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Abstract: The development of Cloud computing and data analytics technologies has made it possible
to process big data faster. Distributed computing schemes, for instance, can help to reduce the time
required for data analysis and thus enhance its efficiency. However, fewer researchers have paid
attention to the problem of the high-energy consumption of the cluster, placing a heavy burden on the
environment, especially when the number of nodes is extremely large. As a consequence, the principle
of sustainable development is violated. Considering this problem, this paper proposes an approach
that can be applied to remove less-efficient nodes or to migrate over-utilized nodes of the cluster
so as to adjust the load of the cluster properly and thereby achieve the goal of energy conservation.
Furthermore, in order to testify the performance of the proposed methodology, we present the
simulation results implemented by using CloudSim.
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1. Introduction

For the past several years, information and communications technology (ICT) and wireless sensor
networks (WSNs) have attracted research interest due to their promising applications in many areas.
Because of their development, physical items called “things” can now be connected to the Internet.
As a result, those “things” are able to communicate and exchange information with each other [1].
Information obtained by sensing devices are necessary in many realistic application scenarios, for
example, tracking a moving object, where we need sensors to measure the position, the velocity of
the object, or some other piece of information. Based on obtained information, analytical decisions
can be made, and interactive and autonomous executions can be performed. However, if we need
thousands or even millions of “things” to collect data, in this case, the data process will be slow and
inefficient if we keep using traditional data storage/analytic platforms. In light of this limitation,
cloud computing could be a feasible alternative solution to storing and analyzing big data due to their
distributed computing environments and scalabilities. For example, Amazon Web Service (AWS) IoT
can help us to collect and send data to a remote Cloud, making it easy to load and analyze information.
Frameworks, such as Apache Hadoop, Apache Storm, and Apache Spark have shown advantages
for large-scale data processing. Some Cloud vendors include these engines as a bundle of products.
Google Cloud Dataproc, for instance, provides managed Hadoop and Spark services for customers to
process big datasets.

Big data technologies have been extensively used in storage provision, and their services have
been extended to numerous application fields. Nonetheless, relatively little research that deals with
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unsustainable computing problems has been reported. Yet problems of inefficiency and of wasting
precious core processing powers, time, energy, and resources still exist. Those problems become more
serious when the number of clusters increases. In 2010, Google used about 2.26 million MWh of
electricity to run its datacenters, generating a carbon footprint of 1.46 million metric tons of carbon
dioxide [2]. Generally, companies and organizations setup their own Spark servers in distributed
mode on a private cluster, and they need to maintain physical servers as well as saving costs. There is a
tradeoff between the efficiency and energy consumption in such a complex environment. Data mining
runs effectively on a large-scale cluster, but it may cause power wastage when some nodes are not in
use. If the size of clusters is too small, the processing stage will experience delay. If we can dynamically
add/remove (turn on/off) worker nodes according to the specific jobs, such an autonomous service
can improve sustainability to some extent.

There are mainly two ways to improve the energy efficiency of a cluster. One is to set an
appropriate number of nodes based on the current needs and set the remaining nodes in standby
mode. Another way is to track and control all the computing and storage nodes to match the workload.
Typical energy-saving technologies and mechanisms are shown as follows.

(1) Dynamic adjustment mechanism. As it is known that processors account for a large part of the
energy consumption of a server, there is a relationship between clock frequency and required
voltage. Dynamic Voltage and Frequency Scaling (DVFS) [3] is a method that can be used to save
energy by dynamically regulating the frequency and voltage. The technology can automatically
adjust the CPU frequency to the load, and the voltage will change according to the load situation.
CPU manufacturers like Intel and AMD have applied this technology to their products with
power-saving modes.

(2) Control the number of active servers. Servers with low load can be shut down or put into
energy-saving mode so as to reduce the waste of resources. A similar idea can also be applied
to virtual machine management. Virtualization technology and migration technology enable
schedulers to optimize the load by migrating a virtual machine from one server to another.
Idle servers will be turned off for the sake of improving the utilization of active servers.

Various platforms have been used in analyzing big data, like Hadoop, Spark, or Flink. Earlier
versions of these frameworks paid more attention to adding enormous processing capacity to handle
big data. Recently, those frameworks’ effect on datacenter energy efficiency has attracted more
attention. Leverich and Kozyrakis [4] employed a scale-down operation to save energy consumption
on Hadoop clusters. By recasting the data layout and task distribution, between 9 and 50% of the
energy was conserved. An energy-conserving and scale-down enabled Hadoop Distributed File System
was proposed by Kaushik et al. [5], the results showed that Cold zones and Hot zones can be used for
storage data according to data classification. Servers in a Cold zone can be set on inactive power modes
so as to save energy cost. Wirtz and Ge [6] compared the energy consumption of resource allocation
and Dynamic Voltage and Frequency Scaling (DVFS) modes on Hadoop. In order to optimize efficiency,
the number of available concurrent workers changes according to application characteristics. Further,
the authors of [7] implemented DVFS with different settings in Hadoop clusters. They also analyzed
efficiency and power consumption while dynamically scaling the frequency of worker nodes. Many
Cloud service vendors integrate data analytics frameworks like Hadoop or Spark with the Cloud
resources. On the level of Cloud datacenters, energy saving can also be achieved by optimizing the
mapping of virtual machines to physical hosts. Gao et al. [8] proposed a multi-objective ant colony
system algorithm to find the optimal scheme for virtual machine placement. Beloglazov et al. [9] define
an energy-efficient Cloud computing framework and propose energy-efficient resource allocation
policies and scheduling algorithms considering QoS expectations and power usage characteristics of the
devices. To maximize resource utilization and place idle nodes into power-saving mode, Lee et al. [10]
used energy-conscious task consolidation heuristics, while Jia et al. [11] focused on auto-tuning
simultaneous multithreading configurations for Spark-based big data workloads. Versatile machine
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learning algorithms are used for off-line training and online prediction so as to adjust the number
of threads. Moreover, Maroulis et al. [12] proposed an energy-efficient scheduler for Spark. They
used time-series prediction and applied DVFS to Spark clusters considering both energy consumption
and performance requirements. Furthermore, a runtime CPU management infrastructure for energy
reduction was developed by Ge et al. [13]. In their work, they divided the execution phase and schedule
power modes based on workloads during each time interval. History-based workload prediction is
used to decide CPU frequency allocation.

DVFS technology makes it possible to automatically balance performance with energy
consumption on capable hardware. Operating systems also provide some simple CPU frequency
adjusting policies, such as the “balanced” power plan for Windows and the “ondemand” governor for
Linux. Research based on DVFS for cluster energy conservation has mostly focused on the accurate
prediction of system workloads; thus, different jobs can obtain the most appropriate CPU frequency.
For instance, Li et al. [14] implemented comprehensive applications on Spark including machine
learning (Logistic Regression, Support Vector Machine, and Matrix Factorization), graph computing
(PageRank, SVD++ and TriangleCount), SQL query (Hive and RDD Relation), and streaming (Twitter
and PageView). They demonstrate that different jobs need specific CPU, memory, I/O, and network
requirements, and the resource consumption differs from time to time. However, we seldom know
the specific resource needs throughout its execution period before the job is done. Off-line training
prediction models cannot work efficiently if Spark configurations or specific data analytics jobs even
slightly change. By contrast, controlling the number of active nodes provides coarse-grained solutions
for energy saving. Moreover, public Cloud Computing venders or private Cloud owners are now
increasingly building services with big data analytics platforms. Thus, it has become necessary
to reduce the power consumption of these Cloud datacenters with big data processing jobs. The
combination of Cloud and Spark/Hadoop also makes it easier to reconfigure the scale of Spark clusters
because Virtual Machines (VMs) can be created or released flexibly. Furthermore, current virtualization
technology makes it possible to migrate VMs online seamlessly from one physical machine to another,
which also opens up new possibilities for Spark clusters.

Inspired by the works mentioned above, in this paper, we focus on the issue of power conservation
for Spark clusters on Cloud. We propose an algorithm to change the number of Spark nodes according
to the load. If there are underutilized workers, they will be removed and their jobs transferred to other
nodes. When the cluster cannot meet the requirement of finishing the job within a certain period of
time due to CPU utility, the mechanism for migration will begin. By doing this, on the one hand, nodes
with low utilization can be turned off to save power; on the other hand, the cluster can also migrate
some over utilized nodes to improve the performance.

The remainder of this paper is organized as follows. We give a brief overview of Spark in Section 2.
Next, we present our energy-efficient algorithm for cluster reconfiguration in Section 3. Section 4
provides the simulation and experiment results, comparing the proposed method with existing work.
Finally, Section 5 concludes the key contributions of this paper and describes our future work.

2. Background

Spark, a cluster computing framework, has become very popular in the field of big data analysis in
recent years. It has similar characteristics to Hadoop, partitioning data and computation across a large
number of hosts that execute application computations in parallel [15]. Moreover, Spark introduces new
features and enhancements such as resilient distributed datasets (RDDs), iterative machine learning
algorithms, and interactive data analysis tools, which makes it operate more efficiently. As claimed
in [16], Spark outperforms Hadoop by 10× in iterative machine learning workloads. It can be used to
interactively scan a 39 GB dataset with only sub-second latency.

The main components of a Spark cluster are shown in Figure 1. The SparkContext is created in
Driver. A cluster manager such as Spark Standalone cluster manager, Mesos, and YARN, is responsible
for resource allocation. The worker node is the running environment for the application code, and it
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can store data. After the SparkContext is connected to the cluster manager, Spark acquires executors on
the nodes in the cluster. Then, the application code (JAR or Python files) is passed from SparkContext
to the executors. Finally, SparkContext sends tasks to the executors to run. Generally, a Spark job
will be divided into multiple stages. Previous stages include at least one ShuffleMapTask, and the
last stage includes at least one ResultTask. The ShuffleMapTask transmits the output to multiple
buckets. A ShuffleMapTask corresponds to one ShuffleDependency partition, and the number of
partitions equals the degree of parallelism. The ResultTask executes and returns the result to the
driver application.
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Notice that, when clients submit their applications to the driver, they may not clearly know or
care about the cluster scale. In view of the time constraint required by the clients, there are chances
that the jobs are completed in less time with more worker nodes or at the expense of a longer run time
with fewer worker nodes. Since large computing centers are among the largest consumers of energy,
measures should be taken to reduce energy waste. Some data analysis jobs, such as cross-validation,
have to be done repeatedly for testing. Thus, an appropriate scale of clusters that are accustomed to
the demands of such users is necessary.

In [18], the authors show that Dynamic Voltage and Frequency Scaling (DVFS) on a CPU results
in a near-linear power-to-frequency relationship.

The energy consumption Pj can be calculated as follows:

Pj = (P f ull
j − Pidle

j )×Ucpu
j + Pidle

j (1)

where j ∈ {1, 2, . . . , n} is the number of physical hosts, Ucpu
j represents CPU utilization, and P f ull

j , Pidle
j

stand for the average power consumptions of fully utilized and idle computers, respectively.
For example, we ran a simple classification job on Google Cloud Dataproc (integrate with Spark).

The objective of the job was to train the random forest tree in parallel so as to find a better model.
We used, from UCI, a Covertype [19] dataset, which has 581,012 instances and 54 attributes. All nodes
are n1-standard-2 type with 2 CPUs with 7.50 G RAM (supposing the average power consumption
of fully utilized and idle nodes are 250 W and 200 W, respectively). Figure 2 compares the energy
consumption and execution time of different sizes of clusters. When the job works on Spark locally
(only one node), the average execution time is at its longest, and the least amount of power is consumed.
Overall, energy consumption increases and execution time reduces steadily as the number of nodes
scales up from 1 to 7. Additionally, it is shown here that the scale of Spark clusters significantly affects
the amount of power consumed.
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Figure 2. Energy consumption and the execution time of Spark clusters; the number of nodes varies
from 1 to 7.

Figure 3 shows the CPU utilization of all seven nodes of the cluster. As the master node is
responsible for managing available resources, its CPU utilization always differs from the others. It is
noticed that most of the nodes have the same trend of CPU utilization, except for one node that shows
a low utilization throughout the entire period.
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3. Energy-Aware Spark Reconfiguration Methods

In this section, we present two Spark reconfiguration algorithms to reduce the energy consumption
of the Spark cluster, the Scale Down Algorithm, and the VM Migration Algorithm. The Scale Down
Algorithm aims to shrink the number of active nodes. It decreases power by shutting down some
underutilized nodes. The VM Migration Algorithm is proposed for the purpose of increasing
computational efficiency. It can shorten execution time, which is important for some time-
constrained jobs.

As mentioned in Section 1, many Cloud service providers have combined computing resources
with Apache Hadoop and Spark, such as Google Dataproc or Amazon EMR. The configuration of Spark
on Cloud has become much more convenient. For instance, a Google Dataproc cluster can set up a Spark
cluster in less than 90 s on average. We believe this is important for reconfiguring Spark clusters even
though performance degradation may occur. Ideally, those computation-intensive or memory-intensive
data analytics jobs should fully maximize the use of available resources. However, some nodes may be
underutilized. These nodes can be removed and turned off at the physical hosts or set to energy-saving
mode. This will lead to workload increases for other normal nodes. The overall processing time of jobs
on Spark can be either decreased or extended depending on data transmission costs.
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We shall use the following notation in the rest of the paper:

n = Number of nodes in the current cluster;
Ni = the ith node, where i ∈ {1, n};
Tcpu

down = Scale-down CPU threshold;
Tc

down = Scale-down count threshold;
Tcpu

migrate = Migrate CPU threshold;

Tc
migrate = Migrate count threshold;

Ucpu
ij = CPU utilization of node Ni at the jth unit time;

Rcpu
i = Records of Ucpu

ij from start to the end;

Rt = Records of the average CPU utilization, maximum and minimum CPU usage value and the
corresponding index, and the number of nodes at the tth unit time;
Umin

t = The minimum CPU utilization;
Umax

t = The maximum CPU utilization;
Imin
t = The index of the node that has minimum CPU usage;

Imax
t = The index of the node that has maximum CPU usage;

R = Information about the cluster from the beginning to the end of the experiment, which is also
a list of Rt.

The scale-down method follows Algorithm 1. When the difference between maximum and
minimum values of CPU utilization in the cluster exceeds a threshold, the scale-down algorithm gets
triggered. To avoid jitter, we should count how many times the node has the minimum CPU utilization
during a certain period. If the count surpasses the given threshold, this node should be removed.
When updating jobs on other active nodes, we choose those nodes with higher utilization than the
average value to receive extra load. Thus, other potential underutilized nodes will not lengthen its
execution time due to additional tasks. This policy can eliminate some low utilization nodes and
ensures that high performance hosts can execute more jobs.

There are mainly two ways to improve the energy efficiency of a cluster, controlling the number
of active hosts (CNAH) and a dynamically adjustment mechanism (DAM). Our proposed scale-down
method belongs to the category of CNAH, aiming to remove the underutilized nodes for the sake
of power consumption. Moreover, in order to determine the nodes that need to be removed, we
use thresholds to estimate the overall state of the cluster. If a node exceeds the scale-down CPU
threshold, then we use the count threshold to identify whether its CPU utilization is undergoing
normal fluctuations or it is underutilized for a certain time. We may regard an underutilized node as
removable if it has the lowest CPU utilization for a long period. In Algorithm 1, length(R) denotes
the length of record Rt, and j is the index used for tracing the records list. The “for” loop checks the
last Tc

down records and counts how many times this node has the lowest CPU usage. If the count value
equals threshold Tc

down, this node will be removed.
In a Cloud environment, datacenters consist of a large amount of heterogeneous resources. It is

highly possible that users do not have sufficient knowledge to configure the cluster scale appropriately
because of various virtual machine types, different costs, and specific tasks. In this case, it is necessary
to reconfigure the cluster scale for the purpose of energy conservation. However, due to the fact
that the proposed scale-down algorithm removes these underutilized nodes according to the values
of certain thresholds, it may not be applicable for the case when the tasks require great changes in
CPU utilization.

As is known, once the Spark cluster is built, all nodes share the same configuration file, which
specifies the parameters (e.g., the IP address) of the master node and worker nodes. We cannot add a
worker node on the fly unless we restart the Spark cluster after changing the profile. Sometimes, users
do not have sufficient priori knowledge to estimate the running time or to choose the appropriate
cluster scale for their jobs. Sometimes the current configuration fails to meet the requirement of
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resources or users’ time constraints. Thus, there is a need to increase the computing capacity of the
Spark cluster without stopping existing running jobs. Virtual Machine (VM) migration technology
makes this possible. VM live migration is completely transparent to the user, who can use VMs without
any interruption. It has been used for load balancing, energy management, fault tolerance, online
maintenance, and so on. Figure 4 shows the architecture of VM live migration [20].

Algorithm 1: Scale Down Algorithm

Input: CPU utilization of all active nodes Tcpu
down, Tc

down
Output: Node to be removed
Find the maximum and minimum value of CPU utilization of active nodes Ucpu

max and Ucpu
min, get the node

with lowest utilization Nk.
1: if length(R) > Tc

down and (Ucpu
max −Ucpu

min) > Tcpu
down then

2: count = 0, j = length(R)− 1
3: for j > length(R)− 1− Tc

down do
4: if k = Imin

j and (Umax
j −Umin

j ) > Tcpu
down then

5: count = count + 1
6: end if
7: j = j− 1
8: end for
9: if count = Tc

down then
10: Remove node Nk

11: Update job on other actives nodes.
12: end if
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The main steps of live migration include the following:

(1) Create empty system and data disks on the target physical machine whose paths must be exactly
the same as those of the source physical machine.

(2) Create a virtual machine on the disks with the virtualization software. Configure the VM on the
target physical machine in the same way as that of the original virtual machine, and put it in a
paused state.

(3) Copy the disk data, save the dirty data, and synchronize the device status from the source to
destination. Then, switch off the VM on the source host and restore the VM on the target back to
the running state.

(4) Network broadcast to ensure that the mac address of the VM is updated to the virtual switcher
on the target physical machine.
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VM live migration enables adjustment of the resource allocations of the datacenter. We can also
reconfigure the memory or the disk size of the VM before creating it in the target host. Thus, the
new VM can accommodate workloads without restarting. We hope to use this method to increase the
computing power of the Spark cluster on the Cloud. When the current nodes have very high CPU
utilization, the performance of these nodes might be degraded. We consider migrating these nodes to
other hosts in the Spark cluster environment as Algorithm 2 entails. If the CPU utilization of a node
exceeds the threshold several times during a certain period, the VM migration algorithm will start.
It then traces back through the CPU records to count the number of successive violations. If the count
exceeds the given threshold, this node will be migrated.

The proposed VM migration algorithm builds upon the online migration technology, which is
able to achieve the goal of transparent migration without shutting down the virtual machine. For each
node in the cluster, we firstly estimate the length of its CPU utilization records Rcpu

i . Then the last
Tc

migrate records are compared with threshold Tcpu
migrate. If it is larger than the threshold value, count

will be increased by 1. As a consequence, those nodes with a count value the same as Tc
migrate will

be migrated.

Algorithm 2: VM Migration Algorithm

Input: CPU utilization of all active nodes Ucpu
i , Tcpu

migrate, Tc
migrate

Output: Node to be migrated
1: for each node Nk do
2: if length(Rcpu

k ) > Tc
migrate then

3: count = 0, j = length(Rcpu
k )− 1

4: for j > length(Rcpu
k )− 1− Tc

migrate do

5: if Rcpu
kj ≥ Tcpu

migrate then

6: count = count + 1
7: end if
8: j = j− 1
9: end for
10: if count = Tc

migrate then

11: Migrate node Nk

12: end if
13: end for

The proposed algorithms rely on threshold parameters, so these parameters will affect the
simulation results. The scale-down CPU threshold Tcpu

down is applied to determine the time taken
to trigger the scale-down action and to find the nodes that need to be removed. Notice that we do not
compare Tcpu

down with the CPU utilization of each node because CPU usages will change in different
stages, and different nodes can also have different CPU utilization. The disparity between the highest
and lowest CPU usage is firstly calculated and then compared with Tcpu

down. When the threshold Tcpu
down is

set with a higher value, the node with the lowest CPU usage is identified only if the highest CPU usage
in the cluster also reaches a large value. If the threshold Tcpu

down is low, a number of nodes can match
this condition and be removed, which leads to high loads for the remaining nodes. Tc

down is another
parameter that determines the remove action. Considering regular fluctuations in CPU utilization,
a node may satisfy the previous condition, but it goes back to a normal state after some time. Tc

down is
used for distinguishing the inactive nodes from fluctuating ones. This threshold is chosen based on
the tolerance of fluctuations. A larger threshold can restrict the number of removable nodes, while a
smaller value is more sensitive to changes in CPU usage, which leads to more removable nodes.
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The migration CPU threshold Tcpu
migrate is used for deciding whether to trigger the migration action

or not. For each node, we compare Tcpu
migrate with its CPU utilization. When the CPU utilization exceeds

Tcpu
migrate, we track the records of Ucpu

ij so as to find the duration of highly used CPU. Tcpu
migrate and Tc

migrate
thresholds are used to estimate whether a high CPU usage is normal for a short time or caused by
insufficient CPU cycles. Lower Tcpu

migrate or Tc
migrate can result in a large number of nodes to migrate. By

contrast, higher Tcpu
migrate or Tc

migrate can filter an unnecessary migration.

4. Experimental Results

We use CloudSim toolkit to simulate a realistic Spark environment and perform the experiments.
We compare the efficiency of our algorithm with default non-power aware implementation and
Dynamic Voltage and Frequency Scaling (DVFS) algorithm.

CloudSim [21] is an extensive simulation framework that enables seamless modeling, simulations
as well as experimentation of emerging Cloud computing infrastructures and management services.
It supports both system and behavior modeling of Cloud system components such as data centers,
hosts, virtual machines, Cloudlet, and resource provisioning policies. A host models a physical resource
(e.g., compute or storage server), which is described by the amount of memory and storage, a list
of processing cores, allocation policies for sharing the processing power among VMs, and policies
for provisioning memory and bandwidth to the VMs. A virtual machine is managed and hosted by
a Cloud host component. VM has information about memory, the processor, storage size, and so
on. Cloudlet is a Cloud-based application service, which has an instruction length and data transfer
overhead that it needs to undertake during its life cycle. To simulate a Spark cluster, each Cloudlet
binds to only one virtual machine and each host runs only one virtual machine. Based on the context,
Cloudlet stands for the specific data analytics job running on Spark. Note that, in CloudSim, Million
Instructions Per Second (MIPS) is used as the metric to evaluate the performance of a host or virtual
machine, and the CPU utilization is calculated by dividing the allocated MIPS by the total MIPS. We set
CloudletScheduler as CloudletSchedulerDynamicWorkload to simulate a different UtilizationModel
for Cloudlets. By doing this, the CPU utilization changes according to the simulation model.

The parameters used in our simulation are specified in Table 1. We configured 20 hosts, virtual
machines, and Cloudlets to simulate a Spark cluster. The maximum MIPS of hosts and virtual machines
is 1000 or 2000. All of them have one core CPU. The length of the Cloudlet is 2000 × 10 × 5. If the CPU
is used with 1000 MIPS, it will take 100 units time to complete the job. The clock time of CloudSim is 5,
so every 5 units of time, the simulator acquires the status of all nodes in the cluster. Regarding the
scale-down experiment, we pre-set three types of CPU utilization, they are “high (80%)”, “medium
(50%)”, “low (30%)” and their corresponding proportions are 30%, 30%, 40%. The CPU capacity of
the nodes is 1000, with a maximum power of 250 W and a static power of 175 W. For the migration
experiment, we simulated three kinds of CPU utilization, given by 50%, 60% and 95% where their
corresponding occupancy percentages of the cluster nodes are 30%, 30% and 40%. At the beginning,
all nodes are configured with 1000 MIPS, and the maximum power and static power are 250 W and
175 W, respectively. For the destination host, which can be migrated to, we set the CPU capacity with a
higher value, 2000 MIPS, and a higher power consumption, 270 W for full use and 189 W statically.
Based on the work of Fulsoundar and Ingle [22], we know that the performance of the Cloud degrades
when the CPU usage of a Virtual Machine (VM) running on the cloud increases (to 90–100%). Since
performance degradation does exist, we assume that the CPU utilization can be degraded to 50% (it
can also be 30%, 20%, or some other value according to the environment).

We compared the average CPU utilization, the execution time, and power consumption of the
cluster by conducting experiments with the proposed algorithms. Figure 5 shows the average CPU
utilization and the number of nodes in a cluster using the non-power-aware (default) method and the
proposed scale-down algorithm. Notice that we do not present the number of nodes or the average
CPU utilization of DVFS due to the fact that they are the same as the non-power-aware method.
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For the non-power-aware approach, the number of nodes remains unchanged during the simulation.
Moreover, we can also see that the average CPU utilization decreases dramatically at around 125 s and
195 s when virtual machines with greater CPU capacity finish their tasks. By contrast, those nodes
with less CPU utilization take longer to process the allocated jobs. The scale-down algorithm makes it
possible to remove underutilized nodes, so the number of active nodes decreases steadily before 200 s.
Similarly, a sharp drop appears at 200 s when the nodes complete their tasks. However, the average
CPU utilization shows an opposite trend that increases stably. By moving jobs from less active nodes
to more efficient nodes, the execution time is also reduced. Overall, the scale-down-enabled policy can
improve the average CPU utilization of a cluster by removing underutilized nodes.

Table 1. Simulation parameters.

Parameter Value

Number of nodes n 20
Scale-down CPU threshold Tcpu

down 50%
Scale-down count threshold Tc

down 5
Migrate CPU threshold Tcpu

migrate 90%
Migrate count threshold Tc

migrate 5
CPU utilization model 30%, 50%, 60%, 80%, 95%

Max Power 250 W, 270 W
Static power 175 W, 189 W

Length of Cloudlet 2000 × 10 × 5
CloudSim clock interval 5 s

VM/Host MIPS 1000, 2000
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Figure 6 displays the power consumption of the cluster of the non-power-aware (default),
DVFS, and scale-down algorithms. The default configuration consumes the most power, and the
scale-down-enabled cluster shows the lowest energy consumption. DVFS requires a little more power
compared with the proposed algorithm. The amount of energy consumption is associated with the
number of active nodes and the processing time. The scale-down-enabled cluster with higher efficiency
has fewer nodes and a lower execution time, which leads to energy conservation.
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Figure 7 depicts the average CPU utilization and the number of nodes in a cluster with the
non-migration (default) method and the proposed migration algorithm. Similar to what we mentioned
before, we do not show the number of nodes or the average CPU utilization of DVFS here because
they are the same as the default method. With respect to the default policy, the number of nodes was
a constant value when we implemented the algorithm. The migration-enabled cluster also shows a
decrease in number as the nodes finish their jobs. The average CPU utilization relates to both the
number of active nodes and the CPU usage of each node in the cluster. When nodes are moved to a
host with more CPU capacity (MIPS), the average CPU usage decreases. There is an increasing trend
at around 120 s, which is when the nodes finish their jobs and release more available resources. It is
important to point out that the execution time is reduced by moving tasks from inefficient nodes to
efficient ones. To summarize, the migration-enabled policy is capable of decreasing the average CPU
utilization and execution time. Furthermore, the power consumption of the given non-migration-
(default), DVFS-, and migration-enabled clusters are presented in Figure 8.
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This paper proposes a scale-down algorithm that can be applied to reduce energy consumption,
as well as a VM migration algorithm that can save the computing power of Spark clusters on the Cloud.
Optimizing available cluster resources in the process of data analysis saves energy and is thus more
environmentally sustainable. By removing underutilized nodes, the size of clusters shrinks, increasing
overall load and decreasing power consumption. Moreover, migrating over-utilized nodes can also
reduce energy consumption.

We simulated the energy consumption of Spark clusters on CloudSim, and the results show that,
by employing the proposed methods herein, energy is saved. Future directions of our research consist
of (1) optimizing both time and energy consumption of the cluster, (2) developing metaheuristics
algorithms that can be used to find optimal configurations in resource execution plans for different
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