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Abstract. Although traditional recommendation methods trained on
observational interaction information have engendered a significant im-
pact in real-world applications, it is challenging to disentangle users’
true interests from interaction data. Recent disentangled learning meth-
ods emphasize on untangling users’ true interests from historical inter-
action records, which however overlook auxiliary information to correct
bias. In this paper, we design a novel method called SeDLR (Semantics
Disentangled Learning Recommendation) to bridge this gap. Partic-
ularly, by leveraging rich heterogeneous information networks (HIN),
SeDLR is capable of untangling high-order user-item relationships into
multiple independent components according to their semantic user in-
tents. In addition, SeDLR offers reliable explanations for the disentangled
graph embeddings by the designed Monte Carlo edge-drop component.
Finally, we conduct extensive experiments on two benchmark datasets
and achieve state-of-the-art performance compared against recent strong
baselines.

Keywords: Semantic-aware Representation · Disentangled Learning ·
Monte Carlo Edge-drop · Explainable Recommendation.

1 Introduction

Recommendation systems (RS) have become popular personalization tools to
assist users in sorting through the ever-growing corpus of content and discover-
ing contents in which they would be interested [11, 3, 22, 13]. Early work mainly
used collaborative filtering methods to simply learn user/item ID representation
based on historical interactions [23, 20, 1]. More effective methods exploit interac-
tion as graph-structured data and aggregate feature information from high-order
neighborhoods using neural networks [7, 20, 14]. Despite effectiveness, modeling
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user-item relationships via embedding functions fails to differentiate user intents
on different items, which could easily lead to suboptimal representations [21, 9,
5]. The disentangled learning emerges as the state-of-the-art and aims to ex-
plore the diverse user-item relationships and learn disentangled representation
for users’ true interests[12, 21, 11, 4, 25].

The principal motivation of disentangled learning is to separate users’ intents
behind each interaction in order to achieve a robust recommendation. Although
disentangled learning has made promising improvements for distilling users’ in-
tents, a deficiency is that they emphasize historical interaction records and over-
look auxiliary information to correct bias in the recommendation. As shown in
Figure 1, there are four interactions between u1 and movies (i.e., i1, i2, i3 and
i4). With context information of user and item, we may infer that u1 prefers
to watch a movie with type and director. More importantly, the interaction be-
tween u1 and i4 might be due to the conformity bias that u1 tends to watch a
movie i4 that is strongly recommended by a friend u2, even if this goes against
u1’s own preference. Merely using interactions without contextual information
fails to capture users’ pure interests that are independent of conformity. There-
fore, exploiting the contextual information of users (e.g., social relationship) and
movie (i.e., director and type) is crucial for distinguishing the conformity bias
from users’ true interests.

Towards this end, we empower disentangled learning with contextual infor-
mation, with the aim of discovering users’ true interests from the biased in-
teractions and offering explainable recommendations. Overall, the three main
contributions of this work are summarized as followings:

Fig. 1. An illustration of interactions between users and items with contexts.

– To the best of our knowledge, we are the first to incorporate heterogeneous
information networks (HIN) into disentangled learning. Our SeDLR model
can exploit high-order user-item relationships at the finer granularity and
learn disentangled representations towards different semantic-aware aspects.

– We design a Monte Carlo edge-drop strategy, which modifies the HIN struc-
ture and drops users’ intents-irrelevant semantic information, with the aim
of facilitating the explainability of our SeDLR model.

– We conduct extensive experiments on two benchmark datasets to show the
superiority and explainability of our SeDLR model.
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2 Preliminary and Related Work

In this section, we will introduce recent works that are highly related to ours
includes HIN-based learning, graph-based entangled learning and disentangled
learning for the recommendation.

Heterogeneous information networks (HIN) include multiple node types and
connection relationships, which can flexibly use rich objects and information
to model heterogeneous data effectively [18]. HIN enhanced methods leverage
meta-path based social relationships derived from rich HIN information, which
greatly improve the Top-K recommendation performance. Many HIN-based rec-
ommendations have proven the effectiveness of using HIN. For example, IF-BPR
[24] propose meta-path based social relations derived from a HIN, then capture
the similarity between users for the recommendation. While MCRec [8] uses rich
meta-path context representation and attention mechanism.

Graph-based entangled methods learn user/item embeddings by linearly prop-
agating with neighborhood aggregation in the Graph Convolution Network (GCN)
componentsuch as NeuMF [7] and NGCF [20]. NeuMF [7] combines traditional
matrix factorization and neural network, which can extract low and high di-
mensional features at the same time, then concatenate multiple neural network
layers with matrix factorization layer to gain the final likelihood score [10]. While
NGCF [20] refine the embedding vector from high-order connection information,
and integrates by three Graph Neural Network (GNN) layers, then trains by
optimizing losses to gain the affinity score of the pair of user and item.

Disentanglement recommendation methods learn users’ intents by disentan-
gling users’ latent factors, which is more effective to recommend items by know-
ing the intent rather than the historical records [21]. For instance, DGCF [21] is
a state-of-the-art disentanglement recommendation method, which disentangles
latent factors of user intents by the neighbor routing and embedding propa-
gation, then applies an independent module to separate intents. M-VAE [16]
achieves the macroscopic entanglement by inferring the high-level concepts as-
sociated with user intentions, and simultaneously captures user preferences for
different items. However, neither M-VAE nor DGCF is able to associate learned
intent with real-world users’ aspects which can be seen as pre-defined intent.

3 Methodology

The architecture of the proposed SeDLR’s framework is shown in Figure 2. Our
method takes the holistic user-item interaction graph with a HIN as the input,
and passes through a graph disentangling network (top-left) to divide the holistic
interaction graph into q intent-aware sub-graphs for learning the separated user
intent representations, while the HIN embedding network (bottom-left) lever-
ages meta-path schemes retained in the HIN to construct expressive represen-
tations of context (i.e., aspects). The learned context representations are then
incorporated into user intent representations to derive the semantic-aware in-
tent representation for the later recommendation task. Finally, to better explain
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the disentangled learning based recommendation, we use Monte Carlo edge-drop
strategy to select the important aspects as explanations (right).

Fig. 2. The overview of the proposed SeDLR framework.

3.1 Graph Disentangling for Users Intents

Our first target is to disentangle q intents of the user as initialization, hence we
divide user/item embedding into q chunks and associate each with a potential
intent as follows:

u = (u1,u2, . . . ,uq) , i = (i1, i2, . . . , iq) (1)

where uq and iq illustrate chunked representation for q-th intent on interaction
of user/item. Additionally, we employ random initialization for each chunk rep-
resentation to ensure the difference before the training stage. We then adopt a
score vector to explore the relationships between intent and interaction as:

S(u, i) = (S1(u, i), S2(u, i), · · · , Sq(u, i)) (2)

where Sq(u, i) represents the score vector over q-th intent on interaction, which
is the possibility of adopting interaction is due to q-th intent. Accordingly, a
set of score vectors can be initialized as the same values to indicate the same
contribution on interaction before training. Hence, this score vector can be seen
as an adjacency matrix for an intent-aware graph.

Next, we design a graph disentangling layer to explore valuable information
via the high-order connectivity, we employ a graph disentangling layer that con-
sists of embedding propagation mechanisms and neighbor routing as follows:
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euq
(1) = g (uq, {iq | i ∈ Nu}) (3)

where euq (1) collects information from neighbors of u, and index 1 represents the
first-order neighbor. Nu is the historical interacted items, more formally, it is
the first-hop neighbor. We then perform an iterative update rule which is to
update the intent-aware embedding by embedding propagation in the intent-
aware graph, then use it to refine the graph. Consequently, score vector Sq for
each interaction after n iteration can be generated. To get its distribution across
all intents, we normalized by softmax as:

S̃nq (u, i) =
expSnq (u, i)∑q
q′=1 expS

n
q′(u, i)

(4)

to illustrate the importance of each intent. Accordingly, we can obtain normalized
adjacency matrix S̃nq for each intent. The Laplacian matrix of S̃nq is adopted as:

Mn
q (u, i) =

S̃nq (u, i)√
Dn
q (u) ·Dn

q (i)
(5)

where Dn
q (u) =

∑
i′∈Nu

S̃nq (u, i′) and Dn
q (i) =

∑
u′∈Ni

S̃nq (u′, i) are the degrees
of u and i, respectively. Besides, the embedding propagation for each graph can
encode the information influenced to the interaction and the sum aggregator is
defined as:

unq =
∑
i∈Nu

Mn
q (u, i) · i

0
q (6)

where unq illustrates the sum of historical items and importance weighting in
q-th aspect at n-th iteration, and i0q is the input representation for the historical
item. It can temporarily memorize the information collected from neighbors Nu.

Thereafter, we iteratively the update intent-aware graph. Intuitively, inter-
acted items driven by the same intent tend to have similar chunked representa-
tions, encouraging stronger relationships between them can achieve this purpose.
Thus, we iteratively update the interaction score vector Snq (u, i) to adjust the
degree of u and neighbor i as follows:

Sn+1
q (u, i) = Snq (u, i) + un>q tanh

(
i0q
)

(7)

where un>q tanh
(
i0q
)
represents the affinity between unq and i0q in Eq.(6), while

tanh is a nonlinear activation function can improve the representation ability.
Finally, output a graph disentangling layer after n iterations, that contains dis-
entangled representation euq (1) = unq and intent-aware graph S̃nq .

We then combine multiple layers to gather rich semantics from high-order
connectivity. While the first-order neighbors have been used above, hence we
can stack r layers to obtain influence signals from r-th high-order connectivity
as:

euq
(r) = g

(
euq

(r−1),
{
eiq

(r−1) | i ∈ Nu
})

(8)
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where euq (r−1) and eiq(r−1) serve as the representations of u and i on q-th intent
which save the propagated information from (r-1)-hop neighbors. Every disen-
tangled representation is associated with explanatory graph serve as weighted
adjacency matrix S̃rq . We can sum up the intent-aware representations after r
layers as euq =

(
euq

(0), euq
(1), · · · , euq (r)

)
and eiq =

(
eiq

(0), eiq
(1), · · · , eiq(r)

)
for u

and i, respectively. Furthermore, we summarized user/item representations as
eu =

(
eu1 , · · · , euq

)
, ei =

(
ei1, · · · , eiq

)
, respectively.

3.2 Semantic-aware Intent Representation Learning

In this section, we aim to extract aspect embeddings from meta-paths of the rich
HIN context. The HIN, which records different types of relationships between
users and items, carries diverse semantics and is beneficial to intent represen-
tation learning. Specifically, such semantics can be reflected in the meta-path
schemes of the given HIN, which is some paths defined composites of different
node types with diverse edge types. By characterizing meta-path schemes, the
complex relations of the involved nodes can be captured, reflecting higher-level
semantics to augment user intent learning. Taking the UMU as an example, the
path sequence Uu1

−Mm1
−Uu2

defined under such a meta-path can reflect the
behavior similarity of u1 and u2, while the social influence of u2 to u1 is the
important aspect that may affect the intent of u1. This motivates us to leverage
the aspect embeddings modeled from meta-paths as the context to refine the
user intent representations.

Formally, given the pre-defined meta-path p, we should firstly generate a
series of high-quality path instances ρ = {u1, u2, · · · , ul}. Here we resort to Meta-
path Based Random Walks [2], which is a wildly used path sampling strategy that
generates path instances that constitute multiple types of nodes, under a specific
meta-path p to further capture both the semantics and structural correlations
between various types of nodes. Then we learn the embeddings of the acquired
path instances ρ by a Convolution Neural Network (CNN) [15, 6] parameterized
by Θ, then adopt the max-pooling operation to derive the final embedding for a
meta-path p by aggregating the embeddings of L selected path instances:

cp = max-pooling
(
{CNN ({Xρ

i };Θ)}Li=1

)
(9)

where {Xρ
i } means the set of embeddings for L path instances of meta-path p.

Each Xρ
i illustrates the embedding matrix.

The meta-paths carry important semantic meanings, which can guide the in-
tent learning of users. We propose to extract the semantic embedding from meta
path embedding cp, serving as the context information that waits to be incor-
porated into the latter semantic-aware intent learning. Specifically, the semantic
representation of user u can be derived by the embedding lookup operation as:

vp = c>p · u (10)
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where u ∈ R1×|U| is the one-hot encoding of user u. The learned vp is then serves
as the aspect embeddings for all user u ∈ U under meta-path p. Therefore, we
can extract and generate all the aspect embeddings under different meta-paths.

We then perform the semantic-aware intent learning from intent representa-
tion eu and ei for users and items in Eq. (3), and aim to incorporate semantics as
retained in vp for users and items to learn the semantic-aware intent representa-
tions for the latter recommendation. Towards this end, we design a Factorization
Machine (FM) operator to instantiate semantics-aware intent representation hp,
which denotes the user intent towards different aspects under meta-path p. For-
mally, we now have obtained vp ∈ R1×d as the semantics-aware representation
and the intent-aware representations eu = (eu1 , · · · , euq ) ∈ R1×d for user u. Then
hp can be calculated by a FM module:

hp = eu � vp (11)

where � denotes the element-wise product.
Lastly, we perform optimization for model parameters. In detail, the semantics-

aware intent representation hp can be incorporated into recommendation models
as one additional user representation. Formally, we use the collaborative filtering
to calculate the prediction score ŷui given user and item ID representations as
follows:

ŷui = αu>i+ (1− α)h>p i (12)

where u and i are the ID embeddings given by id mapping techniques in Eq.(1),
such as Multi-OneHot [17] and α is the coefficient that describes how much each
component contributes to the prediction score. After obtaining the final repre-
sentation for user/item, we optimize the parameters for hp in Eq.(11) by using
Bayesian Personalized Ranking (BPR) loss, which encourages the prediction of
an observed to be higher than its unobserved counterparts user:

LBPR =
∑

u,i,j∈D
− lnσ

(
ŷui − ŷuj

)
+ λ‖E‖22 (13)

where D = {(u, i) : u ∈ U, i ∈ I, j ∈ I} is the training set and E is the embedding
matrix of all users and items.

3.3 Monte Carlo Edge-drop for Explainability

To further explain the recommendation we propose a novel strategy namely
Monte Carlo edge-drop, which aims to provide explainable semantics for the rec-
ommendation. By optimizing Eq. (13), we finally produce our prediction model
denoted as f(·). We further conduct an inference with a HIN with an edge b
removed from meta-path p, i.e., removing the influence of attribute b, which
generates the prediction as ŷsui. Thereafter, we define a criterion, which denotes
the absolute error variation between ŷsui and the original prediction ŷui, to de-
termine the importance of attribute b. If the variation is greater than a threshold
δ, we then claim this aspect is influential since it has a significant impact on the
prediction.
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4 Experiments

In order to thoroughly evaluate and analyze the proposed methodology, we con-
ducted extensive experiments to answer the following research questions:

– (RQ1) How does our method compare with other state-of-the-art models?
– (RQ2) How does the threshold δ in Monte Carlo edge-drop strategy improve

Top-K recommendation?
– (RQ3) How does our method explain users’ aspects and provide semantic

information for the recommendation?

4.1 Settings

We conduct extensive experiments on two publicly available datasets: Walmart
Recruit5, and Douban Book6. Walmart Recruit contains historical retail data
from 2011 to 2013 as HIN context includes price, discount, user, gender, category
type and city and has been widely used for recommendation related research [19].
The ratings of Walmart Recruit are the user’s rating number of transactions.
Douban Book includes rich HIN information such as 3 attributes for the user
and 4 attributes for the book. The ratings of Douban Book are the user’s rating
number of books. For both two datasets, we binarize the feedback data (i.e.,
ratings) by interpreting ratings of 5 or higher as positive feedback (i.e., r = 1)
or lower as negative feedback (i.e., r = 0). Moreover, we use negative sampling
to randomly sample unobserved items and pair them with the user as negative
instances. The statistics detail are summarized in Table 1.

All experiments are conducted on a Linux server with RTX3070 GPU. We
adopt three popular metrics including Recall@K, NDCG@K, and Precision@K,
where K is set as 1, 10, 20 and 40 in Table 2. Both two datasets are split
as a proportion of 80%/10%/10%, train/test/validate set, respectively. A grid
search is used to find the best parameter settings. The embedding size is ini-
tialized with Xavier and searched in {16,32,64,128}, and learning rate is in
{0.001,0.01,0.05,0.1}. The maximum epoch is set as 1000 with an early stopping
strategy. Default hyperparameters of SeDLR are: embedding size 128, disentan-
gled layer iteration number n=3, latent intent number q=4, learning rate 0.01.
We compare our proposed SeDLR with three kinds of state-of-the-art recom-
mendation methods: (1) HIN-based methods including IF-BPR [24] and MCRec
[8]; (2) Graph-based entangled methods including NeuMF [7] and NGCF [20];
(3) Disentangled-based methods including DGCF [21] and M-VAE [16]7.

4.2 RQ1 Performance Comparison

To understand the performance of SeDLR, we adopt deep comparison with mul-
tiple state-of-the-art models on Top-K recommendations. The overall statistical
5 https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting
6 https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-
Embedding/tree/master/Douban%20Book

7 Refer to related work for more details of baselines.
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Table 1. Statistic details: density is #Connections/(#Users · #Items), relation is
connection number and Avg.Degree of A is #Relation/#A.

Dataset
(Density) Node Relation

A-B
Avg.Degree of

A/B

Walmart Recruit

(0.11%)

#User(U): 5,647 #U-G: 5,645 #U/G: 1/2822.5
#Gender(G): 2 #U-C: 5,645 #U/C: 1/564.5
#City(C): 10 #U-T: 23,053 U/T: 4.1/1.1

Transaction(T): 20,878 #U-U: 0 U/U: 0/0
#Category Type(CT): 5 #T-A: 23,053 #T/A: 1.1/4.0

#Amount(A): 5,764 #T-CT: 23,053 #T/CT: 1.1/4610.6

Douban Book
(0.27%)

#User(U): 13,024 #U-Bo: 792,062 #U/Bo: 60.8/35.4
#Book(Bo): 22,347 #U-U: 169,150 #U/U: 13.0/13.0
#Group(Gr): 2,936 #U-Gr: 1,189,271 #U/Gr: 91.3/405.1

#Author(Au): 10,805 #Bo-Au: 21,907 #Bo/Au: 1.0/2.0
#Publisher(P): 1,815 #Bo-P: 21,773 #Bo/P: 1.0/12.0

#Year(Y): 64 #Bo-Y: 21,192 #Bo/Y: 1.0/331.1

outcomes can be found in Table 2. On both two datasets, our SeDLR consis-
tently outperforms all other approaches. Especially, SeDLR improves over the
strongest baselines at NDCG@20 by 27.7% and 15.2% on Walmart Recruit, and
Douban Book, respectively. Specifically, most improvements are more than 10%,
which validates the Monte Carlo edge-drop has critical effects on improving rec-
ommendation performance. Additionally, disentangled methods achieved better
results than the other two methods in most cases, which justifies the disentan-
gled representation has a better performance by separating intents, therefore our
SeDLR adopts it in our method.

Table 2. Overall Performance Comparison: the best results are marked as bold,
strongest baselines are marked with underline.

Datasets Metrics NeuMF NGCF DGCF M-VAE IF-BPR MCRec SeDLR Improv.

Walmart Recruit

Recall@1 0.0376 0.0299 0.0421 0.0391 0.0385 0.0381 0.0476 13.1%
Recall@10 0.0401 0.0387 0.0447 0.0472 0.0419 0.0437 0.0512 8.5%
Recall@20 0.0451 0.0430 0.0516 0.0509 0.0479 0.0448 0.0552 7.0%
Recall@40 0.0612 0.0582 0.0572 0.0519 0.0556 0.0622 0.0672 8.0%
Precision@1 0.0301 0.0315 0.0357 0.0322 0.0316 0.0351 0.0417 16.8%
Precision@10 0.0457 0.0385 0.0477 0.0369 0.0399 0.0426 0.0516 8.2%
Precision@20 0.0528 0.0497 0.0519 0.0489 0.0462 0.0512 0.0556 5.3%
Precision@40 0.0609 0.0599 0.0712 0.0603 0.0591 0.0621 0.0776 9.0%
NDCG@1 0.0201 0.0315 0.0362 0.0288 0.0291 0.0343 0.0415 14.6%
NDCG@10 0.0341 0.0392 0.0448 0.0429 0.0409 0.0422 0.0512 14.3%
NDCG@20 0.0396 0.0499 0.0513 0.0489 0.0502 0.0511 0.0591 15.2%
NDCG@40 0.0670 0.0689 0.0711 0.0676 0.0709 0.0712 0.0823 15.6%

Douban Book

Recall@1 0.0267 0.0205 0.0333 0.0301 0.0329 0.0324 0.0387 16.2%
Recall@10 0.0311 0.0377 0.0411 0.0339 0.0362 0.0401 0.0458 11.4%
Recall@20 0.0339 0.0252 0.0431 0.0309 0.0396 0.0478 0.0515 7.7%
Recall@40 0.0641 0.0707 0.0749 0.0691 0.0628 0.0481 0.0801 6.9%
Precision@1 0.0302 0.0344 0.0351 0.0325 0.0281 0.0294 0.0401 14.2%
Precision@10 0.0391 0.0402 0.0415 0.0378 0.0356 0.0352 0.0476 14.7%
Precision@20 0.0420 0.0495 0.0538 0.0322 0.0376 0.0309 0.0541 0.6%
Precision@40 0.0599 0.0618 0.0725 0.0425 0.0564 0.0468 0.0745 2.8%
NDCG@1 0.0301 0.0295 0.0327 0.0341 0.0205 0.0202 0.0395 15.8%
NDCG@10 0.0356 0.0441 0.0457 0.0401 0.0398 0.0268 0.0552 20.8%
NDCG@20 0.0391 0.0301 0.0502 0.0425 0.0463 0.0294 0.0641 27.7%
NDCG@40 0.0682 0.0691 0.0663 0.0645 0.0601 0.0507 0.0813 19.2%
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4.3 RQ2 Aspect Threshold Influence

We conduct extensive experiments to explore the influence of aspect thresh-
old δ in Monte Carlo edge-drop strategy for three popular metrics Recall@K,
NDCG@K, and Precision@K on the recommendation. The empirical results can
be found in Figure 3. Through the comparison, we observed the highest accu-
racy existing in the δ value 0.6 for all three metrics on both two datasets with
K@20 and K@40. Then the accuracy drops dramatically later, which is reason-
able since the Monte Carlo edge-drop start to filter aspects from 0 and leads to
improvement. But the accuracy has decreased when dropped too many aspects,
which is a lack of inputs. Accordingly, we summarized with 0.6 is the best aspect
threshold on HIN-based disentangled network recommendation.

The impact of Threshold
@K20 on Douban Book.

The impact of Threshold
@K40 on Douban Book.

The impact of Threshold
@K20 on Walmart Recruit.

The impact of Threshold
@K40 on Walmart Recruit.

Fig. 3. The influence of aspect threshold δ in Monte Carlo edge-drop strategy on Top-K
recommendation evaluated by Recall@K, NDCG@K and Precision@K.

4.4 RQ3 Model Explainability and Visualization

We visualize two case studies include two users and one item from Walmart
Recruit to gain a deeper understanding of SeDLR’s explainability in Figure 4.
By jointly analyzing interaction and aspect, we find the aspect differ across
each interaction, which is reflected by score values. For instance, user 268136
only keeps male aspect scoring 0.78, and man store aspects scoring 0.62, under
threshold δ value 0.6. It can provide semantics meaning that a male user is likely
to interact with an item laptop at the man store. These results show SeDLR not
only can effectively untangle users’ intents but also add semantic supplements
for learned intents.
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Fig. 4. A visualization of two case studies from Walmart Recruit, the bold lines rep-
resent retained aspects after Monte Carlo edge-drop strategy with threshold δ value
0.6.

5 Conclusion and Future Work

This paper introduces a novel HIN-based disentangled learning method for Top-
K recommendation, namely SeDLR. With the disentangled learning augmented
by the HIN, our method is capable of empowering the capability of the recom-
mendation model addressing the bias in historical user interactions. In addition,
we resort to Monte Carlo edge-drop strategy to provide the semantic explana-
tions for the recommendation in the real-world datasets. In future work, we will
explore the deeper fine-grained level for the item, which is another promising
direction.
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