the proposed

methods, I have conducted experiments on real-world datasets with a range of tasks

including node classification, graph classification, and spatial-temporal graph forecasting.

Experimental results demonstrate the effectiveness of the proposed methods.
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A.1 Data Set

Citation Networks consist of papers, authors, and their relationships such as citations,

authorship, and co-authorship. Although citation networks are directed graphs, they are

often treated as undirected graphs in evaluating model performance with respect to node

classification, link prediction, and node clustering tasks. There are three popular data

sets for paper-citation networks, Cora, Citeseer and Pubmed. The Cora data set contains

2708 machine learning publications grouped into seven classes. The Citeseer data set

contains 3327 scientific papers grouped into six classes. Each paper in Cora and Citeseer

is represented by a one-hot vector indicating the presence or absence of a word from

a dictionary. The Pubmed data set contains 19717 diabetes-related publications. Each

paper in Pubmed is represented by a term frequency-inverse document frequency (TF-

IDF) vector. Furthermore, DBLP is a large citation data set with millions of papers and

authors which are collected from computer science bibliographies. The raw data set of

DBLP can be found on https://dblp.uni-trier.de. A processed version of the DBLP

paper-citation network is updated continuously by https://aminer.org/citation.

Biochemical Graphs Chemical molecules and compounds can be represented by chem-

ical graphs with atoms as nodes and chemical bonds as edges. This category of graphs is

often used to evaluate graph classification performance. The NCI-1 and NCI-9 data set

contain 4110 and 4127 chemical compounds respectively, labeled as to whether they are
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active to hinder the growth of human cancer cell lines. The MUTAG data set contains 188

nitro compounds, labeled as to whether they are aromatic or heteroaromatic. The D&D

and PROTEIN data set represent proteins as graphs, labeled as to whether they are

enzymes or non-enzymes. The PTC data set consists of 344 chemical compounds, labeled

as to whether they are carcinogenic for male and female rats. The QM9 data set records

13 physical properties of 133885 molecules with up to 9 heavy atoms. The Alchemy data

set records 12 quantum mechanical properties of 119487 molecules comprising up to

14 heavy atoms. Another important data set is the Protein-Protein Interaction network

(PPI). It contains 24 biological graphs with nodes represented by proteins and edges

represented by the interactions between proteins. In PPI, each graph is associated with

one human tissue. Each node is labeled with its biological states.

Social Networks are formed by user interactions from online services such as BlogCat-

alog and Reddit. The BlogCatalog data set is a social network which consists of bloggers

and their social relationships. The classes of bloggers represent their personal interests.

The Reddit data set is an undirected graph formed by posts collected from the Reddit

discussion forum. Two posts are linked if they contain comments by the same user. Each

post has a label indicating the community to which it belongs.

Others There are several other data sets worth mentioning. The MNIST data set

contains 70000 images of size 28×28 labeled with ten digits. An MNINST image is

converted to a graph by constructing an 8-nearest-neighbors graph based on its pixel

locations. The METR-LA is a spatial-temporal graph data set. It contains four months

of traffic data collected by 207 sensors on the highways of Los Angeles County. The

adjacency matrix of the graph is computed by the sensor network distance with a

Gaussian threshold. The NELL data set is a knowledge graph obtained from the Never-

Ending Language Learning project. It consists of facts represented by a triplet which

involves two entities and their relation.

A.2 Reported Experimental Results for Node
Classification

A summarization of experimental results of methods which follow a standard train/-

valid/test split is given in Table A.1.
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Table A.1: Reported experimental results for node classification on five frequently used
data sets. Cora, Citeseer, and Pubmed are evaluated by classification accuracy. PPI and
Reddit are evaluated by micro-averaged F1 score.

Method Cora Citeseer Pubmed PPI Reddit

SSE (2018) - - - 83.60 -
GCN (2016) 81.50 70.30 79.00 - -
Cayleynets (2017) 81.90 - - - -
DualGCN (2018) 83.50 72.60 80.00 - -
GraphSage (2017) - - - 61.20 95.40
GAT (2017) 83.00 72.50 79.00 97.30 -
MoNet (2017) 81.69 - 78.81 - -
LGCN (2018) 83.30 73.00 79.50 77.20 -
GAAN (2018) - - - 98.71 96.83
FastGCN (2018) - - - - 93.70
StoGCN (2018) 82.00 70.90 78.70 97.80 96.30
Huang et al. (2018) - - - - 96.27
GeniePath (2019) - - 78.50 97.90 -
DGI (2018) 82.30 71.80 76.80 63.80 94.00
Cluster-GCN (2019) - - - 99.36 96.60

A.3 Open-source Implementations

Here I summarize the open-source implementations of graph neural networks reviewed

in the survey. I provide the hyperlinks of the source codes of the GNN models in table

A.2.
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Table A.2: A Summary of Open-source Implementations

Model Framework Github Link

GGNN (2015) torch https://github.com/yujiali/ggnn
SSE (2018) c https://github.com/Hanjun-Dai/steady_state_embedding
ChebNet (2016) tensorflow https://github.com/mdeff/cnn_graph
GCN (2017) tensorflow https://github.com/tkipf/gcn
CayleyNet (2017) tensorflow https://github.com/amoliu/CayleyNet.
DualGCN (2018) theano https://github.com/ZhuangCY/DGCN
GraphSage (2017) tensorflow https://github.com/williamleif/GraphSAGE
GAT (2017) tensorflow https://github.com/PetarV-/GAT
LGCN (2018) tensorflow https://github.com/divelab/lgcn/
PGC-DGCNN (2018) pytorch https://github.com/dinhinfotech/PGC-DGCNN
FastGCN (2018) tensorflow https://github.com/matenure/FastGCN
StoGCN (2018) tensorflow https://github.com/thu-ml/stochastic_gcn
DGCNN (2018) torch https://github.com/muhanzhang/DGCNN
DiffPool (2018) pytorch https://github.com/RexYing/diffpool
DGI (2019) pytorch https://github.com/PetarV-/DGI
GIN (2019) pytorch https://github.com/weihua916/powerful-gnns
Cluster-GCN (2019) pytorch https://github.com/benedekrozemberczki/ClusterGCN
DNGR (2016) matlab https://github.com/ShelsonCao/DNGR
SDNE (2016) tensorflow https://github.com/suanrong/SDNE
GAE (2016) tensorflow https://github.com/limaosen0/Variational-Graph-Auto-Encoders
ARVGA (2018) tensorflow https://github.com/Ruiqi-Hu/ARGA
DRNE (2016) tensorflow https://github.com/tadpole/DRNE
GraphRNN (2018) tensorflow https://github.com/snap-stanford/GraphRNN
MolGAN (2018) tensorflow https://github.com/nicola-decao/MolGAN
NetGAN (2018) tensorflow https://github.com/danielzuegner/netgan
GCRN (2016) tensorflow https://github.com/youngjoo-epfl/gconvRNN
DCRNN (2018) tensorflow https://github.com/liyaguang/DCRNN
Structural RNN (2016) theano https://github.com/asheshjain399/RNNexp
CGCN (2017) tensorflow https://github.com/VeritasYin/STGCN_IJCAI-18
ST-GCN (2018) pytorch https://github.com/yysijie/st-gcn
GraphWaveNet (2019) pytorch https://github.com/nnzhan/Graph-WaveNet
ASTGCN (2019) mxnet https://github.com/Davidham3/ASTGCN
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B.1 Derivation of the graph convolutional kernels of
low-pass, high-pass, and middle filter functions.

Definition 7 (Low-pass linear filter). The low-pass linear filter function is defined as

(B.1) Flow(λ)= p(1−aλ),

with p > 0 and a ∈ (0,1).

The graph convolutional kernel of the low-pass filter is then derived as

Clow =Udiag(Flow(λ))UT(B.2)

=Udiag(p(1−aλ)UT(B.3)

= p(I−aL)(B.4)

= p(aÃ+ (1−a)I)(B.5)

Definition 8 (High-pass linear filter). The high-pass linear filter function is defined as

(B.6) Fhigh(λ)= p(aλ+1−2a).

with p > 0 and a ∈ (0,1).
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The graph convolutional kernel of the high-pass filter is then derived as

Chigh =Udiag(Fhigh(λ))UT(B.7)

=Udiag(p(aλ+1−2a))UT(B.8)

= p(aL+I−2aI)(B.9)

= p(−aÃ+ (1−a)I)(B.10)

Definition 9 (Middle-pass quadractic filter). The middle-pass quadractic filter function
is defined as

(B.11) Fmid(λ)= p((λ−1)2 −a).

with p > 0 and a ∈ (0,1].
The graph convolutional kernel of the high-pass filter is then derived as

Cmid =Udiag(Fmid(λ))UT(B.12)

=Udiag(p((λ−1)2 −a))UT(B.13)

= p(U(diag(λ−1))2UT −aI)(B.14)

(B.15)

As UTU= I,

Cmid = p(Udiag(λ−1)UTUdiag(λ−1)UT −aI)(B.16)

= p((L−I)2 −aI)(B.17)

= p(Ã2 −aI)(B.18)
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