
Off-policy Learning over Heterogeneous Information for
Recommendation

Xiangmeng Wang

xiangmeng.wang@student.uts.edu.au

University of Technology, Sydney

Australia

Qian Li
†∗

qli@curtin.edu.au

Curtin University

Australia

Dianer Yu

Dianer.Yu-1@student.uts.edu.au

University of Technology, Sydney

Australia

Guandong Xu
†

guandong.xu@uts.edu.au

University of Technology, Sydney

Australia

ABSTRACT
Reinforcement learning has recently become an active topic in

recommender system research, where the logged data that records

interactions between items and users feedback is used to discover

the policy. Much off-policy learning, referring to the procedure of

policy optimization with access only to logged feedback data, has

been a popular research topic in reinforcement learning. However,

the log entries are biased in that the logs over-represent actions

favored by the recommender system, as the user feedback contains

only partial information limited to the particular items exposed to

the user. As a result, the policy learned from such off-line logged

data tends to be biased from the true behaviour policy.

In this paper, we are the first to propose a novel off-policy learn-

ing augmented by meta-paths for the recommendation. We argue

that the Heterogeneous information network (HIN), which provides

rich contextual information of items and user aspects, could scale

the logged data contribution for unbiased target policy learning.

Towards this end, we develop a new HIN augmented target policy

model (HINpolicy), which explicitly leverages contextual informa-

tion to scale the generated reward for target policy. In addition,

being equipped with the HINpolicy model, our solution adaptively

receives HIN-augmented corrections for counterfactual risk mini-

mization, and ultimately yields an effective policy to maximize the

long run rewards for the recommendation. Finally, we extensively

evaluate our method through a series of simulations and large-

scale real-world datasets, obtaining favorable results compared

with state-of-the-art methods.
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1 INTRODUCTION
Recommender system (RS) has become a panacea to assist users

in discovering preferred contents from the massive information

provided[15, 33]. Traditional approaches to recommendation are

often based on form of collaborative filtering [35, 46] or knowledge-

based systems [27]. Since traditional RS methods are static, they

can not well handle the sequential and dynamic nature of user in-

teraction with the system [1], which is the essence of RS. Recently,

reinforcement learning (RL)-based approaches have attracted a lot

of attention in recommender systems, in which an agent (recom-

mender) is guided by a recommendation algorithm (policy) to drive

user interaction with the environment [34, 37, 57, 58]. The core idea

of RL methods is to train RS as an intelligent agent that learns an

optimal recommendation policy to maximize each user’s long-term

satisfaction with its system [9]. To train such an optimal RL agent,

it is natural to perform online learning on interactions between

recommender systems and users. However, such online learning

is infeasible in real RS since it might degrade user satisfaction and

deteriorate the revenue of the platform [6, 23, 51]. Fortunately,

off-policy learning emerges as a favorable opportunity for policy

optimization, which uses historical user feedback instead of con-

structing expensive online interactive environments [29, 41, 57].

Off-policy learning has attracted increasing interest in recom-

mender system research in recent years [43, 52, 53]. As shown in

Figure 1, the goal of off-policy learning is to maximize each user’s

long term satisfaction with the system, given logged data generated

by the logging policy of the recommender system. Achieving this
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Figure 1: Off-policy learning in Recommendation.

off-policy goal has to address the question of how much reward

would be received if a new target policy had been deployed in-

stead of the original logging policy. This counterfactual question

is not easy to address, since the target policy is different from the

historical logging policy in the off-policy setting [48, 49]. To this

effect, most off-policy learning for recommendation relies on in-

verse propensity score (IPS) estimator correction to get an unbiased

empirical risk minimization objective [10, 39]. A major disadvan-

tage of these methods is that IPS is likely to be over-fitted as some

actions have zero probability of being taken in recommender sys-

tems [19, 30, 47]. For example, compared with a large action space

(e.g., items) in a recommender system, actions taken by users are

limited in a deficiency action space due to the ubiquity of biases [5]

(e.g., exposure bias or conformity bias). Thus a large number of

actions would not be selected at all in recommender systems, lead-

ing to the “poor gets poorer” phenomenon [21], i,e., a video will

not be nominated in the target policy simply because it was never

nominated in the behavior logging policy.

Figure 2: A toy example of inferring rewards from HIN.

Towards this end, we claim that real-world context information

could be useful to deal with deficient log data and empower off-

policy learning in the recommendation. An example is shown in

Figure 2, we have a user𝑢1 exposed to (𝑖1, 𝑖2) but not to (𝑖3, 𝑖4). As a
result, it is impossible to learn cumulative rewards (e.g., users’ feed-

back during a period of time) for a policy which selects actions (e.g.,

𝑖3 and 𝑖4) not contained in the logged data. That means information

about the reward for the action of interacting with 𝑖3 and 𝑖4 can

never be chosen by the deterministic logging policy. Fortunately,

we can infer such feedback information with the assistance of con-

textual information. Suppose 𝑢1 offers positive feedback to 𝑖1 and

𝑖2. Since both 𝑖1 and 𝑖2 have the same actor 𝑎1 and the same director

𝑎2, we may infer that the combination of actor 𝑎1 and director 𝑎2
is an important factor of 𝑢1’s interest. The movie 𝑖4 with the same

actor 𝑎1 and director 𝑎2 should be highly likely to be preferred by

𝑢1. By contrast,𝑢1 probably has less interested on 𝑖3 with a different

actor. That means 𝑖3 and 𝑖4 could offer high-quality negative feed-

back and positive feedback of 𝑖4. As such, exploiting the contextual

information can alleviate the “poor gets poorer” phenomenon in

off-policy learning for the recommendation.

In this paper, we investigate how to correct off-policy biases with

the assistance from Heterogeneous Information Network, i.e.,HIN
augmented off-policy learning (HINpolicy). In particular, we design a

co-attentive mechanism to mutually derive the interaction-specific

context information to produce the high-quality target policy of

the recommendation. Meanwhile, the counterfactual risk minimiza-

tion is designed to explore the target policy, so as to optimize the

behaviour policy that can maximize users’ long-term satisfaction.

To summarise, our method offers the following contributions
1
:

• We are the first to leverage contextual information in HIN

to provide high-quality target policy learning for correcting

the bias in off-policy recommendations.

• We develop a new end-to-end framework HINpolicy, which

achieves counterfactual risk minimization in an explicit man-

ner under the co-attention mechanism.

• Empirically, we generate an online environment using simu-

lators to carry out experiments on two benchmark datasets.

Extensive results show that our methods outperform the

state-of-the-art methods.

2 RELATEDWORK
2.1 Traditional Recommendation
Being supervised by the historical records is the common practice

in majority models, including traditional collaborative filtering [35],

content-based filtering [46] and knowledge-based systems [27]. An-

other topic closely related to above categories is deep neural models,

such as multi-layer perceptron [11], denoising auto-encoders [56],

convolutional neural network (CNN) [2, 42, 50, 60], recurrent neu-

ral network (RNN) [28, 54], memory network [8, 25] and attention

architectures [7]. Based on the partially observed history dataset,

these existing models usually predict a customer’s feedback by a

learning function to maximize some well-defined evaluation met-

rics in ranking, such as Recall, Precision and NDCG. However, most

of them are myopic because the learned policies are greedy with

estimating customers’ feedback and unable to optimize customers’

feedback in the long run.

2.2 Off-policy Learning for Recommendation
Reinforcement algorithms can be generally divided into on-policy

and off-policy methods [9]. Off-policy recommendation learning

from logged user feedback has attracted increased attention in re-

cent years [6, 31, 39], which falls into two categories. The first

approach to off-policy uses inverse propensity scoring (IPS) to cor-

rect the selection bias caused by the discrepancy between the target

policy and the logging policy. Swaminathan et al. [49] propose an

Optimizer for Exponential Models (POEM) that learns target policy

free from propensity overfitting based on IPS estimator. Joachims

1
Our code is currently available at https://www.dropbox.com/sh/s6bsinvu6z8n000/

AAAV66XJZkZLHQVVZRsE6Apca?dl=0
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et al. [31] propose a BanditNet that includes an additional self-

normalisation IPS (SNIPS) term while they extend the off-policy

learning to deep neural networks, which is a recent notable exten-

sion. Ma et al. [39] formulate the target policy of the two-stage

recommender system as the composition of candidate generation

policy and the ranker policy, meanwhile deriving the importance

weight based on the IPS to correct the candidate generation pol-

icy. An alternative is the value-based approaches for the off-policy

recommendation, such as Q-learning algorithms. They in principle

aim to learn a state-action function, and then use this function to

directly recover the optimal policy. Xin et al. adopt a Q-learning

perspective to deal with sequential recommendation tasks, exploit-

ing both self-supervised (organic) and reinforcement (logged data)

signals [59]. Analogously, Sakhi et al. proposed a probabilistic la-

tent model that combines organic and logged data in a Bayesian

value-based manner [44].

The problems of off-policy learning are generally pervasive and

challenging in RL, and in recommender systems in particular. In

the scenario of recommender systems, item catalogues and user

behaviour change rapidly, substantial policy changes are required.

Therefore it is not sufficient to take the classic user interaction his-

tory to constrain the policy updates. This work tackles the problem

of off-policy learning augmented by Heterogeneous information,

which has not been well studied.

3 PRELIMINARY
3.1 Off-policy Learning for Recommendation
Unlike classical reinforcement learning, off-policy learning does

not have real-time interactions with recommender systems due

to learning and infrastructure constraints. Instead, in off-policy

learning setting for the recommendation, we have access to a logged

dataset of trajectories D. The generation of D can be formulated

with a Markov Decision Process (MDP) as denoted in Figure 1,

where

• S: a continuous state space describing the user states, e.g.,
user’s contextual information involved during interactions;

• A: a discrete action space containing items available for

recommendation;

• P: the state transition probability;

• R: 𝑟 (𝑠, 𝑎) ∈ R is the immediate reward produced by taking

the action 𝑎 to the user state 𝑠;

• 𝛾 : a discount factor 𝛾 ∈ [0, 1] used for future immediate

rewards;

Particularly, D = {S,A,P,R, 𝛾} has been collected under sto-

chastic logging policy 𝜋0 (𝑎 |𝑠) that describes a probability distri-

bution over items A (i.e., action), conditioned on user states S.
Meanwhile, the recommender system receives feedback reward

𝑟 (𝑎, 𝑠) (i.e., clicks or watch time) for this particular state-action pair.

As a result, training a recommender system seeks a policy 𝜋\ that

maximizes the expected cumulative rewards 𝑅(𝜋\ ) over potentially
infinite time horizon 𝑇 , is defined as

𝑅(𝜋\ ) = E𝑠0∼𝜌 (𝑠),𝑎𝑡∼𝜋\ (𝑎 |𝑠𝑡 ),𝑠𝑡+1∼𝑃 (𝑠 |𝑠𝑡 ,𝑎𝑡 )

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )
]

(1)

where 𝜌 (𝑠) is the initial distribution of user states, 𝑃 (𝑠 | 𝑠𝑡 , 𝑎𝑡 ) ∈ P
is the state transition probability.

3.2 Heterogeneous Information Network
Apart from the logged trajectories, we have additional contextual

information about users and actions, e.g., social relations between

users or actions (items)’ genres. We aim to incorporate such contex-

tual information in the Heterogeneous information network (HIN)

into each state-action pair to optimize the recommendation policy.

Heterogeneous information network (HIN), which records the com-

plex relations between multiple types of involved entities, can be

used to introduce useful information into state 𝑠𝑡 to guide a better

learning along policy 𝜋\ (𝑎𝑡 |𝑠𝑡 ). The formal definitions of HIN and

Meta-path are given in Appendix A.1. In our setting, the HIN infor-

mation is incorporated into the state vector 𝑠𝑡 to learn the influence

between user’s context information and preference shift. Previous

off-policy learning has frequently assumed that the choosing of

presented actions depends only on user’s descriptions (e.g., user id)

and its historical interactions with items, leaving the influence of

the large volume of unobserved user and item attributes behind.

4 METHODOLOGY
The overall framework of HINpolicy is presented in Figure 3, which

consists of two important components, the HIN-augmented policy

learning and counterfactual risk minimization. In HIN-augmented

policy learning, we aim at leveraging complex relations in meta-

paths to learn the meta-path context for the involved users and

actions, then use the designed co-attention mechanism to derive

the context-aware state that guides a better policy learning for the

recommendation. We further take advantage of counterfactual risk

minimization for the unbiased approximation of policy evaluation.

Bias is ubiquitous in the off-policy learning setting [23], since the

logged feedback data generated by a historical behaviour policy

𝜋0 of the recommender system is different from the target policy

𝜋\ trained. To correct the bias of distribution mismatch between

behaviour policy and target policy, counterfactual risk minimiza-

tion (CRM) [49] uses Inverse Propensity Scoring (IPS) estimator to

re-weight the logged data according to ratios of slate probabilities

under the target and logging policy. The final corrected recommen-

dation policy 𝜋\ is then used to produce high-quality candidate

actions that wait to be re-ranked by the Top-𝐾 ranking model.

4.1 HIN-augmented Policy Learning
While off-policy learning methods [39, 63] achieve great success

towards policy optimization in recommendations, the benefits of

contextual information are not fully explored to improve policy

learning. Heterogeneous information network (HIN), whose nodes

are of different types and links among nodes represent different

relations, reveals high-order dependency in recommendation en-

vironments (e.g., users’ behaviours, recommendation policies, and

action’ aspects). Towards this, we take HIN as the prior knowledge

of the policy learning to exploit its rich relations for exploring more

suitable positive feedback that is missing in the logged data. In this

section, we propose HIN-augmented policy learning that learns
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Figure 3: Our model framework of HINpolicy. Our HINpolicy includes rich contextual information retained in meta-path
schemes for policy learning, thus capturing the potential influence from user/item attributes.

context-aware state by updating user state representation, meta-

path context and action representation in a mutual enhancement

way, so as to guide a better target policy learning.

4.1.1 State Representation. To derive the impact of meta-path

based context towards the preference shift of users on taking ac-

tions, we first categorize the user state 𝑠𝑡 with key information

about the user preference. In this subsection, we design the state

representation module, which extracts user’s preferences through

its historical interactions with items. Generally, the state represen-

tation 𝑠𝑡 at time 𝑡 in online recommendation scenario is learned

from the user’s interactions (e,g., clicked) at timestep 𝑡 .

Formally, for state 𝑠𝑡 , we have a set of actions 𝑜𝑡 = {𝑖1, 𝑖2, ..., 𝑖𝑛}
interacted by the user. Considering {𝑜𝑡 } have sequential patterns,
we resort Recurrent Neural Networks (RNN) [22] to learn an em-

bedding vector o𝑡 ∈ R𝑑 from {𝑜𝑡 }. To aggregate user’s historical

embedding o𝑡 , we conducted experiments with a large volume of

popular RNN cells, including Bidirectional Recurrent Neural Net-

works (BRNN) [45], Gated Recurrent Units (GRU) [12], and Long

Short-TermMemory family (LSTM) [24] with varying gates. Finally,

the RNN with a gated recurrent unit (GRU) stands out among these

cells due to its stability and computational efficiency. Hence, we

learn the representation of the user state 𝑠𝑡 by a GRU cell:

z𝑡 = 𝜎𝑔 (W1o𝑡 + U1𝑠𝑡−1 + b1)
r𝑡 = 𝜎𝑔 (W2o𝑡 + U2𝑠𝑡−1 + b2)
𝑠𝑡 = 𝜎ℎ (W3o𝑡 + U3 (r𝑡 ◦ 𝑠𝑡−1) + b3)
𝑠𝑡 = (1 − z𝑡 ) ◦ 𝑠𝑡−1 + z𝑡 ◦ 𝑠𝑡

(2)

where z𝑡 and r𝑡 denote the update gate and reset gate vector gen-

erated by GRU, ◦ is the element-wise product operator, W𝑖 , U𝑖 are

weight matrix and b𝑖 are the bias vectors. Particularly, the hidden
state 𝑠𝑡 is generated by a GRU with inputs of a previous hidden

state 𝑠𝑡−1 and a new candidate hidden state 𝑠𝑡 . Finally, 𝑠𝑡 serves as

the representation of the current user state.

4.1.2 Attentive Meta-path Context Representation. The attentive
meta-path context representation module produces interaction-

specific context that captures diverse semantics of meta-paths on

user-action interactions. Our attentive meta-path context repre-

sentation module calculates attention weights over meta-paths

conditioned on state-action pairs, thus can capture the influence of

each meta-path on user interest drift.

In attentive meta-path context representation module, we first

resort to Meta-path Based Random Walks [16] for generating path
instances 𝜌 = {𝑣1, · · · , 𝑣𝑙 } under a specific meta-path scheme p
through an effective meta-path instance sampling

2
. To further

capture both the semantics and structural correlations between

different types of nodes, we adopt Convolution Neural Network

(CNN) [38] parameterized by Θ to transform 𝜌 of lengths 𝑙 into

meta-path embedding as

cp = max-pooling

({
𝐶𝑁𝑁

(
{X𝜌

𝑖
};Θ

)}𝐿
𝑖=1

)
(3)

where {X𝜌

𝑖
} denote the set of embeddings for 𝐿 path instances from

meta-path p, where each X𝜌

𝑖
denotes the embedding matrix of a

path instance 𝜌 . Assume 𝐿 path instances can be generated under

a meta-path p, we apply max pooling operation [40] to aggregate

them into one embedding cp.
We then learn the interaction-specific meta-path context repre-

sentation. Having obtained the meta-path embeddings cp of meta-

path p, we pair the meta-path embedding cp with the current user

state 𝑠𝑡 and a dispensing action 𝑎𝑡 . The dispensing action 𝑎𝑡 can be

represented as a one-hot representation a𝑡 overall potential actions
inA, however, such a one-hot encoding manner may result in high

computation complexity. Thus, we implement a simple embedding

lookup layer to transform the one-hot representation a𝑡 of action
𝑎𝑡 into low-dimensional dense vectors:

e𝑡 = Q
⊤ · a𝑡 (4)

whereQ
⊤ ∈ R |A |×𝑑

is the parameter matrix which stores the latent

factors of actions and 𝑑 is the embedding dimension, e𝑡 ∈ R𝑑 is

the dense embedding of action 𝑎𝑡 . Given user state 𝑠𝑡 , context

embedding cp and action embedding e𝑡 , we implement a two-layer

attention mechanism as

𝜶 (1)
𝑠𝑡 ,𝑎𝑡 ,p = 𝑓

(
W(1)

𝑢 𝑠𝑡 +W(1)
𝑎 e𝑡 +W(1)

p cp + b(1)
)

(5)

𝜶 (2)
𝑠𝑡 ,𝑎𝑡 ,p = 𝑓

(
W(2)⊤𝜶 (1)

𝑠𝑡 ,𝑎𝑡 ,p + b(2)
)

(6)

2
Details of Meta-path Based Random Walks can be found in Appendix A.2.
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where {W(1) } and b(1) denote the weight matrix and the bias vector

for the first layer, and the W(2)
and 𝑏 (2) denote the weight vector

and the bias for the second layer, 𝑓 (·) is set to the ReLU function. As

we care about the user-action interaction, we select all meta-path

schemes whose starting node type is user while the ending node
type is action (i.e., item), and denote those meta-path schemes into

meta-path schemes set M𝑢→𝑎 . We then normalize the attentive

scores 𝜶 (2)
𝑠𝑡 ,𝑎𝑡 ,p in Eq. (6) over all meta-path schemes in M𝑢→𝑎

using a softmax function, and derive the final interaction-specific

meta-path context representation c𝑢→𝑎 ∈ R𝑑 as a weighted sum:

c𝑢→𝑎 =
∑

p∈M𝑢→𝑎

exp

(
𝜶 (2)
𝑠𝑡 ,𝑎𝑡 ,p

)
∑
p′∈M𝑢→𝑎

exp

(
𝜶 (2)
𝑠𝑡 ,𝑎𝑡 ,p′

) · cp (7)

4.1.3 Target Policy Learning. For each time 𝑡 ∈ 𝑇 , the interaction-
specific meta-path context representation can provide important

semantics to regulate the user state and the involved actions. There-

fore, user state 𝑠𝑡 and action representation e𝑡 should be adjusted

accordingly based on context representation c𝑢→𝑎 for the later

off-policy learning. Specifically, we first compute the attention vec-

tors of meta-path context on users state and actions in <user state -
meta-path context - action> pairs, then use these attention vectors

to refine the user state/action representations in origin space. For-

mally, giving user state 𝑠𝑡 in Eq. (2) and the action representation

e𝑡 in Eq. (4), and the meta-path based context embedding c𝑢→𝑎

connecting them, we use a single-layer network to compute the

attention vectors 𝜷𝑢 and 𝜷𝑎 for user state 𝑠𝑡 and action 𝑎𝑡 as

𝜷𝑢𝑡 = 𝑅𝑒𝑙𝑢 (W𝑢𝑠𝑡 +W𝑢→𝑎c𝑢→𝑎 + b𝑢 )
𝜷𝑎𝑡 = 𝑅𝑒𝑙𝑢 (W𝑎e𝑡 +W𝑢→𝑎c𝑢→𝑎 + b𝑎)

(8)

where W𝑢 and b𝑢 denote the weight matrix and bias vector for

user state attention; W𝑎 and b𝑎 denote the weight matrix and bias

vector for action attention. Then, the final representations of user

states and actions are computed by using an element-wise product

with the attention vectors:

𝑠𝑡 = 𝜷𝑢𝑡 ⊙ 𝑠𝑡
ẽ𝑡 = 𝜷𝑎𝑡 ⊙ e𝑡

(9)

We now transform the refined representations of user state 𝑠𝑡 and

action ẽ𝑡 , along with interaction-specific context representations

c𝑢→𝑎 into the HIN-enhanced state 𝑠𝑢→𝑎
𝑡 ∈ R𝑑 , to parametrize the

policy 𝜋\ . Specifically, the three embedding vectors are combined

into a unified representation at the current interaction 𝑡 ∈ 𝑇 as

𝑠𝑢→𝑎
𝑡 = 𝑠𝑡 ⊕ c𝑢→𝑎 ⊕ ẽ𝑡 (10)

where ⊕ denotes the vector concatenation operation. The 𝑠𝑢→𝑎
𝑡

serves as the final representation of theHIN-enhanced user interests

taken at time 𝑡 . The policy 𝜋\ (𝑎𝑡 |𝑠𝑢→𝑎
𝑡 ), which is the probability

of recommending the action 𝑎𝑡 given the possible action space A𝑡 ,

is modeled as a softmax function:

𝜋\ (𝑎𝑡 | 𝑠𝑢→𝑎
𝑡 ) =

exp

(
e⊤
𝑡+1𝑠

𝑢→𝑎
𝑡

)∑
𝑎𝑡 ∈A𝑡

exp

(
e𝑡⊤𝑠𝑢→𝑎

𝑡

) (11)

where e𝑡+1 ∈ R𝑑 is also derived by the embedding lookup operation

as denoted in Eq. (4). In fact, e𝑡+1 is the embedding of action 𝑎𝑡+1
which dispensed in the next time step 𝑡 + 1.

4.2 Counterfactual Risk Minimization for
Recommendation

The goal of off-policy learning is to maximize each user’s long

term satisfaction with the system, given the historical logged data

generated by historical logging policy 𝜋0. Remember that the target

policy 𝜋\ , which is what we care about most, serves to optimize

RS to maximize the objective cumulative rewards in (1). To achieve

this goal, we have to address the counterfactual question that how

much reward would be received if a new target policy 𝜋\ in Eq. (11)

had been deployed instead of the original logging policy 𝜋0. This

counterfactual question is not easy to address, since the target policy

𝜋\ is different from the historical logging policy 𝜋0 in the off-policy

setting[20, 32, 61]. Here we apply Counterfactual Risk Minimization
(CRM) [49] to correct the discrepancy between the target policy 𝜋\
and logging policy 𝜋0, thus to answer the counterfactual question.

It is well-known that Inverse Propensity Scoring (IPS) estimator

is a common practice to correct the discrepancy between 𝜋\ and

𝜋0 [4, 54, 62]. However, the IPS estimator suffers from “propensity

overfitting” issue due to the uncertainty on rare actions [13, 30, 39];

when directly optimizing IPS within a learning algorithm, the re-

sults tend to have a large variance. To reduce the variance, we resort

clipped estimator that caps the propensity ratios (i.e., importance

weight) to a maximum value [4]. The core idea is to regulate large

weights necessarily associated with actions that are different to the

logging policy. The clipped estimator (cIPS) can be represented as

𝐿cIPS (𝜋\ ) =
1

𝑇

𝑇∑
𝑡=1

𝑟𝑡 min

{
𝜋\ (𝑎𝑡 | 𝑠𝑢→𝑎

𝑡 )
𝜋0 (𝑎𝑡 | 𝑠𝑢→𝑎

𝑡 ) , 𝑐
}

(12)

where 𝑐 is a constant that serves as the regulator for constraining the

importance weight
𝜋\ (𝑎𝑡 |𝑠𝑡 )
𝜋0 (𝑎𝑡 |𝑠𝑡 ) to at most 𝑐 , smaller value of constant

𝑐 reduces variance in the gradient estimate, but introduces larger

bias. We thus follow Joachims et.al [31] to prevent the additional

bias by adding an empirical variance penalty term _ as

𝐿_
cIPS

(𝜋\ ) =
1

𝑇

𝑇∑
𝑡=1

(𝑟𝑡 − _𝑡 )
{
𝜋\

(
𝑎𝑡 | 𝑠𝑢→𝑎

𝑡

)
𝜋0

(
𝑎𝑡 | 𝑠𝑢→𝑎

𝑡

) , 𝑐} (13)

where _𝑖 regulates the corresponding reward 𝑟𝑖 at each interaction

By plugging Eq. (13) into objective function Eq. (1), we have:

𝑅 (𝜋\ ) = E𝜋\
[
𝛾𝑡𝐿_

cIPS
(𝜋\ )

]
= E𝜋\

[
𝑇∑
𝑡=0

𝛾𝑡
(
𝑟 (𝑠𝑢→𝑎

𝑡 , 𝑎𝑡 ) − _𝑡
) {𝜋\ (

𝑎𝑡 | 𝑠𝑢→𝑎
𝑡

)
𝜋0

(
𝑎𝑡 | 𝑠𝑢→𝑎

𝑡

) , 𝑐}] (14)

4.3 Top-𝐾 recommendation
In our experiment, we focus on the widely-adopted Top-𝐾 recom-

mendation task, and utilize the two-stage policy gradient strat-

egy [39] as our learning method. The two-stage setup with candi-

date generation followed by ranking has been widely adopted in

industry [3, 14, 18], which is capable of recommending highly per-

sonalized items from a huge item space in real-time. In the training

phrase, the trained target policy 𝜋\ in Eq. (14) is fed into candi-

date generation model to form the probability over the possible

candidate sets A𝑡 ∈ A conditioning on the current state 𝑠𝑡 , de-

noted by 𝑝\ (A𝑡 | 𝑠𝑡 ). The possible candidate sets A𝑡 can be the

combination of any items 𝑖 ∈ I. The ranking model delivers the
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final recommendation results through optimizing together with the 
candidate generation model, which is drawn from a probability over 
all action 𝑎𝑡 conditioned on the current state 𝑠𝑡 and a candidate set 
A𝑡 , denoted by 𝑞\ (𝑎𝑡 | 𝑠𝑡 , A𝑡 ). Assuming that the policy takes a 
function form 𝜋\ parameterized by \ ∈ R𝑑 

, the policy gradient of 
the cumulative reward function Eq. (14) w.r.t. \ can be expressed 
as the following REINFORCE gradient thanks to the log-trick:

∇\𝑅 (𝜋\ ) = E𝜋\

[
𝑇∑
𝑡=0

𝛾𝑡
(
𝑟 (𝑠𝑢→𝑎

𝑡 , 𝑎𝑡 ) − _𝑡
)
∇\ log𝜋\ (𝑎𝑡 | 𝑠𝑢→𝑎

𝑡 ){
𝜋\ (𝑎𝑡 | 𝑠𝑢→𝑎

𝑡 )
𝜋0 (𝑎𝑡 | 𝑠𝑢→𝑎

𝑡 ) , 𝑐
}]

= E𝜋\

[
𝑇∑
𝑡=0

𝛾𝑡
(
𝑟 (𝑠𝑢→𝑎

𝑡 , 𝑎𝑡 ) − _𝑡
)

{∑
A𝑡

𝑞\
(
𝑎𝑡 | 𝑠𝑢→𝑎

𝑡 , A𝑡

)
∇\𝑝\

(
A𝑡 | 𝑠𝑢→𝑎

𝑡

)
𝜋0 (𝑎𝑡 | 𝑠𝑢→𝑎

𝑡 ) , 𝑐

}]
(15)

Here, we consider REINFORCE [55], a typical policy gradientmethod,

as our optimization algorithm is to search the optimal policy in

recommendation.

5 EXPERIMENTS
To thoroughly evaluate the proposed off-policy method for the

recommendation, we conduct extensive experiments to answer the

following research questions:

• RQ1:How does our HINpolicy perform compared with state-

of-the-art off-policy recommendation methods?

• RQ2: How does HIN information affect our method and

different sparsity levels of user feedback?

• RQ3: How do hyper-parameters in our method impact the

recommendation performance?

5.1 Experimental Setup
5.1.1 Logging Policy from Logged Data. We adopt two widely used

public datasets from different domains, namely MovieLens and

Douban-book. For both datasets, we binarize the feedback data

(i.e., ratings) by interpreting ratings of 4 or higher as the positive

feedback (i.e., 𝑟 = 1), otherwise negative (i.e., 𝑟 = 0). The detailed

statistics of all datasets are given in Table 1. To facilitate the utility

of real-world recommendation datasets in off-policy learning, we

start with designing simulation experiments based on an online

simulator [9, 63, 64] to recover the missing reward 𝑟 in partially-

observed recommendation datasets. Details of our online simulator

are given in Appendix B.1. The logged feedback samples are then ac-

quired by running a logging policy 𝜋0 on the recovered datasets. We

adopt the wildly used logging policy, i.e., the uniform-based logging

policy. Details of the logging policy can be found in Appendix B.2.

5.1.2 Contextual Information. We consider two publicly available

recommendation datasets i.e., MovieLens and Douban-book, and
report the selected meta-paths in Table 5 of Appendix B.3. These

two datasets contain multiple attributes for both users and items,

thus can provide rich contextual information for off-policy learning.

We only select short meta-paths of at most four steps, since long

meta-paths are likely to contain noise. The three used datasets, i.e.,

Table 1: Statistics of the datasets. Density is computed by
#𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘/(#𝑈𝑠𝑒𝑟𝑠 · #𝐼𝑡𝑒𝑚𝑠).

Dataset #Users #Items

#Total

Feedback

#Feedback

Per Customer

#Feedback

Per Item

Density

MovieLens-100K 943 1682 100000 106.0445 59.4530 % 6.30%

MovieLens-1M 6040 3952 1000209 165.5975 253.0893 % 3.95%

Douban Book 13024 22347 792062 60.8156 35.4438 % 0.27%

MovieLens-100K, MovieLens-1M and Douban-book, are produced
with diminishing density of 6.30%, 3.95% and 0.27%, respectively,

for testing HINpolicy’s capability in dealing with the data sparsity.

5.1.3 Baselines. Existing off-policy learning approaches can be

roughly sorted into (I) value-based approaches and (II) policy-based

approaches. The former generates a target policy based onmodeling

the actual reward that is received by a certain action, while the

latter directly models the actions that should be taken in order to

maximise the total cumulative reward a policy will collect. Note

that our method can be categorized as a policy-based approach.

We perform our method and three representative methods from

these two categories on Top-𝐾 recommendation task. We evaluate

all baselines on the same logged user feedback samples as in our

HINpolicy.

• Bandit-MLE [26](I): is a value-based approach that estimates

the likely reward (i.e., value) a certain action would yield

through Maximum Likelihood Estimation (MLE), then gen-

erates target policy by selecting actions that have the max-

imum value. It applies the IPS estimator to adjust for the

difference in the distribution of logging policy and target

policy to eliminate bias.

• POEM [49] (II): Optimizer for Exponential Models (POEM) is

the earliest policy-based approach that uses IPS-based coun-

terfactual risk minimisation for off-policy bias correction.

• BanditNet [31] (II): is a recent notable extension of off-policy

learning with logged user feedback using counterfactual risk

minimisation, it optimises an additional Lagrangian form of

SNIPS estimator and extends the off-policy learning to deep

neural networks.

We evaluate all baseline methods using Precision@𝐾 and Nor-

malizedDiscounted Cumulative Gain (NDCG)@𝐾 with𝐾 = [1, 5, 10, 20].
The implementation details are given in Appendix B.4.

5.2 Performance Comparison (RQ1)
Table 2 reports the experimental results by an average of 5 repeated

experiment runs of evaluation. Note that both our method and all

baselines are performed under the uniform-based logging policy.

The uniform-based logging policy samples every action at random

with an equal probability, which is an idealised (i.e., unbiased)

setting that a recommender desire. Analyzing Table 2, we have the

following observations:

• Our proposed HINpolicy consistently yields the best perfor-

mance among all datasets on both evaluation metrics. By

averaging the performance under all 𝐾 , our method achieves

significant improvements over the best baseline. Particularly,

our method improves Precision@𝐾 by 25.40%, 5.85%, 38.18%

and NDCG@𝐾 by 27.47%, 6.38%, 41.78% on MovieLens-100K,
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Table 2: Performance comparison: bold numbers are the best results, best baselines are marked with underlines.

Datasets Metrics Bandit-MLE BanditNet POEM HINpolicy Improv.%

Precision@1 0.705 0.671 0.709 0.894 26.09%

Precision@5 0.673 0.663 0.692 0.862 24.57%

Precision@10 0.652 0.645 0.666 0.832 24.92%

Precision@20 0.649 0.622 0.642 0.818 26.04%

NDCG@1 0.692 0.683 0.684 0.801 15.75%

NDCG@5 0.678 0.667 0.661 0.872 28.61%

NDCG@10 0.649 0.621 0.639 0.848 30.66%

MovieLens-100k

NDCG@20 0.627 0.605 0.631 0.851 34.87%

Precision@1 0.789 0.727 0.781 0.883 11.91%

Precision@5 0.791 0.811 0.857 0.931 8.63%

Precision@10 0.777 0.867 0.901 0.925 2.66%

Precision@20 0.755 0.888 0.917 0.919 0.22%

NDCG@1 0.741 0.736 0.759 0.852 12.25%

NDCG@5 0.822 0.748 0.821 0.898 9.25%

NDCG@10 0.871 0.822 0.828 0.896 2.87%

MovieLens-1M

NDCG@20 0.908 0.851 0.931 0.942 1.18%

Precision@1 0.659 0.625 0.611 0.943 43.10%

Precision@5 0.649 0.616 0.593 0.875 34.82%

Precision@10 0.626 0.602 0.568 0.852 36.10%

Precision@20 0.599 0.572 0.545 0.831 38.73%

NDCG@1 0.608 0.582 0.628 0.817 30.10%

NDCG@5 0.588 0.567 0.612 0.889 45.26%

NDCG@10 0.553 0.548 0.594 0.868 46.13%

Douban Book

NDCG@20 0.549 0.528 0.572 0.833 45.63%

MovieLens-1M and Douban Book, respectively. This indi-
cates that HINpolicy indeed improves the Top-𝐾 recommen-

dation thanks to the modeling of rich context information.

• Across the datasets, all baseline models achieve downgraded

performance on MovieLens-100K compared with those on

MovieLens-1M. We consider this is because the size of the

former ismuch smaller than the latter, while the small dataset

size easily renders sub-optimal learning of the recommenda-

tion policy. However, our HINpolicy can still achieve satis-

factory results and adapts well with limited samples, since

the HIN provides the auxiliary information to augment the

off-policy learning. Meanwhile, the degrade can be also

found for the performance of baselines on Douban Book
and MovieLens-1M. This is because Douban-book is much

sparser than MovieLens-1M, with 0.27% and 4.19% density,

respectively. Likewise to MovieLens-1M, HINpolicy outper-

forms all baselines on Douban Book. This indicates that HIN-
policy handles the sparsity well with the support of rich side

knowledge.

• Across the baseline models, policy-based POEM outperforms

value-based Bandit-MLE in most cases, since it learns policy

directly through calculating the end-to-end cumulative re-

wards without incorporating another decision-making stage

like value-based approaches. Moreover, considering the IPS

estimator used in POEM, although BanditNet contains an

advanced SNIPS estimator, it still cannot outperform POEM.

We infer that regulating the inverse weights with SNIPS is

not well suited in the recommendation task. This is mainly

because SNIPS introduces multiplicative control variate to

the IPS estimator that heavily penalises the target policy,

limiting its exploration ability of policy learning in the rec-

ommendation. On the contrary, we consider leveraging the

IPS-based clipped estimator with penalty term, which can

reduce bias and variance effectively.

5.3 Study of HIN (RQ2)
To thoroughly investigate HINpolicy’s contributions on alleviat-

ing the sparsity issue in HIN information, we conduct how the

HIN assist in achieving better recommendation in presence of vari-

ous sparsity of logged data. To characterize the sparsity levels, we

divide users into four groups based on their total amounts of in-

teractions with items. For example, in MovieLens-1M, user group 1

represents users who have less than 600 ratings for movies; likewise

user group 2, 3 and 4 have less than 1200, 1800 and 2400 ratings,

respectively. Hence, user group 1 represents the sparsest data level,

while user group 4 represents the densest data level. Table 3 shows

the overall performance of our HINpolicy with or without HIN,

based on 5 runs of repeated training on MovieLens-1M and Douban
Book. With the trained HINpolicy-w/ HIN and HINpolicy-w/o HIN

model, we give the test results of the two models on the four user

groups and show the comparisons in Figure 4. We have the follow-

ing observations: 1) Apparently, HINpolicy augmented with HIN

outperforms the counterpart without HIN, evidences can be found

in both Table 3 and Figure 4. Moreover, facing different user groups

as denoted in Figure 4, the test recommendation performance of

HINpolicy-w/ HIN consistently outperforms HINpolicy-w/o HIN.

These promising discoveries confirm HIN has significant effects on

policy learning, which can benefit to achieve satisfying recommen-

dations; 2) HIN information has a critical effect on sparse dataset

Douban Book, especially on the sparsest user group (i.e., ratings

<500), with the precision of 0.642% and 0.501% and the NDCG of

0.667% and 0.521% for HINpolicy-w/ HIN and HINpolicy-w/o HIN,

respectively. Compared to MovieLens-1M having a higher density,

our improvement is not as significant as in the Douban Book having
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a lower density. Hence, we conclude that HINpolicy has a more 
significant effect on the sparse dataset.

Table 3: Our performance with (w/) or without (w/o) HIN.

Dataset Metrics HINpolicy-w/ HIN HINpolicy-w/o HIN

MovieLens-1M Precision@20 0.918 0.730

NDCG@20 0.942 0.752

Douban Book Precision@20 0.835 0.708

NDCG@20 0.831 0.720

In a nutshell, incorporating HIN can significantly improve rec-

ommendation performance in off-policy setting, while advantages

of HIN are more apparent when the dataset is extremely sparse.

(a) The impact of HIN for Preci-
sion on MovieLens-1M.

(b) The impact of HIN for NDCG
on MovieLens-1M.

(c) The impact of HIN for Preci-
sion on Douban Book.

(d) The impact of HIN for NDCG
on Douban Book.

Figure 4: Effectiveness analysis on HIN: different user
groups control the interaction numbers.

5.4 Case Study (RQ3)
A case study on HINpolicy is also conducted to investigate the

impact of parameters on the model performance. Specifically, our

method has two key parameters, i.e., embedding size 𝑑 that con-

trols the latent factor numbers of user state, action and context

representations; candidate length 𝑛 that controls the length of can-

didate generation set that waits to be re-ranked by the ranking. For

all parameters listed above, we vary the value of one parameter

while keeping the others unchanged. Figure 5 shows the parameter

sensitivities of 𝑑 and 𝑛 for Precision@20 and NDCG@20 on both

MovieLens-1M and Douban Book datasets. From both sub-figures,

it is easy to see that relative trends of model performance variations

are consistent across different datasets.

• For the embedding dimension 𝑑 , in Figure 5 (a) (b), the rec-

ommendation results on MovieLens-1M and Douban Book
achieve the peak when 𝑑 = 128, then tend to be stable af-

terwards. We consider the witness of the increasing trend

from 𝑑 = 32 to 𝑑 = 128 is reasonable: as 𝑑 controls the latent

(a) The impact of embedding size
𝑑 on MovieLens-1M.

(b) The impact of embedding size
𝑑 on Douban Book.

(c) The impact of candidate size
𝑛 on MovieLens-1M.

(d) The impact of candidate size
𝑛 on Douban Book.

Figure 5: Parameter sensitiveness: embedding size𝑑 controls
the latent factor numbers of user, action and context embed-
dings; Candidate length 𝑛 controls the length of candidate
generation set.

vectors of state/action/context embeddings, exiguous (say

𝑑 < 128) latent factors can not retain sufficient information,

thus can not serve well the later policy learning. The stable

performance of our HINpolicy after 𝑑 is set to 128 demon-

strates that our model is robust towards varying embedding

dimensions.

• For candidate generation length 𝑛, in Figure 5 (c) (d), we

find that the model performance on both datasets decrease

when 𝑛 increases from 10 to 40, while the impact of 𝑛 is more

severe on NDCG@20 comparedwith it on Precision@20. The

candidate generation length 𝑛 in the two-stage setting we

adopt can be interpreted as the number of candidate actions

that wait to be re-ranked by the ranking model. Thus, when

𝑛 increases, it is harder for the ranking model to give correct

results, resulting in the shown decrease trends. We consider

this as the “curse” of the two-stage setup with candidate

generation followed by ranking, however, we value the two-

stage setup for its ability to recommend relevant items from a

huge space in real-time, which is suitable for trainingmassive

logged user feedback data.We leave the exploration of amore

robust ranking model for our future work.

6 CONCLUSION AND FUTUREWORK
In this paper, we have researched the bias in logged user feed-

back data, and proposed the first principled approach HINpolicy to

achieve unbiased off-policy learning for the recommendation. Our

proposed HINpolicy is capable of generating high-quality recom-

mendation policy in virtue of the informative knowledge over the

given HIN. In addition, counterfactual risk minimization adaptively
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corrects the rewards and produces the unbiased recommendation

policy that maximizes users’ long-term satisfaction. We evaluate

our HINpolicy on three real-world recommendation datasets, with

extensive experiments and in-depth analyses demonstrating its’

robustness and effectiveness. In future work, we are interested in

designing a robust ranking model which can adapt with dynamic

searching space for a two-stage policy gradient.
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Off-policy Learning over Heterogeneous Information for Recommendation

A METHODOLOGY SUPPLEMENTARY
A.1 Notions and Definitions
The important notions we use throughout the methodology is given

in Table 4.

Table 4: Key notations and descriptions.

Notation Description

𝜋\ target recommendation policy

𝜋0 users’ behaviour policy (logging policy)

\ model parameter

𝑇 the total cumulative time step

p a meta-path scheme

𝜌 a meta-path node sequence under meta-path scheme p
𝑜𝑡 user’s interacted items list

𝑠𝑡 user state representation

a𝑡 one-hot encoding of action 𝑎𝑡
e𝑡 dense representation of action 𝑎𝑡
cp meta-path embedding of p
c𝑢→𝑎 interaction-specific context representation

𝑠𝑡 context-aware user state representation

ẽ𝑡 context-aware action state representation

𝑠𝑢→𝑎
𝑡 HIN-enhanced state representation

Heterogeneous Information Network and Meta-path can be de-

fined using the following paradigms:

Definition 1 (Heterogeneous Information Network). A
Heterogeneous information network is defined as a directed graph
G = (V, E) with a node type mapping function: 𝜙 : V → K and an
edge type mapping function: 𝜓 : E → J , where K and J are the
node type set and edge type set of G, respectively. Each node 𝑣 ∈ V
and edge 𝑒 ∈ E in a HIN belong to one particular type 𝜙 (𝑣) ∈ K and
𝜓 (𝑒) ∈ J , where |K | + |J | > 2.

Definition 2 (Meta-path). Meta-path p is a path defined on the
network schema 𝑇G = (K,J), and is denoted in the form of

p ≜ (K1

J1→K2

J2→ ...
J𝑙→K𝑙+1)

which defines a composite J = J1 ◦ J2 ◦ ... ◦ J𝑙 between type K1

and K𝑙+1, where ◦ denotes the composition operator on relations.
For simplicity, we use node type names to denote the corresponding
meta-path if no multiple relations exist between type pairs, as p =

(K1K2 ...K𝑙+1).

A.2 Path Sampling
The basic idea of Meta-path Based Random Walks [16] is to put

random walkers in a HIN to generate paths that constitute multi-

ple types of nodes. Specifically, given G = (V, E,K,J , 𝜙,𝜓 ), the
node sequence np = {𝑣1, · · · , 𝑣𝑖+1} under a specific meta-path p is

generated according to the following distribution:

𝑃 (𝑣𝑖+1 | 𝑣𝑖 , p)

=


1����N(K𝑙+1)

𝑣𝑖

���� , (𝑣𝑖 , 𝑣𝑖+1) ∈ E and 𝜙 (𝑣𝑖+1) = K𝑙+1

0, otherwise

(16)

where N (K𝑙+1)
𝑣𝑖 is the first-order neighbor set for node 𝑣𝑖 whose

type is K𝑙+1; 𝑣𝑖+1 is the 𝑖 + 1-th node whose type is K𝑙+1, and 𝑣𝑖 is
the 𝑖-th node in the walk which belongs to type K𝑙 . By regulating

𝑣𝑖 ∈ K𝑙 while 𝑣𝑖+1 ∈ K𝑙+1, the node types sampled by random

walkers is conditioned on the pre-defined meta-path p.

B EXPERIMENTAL SUPPLEMENTARY
B.1 Online Simulator
From the perspective of reinforcement learning, recommendation

datasets can be viewed as𝑚 records of logged feedback as: D ={(
𝑠𝑖 , 𝑎𝑖 , 𝑟 𝑖

)}𝑚
𝑖=1

, where 𝑠𝑖 ∈ R𝑑 is the feature vector of a user state

at data point 𝑖 , 𝑟 𝑖 ∈ [0, 1] indicating the user’s feedback when

action 𝑎𝑖 is recommended to the user (e.g., click). Note that the user

preference over the whole item corpus is partially observed, i.e., not

all user-item pairs are labeledwith at least one known user feedback,

which is the common nature of recommendation system datasets.

As we are interested in the recommendation system, we further

adopt the online simulation setting following the common practice

in off-policy learning [9, 63, 64]. We build the online simulator ℎ0
to recover the missing reward 𝑟 𝑖 conditioned on state 𝑠𝑖 an item

𝑎𝑖 . The simulator ℎ0 has a similar model architecture with our

HINpolicy, while the output layer is modified as a softmax layer

to predict the immediate feedback according to the current state

𝑠𝑖 and item 𝑎𝑖 . Our well-trained 3
online simulator can allow us

to use recommendation system datasets without loss of generality.

The off-policy logged data is then acquired by running a logging

policy 𝜋0 that samples 𝑟𝑖 ∼ 𝜋0
(
𝑠𝑖 , 𝑎𝑖

)
fromD, denoted asD

bandit
={(

s
𝑖 , 𝑎𝑖 , 𝑝𝑖 , 𝑟 𝑖

)}𝑘
𝑖=1

, where 𝑘 is the total number of samples, 𝑝 𝑗 is

the probability with which that action was taken by the logging

policy 𝜋0 (a.k.a propensity), and 𝑟 𝑗 is the reward. In our model

training, we adopt the widely used sampling strategies to define the

logging policy 𝜋0 for generating our logged user feedback samples,

i.e., uniform sampling for uniform-based logging policy details of

the logging policy can be found in Appendix B.2.

B.2 Logging Policy
we adopt the widely used logging policy in our experiment, namely,

Uniform-based logging policy. The uniform-based logging pol-

icy samples each action at every interaction uniformly at ran-

dom. It assumes every action’s probability of being exposed is

𝜋
uniform

(𝑎 | 𝑠) = 1

𝑘
. This strategy is quite straightforward and

free from biases (e.g., popularity bias) [36]. In our experiment, we

consider the uniform-based logging policy as an idealised (i.e., un-

biased) setting.

B.3 Meta-path in Datasets
The meta-paths we use for our experiments are denoted in the last

column of Table 5.

B.4 Parameter Settings
We implement baseline models and our proposed HINpolicy on

a Linux server with NVIDIA RTX 3090Ti GPU. For a fair com-

parison, all logged user feedback samples used for training mod-

els are generated through our online simulator together with a

logging policy as described in Section 5.1. The logged ratings in

Movielens and Douban Book for training the simulator are split as

train/test/validate set with a proportion of 60%/20%/20% of original

3
With test results of overall 90% precision for the immediate feedback prediction task.
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Table 5: Meta-path statistics of the datasets.

Dataset Node Meta-path Schemes

MovieLens-100K

#User(U): 943

#Movie(M): 1,682

#Genre(R): 18

#Gender(G): 2

#Age(A): 7

#Occupation(O): 21

UMGM,UMAM,

UMRM,UMOM, UMUM

MovieLens-1M

#User(U): 6,040

#Movie(M): 3,952

#Genre(R): 18

#Gender(G): 2

#Age(A): 7

#Occupation(O): 21

UMGM,UMAM,

UMRM,UMOM, UMUM

Douban Book

#User(U): 13,024

#Book(B): 22,347

#Group(G): 2,936

#Author(A): 10,805

#Publisher(P): 1,815

#Year(Y): 64

#Location(L): 38

UBGB,UBAB,UBPB,

UBYB,UBLB,UBUB

datasets. Without special mention, the final logged user feedback

samples are given by applying uniform logging policy on the full-

information data generated through the trained simulator. As for

the policy training, we optimize the two-stage policy gradient with

AdaGrad [17], the same gradient descent method is also applied in

all the baseline models. A grid search is conducted to choose the

optimal parameter combinations in all models considered, with

batch size and learning rate searched in {32, 64, 128, 512, 1024}
and {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}, respectively. Themaximum

epoch 𝑁𝑒𝑝𝑜𝑐ℎ for all methods is set as 2000, while an early stop-

ping strategy is performed (i.e., if the loss stops to increase, then

terminate the model training). Unique settings of our HINpolicy

are the dimension of HIN embedding vector 𝑑 , which is searched in

{8, 16, 32, 64, 128, 256}; the number of random walkers for sampling

meta-path node sequences are set to default as 𝑛𝑤𝑎𝑙𝑘 = 1000 with

walk length 𝑙𝑤𝑎𝑙𝑘 = 100; the weight capping constant with 𝑐 = 10.

For evaluation, we adopt the two-stage policy gradient method as

in [39], different from conventional Learn-to-Rank problems which

directly give ranked lists based on sorting the predicted values

(e.g., probability) of user-item pairs, we measure the quality of the

recommendations given by the ranking model conditioned on the

candidate set provided by the candidate generation model. That is,

we firstly select top-𝑛 items predicted by the candidate generation

model as a candidate set, then feed this candidate set to the ranking

model to re-rank these candidates. The candidate set length is set

as 𝑛 = 20 for all datasets, while we test the final performance on

the trained ranking model with ranking length 𝐾 = [1, 5, 10, 20].


