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Abstract

Radio resource management in device-to-device cellular offload can be optimised
to increase network capacity, quality of service, energy efficiency, lower latency
and provide more resilient networks. However, this resource optimisation
problem is both NP-Hard and required to operate at a millisecond timescale,
limiting feasible solutions.
In this thesis, we investigate how deep reinforcement learning can be applied
to improve resource allocation. To empirically demonstrate our approach,
we develop a network simulator for device-to-device cellular offload research.
We also introduce an improved self-play algorithm for training reinforcement
learning without expert guidance.
We apply our self-play training algorithm to the game Connect Four. Leveraging
the competitive pressures of coevolution, we improve the performance of
agents trained with our method, achieving a 15% higher win rate. Furthermore,
agents exhibit more stable training dynamics and suffer fewer performance
regressions.
We evaluate our network simulator and demonstrate deep reinforcement
learning can significantly increase network capacity. Our network simulator
reduces research friction and provides an evaluation platform to compare,
share and build upon results. Our toolkit is provided to other researchers as
open-source software.
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Chapter 1

Introduction

Rapidly increasing demand for cellular services is necessitating more efficient
radio frequency (RF) spectrum utilisation. It is predicted that the average
user will soon be downloading a terabyte annually [1]. In particular, data
intensive applications such as video traffic and the high connectivity of smart
devices, is placing greater strain on networks. Compounding the issue, the
RF spectrum over which wireless devices communicate is a finite resource
and the portion of the spectrum most suited for cellular networks is becoming
increasingly congested. This thesis investigates the use of a subset of machine
learning, deep reinforcement learning (DRL), to improve cellular network
performance, by optimising the allocation radio resource amongst cellular
devices.

1.1 Background

Device-to-device (D2D) communication is a method for cellular devices
to communicate directly, as opposed to the normal cellular mode in which
traffic makes multiple network hops through base stations, backhaul and
core networks [2]. D2D communication can occur inband sharing licenced
cellular spectrum, or outband on unlicensed spectrum. Advantages of D2D
communication include ultra-low latency and increased spectral and energy
efficiency. D2D has been proposed for several use-cases including public
safety communications, communications relay, localised services, and the
focus of this thesis–traffic offloading [3].

Traffic offloading is a method to improve cellular network efficiency, by

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Cellular networks can offload communications that can occur
directly, reducing primary network demand and increasing capacity.

communicating via alternate means. A familiar example is Wi-Fi, mobile
phones are commonly configured to automatically send data traffic over
Wi-Fi when available. However, there are other traffic offloading methods,
including cellular densification and opportunistic communications.
It has been proposed that D2D could be used to provide extra bandwidth,
by offloading communications that can be conducted directly [4]. This could
occur non-orthogonally using inband underlay, in which D2D users share
frequencies with the primary cellular network, as secondary users, as depicted
in Fig. 1.1. Secondary users are able to share frequencies in underlay mode,
by managing their interference to avoid interfering with primary users [5].
D2D underlay cellular offload is seen as a promising method to enhance
network capacity in highly congested environments such as train stations
and sports stadiums, by exploiting local geographic clustering of users to
offload traffic [6].
Wireless communication systems must manage the allocation of radio resources,
such as transmit power levels, frequencies, beamforming, modulation and
error coding schemes, to manage interference and utilise resources as efficiently
as possible. This is known as radio resource management (RRM). More
efficient allocation strategies are able to achieve faster communication rates,
greater network capacity, better quality of service, lower latency and improved
energy efficiency. Existing spectrum management systems are quite inflexible
and significantly underutilise available spectrum resources in order to provide
reliable communications. Software-defined radio, the significant computing
power now available in smartphones, and advances in machine learning and
optimisation enable dynamic spectrum management, to coordinate transmissions
and more efficiently utilise radio resources.
Reinforcement learning (RL) is a field of machine learning in which a
software agent learns through experience to solve sequential decision-making
problems. RL differs from other machine learning paradigms in that agents

2



1.1. BACKGROUND

are responsible for their own data generating process and must balance the
competing concerns of exploration and exploitation. Deep reinforcement
learning (DRL) is a subset of RL which uses deep neural networks (DNNs)
to approximate an agent’s policy and/or value function. This allows DRL to
scale to more challenging environments.

1.1.1 Research Problems

(1) Developing of scalable resource allocation algorithms.

One of the main challenges in supporting D2D underlay cellular offload is
interference mitigation between D2D and cellular communications. D2D
user equipment (UE) need means to sense and limit their impact on the
primary network. This can be achieved by using cellular base stations (BSs)
to centrally coordinate the allocation of radio resources, such as transmit
frequencies and power levels amongst cellular and D2D UE. However, this
resource allocation problem is both NP-Hard and extremely time sensitive [7,
8]. For example, in the LTE and 5G NR standards, transmission are organised
into 10 ms frames. This complexity limits the suitability of some classes of
resource optimisation algorithms, which may not be able to scale to compute
the resource allocation of potentially hundreds of devices in milliseconds.

One of the more promising class of algorithms for addressing this problem
is DRL. There are several reasons for this. Firstly, while DNNs require a
lengthy initial training period, once trained they are able to provide high
quality, approximate answers in milliseconds. This training period can be
conducted offline, on real or synthetic data, before being put into service.
Secondly, DNNs scale better than many other optimisation or search methods,
which are typically particularly computationally constrained. Thirdly, DNNs
are powerful function approximators, allowing them to generalise to unseen
states. This provides better flexibility to handle dynamic and variable propagation
environments. Fourthly, DRL can be further trained online, allowing it to
adapt to change in their environment. Lastly, through methods such as federated
learning, DNNs can collaboratively learn a shared model from many devices
in a network.

3
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(2) Difficulty comparing existing research.

Another challenge is that existing D2D cellular offload research is limited
in scope and generally more exploratory. As opposed to incrementing on
established benchmarks, the trend has been towards exploring the utility
of a diverse range of algorithmic approaches on many related, but different
problems, such as improving spectral efficiency, power efficiency, quality of
service, fairness, coverage, reliability and mobile edge caching. A challenge
facing researchers is the lack of established problem definitions and benchmarks
that facilitate reproducible and robust research.

1.1.2 Research Questions

Ultimately, we would like to answer the following questions:

1. How can we apply DRL to optimise D2D underlay cellular offload
resource allocation to improve cellular network capacity?

2. How can we make it easier for D2D researchers to compare, share and
build upon prior research?

1.2 Aim and Objectives

1.2.1 Aim

Radio resource management in D2D underlay cellular offload is a challenging
optimisation problem in which more efficient resource allocation can improve
various network efficiency measures. The aim of this thesis is to improve
network capacity in D2D underlay cellular offload with the use of deep reinforcement
learning.

1.2.2 Objectives

The following research objectives will be completed:

1. Develop a more efficient self-play training algorithm that improves the
final performance, sample efficiency and training stability.

2. Develop a D2D cellular offload network simulator.

4



1.3. METHODOLOGY

3. Develop a radio resource management system for D2D cellular offload
using deep reinforcement learning.

1.3 Methodology

The primary methodology used in this thesis is empirical evaluation through
simulation. When dealing with complex propagation models, analytical methods
can become unacceptably complex, in which case simulation provides better
flexibility.

1.3.1 Data Management Plan

Evaluation in this thesis will use data collected from the simulators and will
be managed according to the following data management plan. No external
data sources are required. There are two types of data that will be collected
for analysis:

1. Simulator output, describing the state of the simulator after each simulation
step; and

2. Algorithm performance metrics, such as neural network loss or entropy.

The resulting data will be stored in a machine readable format, compressed
JSON files, in a centralised directory on the computer conducting the machine
learning training. Each trial will be saved into its own directory, named
with the date-time the simulation started and a descriptive name of the
experiment. Each trial will record: the simulation configuration, algorithm
hyperparameters, and the output from each simulation step.
It is anticipated that all research will be conducted internally within UTS,
with no outside collaboration, greatly simplifying data access and ownership.
By default, data access will be limited to project collaborators, but will
shared on request. As the data will be synthetically generated, there are no
consent, ethical and security considerations.

1.4 Results

• Competitive RL Training Algorithm: The coevolutionary RL
training algorithm, CLaRE, demonstrated significantly improved final
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performance, sample efficiency and training stability than existing
self-play training methods. CLaRE achieved an almost 80% win rate,
approximately 15% above the next leading method. Importantly, CLaRE
showed strong convergence properties and more stable training dynamics.

• D2D Network Simulator: A network simulator and evaluation environment
for D2D RRM research, GymD2D, was developed and released to the
public as open-source software. GymD2D makes it easier for researchers
to build, share and compare D2D resource allocation algorithms and
results. GymD2D was evaluated with several high-performing DRL
algorithms which demonstrated they could support 200% more devices
and increase the system capacity by more than 11% with minimal
impact on primary network performance.

1.5 Organisation

An overarching theme of this thesis is applied multi-agent deep reinforcement
learning. An astute reader may notice a disconnect between the first and
second research chapters, Chapters 3 and 4. This is due to the author changing
supervisors and pivoting research focus to better align with the new supervisors.
Chapter 3 investigates competitive multi-agent RL and was inspired by a
previous research project developing RL agents to play real-time strategy
video games. Chapter 4 leveraged lessons learnt from this work. However,
when investigating the D2D RRM problem, centralised, cooperative models
seemed most suitable for the task at hand.
The remainder of the thesis is organised as follows:

• Chapter 2 provides a review of the literature on D2D communication,
RRM and RL. The chapter begins with a brief background of cellular
communication in order to define key concepts and terminology. The
second section provides an overview of D2D communication and introduces
the resource allocation problem. The third section presents the latest
research into D2D RRM. The fourth section provide a formal background
on RL. Finally, the last section introduces DRL and the algorithms
used to optimise D2D radio resources.

• Chapter 3 addresses the problem of training RL agents in competitive
scenarios. The main contribution is a coevolutionary training algorithm
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for RL that is capable of exploiting competitive pressures within a
population of agents to increase final performance and sample efficiency.

• Chapter 4 describes a network simulator and evaluation environment
for D2D RRM research. The chapter establishes the need for a standardised
benchmarking process for D2D RRM research, the design principles
of such an environment and the describes the system model. A RRM
system is developed and several leading DRL algorithms are evaluated
in terms of network capacity performance.

• Finally, Chapter 5 concludes this thesis by summarising the findings
presented, discussing the research contributions and putting forward
promising directions for future research.
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Chapter 2

Literature Review

This chapter provides a background on the use of DRL for resource allocation
optimisation in D2D underlay cellular offload. It begins with a brief review
of cellular communications in order to highlight the relevant terminology
and key concepts further sections will use. The second section provides an
overview of D2D communications, describing its advantages, use cases and
challenges. The third section provides a deep dive into the D2D resource
management problem. The fourth section establishes the formal background
of RL, the main optimisation method used in this thesis. Finally, the last
section describes DRL, a subset of RL which uses deep neural networks to
represent an agent’s represent policy and/or value functions and the state-of-the-art
algorithms used in the research chapters to optimise the allocation of radio
resources.

2.1 Cellular Networks

Cellular networks are communication networks that facilitate portable wireless
communications over large geographic areas. Cellular systems consist of
user equipment (UE) which communicate wirelessly through base stations
(BS). To increase network capacity and reliability, cellular networks are arranged
in grids of smaller service areas. This cellular structure allows frequencies
to be reused between non-neighbouring cells which has the advantage of
increasing network capacity, reducing the required transmit power and enabling
the networks to cover larger areas. BS are connected to the core network
through backhaul links.
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2.1.1 Propagation and Path Loss

The behaviour in which radio waves travel through their environment is
known as propagation and is an important consideration in wireless communications
as it impacts the received signal level. When emitted, electromagnetic radiation
such as radio waves reduce in intensity proportional to the distance travelled
according to the inverse-square law of geometric spreading. In addition to
spreading, electromagnetic radiation is affected by the propagation phenomena
of reflection, refraction, diffraction, absorption, polarisation and scattering.
The frequency of emitted radiation impacts the degree of the effect the propagation
phenomena. This results in some frequencies penetrating solid objects better,
being more susceptible to atmospheric conditions or travelling further. The
decrease in intensity of a transmitted signal due to absorption and scattering
is known as attenuation. Obstacles between a transmitter and receiver can
generate propagation effects such as shadowing and multipath fading
that interfere with a signal’s reception. The combination of spreading, attenuation
and other propagation effects that reduce signal intensity is known as path
loss and there exist several models for approximating path loss in different
types of environments, under varying assumptions.

2.1.2 Interference

In addition to path loss, another important factor in wireless communications
is interference. There are multiple sources of interference that can disrupt
reception including, electromagnetic interference, co-channel interference,
adjacent-channel interference, and intersymbol interference. This thesis is
most concerned co-channel interference (CCI), which is caused by multiple
transmitters using the same channel (frequency band) simultaneously and in
proximity of each other. This can be modelled in orthogonal time, frequency
and space dimensions.

Interference is quantified with the signal-to-interference-plus-noise ratio
(SINR) ξ, which measures the ratio between the linear power of a target
signal P from transmitter i, and the sum of interference signals I plus noise
N at receiver j:

ξi,j [dB] =
P

I +N
, (2.1)

expressed in dB.
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2.1.3 Spectral Efficiency

The theoretical upper bound on the transmission rate is given by the Shannon-Hartley
theorem which states that the capacity of channel C in Mbps, can be calculated
using SINR ξi,j :

Ci,j [Mbps] = B log2

(
1 + ξi,j

)
, (2.2)

where B is the channel bandwidth in MHz.
The measure of the ratio of the transmitted data rate and channel bandwidth
is known as the spectral efficiency. In wired systems, spectral efficiency is
equal to the modulation efficiency and this is measured in digital systems
in bit/s/Hz. One method for improving spectral/modulation efficiency is
the use of higher order modulation schemes. In wireless systems, multiple
transmitters can share frequency bands and avoid CCI if geographically
separated through path loss. As a consequence, in wireless systems spectral
efficiency may be measured in bit/s/Hz per unit area or cellular site.

2.1.4 Traffic Offloading

Demand for wireless data is rapidly growing. Due to physical constraints,
the information that can be communicated wirelessly through a single channel
is limited. Researchers are developing many new techniques to increase data
rates including improved encoding, multiple-input multiple-output and traffic
offloading. Traffic offloading methods can be broadly grouped into:

• Cellular densification, extending the cellular idea to the extreme, smaller
cells facilitate greater frequency reuse, lower energy consumption and
facilitate the use of higher frequencies (millimeter-wave) which otherwise
suffers from greater attenuation. A common method for cellular densification
is the placement of small base stations (SBSs) inside the coverage zones
of macro base stations (MBSs). This creates heterogeneous cellular
networks (HetNets), in which UE must be assigned access points, creating
new optimisation problems. Examples of SBSs include femto/pico/micro
cells, which can be the size Wi-Fi routers and hidden inside everyday
objects such as walls or lamp posts.

• Dynamic spectrum management, systems for dynamically adapting
resource allocation response to demand. The portion of the radio frequency
spectrum suitable for cellular communication is both scarce and underutilised
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due to inflexible spectrum management policies. Dynamic spectrum
management methods such as opportunistic spectrum access allow
users to exploit under-utilised spectral resources. Examples of dynamic
spectrum management include cognitive radio and D2D cellular offload.

2.1.5 Opportunistic Spectrum Access

Opportunistic spectrum access is a method for allowing secondary users
(SU) to share radio resources with primary users (PU) to improve some
network efficiency measure, usually capacity. Through the use of software
defined radios, capable of sensing their environment and dynamically adjusting
their communications, it is possible for SU to minimise their interference
on the primary network. There are several mechanisms for sharing radio
resources [5]:

• Interweave networks utilise spectrum vacancies, but must avoid interfering
with PU. Spectrum vacancies may exist geographically or temporally.
Geographic vacancies commonly occur due to the frequency bands
being licensed by frequency and not by region. For example, military
frequencies are typically only utilised around defence installations.
Temporal vacancies exist between licensed communications and could
be several hours or fractions of a second long. Interweave networks
require sensing algorithms to determine suitable spectrum holes to
exploit.

• Underlay networks in which SU can transmit simultaneously with PU
but must adjust their transmissions to avoid interference. Underlay
networks do not require SU to detect spectrum vacancies but must
have means to monitor their interference and reduce it below an acceptable
threshold. SU in underlay networks can avoid interference by reducing
their transmit power, however this method can greatly limit communication
distance.

• Overlay networks use knowledge of PUs transmissions to negate interference.
This can be achieved by knowing PUs encoding scheme and modulating
the SU signal with it. By using the SU to relay the message, they can
transmit at any power.

11



CHAPTER 2. LITERATURE REVIEW

2.2 D2D Communications

D2D is a broad set of methods for peer-to-peer wireless communication for
cellular or other Internet connected radios. In contrast to normal cellular
operation, UE utilising D2D mode communicate directly with one another
instead of communicating through base stations and connected networks.
The defining features of D2D communications are ultra-low latency and
localised communications.

D2D was initially proposed as an opportunistic communication method using
overlay networking to increase throughput [4]. It was then identified that
D2D could be used to facilitate localised, rich multimedia services with the
high data rates of WiMax and less user friction [9]. As opposed to alternate
protocols such as WiFi, WiMax and Bluetooth, D2D would allow seamless
transitions between cellular and D2D modes. This was possible by utilising
underlay networking and allowing base stations to manage UE power control.

D2D was incorporated by the 3GPP into the LTE Advanced release 12 to
provide public safety communications. It has since been identified as a possible
component of 5G with telecommunication industry bodies promoting its
utility [10].

2.2.1 D2D Advantages

Advantages of D2D communication over cellular include:

• ultra-low latency, by transmitting directly instead of requiring multiple
network hops, latency can be greatly reduced. This is particularly
useful for time-sensitive applications such as industrial process automation,
cooperative or autonomous vehicles, augmented reality, unmanned
aerial vehicle command and control, or gaming.

• localisation, the direct communication and interference restrictions of
D2D necessitates communicating devices be in proximity of each other.
This lends D2D towards use generating restricted geographic service
areas, such as geofencing, the establishment of virtual perimeters. D2D
has greater range than alternative protocols such as Bluetooth or Wi-Fi
and can reduce the location detection/awareness signalling required by
other location-based service methods.
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• energy efficiency, lower transmission power used by DUE to avoid
interference helps reduce energy consumption. This extends the life
of battery powered mobile devices, reduces energy expenditure across
the network, reduces the radiation users are exposed to, and reduces
noise in other RF systems.

• network redundancy, direct communication can be used to communicate
outside cellular coverage. This can possibly be used for emergency
communication in the case of network failure, or to relay communications
from devices outside of coverage.

In this thesis, the advantages we are most concerned with are the increased
throughput and network capacity. Cellular offload reduces the amount of
traffic on primary networks and can be combined with mobile edge caching
(MEC) to further reduce network traffic. It is anticipated that cellular offload
will be most useful in highly congested scenarios such as train stations or
sports stadiums, where networks resources are stretched thin.

2.2.2 D2D Use Cases

The aforementioned advantages of D2D, lend the technology to be used to
enhance connectivity for the rapidly growing number of Internet connected
devices. Possible use cases (Fig. 2.1) include:

• cellular offload in which traffic that can be conducted directly between
devices is offloaded from the cellular network. To address rising performance
demands and limited bandwidth, D2D links can be established within
cellular coverage areas and share radio resources. This allows D2D to
increase spectral efficiency, increase throughput and reduce latency.

• public safety communications, D2D was included in LTE release 12 for
public safety purposes, which includes emergency services (police, fire
brigade, ambulance) and other public safety agencies such as rail safety
or government agencies. In this context, D2D allows public safety operators
to communicate in the event of cellular network failure, outside of
service areas (reducing network deployment costs), and to broadcast/multicast
to groups of subscribers. Feasibly, D2D could be leveraged to allow
emergency services to search for people in disaster situations.
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Figure 2.1: D2D use cases such as improving network capacity through
cellular offload, network redundancy with D2D relay, localised services, and
IoT enhancement.

• communications relay, D2D can be used to relay communications to
cellular networks. This could be used to relay communications for
UE outside of cellular coverage, or to assist with low battery levels
by using nearby devices with more battery to perform higher powered
communications.

• localised services, the range restrictions of D2D could be used to provide
services to restricted geographic areas. These could be informational in
nature, such as a virtual kiosk, museum guide, or augmented reality
which creates interactive experiences that combines real world video
with computer generated graphics. Alternative commercial applications
include hyper-local marketing, eHealth or geofencing in which a connected
device can be restricted to a limited geographic area.

• vehicle-to-vehicle (V2V), communications systems that allow vehicles
to share information with each other for safety or informational purposes.
Ad-hoc vehicular networks allows vehicles to cooperate to a greater
extent and can be used to optimise their interactions through sharing
safety information, providing traffic information, reducing congestion,
assisting emergency vehicles, or regulatory concerns.

• machine-to-machine (M2M), communications systems that allow industrial
systems to coordinate between themselves and with human operators.
M2M allows industrial process to share instrumentation and sensor
data and interface with controlling software.
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2.2.3 D2D Taxonomy

As discussed in Sub-section 2.2.2, there exist several potential use cases beyond
increasing network capacity that D2D could provide. Before examining the
challenges for D2D systems, the thesis presents a taxonomy of D2D, to provide
a framework to describe and analyse the differences between implementations
that appear in the literature. The thesis extends upon existing D2D classification
described in the literature [3, 11].

D2D Control

D2D systems can be classified by whether they are managed in a centralised
or decentralised manner.

• full control mode in which DUE are managed by the cellular network
operator. This requires BS communication over primary channels to
receive this coordinating information after which devices can then
communicate directly.

• autonomous mode in which DUE manage themselves to ensure they do
not interfere with PU.

• hybrid control mode to combine benefits of full control and autonomous.
In hybrid control the network can perform the most critical operations
such as authentication and big picture resource allocation (such as a
connection), with small scale resource allocation (such as individual
resource blocks) managed by individual DUE.

Full control mode allows a more complete picture of the interference landscape
which allows interference to be optimised to a greater extent. Full control
mode allows CUE to be included in the optimisation problem, as there may
optimisations possible to increase capacity with little impact to CUE by
adjusting their resource allocation. Autonomous mode allows DUE to operate
in periods of network failure at the cost of increased risk of interference due
to their limited observability of other devices on the network. Hybrid control
modes increase complexity which may introduce performance or security
impacts.
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D2D Coverage

D2D systems can be classified by the degree of network coverage,

• in coverage when DUE intend to operate in the licensed band simultaneously
with CUE.

• out of coverage when DUE are outside cellular network coverage.

• partial coverage when at least one communicating DUE is inside of
coverage and another out. This could be used to relay the out of coverage
DUE to the cellular network.

D2D Communication Distribution

There are two communications distribution paradigms considered in D2D
literature,

• one-to-one communication, direct communication between pairs of
DUE. This is the most common routing scheme.

• one-to-many communication, transmitting DUE can broadcast or multicast
to many DUE.

D2D Communication Area

D2D can be classified by whether communicating DUE are being served by
the same BS,

• same cell, communicating DUE as both connected to the same BS.

• different cell, communicating DUE are connected to different BS.

D2D Interference Classification

There are multiple forms of interference that can occur in D2D communications.
In this section we describe the interference classes, firstly to bring to the
reader’s attention, and secondly because their severity and mitigation strategies
differ between classes. The three types of interference that need to be considered
are:
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• DUE to CUE, interference from secondary DUE to primary cellular
users is the most important form of interference to consider in D2D
systems. Secondary DUE must ensure primary cellular communication
is not impeded.

• CUE to DUE, interference from primary cellular users to DUE is a
second form of interference impacting D2D communications. While
CUE are not required to minimise interference for secondary DUE,
consideration of CUE interference can allow both systems to operate
more efficiently.

• DUE to DUE, interference between groups of communicating DUE.
Different groups of communicating DUE can impact one another, particularly
if they are operating using the same radio resources and in proximity
of each other.

Effective D2D management will account for these different interference scenarios.
These interference scenarios highlight the difficulties autonomous mode D2D
control faces, when considering the diversity of the interference picture.

2.2.4 D2D Challenges

There are several ongoing research challenges in the development of D2D
systems. These challenges involve trade-offs that must be considered in context
of the targeted use cases for D2D.

Peer discovery

To facilitate D2D communications, a peer discovery service is required to
allow UE to become aware of neighbouring devices and select an appropriate
communication strategy. This process can include, optimising multi-hop
paths, time/frequency synchronisation, mode selection and how often these
parameters should be reevaluated. Peer discovery can be grouped into restricted
or open discovery classes. Restricted discovery requires the UE’s permission
to be discovered, providing greater privacy. Conversely, open discovery allows
UEs to be detected whenever they are in proximity of compatible devices,
potentially simplifying discovery and greatly increasing the pool of available
devices. Peer discovery services can be facilitated by the network or autonomously
by DUE. Network assisted discovery can improve optimisation efficiency and
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security concerns at the cost of increased signalling overhead. Autonomous
discovery distributes the signalling overhead to amongst individual UEs
which can significantly decrease energy efficiency.

Energy consumption

D2D communications can significantly reduce energy consumption. Not only
can DUE use lower transmit power levels, but system consumption can be
lowered as less traffic passes through the core network. The literature on
D2D energy consumption can be broken down to two overarching perspectives:
analysing energy efficiency and minimising power consumption.
Energy efficiency analysis is concerned with the impacts on energy consumption
of D2D enabled devices compared with typical cellular transmissions. D2D
control modes impact energy efficiency, with full control systems exhibiting
lower power consumption compared with autonomous mode [12]. This is in
part due to full control modes greater optimisation potential and that peer
discovery can be managed through normal cellular operations instead of
requiring additional beacons or signalling processes.
Power consumption is typically treated as a secondary benefit of reduced
SINR in D2D systems, but some research has treated power consumption
as a primary objective [13]. It is useful to factor power consumption in the
optimisation process to avoid D2D devices driving global power consumption
higher as a result of harmful interference.
An interesting application of D2D to power consumption was the utilisation
of D2D relays for cellular communication for devices with low battery levels [14].
This could be used to extend battery life of devices in enabled systems.

Radio resource management

Resource allocation is one of the more challenging problems in D2D cellular
offload. To manage interference and provide the best quality of service possible
for all users, radio systems aim to utilise the RF spectrum as efficiently as
possible. More efficient spectral utilisation can allow more devices to communicate
simultaneously, at faster speeds. In this search for spectral efficiency, cellular
systems have a range of radio parameters, known as radio resources, which
are allocated to devices and configure the manner of their communication.
The allocation of radio resources to devices is known as radio resource
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management (RRM). Radio resources consist of parameters such as uplink
and downlink frequencies, power levels, modulation scheme, error coding and
antenna beamforming.

D2D RRM is one of the key challenges this thesis seeks to address. In the
next section we examine the D2D RRM problem in more depth.

2.3 D2D Resource Management

The combinatorial complexity of allocating radio parameters between D2D
and cellular networks, containing multiple, moving devices, while ensuring
acceptable quality of service, has led to resource management solutions providing
more conservative allocations. This challenge has inspired a volume of research
into a wide variety of optimisation methods to improve a range of different
resource allocation problems. Parallel research into other direct, wireless
communication methods such as V2V and M2M investigate similar resource
allocation problems, making the findings of interest to us.

One of the more common motivations in D2D RRM research is the increase
of cellular network capacity. For this type of research, the problem is generally
modelled using cellular offload with underlay networking. Another common
motivation is improved energy efficiency. Initially, the D2D resource allocation
literature focused on centralised, full control methods, however more recently
decentralised solutions have garnered more attention.

To begin this section, we provide a classification to describe and compare
the optimisation problems D2D resource allocation research investigates. We
follow this up with an overview of the different simulation models used.

2.3.1 Optimisation Classification

D2D resource allocation is an optimisation problem. There are three key
dimensions we can slice the literature across: the optimisation objective(s),
the resource(s) being allocated (design variables), and the optimisation algorithm
used. Specifying these dimensions provides a framework to compare D2D
resource allocation research, which frequently address slightly different problems
under a variety of assumptions. In the following paragraphs we provide an
overview of some of the most common objective, resource and algorithm
classes that appear in the literature.
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Objectives

D2D resource management systems commonly investigate the following optimisation
objectives:

• Spectral efficiency increasing spectrum reuse in terms of bit/s/Hz/area.

• Network/cell capacity increasing the achievable network or cell data
capacity in terms of DUE and/or CUE capacity, commonly measured
using the Shannon-Hartley channel capacity in bps.

• Energy efficiency reducing network energy consumption, particularly
for battery constrained UE, which can be measured in terms of UE
energy consumption in J/bit, or network energy consumption in W.

• Quality of service using measurements of channel quality such as the
CDF of channel SINR or outage probability of cellular links.

• Mobile edge caching which aims improve QoE by caching popular files
at the edge nodes of cellular networks, and includes problems such as
determining optimal caching policies for spectral or energy efficiency.

• HetNets includes optimisation problems such as cell planning and coverage,
traffic load balancing, and outage and network healing.

Resource classes

D2D resource management systems typically aim to optimise the allocation
of one or more of the following:

• Power level, the maximum transmit power levels DUE should use so as
to avoid interfering with other users.

• Frequencies, the frequencies DUE are assigned to communicate over.
This includes both licensed and unlicensed frequencies, down to individual
cellular RBs.

• Communication mode, whether UE should transmit a message via
cellular or D2D mode.

• Base station in the case of HetNets, which access point UE should
communicate through.
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• Cached files, retrieval of cached files, such as web assets (e.g. CSS,
Javascript), from edge servers in SBSs or possibly on neighbouring
devices.

Algorithm classes

A variety of algorithm types have been applied to D2D resource management
problems. In the literature reviewed, resource allocation algorithms could be
roughly grouped into the following categories:

• Rule-based algorithms that assign values determined by hard-coded
rules. These algorithms can be constructed to have very low computational
complexity, ≈ O(1), using heuristics on parameters such as power
levels and CSI to generate conservative approximations with very small
observation spaces (e.g., single devices). It is generally seen as infeasible
to expand rule-based algorithms to consider the broader network without
methods to speed up computation.

• Dynamic programming, a recursive programming method that simplifies
complex problems by reducing them down into simpler sub-problems.
Dynamic programming methods can speed up computation significantly,
however still may not be fast enough for real-world applications.

• Combinatorial optimisation methods such as integer programming.
While combinatorial optimisation methods can find optimal solutions,
they are generally slower and scale poorly with input size. Combinatorial
optimisation methods are generally going to be most applicable to
larger timescale allocation problems such as mode selection.

• Graph theoretic algorithms which model the problem using structures
composed of pairwise relations between objects. Some RRM problems
can be reduced to be solved by known graph network flow algorithms
such as bipartite matching.

• Game theoretic solutions that model the resource allocation problem as
a strategic interaction problem in either cooperative or non-cooperative
scenarios. Frequently game theoretic solutions use numerical optimisation
methods to find equilibrium solutions, also limiting their scalability.
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• Reinforcement learning which approaches the resource allocation problem
probabilistically in which agents aim to maximise their expected utility.
Algorithms in the RL class include: classical RL, such as Q-learning;
multi-armed bandits, which are a single step specialisation of RL; and
DRL.

This classification is meant to be indicative of the solution mechanism used,
to aid in comparison. Some of the reviewed literature combined elements of
multiple algorithm classes, for example graph and dynamic programming or
game theoretic and optimisation.

2.3.2 Simulation Models

Evaluation of D2D resource allocation algorithms can be conducted analytically,
empirically, or empirically through simulation. Simulation is a common approach
as analytical methods can become unacceptably complex when using more
detailed propagation models and cost and time overheads involved with
developing prototypes limit empirical evaluation.
As previously discussed, D2D can operate in both licensed and unlicensed
bands. D2D can share frequencies in licensed bands, orthogonally through
overlay networking, or as is more commonly studied in the literature, non-orthogonally
through underlay networking. Typically, cellular networks are assumed to be
based on orthogonal frequency division multiple access (OFDMA).
Simulations commonly model scenarios that restrict their network scope to
a small number of MBSs, typically between one and nine, surrounded by
many randomly positioned CUEs and DUEs. The most common scenario
is a single MBS, which has the advantages of being more computationally
efficient and abstracting away cell handover concerns. In HetNets problems,
the environment also contains a number of SBSs. Typically omni-directional
antenna and isotropic propagation are utilised, with path loss modelled using
various log-distance models.
Generally, it is assumed that cellular systems are under full load, with one
CUE assigned to each RB and all RB occupied, however there is some variation,
with several works modelling traffic using random processes such as Markov
chains. Simulations vary in scope and commonly features between 2–30 ,
2–30 CUEs and 2–60 DUEs. It is generally assumed that DUE are paired
and operate in a range between 10–30m apart.
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2.3.3 RL-based D2D Resource Management

RL is a promising approach for D2D resource optimisation as it can provide
high quality approximate answers, adapt to conditions, scale to large numbers
of devices and provide solutions within the millisecond time constraints. RL,
like all machine learning, requires an initial training period, after which the
trained models can make decisions in milliseconds.
The first applications of RL for D2D resource management used classical
RL algorithms such as Q-learning [15] and SARSA [16]. One of the original
applications of RL in D2D used tabular Q-learning to allocate channels and
transmit power levels to DUE in cellular offload [17]. However, this work was
unable to empirically demonstrate scalability, the state-action space was very
limited, consisting of two channels and three power levels.
Scalability is an ongoing challenge for RL D2D research, as tabular Q-learning—which
uses a look-up table of Q-values—is computationally constrained as the look-up
table grows exponentially with the size of the state-action space. One proposed
solution was the development of a more compact state representation [18], in
which a function approximator is used to more efficiently map individual
Q-values via a parameter vector. Alternatively, decentralised Q-learning, in
which a larger Q-table is decomposed, provided means to scale to up to 30
RB and 12 DUE [18, 19].
More recently, DRL, a subset of RL in which policies are parameterised
with DNNs, has demonstrated the ability to scale to higher dimensional
state-action spaces. The DQN algorithm was compared to Q-learning in an
environment with time-varying channels, modelled using finite-state Markov
chain and demonstrated that DRL can outperform classical RL in maximising
system capacity [20]. Building upon this work, the DQN algorithm has been
used for D2D resource management to develop decentralised control [21],
maximise throughput while preserving QoS [22], and optimise energy efficiency
in non-cooperative environments [23].
The success of DQN for D2D resource management has inspired researchers
to investigate the other DRL algorithms. A multi-agent actor-critic algorithm
was compared to a DQN in D2D underlay cellular offload and demonstrated
that QoS and system capacity could be improved by lowering signalling
overhead through decentralised control [24].
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2.4 Reinforcement Learning

Figure 2.2: Reinforcement learning
agents learn through observing their
environment, taking actions based on
their observations, and assessing the
utility of their behaviour through the
incoming reward signal.

Reinforcement learning (RL) is a
field of machine learning which aims
to solve sequential decision-making
problems. It learns to improve
its behaviour through trial and
error, maximising a scalar reward
signal [16]. In contrast to other
machine learning paradigms such as
supervised or unsupervised learning,
RL generates its own training data.
This frees practitioners from the
labour of curating training datasets
and human biases involved in their
construction. By extension, this
implies that the distribution of the training dataset is likely to shift over
time and that there is a feedback loop in which the actions an agent chooses,
influences the training data it receives. This self-directed learning paradigm
can make RL easier to employ on more complex problems as its reduces the
practitioners need to prepare the agent for every scenario it could encounter.
RL agents learn by making observations of the state of the environment
St ∈ S at each timestep t. They use this information to select actions
At ∈ A to obtain a reward Rt ∈ R (Figure 2.2).

2.4.1 Markov Decision Processes

The sequential decision-making problem RL aims to solve can be formalised
by the Markov decision process (MDP) [25]. MDPs use the Markov property
which assumes that future states are dependent only on the current state
and not on the history of previous states. An MDP can be defined as a five-tuple
〈S,A, p, r, γ〉 in which:

• St ∈ S is the set of all possible states an agent can be in, known as the
state-space,

• At ∈ A is the set of all possible actions an agent can take, known as
the action-space,
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• St+1 ∼ p(·|St, At) is the transition probability function which characterises
the distribution of next states over state-action pairs,

• Rt
.
= r(St, At, St+1) is the reward function, and

• γ ∈ [0, 1] is a reward discounting factor.

In episodic RL, the MDP is assumed to be finite. The agent interacts with
the environment in a series of discrete timesteps t ∈ N≥0 until the terminal
timestep T . A sequence of states, actions and rewards, from t = 0 until the
terminal state ST is known as a trajectory τ or an episode

τ = (S0, A0, R0, S1, A1, R1, . . . , ST ) . (2.3)

An agent typically requires many episodes to learn the environment dynamics.
The accumulated, discounted reward for an episode is known as the return

G(τ)
.
=

T∑
t=0

γtRt . (2.4)

The goal of RL is to learn to maximise the expected return

maxE
[
G(τ)

]
. (2.5)

2.4.2 Policies and Value Functions

An RL agent maintains a set of beliefs about its environment in a policy
π : S × A → [0, 1], which is a mapping between states and distributions over
actions. Agents select actions to take by sampling from their policy.

At ∼ π(· | St) (2.6)

Given a policy, the value of each state vπ(s) or state-action pair qπ(s, a) is
the expected return of that policy

vπ(s)
.
= Eτ∼π

[
G(τ)

∣∣ S0 = s
]

(2.7)

qπ(s, a)
.
= Eτ∼π

[
G(τ)

∣∣ S0 = s,A0 = a
]
. (2.8)

These are known as the state-value and action-value functions. The state
and action values can be recursively calculated with the Bellman expectation
equation,

qπ = Es′∼p(·|s,a)
[
r(s, a, s′) + γEa′∼π(s′)

[
qπ(s′, a′)

] ∣∣∣ s, a, π] . (2.9)
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The agent’s goal to maximise its expected return is achieved with the optimal
state-value v∗ or action-value q∗ functions, which are the solution to the
MDP

v∗(s)
.
= max

π
vπ(s) , (2.10)

q∗(s, a)
.
= max

π
qπ(s, a) . (2.11)

This can be recursively calculated with the Bellman optimality equation [16],

q∗(s, a) = Es′∼p(·|s,a)
[
r(s, a, s′) + γmax

a′∈A
q∗(s

′, a′) ,

]
(2.12)

if the value of all states and actions are known. In practice state and action
values are typically not known a priori, and it is infeasible to iterate over all
possible values in non-trivial environments. Thus, the value-functions must
be estimated from experience. In model-free RL, Monte Carlo methods can
be used to estimate value functions and discover optimal policies.
RL algorithms are commonly categorised as being value-based, policy
gradient or a combination known as actor-critic methods. These differ by
whether the policy is represented explicitly as in the case of policy gradient
methods or implicitly as in value-function methods.

2.4.3 Value-Based Methods

Value-based methods aim to directly learn the value of actions in each state
with the action-value function qπ(s, a) and generate an implicit policy by
selecting actions from this value function. These methods iteratively learn
an approximate action-value function that converges to the optimal action-value
function. Most commonly, actions are sampled greedily, choosing the action
with the highest q-value

At = arg max
a

q(s, a) (2.13)

but can use stochastic methods such as softmax

At =
exp(q(s, a))∑

a′∈A exp(q(s, a′))
. (2.14)

2.4.4 Policy Gradient Methods

An alternative to value-based methods is to learn a parameterised policy
instead of a value function. Learning a policy directly has several advantages.
Firstly, policy gradient methods tend to have better convergence properties.
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Secondly, learning a policy directly is more feasible in higher dimensional or
continuous environments due to a value function’s requirement to enumerate
every state and maximise over all actions. Lastly, they allow an agent to
learn stochastic policies. However, policy-based methods are typically less
efficient and suffer from high variance in their updates [16, 26].
As previously discussed (2.5), the goal of RL is to maximise the expected
return. With a parameterised policy πθ, where θ ∈ Rd is a parameter vector,
this becomes an optimisation problem to find θ that maximises a performance
measure J(πθ):

J(πθ) = max
θ

Eτ∼πθ
[
G(τ)

]
. (2.15)

One way to optimise the policy is through gradient ascent,

θk+1 = θk + α∇θJ(πθ) , (2.16)

where ∇θJ(πθ) is the policy gradient and α is the learning rate. That is to
compute:

∇θJ(θπ) = ∇θEτ∼πθ
[
G(τ)

]
. (2.17)

To numerically compute the policy gradient, we first derive an analytical
solution, assuming the policy is differentiable. As the environment dynamics
are usually unknown, we reformulate without a dependence on the state
distribution, known as the policy gradient theorem [27]:

∇θJ(θπ) = Eτ∼πθ

[
T∑
t=0

∇θ log πθ(At | St)qπθ(St, At)

]
. (2.18)

2.4.5 Actor-Critic Methods

Policy gradient algorithms are known to learn more slowly than value-based
methods due to high variance in their estimates [16]. Actor-critic methods
learn a value function in addition to a parameterised policy, to reduce the
variance in gradient updates. These methods learn two models, an actor and
a critic. The critic learns a value function, such as the action-value function,

qw(s, a; θ) ≈ qπθ(s, a) , (2.19)

through bootstrapping to update the value of preceding states online. The
actor seeks to maximise the approximate policy gradient,

∇θJ(θ) ≈ E
[
∇θ log πθ(s, a)qw(s, a)

]
∆θ = α∇θ log πθ(s, a)qw(s, a)

(2.20)
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guided by the critic.

2.5 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a subset of RL which uses DNNs to
represent an agent’s policy and/or value function. The addition of DNNs
confers three main benefits over tabular RL. Firstly, deep learning automates
feature discovery which reduces domain specific engineering. Secondly, function
approximation allows RL to generalise to unseen states. This becomes increasingly
important in larger or continuous state spaces where identical observations
may never occur. Thirdly, deep learning enables RL to scale to more complex
environments which otherwise become constrained by computational limits.
In this section we will review several DRL algorithms which are used in the
research chapters.

2.5.1 Deep Q-Networks

This first DRL algorithm to achieve broad success, Deep Q-Networks
(DQN), demonstrated the effectiveness of the fusion of deep learning and
RL, surpassing all previous algorithms in the challenging Atari Arcade Learning
Environment [28, 29]. DQN is a model-free, value-based, off-policy algorithm,
which uses two (commonly convolutional) neural networks to represent an
online θ and target θ− value functions.
DQN’s success can be attributed in part to the use of an experience replay
buffer to stabilise learning. The experience replay buffer D stores incoming
〈s, a, r, s′〉 tuples and replays them randomly during learning in order to
break the temporal correlations between successive frames. The online neural
network is updated with the minibatches of experience sampled from the
experience replay buffer. The online network’s parameters are updated using
the differentiable loss function,

Lt(θt) = E(s,a,r,s′)∼U(D)

[(
Yt − q(s, a; θt)

)2]
, (2.21)

where Yt is the approximate target Q-value,

Yt = Rt + γmax
a′

q(s′, a′; θ−t ) , (2.22)

to minimise the mean squared (or huber) error in the Bellman equation.
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The success of DQN inspired a raft of follow-on research, of which several
improvements where successfully combined to create the Rainbow DQN [30].

2.5.2 Double DQN

DQN is affected by an overestimation bias in the calculation of expected
target Q-values. It uses the same action-value to both select and evaluate
an action, leading to overoptimistic estimates. Double DQN [31] decouples
the maximisation step in (2.22), by selecting the next action that maximises
the Q-value from the online network,

Y DoubleDQN
t = Rt + γmax

a′
q(St+1, arg max

a
q(St+1, a; θt); θ

−
t ) . (2.23)

2.5.3 Dueling DQN

Dueling DQN specifies a network architecture which factorises the action-value
function into state and advantage aπ values,

qπ(s, a) = vπ(s) + aπ(s, a) , (2.24)

and has been show to greatly improve DQN performance [32]. One explanation
is that for many states it is unnecessary to estimate the value of each action,
but for algorithms which use bootstrapping, such as DQN, improving the
estimation of state values is of great importance. This factorisation allows
the advantage α and value β networks to specialise in learning their respective
functions.

A key ingredient of the dueling architecture is ensuring the expectation of
the advantage is zero,

Ea∼π(s)[aπ(s, a)] = 0 . (2.25)

This can be implemented by subtracting the mean,

q(s, a; θ, α, β) = v(s; θ, β) + a(s, a; θ, α)− 1

|A|
∑
a′∈A

a(s, a′; θ, α) . (2.26)

While Dueling DQN can be implemented with two different neural networks,
in practice it is often preferable to use a single network θ with an advantage
α and value β heads.
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2.5.4 Prioritised Replay

DQN uniformly samples experience tuples from its replay buffer, but not
all transitions have the same information content to learn. This process can
be improved with the use of a Prioritised Replay Buffer [33]. Prioritised
Replay samples transitions with probability proportional to their last absolute
temporal-difference (TD) error,

δt
.
= Rt + γmax

a′∈A
q(St+1, a

′; θ−)− q(St, At; θ) (2.27)

pt ∝ |δt|ω , (2.28)

where ω is a hyperparameter to correct an importance sampling bias.
New transitions are inserted into the buffer with maximal priority to increase
the probability they are sampled.

2.5.5 Multi-Step Learning

The DQN learning update samples transitions containing a single reward
value and greedily selects the next action, in a single-step bootstrapping
process. Bootstrapping is a process of updating estimates on the basis of
other estimates, in this case the estimate of the value of states on estimates
of the value of successor states. Multi-step learning, or n-step bootstrapping,
increases the amount of steps forward the agent tries to predict and can
improve learning efficiency by providing more information per transition [34].
Multi-step learning uses an n-step return,

Gt:t+n
.
=

n−1∑
k=0

γkt Rt+k + γnVt+n−1(St+n) , (2.29)

where Vt is the estimate of vπ at time t.
As the DQN is an off-policy algorithm, the reward sampled from the replay
buffer does not depend on the current policy. The Multi-Step DQN [35]
minimises the n-step loss,

Lt(θt) =
(
Ĝt:t+n(θ−)− q(St, At; θ)

)2
, (2.30)

where Ĝt:t+n(θ−) is the estimate of the multi-step return from the target
network,

Ĝt:t+n(θ−) =
n−1∑
k=0

γkt Rt+k + γnt max
a′∈A

Qt(St+n, a
′; θ−) . (2.31)
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2.5.6 NoisyNets

A key challenge in RL is managing the exploration/exploitation tradeoff. At
each timestep, agents must choose between exploring their environments—to
better understand its dynamics, or exploiting them—maximising reward.
DQN explores during training using an epsilon-greedy strategy, where with
probability ε it will pick an action uniformly at random. It is commonly the
case that some actions are known to perform poorly while several perform
well. In these situations epsilon-greedy can disproportionately focus on the
single best action. As the action-space increases, the impact of action selection
combinatorially explodes and can greatly impede performance.
NoisyNets provide a mechanism to improve exploration, by adding parametric
noise to neural network weights [36]. Consider the standard linear layer,

y = Wx + b , (2.32)

where x ∈ Rp is the layer input, W ∈ Rq×p the weight matrix and b ∈ Rq

the bias. The corresponding noisy layer is,

y = (Wx + b) + ((Wnoisy � εω)x + bnoisy � εb) , (2.33)

where εω ∈ Rq×p and εb ∈ Rq are noise random variables. These noisy
linear layers replace the final one or two standard linear layers in the agent’s
network.

2.5.7 Categorical DQN

Value-based methods usually aim to learn the expected return of states or
state-action values. An alternative approach is to learn an underlying distribution
for each value, known as the value distribution. The value distribution zπ
is random process which models the discounted return,

zπ(s, a)
.
=

T∑
t=0

γtRt . (2.34)

Similar to value functions, the value distribution can be recursively calculated
with the distributional Bellman equation,

zπ(s, a)
d
= r(s, a, s′) + γza′∼π(s′, a′) , (2.35)
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where d
= denotes distributional equality. The action-value function is the

expectation of the value distribution,

qπ(s, a) = Ez[zπ(s, a)] . (2.36)

This distributional perspective was applied to the DQN algorithm, to create
the Categorical DQN, also known as C51 or the Distributional DQN [37].
The Categorical DQN models the value distribution using a discrete parametric
distribution, parameterised by Natoms ∈ N+ and vmin, vmax ∈ R, whose
support is the vector z,

zi = vmin + (i− 1)
vmax − vmin
Natoms − 1

, (2.37)

for {i ∈ 1, . . . , Natoms}. On this support is defined an approximating distribution
dt, with probability mass piθ(St, At) on each atom i, such that,

dt = (z, pθ(St, At)) , (2.38)

with the objective to update θ to match the actual distribution of returns.
This can be achieved by minimising the KL divergence between dt and the
target distribution:

d′t
.
= (Rt + γtz, p

−
θ (St+1, arg max

a′
q−θ (St+1, a

′))),

DKL(Φzd
′
t||dt) ,

(2.39)

where Φz is an L2-projection of the target distribution onto z.

2.5.8 Rainbow DQN

The Rainbow DQN combined the six DQN extensions previously discussed,
Double DQN, Dueling DQN, Prioritised Replay, multi-step learning, Categorical
DQN and NoisyNets into a single integrated agent [30]. This was achieved
by modifying the Categorical DQN’s target distribution with a multi-step
variant:

dt:t+n =

(
n−1∑
k=0

γkt Rt+k + γnz, p−θ

(
St+n, arg max

a′
q−θ (St+n, a

′)
))

, (2.40)

with loss,
DKL(Φzdt:t+n||dt) . (2.41)

Integrating Double DQN’s decoupled action selection, prioritised replay and
using noisy layers.
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2.5.9 Asynchronous Advantage Actor-Critic

Asynchronous Advantage Actor-Critic (A3C) is a model-free, on-policy, actor-critic
algorithm [38]. It reduces variance in gradient updates with the use of many
(commonly 16–128) actor workers trained asynchronously in parallel. This
requires individual actor parameters to be periodically synced with shared
global parameters.
A3C uses a two neural network for the policy θ and the value function θv.
Similar to the Dueling DQN in subsection (2.5.3), it is typically preferable
to implement this as a single shared network with policy and value outputs.
Each worker contains its own two-headed network plus the global network.
Actor networks are updated periodically with the policy gradient method:

∇θ′ log π(At|St; θ′)aπ(St, At; θ, θv) , (2.42)

with the use of the k-step approximated advantage function,

aπ(St, At; θ, θv) =
k−1∑
i=0

(
γiRt+i + γkvπ(St+k; θv)

)
− vπ(St; θv) . (2.43)

Additionally, entropy regularisation is added to improve exploration:

∇θ′ log π(At, St; θ
′)(Rt − vπ(St; θv)) + β∇θ′H(π(St; θ

′)) , (2.44)

where H is the entropy and β the entropy strength hyperparameter.
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Chapter 3

Coevolutionary Deep
Reinforcement Learning

3.1 Overview

This chapter presents an improved algorithm for training RL in competitive
environments. A popular method for this, self-play, has not previously been
studied in depth. We compare several self-play variants and find that the
use of competitive pressures within a larger training population can improve
performance.
This research was presented at the IEEE Symposium Series on Computational
Intelligence 2020 in Canberra, Australia [39].

3.2 Preliminaries

3.2.1 Multi-Agent Reinforcement Learning

Historically, RL was developed from a single-agent perspective [40]. Multi-agent
reinforcement learning (MARL) investigates methods for operating RL in
systems with multiple rational, decision-making agents, where these other
agents could be RL, other intelligent software agents, or human. Learning
in multi-agent environments is challenging as an agent’s optimal policy is
dependent on the behaviour of the other agents in the environment. Developing
successful MARL algorithms is of interest as many real world problems are
multi-agent in nature, such as self-driving cars, supply chain logistics, smart
grids and packet routing.
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MARL is a broad and complex domain, encompassing a wide variety of problems.
A useful property to identify in multi-agent system is the level of cooperation
and competition between agents, as it impacts feasibility of particular
classes of MARL algorithms to the problem at hand.

3.2.2 Competitive Training Methods

Fully competitive environments are in some sense more straightforward than
cooperative or mixed conflict, as agent goals are generally non-aligned and
instead seek to maximise their individual gains. This allows more developed
single-agent RL algorithms to be employed, by treating the other agents as
part of the environment.

Several methods have been proposed for training RL in competitive environments.
In this section we group them into four categories: expert opponents,
offline reinforcement learning, game theoretic and self-play. Prior
research has combined these methods, for example, initially training with
offline RL, then improving performance with self-play or game theoretic
methods [41, 42].

Expert Opponents

One competitive training method is to train RL agents against an expert
opponent, such as a human or software agent. The main advantage of this
method is that specialised algorithms are not required. Single-agent learning
algorithms and training methods can be used, by treating the opponent as
part of the environment and playing repeated games against them, until
learning to outperform them.

However, there are several disadvantages to this method. Firstly, in many
situations expert opponents are not available or feasible. This could be because
one does not exist, due to budgetary limitations, or the opponent is not
able to provide sufficient training data. For example, human opponents are
generally infeasible as RL can require billions or trillions of samples to learn
in more complex environments [42, 43]. Secondly, researchers have observed
that the performance of trained agents tends to be limited by the complexity
of the environment [44, 45]. Thirdly, using this method agents may only
learn a single strategy profile and struggle to generalise. Lastly, due to the
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curse of dimensionality agents may struggle to learn in higher dimensional
environments or against opponents that dominate them.

Offline Reinforcement Learning

Offline RL, also known as batch RL, is a method for learning from a fixed
dataset, similar to supervised learning. This dataset could be constructed
from expert human games [41, 42]. In contrast, “online” RL is responsible for
its own data gathering process, in which it influences the data it receives by
the actions it selects.

An advantage of offline RL is its sample efficiency, particularly when learning
complex action sequences. This can be particularly challenging for RL, when
rewards are temporally uncorrelated and combinatorial complexity grows
with the sequence length. Offline RL can learn to imitate complex behaviours
in the dataset directly, without needing to discover them itself.

However, there are several disadvantages. Firstly, datasets can be difficult
to obtain. They might not be available, be expensive or difficult to collect,
or of poor quality. Secondly, similar to the expert opponents method, the
performance of agents trained by offline RL can be limited by the complexity
of the dataset [44, 45]. Lastly, it is difficult to procure training datasets that
enumerate all possible scenarios agents could encounter, possibly leading to
overfitting and generalisation issues.

Game Theory

Much of RL is based on the MDP, of which assumes the environment is
stationary. To address this shortcoming one solution is to incorporate game
theory, which models the strategic interactions between multiple agents [46,
47]. A game theoretic RL training method is fictitious self-play (FSP) [48].
FSP is a sample-based implementation of generalised weakened fictitious
play. It computes a policy by sampling episodes of self-play games, then at
each iteration computing a mix between the best response to the uniform
mixture of opponent policies, and the agent’s own average strategy. The best
response is computed through Fitted Q Iteration [49].
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Self-Play

Self-play allows RL to be trained without external guidance by competing
with itself for limited rewards. In its simplest implementation a single agent
plays as both players in a two-player, zero-sum game, in which repeated
games are played until the agent reaches a satisfactory performance level.
Advantages include that it does not require expert knowledge, does not impose
a performance ceiling and that it encourages agents to develop novel and
emergent behaviours, free from human biases.

Unfortunately, self-play is not without drawbacks. It is known to be less
sample efficient and suffer more unstable learning dynamics than other training
methods. This is in part due to a non-stationary learning problem where
agents are simultaneously acting as both student and teacher. Consequently,
we look to address these issues with the use of coevolutionary algorithms.

3.3 Background

3.3.1 Self-Play

Self-play training for agents in competitive environments traces roots back to
early AI research. In 1950 Shannon theorised that a computer could learn to
master chess through an alternating maximisation and minimisation process
whereby the program traversed the game tree and calculated optimal moves [50].
Shannon’s application of the minimax procedure influenced the creation
of Samuel’s checker agent [51], a seminal machine learning program which
learnt to play checkers to an amateur level. Samuel improved his program
to use a rote learning procedure to search through the game tree and record
the utility of game states as scored by an evaluation function. This search
procedure was conducted by playing many games against another version of
itself, in what can be described as prototypical self-play RL.

Several decades later, self-play was critical in the training of an RL backgammon
agent, TD-Gammon [52]. TD-Gammon was a major breakthrough, achieving
a grand master level of play, with minimal expert knowledge required. TD-Gammon
was trained with a single agent controlling both players in the game and
using the actions of both players to update its value-function. This method
has since seen widespread use in the game playing AI literature and we refer
to it as single-agent self-play. Further research into the success of TD-Gammon
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discovered that the stochasticity of backgammon dice rolls may have assisted
exploration and minimised the training instability of single-agent self-play [53].

More recently, improvements to self-play have been integral for some of the
most impactful RL algorithms. It was discovered during the development of
AlphaGo, an agent which learnt to play the board game Go at a superhuman
level, that playing against a randomly selected previous iteration of the policy
network stabilised training and prevented overfitting the current policy [41].
This idea of maintaining a pool of previous versions to diversify self-play
training data has proved fruitful. AlphaGo Zero, an evolution of AlphaGo
trained entirely from self-play, kept the current best performing agent as a
champion, responsible for generating training data when trained against a
pool of uniform randomly selected previous versions [44]. Agent populations
have been further developed to introduce opponent sampling strategies [45].
In this paper, we refer to the method of training the current best performer
against previous best performers as champion self-play.

Population-based methods propose to evolve a diverse pool of candidate
solutions, instead of spawning from a single individual. These methods foster
diversity and recognise that some strategies are more effective earlier in the
learning process than later on when the meta-game may have evolved. By
developing a range of policies, strategies that are initially weaker may prove
more effective as new skills are mastered. Diverse opponents help ensure
more robust policies and reduce overfitting. However, population-based methods
can generate significant redundant computation, such as the training of suboptimal
population members. An example of population-based methods, Population-based
training, is a hyperparameter optimisation algorithm which focuses resources
towards the best performing candidates [54]. The authors then built upon
population-based training to develop the algorithm FTW, capable of learning
to cooperate in a team-based first-person shooter video game [55]. FTW
trained agents through self-play with a two-tier optimisation process in which
the inner the loop optimised individual agents using a reward constructed
to maximise team win probability. The outer loop used population-based
training to optimise agent hyperparameters and update neural network weights
if the agent’s win probability dropped below a threshold.

Self-play has been combined with game theoretic optimisation and the grandmaster
level Starcraft 2 agent, AlphaStar, is one of the best known examples of
this [42]. AlphaStar used supervised learning to initially train a diverse population
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of agents with a range of different strategy profiles. After being trained to
strong level, the agents then further improved their policies through a combination
of population-based self-play and game theoretic learning.

3.3.2 Coevolutionary Algorithms

Evolutionary algorithms (EA) are population-based optimisation methods
inspired by Darwinian evolution. EAs begin with a population of candidate
solutions and a fitness measure, which is a heuristic for a candidate solutions
distance to their objective. Small mutations are made to the population and
candidates are evaluated using the fitness measure, with "fitter" changes
preferred to become the next generation’s parents. This facilitates a "survival
of the fittest" evolutionary process which incrementally drives the fitness
of the population towards the desired objective. A high-level outline of the
procedure is provided in Algorithm 1.

Coevolutionary algorithmss (CoEA) are a subset of EAs which use subjective
fitness measures. Subjective fitness is measured relative to other individuals
within the population(s), in contrast to EAs objective fitness measures which
are measured independent of the population. Subjective fitness measures
allow CoEAs to more successfully operate in larger, higher dimensional search
spaces than objective measures as they encourage candidates to focus on
areas which are more individually beneficial and use competitive adaption
to incrementally combine these changes to drive objective progress [56].

Algorithm 1 Abstract Evolutionary Algorithm
1: procedure Train
2: Initialise population P
3: Evaluate P
4: while not terminated do
5: Select parents from P
6: Generate offspring from parents
7: Evaluate offspring
8: Select survivors for new P
9: end while

10: return P
11: end procedure
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3.3.3 Evolutionary Reinforcement Learning

Evolutionary computing and RL are influential AI research directions that
have seen significant success, particularly in open-ended learning problems,
such as games. This success has lead to a recombination of ideas from these
fields, creating the subfield of evolutionary reinforcement learning (ERL).
Neuroevolution is a prototypical example of ERL which uses EAs instead
of gradient descent to train neural networks [57]. In contrast with gradient
descent, which minimises a loss function over labeled training data to learn
neural network parameters, neuroevolution evolves the parameters towards a
specified behaviour. This allows neuroevolution to be applied more directly
to open-ended learning problems [58, 59]. Recently, ERL methods have shown
great promise, outperforming gradient based algorithms on some benchmarks.
For example, it was found that evolution strategies are a highly scalable
alternative to gradient-based DRL that reduced the training time from hours
to minutes [60]. Another notable algorithm, collaborative evolutionary reinforcement
learning (CERL), demonstrated that a combination of gradient-based RL
and neuroevolution EAs outperformed its constitute algorithms on the challenging
Mujoco humanoid benchmark [61]. CERL utilises a population of EA actors
to gather experience and a portfolio of TD3 [62] agents with distinct hyperparameters,
sharing a single replay-buffer. CERL combines the advantages of gradient-based
and gradient-free learning, by periodically copying the network weights from
the TD3 portfolio over the weights of underperforming EA population members.

3.4 Coevolutionary Reinforcement Learning

Coevolutionary Learning and REinforcement (CLaRE), improves upon population-based
approaches for training RL with the use of competitive coevolution. CLaRE
does not place any limitation on the type of RL algorithm used (e.g. value/policy-based,
on/off policy, etc.).
CLaRE is initialised with a population P of randomly initialised RL agents.
The algorithm consists of an evolutionary outer loop and an inner training
loop. An algorithm epoch is a single iteration of the outer loop. The inner
training loop asynchronously trains a generation of RL agents for a predetermined
period. In this generation, opponent pairs are sampled and play complete
episodes, updating their policy and/or value functions as dictated by their
individual learning algorithms. The training period acts like the mutation
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and recombination function in classical evolutionary algorithms—or perhaps
closer to the original biological notions—that evolutionary adaptations by
one agent affect the survivability of its peers. After each generation, agent
fitness f is calculated using a chosen subjective fitness measure on the results
of the training. The fitness is used to probabilistically select survivors from
the population. The population is updated by cloning survivors to replace
underperforming agents, completing a coevolutionary epoch. The outer evolutionary
loop continues until a terminating condition is met, such as total number of
agent steps or an evaluation threshold. Algorithm 2 describes the approach
in more detail.

Figure 3.1: The coevolutionary training cycle begins with a population
of reinforcement learning agents. The agents are trained in competition with
themselves for a period, in which they all learn slightly different policies.
The fittest individuals are selected to become the parents for the next epoch.

3.4.1 Training Procedure

Within the inner training loop, generation length and agent sampling strategy
are hyperparameters which tradeoff the degree of population mutation versus
evolution speed. Generation length can be measured by the number of steps
experienced by agents or other measures such as population diversity via a
niching or fitness sharing measure. Longer epochs provide more opportunity
for individual mutation at the cost of less frequent balancing of dominant
strategies. Optimal epoch length is environment specific and strikes a balance
between providing sufficient individual progression and metrics to accurately
differentiate fitter individuals versus sufficient evolutions to filter out weaker
strategies and complexify behaviour.
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Algorithm 2 Coevolutionary Learning and REinforcement
1: procedure Train
2: Initialise population P
3: while not terminated do
4: Initialise epoch metrics m
5: while not terminated do
6: a← sample_agents(P)
7: update r with play_episode(a)
8: end while
9: f ← measure_fitness(m)

10: s← select_survivors(f)
11: update P with s
12: end while
13: return P
14: end procedure

3.4.2 Survivor Selection

Survivors are selected every generation to be cloned to replace underperforming
or dominated agents. This increases competition amongst the population,
creating extrinsic motivation for agents to evolve new capabilities in order
to regain competitive advantage. The agent population is evaluated with
a subjective fitness measure on metrics collected during agent training to
provide a weakly ordered set of agent ratings. Elo ratings [63] were used as
the fitness measure. Elo ratings determine the significance of a victory based
on the relative strength difference of the opponent, rewarding victories over
higher ranked agents more favourably than lower ranked agents. For each
agent i ∈ P a rating ri is maintained. The ratings r are initialised with an
arbitrary base rating, for every i ∈ P , ri ← 1200, which is updated with
the game result after each episode. To update r, the probability of player i
winning is calculated by,

P(i beats j) =
1

1 + e−(ri−rj)/400
, (3.1)

and use the win probability to update the ratings for both players,

ri := ri + k(si − Pr(i beats j))

rj := rj + k(sj − (1− Pr(i beats j))) ,
(3.2)
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where the score s for each player is given by,

si =


1 if player i won

0.5 if draw

0 if player i lost ,

and use a k-factor, k = 32. To select survivors, r is converted into a probability
distribution and survivors sampled from it. For this process a weighted softmax
function is used,

f(r) =
eri/τ∑k
j=1 e

rj/τ
, (3.3)

with temperature τ , and sample survivors from it. We found that the stochasticity
from sampling agents added stability to our algorithm.

3.4.3 Related Work

A key distinction between CLaRE from other ERL algorithms is that it only
uses the constituent learning algorithm to train population members. For
example, if CLaRE is parameterised with a gradient-based DRL algorithm,
it will only train with gradient descent. Furthermore, CLaRE does not utilise
ECs to gather experience. CLaRE treats the RL process as the evolutionary
mutation process. An additional point of difference is that CLaRE uses subjective
fitness measures, which allows the algorithm to be more generally applied
to problems when the optimal behaviour is not known. For example, CERL
uses the cumulative sum of rewards received in a rollout as the fitness measure [61].
In a zero-sum environment containing multiple agents this may not satisfactorily
differentiate agent performance, such as comparing wins against a weaker
agent with a win against a stronger agent.

3.5 Method

In our evaluation, all RL training methods trained the same learning algorithm,
a Rainbow DQN [30]. Our implementation of Rainbow DQN differs in several
ways from the reference implementation, of which the most standout changes
are that we do not use the Categorical DQN [37], Noisy Networks [36] or
multi-step learning [34] components. Another notable change is that we used
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a weighted softmax,

At =
exp(q(s, a)/τ)∑

a′∈A exp(q(s, a′)/τ)
, (3.4)

to probabilistically sample actions instead of epsilon-greedy,

At =

arg maxa q(s, a), if X ∼ U(0, 1) > ε

A ∼ U(0, |A|), otherwise
. (3.5)

This change was primarily made as we found it performed better during our
initial agent tuning. Additionally, epsilon-greedy cannot be naively implemented
in environments with illegal actions (as described in the following section),
due to the entire action-space not being a legal move at every timestep.

3.5.1 Evaluation Environment

Our evaluation was conducted in the two-player, fully competitive, zero-sum,
perfect information board game Connect Four. The canonical version of
Connect Four is played on a board with seven columns and six rows. Players
take turns dropping coloured discs in one of the seven columns with the aim
of being the first player to create a straight line of four consecutive discs of
their colour in either a vertical, horizontal or diagonal direction. Despite
the simple sounding rules, Connect Four has a state-space complexity of
approximately 4.5 · 1012, which makes learning optimal behaviour sufficiently
challenging. The environment configuration parameters are listed in Table 3.1.
Connect Four was chosen as our evaluation environment for two main reasons.
Firstly, to restrict our problem domain as a pedagogical step towards learning
in more complex environments and conflict dynamics. Connect Four is comparatively
computationally efficient and has a maximum game length is 42 turns. This
made our experiments computationally feasible without access to specialised
hardware.
Secondly, Connect Four was chosen as tree-based search algorithms such
as MCTS perform strongly in it. The strength of tree-based solvers in our
environment provides an objective, quantitative measure with which to reliably
benchmark training progress. The ability to objectively analyse performance
is an important consideration when operating in a subjective domain as an
agent’s relative strength within a population may not correlate with external
notions of their strength.
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Table 3.1: Environment Configuration

Parameter Value
Board height 6
Board width 7
Win length 4

3.5.2 Observation Space

Connect Four is a two-player, alternating turn board game with perfect
information. At each timestep t, for each agent i, the environment provides
an observation St,i, including the agent not playing this turn. This implementation
decision was made for three reasons. Firstly, this provides agents with a
history of individual actions. Secondly, for compatibility with RLlib [64].
RLlib required an action, reward, terminal, next state and information values
for each observation, at each timestep. As Connect Four is an alternating
turn game, not providing observations for both players lead to a situation
where the non-active player did not receive the final reward and terminal
values. Lastly, it was more convenient to incorporate with MCTS, which
uses an environment model to conduct rollouts to simulate both players. In
later experiments we used our own custom RL framework and experimented
with only providing observations to the active player. However, as this only
provided a minor execution speed improvement and no discernible win-rate
performance benefit, we remained with dual observations.

Each agent observation St,i consists of the board state and an action mask
which are described below.

Board State

The board state is encoded as into a board height × width two-dimensional
matrix representation as can be seen in Fig. 3.2. The player’s discs are encoded
with a 1, the opponents with a 2 and available spaces with a 0. Traditional
CNNs architectures usually expect the height and width dimensions to be
equal. To achieve this, we pad the top row with 3s.

We initially experimented with a flattened representation in combination
with a fully connected neural network, but it did not perform as well. We
hypothesise that this is due to CNNs improved local spatial coherence.
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Figure 3.2: Connect Four Observation Representation (a) Shows the
game state, with a red and yellow player, where black indicates available
spaces. (b) The observation representation for the red player. The player’s
red discs are encoded with a 1, the opponents yellow discs with a 2, unfilled
columns with a 0, and padding with a 3.

Action Mask

The Connect Four rules define illegal actions, for example discs cannot be
placed in full columns. A common solution for dealing with invalid actions is
to utilise action masking. An action mask is a binary vector of equal dimension
to the action space, in which a one indicates a legal action and a zero an
illegal action. A depiction of a possible game state and the corresponding
action mask is shown in Fig. 3.3.
A trick to implement action masking in popular machine learning frameworks
such as Tensorflow or Pytorch is to use their slightly non-mathematical behaviour
of log 0 = −∞. This allows the action mask vector m to be added to the
Q-values q(s, a),

q′(s, a) = q(s, a) + log(m) , (3.6)

setting masked action to −∞, which when combined with softmax for action
sampling, sets their Pr = 0.

3.5.3 Action Space

Our implementation of Connect Four required both players i ∈ I, at every
timestep t, to select an action At,i. The global action space A = {0 . . . c},
where c is the number of columns, is the set of all possible actions. At each
state, only a subset of actions are legal, as per the action mask. For the
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Figure 3.3: Connect Four Action Mask (a) Shows the game state, with a
red and yellow player, where black indicates available spaces. (b) The action
mask for the red player. As defined by the action space, the first action is
the NOOP action, followed by the board game columns. Legal actions are
encoded with a 1 and illegal actions with a 0.

inactive player, the only legal action is the “NOOP” action At,i = 0. For
the active player, the legal actions are a subset of the indices of the columns
At,i ⊆ {1 . . . c}. A diagram of the action space is shown in Fig. 3.4.

3.5.4 Reward Function

We used a sparse, ternary reward function. That is all zero, except for the
terminal timestep T . At each timestep t, for each player i, the reward Rt,i is
calculated:

Rt,i =



0, t 6= T ;

1, if player i won;

0, if draw;

−1, if player i lost.

. (3.7)

3.5.5 Neural Network Architecture

The DQN agent used two identical CNNs for target and online networks.
Each network used three convolutional layers, feeding into two dense layers.
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Figure 3.4: The Connect Four Action Space contains a NOOP action in
position zero, followed by columns indices.

The first hidden layer convolves 16 2x2 filters with stride 1, the second hidden
layer convolves 32 2x2 filters with stride 1 and the final hidden layer convolves
64 3x3 filters with stride 2. Valid padding and Xavier weight initialisation [65]
is used for our convolutional layers. The convolutional layers feed into two
linear network heads to estimate the state value function and advantage
logits. Leaky ReLU activation is used between all layers. The online neural
network is trained by gradient descent with the Adam optimiser using a
learning rate α = 5 · 10−5 which is not annealed, on a minibatch of 32
transition tuples every 4 timesteps as per the original DQN [28]. The target
and online networks are synchronised every 500 timesteps. Network updates
begins after 1,000 timesteps.

3.5.6 Agent Configuration

Agents use reward discounting factor of γ = 0.99. An action sampling
softmax temperature τ = 0.02 was used. To encourage greater exploration
in early stages, the temperature parameter was linearly annealed from 1.0 →
0.02 over the first 10,000 timesteps, using the following piecewise linear schedule,

τ =

τmin + (τmax − τmin) ∗ (1− T
p )), T ≤ p

τmin otherwise
, (3.8)
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Table 3.2: Rainbow DQN Hyperparameters

Parameter Value
Discounting factor γ 0.99

Learning start 1, 000 steps
Adam learning rate α 5 · 10−5

Batch size 32
Online network update period 4 steps
Target network sync period 500 steps

Exploration softmax temperature τ 1.0→ 0.02
Exploration annealing period p 10, 000 steps

Replay buffer capacity 50, 000
Replay buffer prioritisation exponent ω 0.6
Replay buffer importance sampling β 0.4

where τmax = 1.0 is the maximum temperature, τmin = 0.02 is the minimum
temperature, T is the the agent’s current total training timesteps (not including
any evaluation timesteps), and p = 10, 000 is the exploration period (in total
timesteps). During evaluation, we continue to use softmax action selection
with τ = 0.02, instead of acting greedily.

A prioritised replay-buffer with a capacity of 50,000, prioritisation exponent
ω = 0.6 and an importance sampling exponent β = 0.4 was used. These
hyperparameters, shown in Table 3.2, were tuned by training our DQN directly
against a MCTS opponent.

3.6 Evaluation

3.6.1 Evaluated Algorithms

To evaluate CLaRE, this paper compares with two common self-play implementations
in terms of sample efficiency and final performance. The first self-play algorithm
we compare with, single-agent self-play, uses a single learning agent to play
all players in a game. The second algorithm, champion self-play maintains
a learning agent and a pool of previous champions from which it randomly
samples training opponents. At the end of each epoch, if the learning agent
wins more than 60% of games, it becomes a champion and a copy is added
to the pool of previous champions.
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Figure 3.5: Evaluated algorithms. The main evaluation compared
CLaRE with the two most commonly used self-play implementations. (a)
Single-agent self-play trains a population of one agent. (b) Champion
self-play maintains a pool of previous champions from which it randomly
selects opponents. (c) CLaRE utilises a coevolutionary training mechanism
which randomly selects the next generation with respect to the agents
fitness.

3.6.2 Methodology

We evaluated our algorithm on the board game Connect Four against several
self-play implementations with varying population sizes to assess the effect
on training stability, final performance and sample efficiency. Each experiment
periodically evaluated all agents being trained against Monte Carlo tree
search (MCTS) [66, 67] opponents.

Each algorithm was trained for 250 epochs per experimental run. Epochs
consist of a training and evaluation phase. Experience generated during
evaluation phases was not used by any agents to learn from. Training phases
ran for 10,000 steps per agent and evaluation phases appraised each learning
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agent for 50 episodes per MCTS opponent, in order to reduce the noise in
evaluations. As there is a positional advantage to the first player to make
a move in Connect Four, the starting player was randomly assigned during
training and evenly distributed during evaluation (25 episodes per player
position). Each algorithm was evaluated with three experimental runs and
mean results reported.

3.6.3 Results

Our evaluations demonstrated that CLaRE significantly outperformed both
self-play implementations, both in terms of final performance and sample
efficiency, achieving an almost 80% evaluation win-rate, approximately 15%
above the next leading method as can be seen in Fig. 3.6. Importantly, CLaRE
showed strong convergence properties as opposed to single-agent self-play
which failed to converge. The occurrence of strategy cycles is a common
cause of convergence failure and is likely a contributing factor here. The
training curves can be seen in Figs. 3.7 to 3.9.

CLaRE showed more stable training dynamics than other self-play methods,
with less variation in evaluation performance between epochs. In particular
single-agent self-play appeared very unstable with large fluctuations between
evaluations. This indicates that single-agent self-play was overfitting and the
policy failed to generalise.

Agents trained with CLaRE present noticeably reduced maximum Q-values
than the other self-play methods and greater neural network loss and temporal
difference error values than champion self-play. Hypothetically this is evidence
of increased competition within our algorithm’s population.

3.6.4 Ablation Study

An ablation study was conducted to understand the contribution of elements
the CLaRE algorithm. The ablation investigated the contribution of four
different survivor selection mechanisms and four different population sizes
on final evaluation win percentages. The ablations ran a single training run
for 250 epochs and report the mean evaluation win rate from the final epoch.
As can be seen in Fig. 3.10, the combination of Elo ratings as a fitness measure
with softmax survivor sampling proved most effective. Larger population
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Figure 3.6: Evaluation Win Percentage for each training method as
a function of the number of epochs. We compare our CLaRE algorithm
(blue) to single-agent and champion self-play training methods and report
the average of three runs. The evaluation win rate is the mean percentage
of games won by the training population against MCTS opponents in the
evaluation phase of each epoch.

Figure 3.7: Neural Network Loss for each training method as a function
of the number of epochs. The mean loss in updates to the online neural
network during training.
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Figure 3.8: Temporal-Difference Error for each training method as a
function of the number of epochs. The temporal-difference (TD) error in
updates during the training phase. TD error indicates how "surprising" a
transition is and measures the difference between the online neural network’s
Q-values and the target network’s estimate.

Figure 3.9: Maximum Q-Values for each training method as a function
of the number of epochs. The maximum action-value (Q) of each transition
during training. The max Q-value indicates the potential utility an agent
sees in each state.
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Figure 3.10: Ablations for CLaRE. These ablations compare the final
evaluation performance of CLaRE after 250 epochs. (a) Comparing different
survivor selection mechanisms. We compare the combination of Elo ratings
versus training rewards mean as a heuristic for fitness in tandem with
softmax survivor sampling versus simply taking the top performing agents.
These experiments used a population size of 16 and sampled 8 survivors.
(b) Comparing the effects of population size on win rate. These experiments
used Elo + softmax survivor sampling.

sizes increased performance, however due to computational limits our main
evaluation used a population size of sixteen agents.

3.7 Conclusion

This chapter has demonstrated how coevolutionary principles can be utilised
to optimise the training of a population of RL agents. We have described a
generalised algorithm for competitive DRL that builds upon existing population-based
approaches by promoting competition within an agent population. These
competitive pressures have the effect of generating a curriculum to train
agents more efficiently and robustly. Our experiments have demonstrated
that our coevolutionary training algorithm, CLaRE, results in higher final
performance and faster convergence speed than other self-play training algorithms.
This chapter draws together existing self-play research and provides a framework
to describe different self-play methods. Much of the existing self-play literature
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is not the main focus of the research it appears in and/or is part of a larger
suite of improvements, making it difficult to ascertain the impact of different
methods. In contrast, this research examines the effectiveness of different
self-play algorithms in isolation.
While the experiments have focused on value-based learning algorithms, it is
expected that similar gains would be observed with policy gradient methods.
In the future we hope to extend our analysis to more complex multi-agent
environments.
Promising future research directions include fostering greater diversity within
the agent population such as with niching, fitness-sharing or quality diversity
methods. It is anticipated that incorporating improvements such as these
could result in powerful learning algorithms, able to teach themselves from
first principles.
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Chapter 4

GymD2D: A Device-to-Device
Underlay Cellular Offload
Evaluation Platform

This chapter presents an open-source network simulator and evaluation platform
developed for D2D cellular offload RRM research. In contrast to Chapter 3,
which investigated competitive multi-agent RL, this chapter instead approaches
cellular resource management optimisation as a cooperative multi-agent problem.
This change in direction came about due to a change in supervisors.
This research was presented at the IEEE Wireless Communications and
Networking Conference 2021 in Nanjing, China [68].

4.1 Overview

Challenges facing D2D cellular offload researchers include insufficient tooling,
difficulty comparing research and a lack of established benchmarks. Prior
research uses a variety of different, and usually custom, network simulators
and system models. This makes it difficult to compare algorithms, verify
and have confidence in reported empirical results. For example, when two
papers use different terminal configurations or path loss models, the results
are not directly comparable and may require the reader to reimplement the
algorithms and run their own comparison.
In this chapter we present GymD2D, a network simulator and evaluation
platform for RRM in D2D underlay cellular offload. GymD2D provides convenient
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abstractions to aid researchers in quick prototyping of resource allocation
algorithms. The toolkit allows users to programmatically configure the environment
to simulate a wide variety of scenarios. GymD2D has been designed with
extensibility as a core design principle, allowing users to override and extend
its behaviour to meet their research needs. It has been developed in the
Python programming language to allow users to leverage its extensive ecosystem
of scientific computing packages. The open-source nature of GymD2D centralises
development effort and avoids the redundant work of individual researchers
creating their own simulators. This puts more eyes on bug fixing, provides a
more stable platform and increases confidence in reported empirical results.
GymD2D reduces entry barriers for junior researchers, helps researchers from
other disciplines to cross-pollinate ideas easier and more generally increases
participation.
Our software package is open-source and is provided to the community under
a MIT licence at https://github.com/davidcotton/gym-d2d.

4.2 Preliminaries

4.2.1 Device-to-Device Communication

In this section we provide an overview of the D2D RRM literature to situate
the reader as to the requirements of the platform. Firstly, we highlight the
most common optimisation problems. Secondly, we analyse key differences
across simulators, paying special attention to simplifying assumptions frequently
observed. Thirdly, we survey the optimisation algorithms used for resource
allocation. Finally, we outline limitations of existing research, providing
direction for the simulation requirements of future work.

Optimisation Problems

RRM is an optimisation problem where the objective is to utilise radio resources
as efficiently as possible. D2D RRM has been proposed for improving spectral
efficiency, energy efficiency and quality of service. In these uses cases, the
objective can be to optimise data rates, throughput, capacity, SINR, power
consumption, energy efficiency or latency [2, 69].
D2D systems can be centrally managed by the network operator, manage
interference autonomously or use a hybrid control mode which aims to combine

57

https://github.com/davidcotton/gym-d2d


CHAPTER 4. GYMD2D: A DEVICE-TO-DEVICE UNDERLAY
CELLULAR OFFLOAD EVALUATION PLATFORM

the benefits of both. The choice of control mode limits the applicability of
certain algorithms which may only be feasible in centrally managed paradigms.

Simulation Models

D2D cellular offload typically investigates networks using orthogonal frequency
division multiple access (OFDMA), communicating on licensed bands using
underlay networking. The most common scenario is a single MBS surrounded
by many randomly positioned CUEs and DUEs. It is generally assumed that
cellular systems are under full load and each RB is allocated to a CUE. In
the literature, simulations vary in scope from 2–30 RBs, 2–30 CUEs and
2–60 DUEs, while MBS operate with a cell radius of 20–500 m. It is frequently
assumed that DUE are already paired and operate in a range between 10–30
m apart. Typically, omni-directional antenna and isotropic propagation are
utilised. Path loss is commonly modeled using log-distance models, with or
without shadowing.

Optimisation Algorithms

A wide variety of optimisation methods have been investigated on a range
of D2D RRM problems. Initially, D2D radio resources were proposed to
be managed using existing cellular uplink power control mechanisms [9].
Consequently, it was identified that resources could be more efficiently allocated
with the use of mathematical optimisation [70]. However, due to the computational
complexity of these methods and the millisecond timescales involved, it may
not feasible to solve to optimality. This can be addressed with the use of
greedy heuristic algorithms which reduce computational complexity at the
cost of global optimality [71]. Alternatively, resource allocation can be optimised
graph theoretically [7], game theoretically [72], with evolutionary algorithms [73]
or reinforcement learning (RL) [17]. More recently, deep reinforcement learning
(DRL), a subfield of RL which uses deep neural networks to represent policy
and/or value functions has demonstrated promising results [21, 24]. DRL is
well suited for many D2D RRM problems as neural networks provide rich
approximations, scale well and generalise to unseen data.
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Research Limitations

A common limitation observed in D2D cellular offload research is BSs not
enforcing uplink power control for CUE, who transmit at maximum power,
a very energy inefficient approach. Another research challenge is accounting
for large SINR increases on the primary network, such as could significantly
impact primary network throughput or drive up CUE transmit power levels.
Resource allocations algorithms need to demonstrate their effectiveness in
larger search spaces that more closely reflect real world demands. Iterative
learning algorithms need to be capable of generalising to out of training
distribution data and be robust under diverse propagation conditions. Lastly,
in our opinion, one of the greatest limitations of existing research is the lack
of established benchmarks and comparison with other algorithms.

4.2.2 OpenAI Gym

OpenAI Gym is an open-source software toolkit for RL [74]. Gym provides
an abstraction layer that enables a variety of tasks, known as environments
in RL parlance, to be wrapped to present a consistent interface. The abstraction
provided by Gym allows the easy interchange of algorithms and environments.
This makes it is easy to test how a single algorithm generalises across a diverse
set of environments or to benchmark different algorithms on a given environment.
The simplicity and flexibility Gym offers has proved very popular and has
lead to it becoming the de facto environment format in RL. While Gym was
designed for RL research, the application programming interface (API) it
provides makes it easy to apply many other algorithms types.

4.2.3 Network Simulation

Due to the highly dynamic nature of communication systems, simulation
is a common experimental methodology. For research in more conceptual
stages, such as D2D cellular offload, simulation is a cost-effective method to
prototype ideas. Network simulators have been developed for a wide variety
of communication systems and in this section we will touch upon several
related platforms.
The most common simulation method in communication systems is discrete-event
simulation. In this paradigm, the state of the simulation model evolves over
time, but can only be updated at discrete points [75]. Discrete-event simulation
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consists of an initialisation stage, an event processing loop and a final output
stage.
One of the most widely used network simulators in education and research is
ns-3. Ns-3 is an open-source, modular, discrete-event simulator for wired and
wireless networks. It provides the full TCP/IP stack and wireless propagation
modelling. Another popular alternative with comparable features is OMNeT++,
while there exists similar commercial tools such as NetSim and MATLAB.
Ns-3 has been incorporated into an OpenAI Gym environment under the
ns3-gym project [76].

4.3 GymD2D

This section describes our D2D cellular offload network simulator and evaluation
framework, GymD2D.

4.3.1 Design Principles

The design of GymD2D has been inspired by the authors experience developing
and comparing reinforcement learning algorithms. In our experience the
following design principles stimulate experimentation and the sharing of
ideas.

• Simple: Easy to get started with, the framework should allow researchers
to be productive quickly.

• Configurable: The framework should be easily configured to meet the
broad range of D2D cellular offload use cases. Configurability allows
researchers to programmatically test algorithm generalisation and scalability.

• Extensible: The framework should allow users to extend the system’s
behaviour to meet their needs. The nature of research dictates a stream
of new ideas we can’t anticipate, but we can provide researchers the
flexibility to adapt.

• Scalable: The framework should be performant and easily parallelisable.
Developing new algorithms requires significant experimentation and
reducing the time spent waiting for results is important for productivity.
Some algorithms, such as policy gradient DRL, require parallel environments
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to function. Real world solutions are often a combination of both algorithmic
and architectural components.

• Reproducible: Experiments should be easily repeatable. To build
confidence in our deductions, it is important that we can reperform
experiments to ensure the observed outcomes were not statistical anomalies.
Reproducibility allows researchers to share their contributions with
community more easily.

4.3.2 Architecture

GymD2D consists of two main components, a network simulator and a Gym
environment. The network simulator models physical layer cellular networking.
The Gym environment provides an abstraction layer to allow researchers to
experiment with different simulation parameters and algorithms programmatically.
Users supply RRM algorithms to manage the wireless devices under simulation.
GymD2D outputs metrics on the state of the simulation to the user; to allow
the effectiveness of RRM algorithms to be analysed statistically and through
visualisation. A high level overview of the architecture of GymD2D is depicted
in Fig. 4.1.

Figure 4.1: Proposed GymD2D architecture. GymD2D consists of a
network simulator, wrapped by an OpenAI Gym environment. The user
creates their own RRM algorithms to control wireless devices.

4.3.3 System Model

GymD2D is designed to study resource allocation problems in the physical
layer. Data link and above layers, D2D session establishment and management
concerns are considered out of scope.
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The system models a single cell, employing OFDMA. It contains: a BS b,
a set of CUEs c ∈ C = {1, . . . , C} and a set of D2D transmitter–receiver
ordered pairs (d, e) ∈ D = {(d1, e1), (d2, e2), . . . , (dD, eD)}. A set of RBs
k ∈ K are available for allocation. Each RB is 180 kHz wide in frequency
and contains 12 subcarriers.
An assumption is made that all devices are equipped with omni-directional
antenna and transmit isotropically. Accordingly, the network resides within
a circular cell of radius R, with the MBS located in the centre at position
(0, 0). The simulation environment contains no obstructions or outside interference.
D2D communicate one-to-one and D2D relay is not supported.
We denote the effective isotropic radiated power (EIRP) E of BSs, CUEs
and DUEs as Eb, Ec, Ed respectively. The EIRP of a BS is calculated,

Eb = P − 10log10s+ gant − lix − lcb + gamp , (4.1)

and the EIRP of CUEs and DUEs,

Ec = Ed = P − 10log10s+ gant − lix − lbd , (4.2)

where P is the transmit power level in dBm, s is the number of subcarriers,
gant is the transmitting antenna gain, lix is the interference margin loss to
approximate noise from surrounding cells, lbd is body loss to approximate
attenuation caused by the user, lcb is cable loss, and gamp is amplifier gain.
We denote the received signal level R from transmitter i at receiver j of BS,
CUEs and DUEs as Rbi,j , R

c
i,j , R

d
i,j . The received signal level of BS as,

Rbi,j = Ei − PLi,j + gant − lcb + gamp , (4.3)

and the received signal level of CUEs or DUEs,

Rci,j = Rdi,j = Ei − PLi,j + gant − lbd , (4.4)

where Pi is the EIRP from transmitter i and PLi,j is the path loss of the
chosen path loss model between i and j.
We assume D2D transmissions are synchronised to cellular transmissions and
occupy the same K orthogonal resources. During both uplink and downlink,
co-channel interference is calculated for each receiver sharing RB k. GymD2D
considers co-channel interference between:

• D2D to cellular, interference from secondary DUE on the primary
cellular network,
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Table 4.1: BS Configuration

Parameter Value
Antenna gain gant 17.5 dBi
Thermal noise σ2 −118.4 dBm

Interference margin lix 2.0 dB
Cable loss lcb 2.0 dB

Amplifier gain gamp 2.0 dB
Receiver sensitivity -123.4 dBm

Table 4.2: UE Configuration

Parameter Value
Antenna gain gant 0.0 dBi
Thermal noise σ2 −104.5 dBm

Interference margin lix 3.0 dB
Body loss lbd 3.0 dB

Receiver sensitivity -107.5 dBm

• cellular to D2D, interference from CUE or BS to DUE, and

• D2D to D2D, the interference between DUE pairs sharing a RB.

Accordingly, we model the instantaneous SINR ξ of receiver j from transmitter
i on RB k,

ξi,j,k =
Ri,j∑

n∈Tk,n6=iRn,j + σ2
, (4.5)

where Tk is the set of transmitters allocated to RB k and σ2 is additive white
Gaussian noise (AWGN).
The capacity of channel Ci,j can be calculated using the SINR ξi,j ,

Ci,j [Mbps] = B log2(1 + ξi,j) , (4.6)

where B is the channel bandwidth in MHz and ξi,j is the SINR in dB.
The default configuration parameters for BSs are listed in Table 4.1 and
DUEs and CUEs in Table 4.2.

4.3.4 Path Loss Models

GymD2D contains several of the most common path loss models and makes
it easy for users to implement their own custom models. By default, GymD2D
uses the simplest model, free space path loss (FSPL),

FSPL(f, d)[dB] = 10nlog10

(4πfd

c

)
, (4.7)

where n = 2 is the path loss exponent (PLE) in free space, f is the carrier
frequency in Hz, d is the distance between the transmitter and receiver and c
is the speed of light in m/s.
To simulate obstructed propagation environments it can be useful to model
fading effects as random processes. One such model is the log-distance with

63



CHAPTER 4. GYMD2D: A DEVICE-TO-DEVICE UNDERLAY
CELLULAR OFFLOAD EVALUATION PLATFORM

shadowing path loss model, which is included in GymD2D. The log-distance
path loss model extends FSPL to mimic random shadowing effects, such as
caused by buildings, with a log-normal distribution,

PLLD(f, d)[dB] = FSPL(f, d0) + 10nlog10
d

d0
+ χσ , (4.8)

where d0 is an arbitrary close-in reference distance, typically 1–100m and
χσ is a zero-mean Gaussian with standard deviation σ in dB. Empirical
measurements have shown values of n = 2.7 to 3.5 to be suitable to model
urban environments [77].

4.3.5 Network Simulator

The network simulator models a single cellular cell which is populated with
a collection of randomly placed CUE and DUE pairs. It is a configurable
component which can be customised to emulate a range of cellular offload
scenarios. This includes the number and configuration of BSs, CUEs and
DUEs and environmental parameters such as the available RBs, cell size and
path loss model.
The main components of the network simulator are: a collection of wireless
devices (BSs, CUEs, DUEs), a path loss model and a traffic model as shown
by the class diagram in Fig. 4.2.

Figure 4.2: Network simulator architecture. The main components of
the network simulator are a collection of CUEs, DUEs and BS, the path loss
model and the traffic model.

Each simulation, the actions of BS and UEs within the cell can be generated
internally by the traffic model or externally from a user defined RRM algorithm.
A typical use case would be to use the internal traffic model to control BS
and CUEs and the user RRM algorithm the DUEs.
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GymD2D uses a discrete-event simulation model. This method is congruent
with the Gym API in which the incoming actions are the events and the
Gym step() method calls equate to the system update intervals and model
a single LTE or NR frame. At each step, each device may transmit, receive,
or take no action. An action is tuple consisting of a transmitter, receiver,
communication mode, RB and transmission power. The simulator consolidates
the actions from both the traffic model and the RRM algorithm, then calculates
the resulting propagation and interference. After calculating propagation,
metrics on the state of the network, such as SINR and throughput, are output
to the Gym environment.

4.3.6 Gym Environment

The Gym environment has been designed to be configuration driven, to
facilitate the programmatic scheduling and reproducibility of experiments.
When instantiating a new Gym environment, configuration can be provided
to specify the BSs, CUEs and DUEs that inhabit the simulation and the
environmental conditions. A list of the available configuration parameters
is provided in Table 4.3.

The Gym environment outputs observations, rewards and diagnostic information
on the state of simulator at every timestep. In response to these inputs,
RRM algorithms provide actions, comprised of the RB and power level for
each UE under their control. The format these inputs and outputs can be
customised to allow a variety of algorithm classes to be applied to the environment.
For example, when using a DRL algorithm the observations can formatted to
return a pictorial representation suitable as input to a CNN.

The diagnostic information the environment outputs is not intended to be
used by RRM algorithms in their decision making, but rather for researchers
to use to inspect the performance of their algorithms.

4.3.7 Capabilities and Limitations

This section provides a summary of GymD2D’s capabilities and limitations.

Capabilities

• Highly configurable, as outlined in Table 4.3.
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Table 4.3: GymD2D Environment Configuration Parameters

Parameter Default Value
Number of resource blocks 25
Number of cellular users 25
Number of D2D pairs 25

Cell radius 500.0 m
Maximum D2D pair distance 20.0 m

Maximum CUE transmission power 23 dBm
Minimum DUE transmission power 0 dBm
Maximum DUE transmission power 20 dBm

Path loss model FSPL
Traffic model Uplink

Carrier frequency 2.1 GHz
Number of subcarriers 12
Subcarrier spacing 15 kHz
Channel bandwidth 5 MHz

• Supports most optimization and control paradigms. By allowing
users to customise simulator inputs and output, GymD2D allows researchers
to investigate and compare most optimisation algorithms. Additionally,
as GymD2D facilitates multiple control agents, these various algorithms
can be combined or compared alongside each other.

• Calculates co-channel interference between all receivers, including
DUE to CUE, CUE to DUE and DUE to DUE.

• Supports both power level and RB optimisation.

• Centralised or decentralised communications modes, allows
researchers to experiment with full control, autonomous and hybrid
control modes.

• Customisable traffic patterns, GymD2D does not make any assumptions
about where or how devices communicate. This allows the user to
customise traffic patterns and investigate how control algorithms perform
during periods of higher or lower demand.

• Customisable path loss models, GymD2D provides multiple path
loss models out of the box or allows users to define their own.
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• Experiment management utilities, GymD2D provides several experiment
management utilities such as: a helper to plot UE locations; a method
to save and load experiment configurations files; and diagnostic information
that provides detailed feedback on the state of the environment at
every timestep. These metrics can be used to troubleshoot algorithm
performance and generate detailed analyses.

Limitations

• Single base station, GymD2D does not currently support multiple
BSs. This limits the ability investigate the impacts of adjacent cell
sites, BS location optimisation, heterogeneous networks, communications
relay and partial coverage.

• Cellular numerology and QoS, and the ability for BSs and UEs to
signal QoS and power level changes is not currently supported.

• Energy consumption of BSs and UEs, to be used to optimise energy
efficiency.

• Advanced propagation modelling, currently GymD2D provides
linear path loss models, unidirectional propagation, and does not support
terrain attenuation modelling.

• One-to-many communication, including broadcast and multicast
schemes.

• Limited peer discovery, could be expanded beyond initial environment
configuration to model peer discovery process optimisation.

• Overlay networking is not currently supported.

• Multimedia, edge networks, caching is not currently supported.

• V2V or M2M is not currently supported.

The design of GymD2D does not preclude these limitations, which can be
supported at a later date. Some limitations, such as multiple BSs and cellular
numerology, are on our development roadmap and set to be included in future
releases. Conversely, limitations such as advanced propagation modelling and
V2V or M2M support are not currently in progress.
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4.4 Evaluation Methods

In this section we describe the methods and the implementation details used
to evaluate GymD2D with several leading DRL algorithms and provide performance
baselines.
We evaluated GymD2D with four agents; three proven, high-performing
DRL algorithms: Rainbow DQN [30], SAC [78], and A2C [38]; and a random
agent. These algorithms encompass the three most successful model-free
DRL approaches, off-policy value-based, off-policy policy gradient and on-policy
policy gradient.

4.4.1 Agent Architecture

We employed a centralised control architecture to manage radio resource, in
which a single “meta-agent” computes the allocations for each DUE, residing
in a single cell, at every timestep t. Centralised control of a single cell can
be achieved by co-locating resource management systems in cellular BSs and
leveraging existing channel state information to inform decision-making. In
this configuration, due to the physical separation between cells, intra-cell
coordination is not necessary. Advantages of centralised control include more
complete information and more efficient action coordination.
The resource management system generates an observation for each DUE
using cell-wide channel state information from all CUEs and DUEs. These
observations are batched up and processed one at a time by the Meta-Agent
architecture, to output a batch of resource allocation actions. The resulting
actions are then communicated to DUEs over existing control channels. The
agent architecture is shown in Fig. 4.3.

4.4.2 Observation Space

An observation vector Sdt is generated for each D2D link (d, e) ∈ D at every
timestep, t. Each observation vector is composed of the channel state of the
D2D link Sd,et , and the channel states of all other channels in the cell:

Sdt = {Sd,et } ∪ {S
c,b
t : (c, b) ∈ C × {b}} ∪ {Sf,gt : (f, g) ∈ D, f 6= d} , (4.9)

where a channel state Si,jt between transmitter i and receiver j, is composed
the transmitter’s position, the receiver’s position, the receiver’s previous
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Figure 4.3: The agent architecture employed by our evaluation.
An observation is generated for each DUE. A single meta-agent processes
each observation and generates a resource allocation action, which is
communicated back to DUE.

SINR and the receiver’s previous SNR,

Si,jt = [Posi,Posj , ξi,j , SNRi,j ] . (4.10)

Position features are an ordered-pair of the two-dimensional cartesian coordinates
relative to the BS, which is centered at (0, 0).

4.4.3 Action Space

The DRL agent generates a resource allocation action for each DUE observation,
at every timestep, t. Each action is a joint transmit power level and an RB
allocation. D2D transmit power levels Pd = {P dmin, . . . , P dmax} are a set
integer power levels, between the minimum and maximum values, in dBm.
The action space is modelled as the cartesian product K × Pd, which are
mapped to agent outputs.

4.4.4 Reward Function

The reward function was designed to encapsulate the true optimisation objective,
to avoid it being "gamed" by the process known as reward hacking [79]. It
rewards agents equally, in proportion to the total network capacity, that
is the sum channel capacity of CUEs and DUEs, so long as no CUE are
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significantly impacted by interference. This utilitarian reward function was
designed to encourage agents to learn to cooperate to maximise system throughput
while protecting primary network performance. At each timestep t, DUE
reward is calculated by:

Rt =


∑
i,j∈N∪M Ci,j
|N | ∀m ∈M, Cm,b > 0

−1 ∃m ∈M, Cm,b = 0
, (4.11)

where Ci,j is the channel capacity between transmitter i and receiver j in
Mbps as calculated in Eq. (4.12).

4.4.5 Neural Network Architecture

DRL agents used a fully connected neural network with two hidden layers
trained using the Adam optimiser. Each hidden layer contained 128 units
and used ReLU activation between layers. Learning rates are algorithm dependent
and described below in the agent configuration section.

4.4.6 Agent Configuration

DRL agents used a reward discounting factor of γ = 0.9.

Rainbow DQN: our implementation used distributional, dueling, double-Q
and noisy networks components with a prioritised replay buffer and single
step returns. It’s neural networks were trained with a learning rate α =

5 · 10−4 on minibatches of 32 samples every 4 steps. Learning began after
1,000 steps, and the online and target networks were synchronised every 500
steps. The network used 51 distributional atoms and was bounded between
the expected returns of vmin = −10 and vmax = 10. Dueling networks were
implemented using a single, dense layer with 128 hidden units for both the
advantage and value layers. The prioritised replay buffer had a capacity of
50,000 and used a prioritisation exponent ω = 0.6, importance sampling
exponent β = 0.4 which was annealed to β = 0.4 over the first 20,000 steps.
DQN hyperparameters are shown in Table 4.4.

Discrete SAC: the discrete action variant was used [80]. It’s Q-model used
twin Q-networks, each a dense network containing two hidden layers of 128
units with ReLU activation. Similar to the DQN, it used a prioritised replay
buffer with a capacity of 50,000, a prioritisation exponent ω = 0.6, importance
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Table 4.4: Rainbow DQN Hyperparameters

Parameter Value
Discounting factor γ 0.9

Learning rate α 5 · 10−4

Batch size 32
Online network update period 4 steps

Learning start 1, 000 steps
Target network sync period 500 steps

Distributional atoms 51
Distributional bounds vmin, vmax [-10,10]

Replay buffer capacity 50, 000
Replay buffer prioritisation exponent ω 0.6
Replay buffer importance sampling β 0.6→ 0.4

Importance sampling annealing 20,000 steps

Table 4.5: SAC Hyperparameters

Parameter Value
Discounting factor γ 0.9

Learning rate α 3 · 10−4

Batch size 256
Learning start 1, 500 steps

Target coefficient τ 0.005
Replay buffer capacity 50, 000
Buffer prioritisation ω 0.6

Buffer I.S. β 0.6→ 0.4
Buffer I.S. annealing 20,000 steps

Table 4.6: A2C Hyperparameters

Parameter Value
Discounting factor γ 0.9

Num workers 10
Learning rate α 1 · 10−4

Rollout length 10
Entropy coefficient β 0.01

GAE λ 1.0

sampling exponent β = 0.4 which was annealed to β = 0.4 over the first
20,000 steps. SAC hyperparameters are shown in Table 4.5.
A2C: is the synchronous version of A3C. It used Generalised Advantage
Estimator (GAE) [81] with λ = 1.0. We used 10 rollout workers to gather
experience for the critic. A2C hyperparameters are shown in Table 4.6.
Random Agent: the random agent used a uniform distribution to sample
indices from the cartesian product of power levels and RBs.

71



CHAPTER 4. GYMD2D: A DEVICE-TO-DEVICE UNDERLAY
CELLULAR OFFLOAD EVALUATION PLATFORM

4.5 Evaluation

4.5.1 Methodology

We evaluated GymD2D with several leading DRL algorithms to determine
their efficiency allocating radio resources as D2D demand increased. The
objective was to maximise the total system capacity, that is the sum data
rate of all CUE and DUE, calculated for each transmitter/receiver pair i, j
by:

Ci,j [Mbps] =

B log2(1 + ξi,j) ξi,j ≥ ρj
0 ξi,j < ρj

, (4.12)

where B = 0.18 is the RB bandwidth in MHz and ρb = −123.4 and ρd =

−107.5 is the receiver sensitivity of a BS and DUE respectively in dBm. Our
evaluation simulated a single cell under full load. The scenario contained 25
RBs and CUEs, with each CUE allocated an individual RB. We employed a
centrally managed control mode in which DUE communicated in the uplink
frame, with the resource allocation managed by the network operator. Each
RRM algorithm was evaluated with 10, 20, 30, 40 and 50 communicating
D2D pairs. Algorithms were compared by training to convergence, then
evaluating for 100 episodes. For each algorithm–D2D link density comparison,
we conducted ten trials, retraining from scratch and evaluating, to account
for variations in performance. Each episode lasted for ten steps or equivalently
ten LTE/NR frames to simulate short bursts of traffic on a busy network. In
each episode all CUE and DUE remained geographically fixed, but at the
end of each episode, all CUE and DUE were randomly repositioned within
the cell to simulate new devices accessing the network. Wireless propagation
was modelled using the Log-Distance Shadowing model Eq. (4.8) with PLE
n = 2.0 and χσ = 2.7. The simulation parameters are detailed in Table 4.7.

4.5.2 Results

Firstly, the system was evaluated with only cellular communication, to determine
the baseline system total capacity. This baseline is used to compare the
capacity of a system with and without D2D communication and draw conclusion
about the performance impacts of different D2D RRM methods. The baseline
system total capacity was 94.75 Mbps.
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Table 4.7: Simulation Parameters

Parameter Value
Cell radius 500 m

Maximum D2D pair distance 30 m
Carrier frequency 2.1 GHz
RB bandwidth 180 kHz
Number of RBs 25
Number of CUEs 25

Number of DUE pairs 10, 20, 30, 40, 50
CUE transmit power 23 dBm

DUE min, max transmit power 0, 20 dBm
Path loss model Log-Distance Shadowing

Path loss exponent 2.0
Shadowing SD χσ 2.7

Next, the four RRM methods were evaluated at increasing D2D link densities,
to investigate optimisation efficiency as D2D demand increased, as shown in
Figs. 4.4 and 4.5. We found that all three DRL algorithms achieved a similar
level of performance, increasing system total capacity over the baseline by
more than 11%. Conversely, the performance of the random agent shows
that without careful resource allocation, the system capacity drops sharply,
as can be seen by the solid red line in Fig. 4.4. Fig. 4.6 shows the sum capacity
of DUEs achieved by each DRL algorithm. This shows that system capacity
increased sublinearly with D2D demand. From this, we hypothesise that
there exists a saturation level at which the further active D2D links reduces
network performance.

We found that despite allowing DUE to communicate up to half the power
of CUE (20 vs. 23 dBm), they typically converged into operating ranges
between 7 and 15 dBm, shown in Fig. 4.7. This resulted in a negligible decrease
in the total CUE capacity, 1–2 Mbps or ≈1.84% below the baseline system
capacity. This decrease was approximately constant across D2D density.

4.5.3 Discussion

Our results demonstrated that intelligent resource allocation strategies can
significantly increase system capacity with minimal impact on primary users.
From a utilitarian viewpoint, the minor primary network impact is offset by
the significant system gains through the use of D2D underlay cellular offload.
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Figure 4.4: Total system capacity of the three DRL agents and the
random agent as D2D link density increases. This figures shows the
performance of the four evaluated RRM algorithms as D2D link density
increases, in terms of the total system capacity. Total system capacity is the
sum network capacity of all CUE and DUE traffic per evaluation timestep.
The solid center lines indicate the mean algorithm performance across ten
trials with the shaded area the 95% confidence interval. The dashed red line
indicates the baseline total system capacity.

10 20 30 40 50
Number of D2D links

116

118

120

122

124

C
ap

ac
ity

 (M
bp

s)

Total system capacity (DRL)

Algorithm
SAC
DQN
A2C

Figure 4.5: Total system capacity of the three DRL agents. This
figure presents the same data as Fig. 4.4 without the random agent or
baseline capacity to zoom in on DRL agent performance. Solid center lines
indicate the mean algorithm performance across ten trials with the shaded
area the 95% confidence interval.
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Figure 4.6: Total DUE capacity of the three DRL agents. Shows the
sum network capacity of D2D users, achieved by each DRL RRM algorithm,
as D2D link density increases. Solid center lines indicate the mean algorithm
performance across ten trials with the shaded area the 95% confidence
interval.
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Figure 4.7: Mean DUE transmit power levels. The mean DUE transmit
power levels, for each DRL RRM algorithm, as D2D link density increases.
Solid center lines indicate the mean algorithm performance across ten trials
with the shaded area the 95% confidence interval.
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To further understand the behaviour of the trained DRL agents, we investigated
the actions they selected. We observed that they converged to allocating all
DUE onto one or two RBs. This is surprising as we had anticipated DUEs
to be evenly distributed amongst RBs. Prior research has restricted their
solution-space to one-to-one correspondence between DUEs and RB [82], a
decision we assume is to limit the combinatorial complexity of the problem.
However, these results suggest that this could be suboptimal and the solution-space
should include DUEs sharing RBs.
Investigating further, we observed that over the course of a training run, the
DQN converging from an even RB distribution to the focused allocation
strategy. This behaviour developed in the later stages of training and only
contributed modest increases to the system capacity.
As expected, the optimal strategy was to assign DUE to share RBs with
the most geographically distant CUE. When combined with the focused
RB allocation strategy described above, this typically resulted in the RRM
algorithm choosing to allocate DUE to share with the one or two most isolated
CUE.
Despite the random UE positioning, the DRL agents were able to learn policies
that generalised much better than we anticipated when using fully connected
neural networks. We were also surprised how quickly agents adapted during
an episode, improving their performance over the course of the ten-step episode.

4.6 Conclusion

In this research we have presented GymD2D, a network simulator and evaluation
platform for RRM in D2D underlay cellular offload. GymD2D makes it easy
for researchers to build, benchmark and share RRM algorithms and results.
Our toolkit is designed to quickly prototype physical layer resource allocation
algorithms, without the complexity of higher layer protocols. GymD2D is
configurable and extensible, allowing it to be employed to simulate a range
of D2D research needs.
We have evaluated GymD2D with several leading DRL algorithms and demonstrated
the performance gains of intelligent RRM, increasing system capacity by
more than 11%. There was no clear winner amongst the DRL algorithms
which performed similarly. The results also demonstrated that D2D cellular
offload can significantly minimise its impact on primary networks.
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In the future we plan to increase the simulation complexity in GymD2D,
adding more realistic modelling. Other interesting research challenge include
investigating the impacts of CUE power control on cellular offload and supporting
D2D relay. We continue to use GymD2D in ongoing research, developing
methods for scaling up DRL based D2D RRM.
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Conclusion

In this thesis we have investigated the use of DRL to optimise the allocation
of radio resources in D2D underlay cellular offload to increase network capacity.
We applied DRL to the RRM optimisation problem and introduced a centralised
radio resource management system which was able to increase the system
capacity by more than 11%, with minimal impact on primary network performance.
To empirically demonstrated our approach, we developed a network simulator
and evaluation platform for D2D cellular offload research, which we have
released as open-source software for other researchers to use. The network
simulator makes it easier for researchers to compare, share and build upon
prior research.

We have also developed an improved self-play training algorithm for training
RL in competitive environments. Self-play allows RL to be trained without
expert guidance, however it is known to be less sample efficient and suffer
more unstable learning dynamics than other training methods. To address
these issues we harnessed the competitive pressures of coevolution by competing
within a larger population. We compared our improved training method
with several self-play variants and found our method achieved a 15% higher
win rate and exhibited more stable training with fewer performance regressions.

5.1 Summary of Results

Chapter 3 investigated the problem of training RL agents in competitive
environments without expert instruction. Self-play is a method for training
RL in competition with itself, however it is known be less sample efficient
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and suffer unstable learning dynamics. The chapter presented a population-based
approach which used coevolution to generate competitive pressures to train
agents more robustly and efficiently. It presented an algorithm, CLaRE,
which achieved an almost 80% win-rate, approximately 15% above the next
leading method. Importantly, CLaRE showed stronger convergence properties
and more stable training dynamics.
Chapter 4 described a network simulator and evaluation platform for D2D
RRM research. Challenges facing D2D cellular offload researchers include
insufficient tooling, difficulty comparing research and a lack of established
benchmarks. This makes it hard to compare algorithms, verify results and
confidence in reported empirical results. Our contribution was to develop
a network simulator for physical layer resource allocation research that we
open-sourced and to provide to the community. We evaluated the toolkit,
GymD2D, with several state-of-the-art DRL algorithms to provide benchmarks.
We found that the use of DRL to optimise resource allocation was able to
increase network capacity by more than 11%.

5.2 Future Work

Interesting avenues for future work would be to look at increasing the simulation
complexity, such as:

• Introducing cellular power control, so cellular users are not always
transmitting at full power as is commonly simulated, as this is highly
energy inefficient and impractical in real world situations.

• Reducing the observation fidelity, currently it is common for RRM
algorithms to use quite detailed values to inform decision-making,
when cellular numerology is much less detailed.

• Improved propagation modelling, commonly simulations use relatively
linear path loss models which are much more easily learnt than the
much more dynamic real world conditions. Additionally, propagation
is generally modelled using omni-directional antennas over 360 degrees,
providing much more distance between UE.

• Increasing problem spaces, commonly simulation occurs with smaller
numbers of devices and available resources than real world conditions.
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CHAPTER 5. CONCLUSION

Effort needs to be made to ensure algorithms are capable of scaling to
real world loads.
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