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Abstract
Causal inference is capable of estimating the treatment effect (i.e., the causal effect of treatment on the outcome) to benefit 
the decision making in various domains. One fundamental challenge in this research is that the treatment assignment bias in 
observational data. To increase the validity of observational studies on causal inference, representation-based methods as 
the state-of-the-art have demonstrated the superior performance of treatment effect estimation. Most representation-based 
methods assume all observed covariates are pre-treatment (i.e., not affected by the treatment) and learn a balanced 
representation from these observed covariates for estimating treatment effect. Unfortunately, this assumption is often too 
strict a requirement in practice, as some covariates are changed by doing an intervention on treatment (i.e., post-treatment). 
By contrast, the balanced representation learned from unchanged covariates thus biases the treatment effect estimation. In 
light of this, we propose a deep treatment-adaptive architecture (DTANet) that can address the post-treatment covariates and 
provide a unbiased treatment effect estimation. Generally speaking, the contributions of this work are threefold. First, our 
theoretical results guarantee DTANet can identify treatment effect from observations. Second, we introduce a novel 
regularization of orthogonality projection to ensure that the learned confounding representation is invariant and not being 
contaminated by the treatment, meanwhile mediate variable representation is informative and discriminative for predicting 
the outcome. Finally, we build on the optimal transport and learn a treatment-invariant representation for the unobserved 
confounders to alleviate the confounding bias.

Keywords Causal inference · Treatment effect estimation · Deep neural networks

1 Introduction

Causal inference aims at estimating how a treatment affects
the outcome [28,31,32], which is a common problem in
many research fields, including medical science [44], eco-
nomics [1], education [16], recommendation [26,38] and
statistics [5,24,41]. Taking medical science as an example,
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pharmaceuticals companies have developed manymedicines
for a certain illness. They want to know which medicine is
more effective for a specific patient. The treatment effect is
defined as the change of the outcome of individuals 1 if an
intervention is done on the treatment. In the above exam-
ple of medicines, the individuals could be patients, and an
intervention would be taking different medicines. Treatment
effect estimation aims to exploit the outcomes under different
interventions done on the treatment, which are necessary to
answer the above question and thus it leads to better decision
making.

Two types of studies are usually conducted for estimat-
ing the treatment effect, including the randomized controlled
trials (RCTs) [6,7] and observational study [30,35]. RCTs
randomly assign individuals into a treatment group or a
control group, which is the most effective way of estimat-
ing treatment effect. However, randomized controlled trial
is often cost prohibitive and time-consuming in practice. In

1 An “individual” can be a physical object, a firm, an individual person,
or a collection of objects or persons
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and thus blocks the accuracy of treatment effect estimation
from being improved. The third category has predominantly
focused on learning representations regularized to balance
these confounding factors by enforcing domain invariance
with distributional distances. Conditioning on the balanced
representation, the treatment assignment is independent of
confounders, and thus it alleviates the confounding bias. The
learned feature is balanced across the treated and the con-
trolled individuals to alleviate the confounding bias, which is
guaranteed to be invariant for the different treatment assign-
ments.

Although deep representation-based methods have shown
superior performance for causal inference, they still suffer
from two significant drawbacks. First, the learned repre-
sentation ignores treatment-specific variations affected by
different treatments, which results in biased treatment effect
estimation. This assumption is too strong and invalid in prac-
tice, as some covariates are usually changed after doing
intervention on the treatment. This leads to the bias to treat-
ment effect estimation, as it requires to compute between the
interventional distribution and observed distribution. These
post-treatment covariates are frequently observed in practice.
By acting as mediate variables, post-treatment covariates can
place effects on outcomes and treatment effect estimation.

A typical example is that smoking can cause coronary
heart disease (CHD) through increasing the blood
pressure (BP), as indicated in Fig. 1. The blood
pressure involving treatment-specific variations is called
a mediate variable, that may vary under the different treat-
ments. Thus, simply using treatment indicator will lose
significant information for the outcome prediction and thus
lead to biased treatment estimation. The causal relation-
ships among treatment, mediate feature and outcome are
largely unexploited in previous representation-based meth-
ods. In addition, some covariates (blood pressure)may
be changed by doing an intervention on treatment (smoke
behavior) and are usually neglected by previous represen-
tation methods. Previous representation methods fail to learn
the individual characteristics of each group. We argue that
explicitlymodelingwhat is unique to each group can improve
a model’s ability to extract treatment-invariant features and
thus benefit for estimating unbiased treatment effect.

In this work, we propose an end-to-end deep treatment-
adaptive network (DTANet) to estimate the treatment effect
as shown in Fig. 3. To the best of our knowledge, the pro-
posed DTANet is the first representation-based method that
can quantify the mediate effect transmitted by the change of
treatment.

– By a novel orthogonality projection, a mediate feature
representation can be learnt to capture the informative
treatment-specific variations underlying the unobserved
mediate variables.

addition, ethical issues largely limit the applications of the 
randomized controlled trials. Unlike RCTs, observational 
study becomes a feasible method, as it can estimate treat-
ment effect from observational data without controls on the 
treatment assignment.

Observational studies have attracted increasing attention 
in the past decades, where the hallmark is that the treatment 
observed in the data depend on variables which might also 
affect the outcome, resulting in confounding bias. For exam-
ple in Fig. 1, we are interested in the effect of treatment 
smoking on the outcome CHD. We have  gene causes an 
individual become more susceptible to smoking according 
to recent studies on genetics of smoking [10], and specific 
gene also increases the risk of developing coronary heart 
disease (CHD). Moreover, the variable gene affects both the 
treatment smoking and the outcome CHD. In other words, 
statistically, we find strong positive association between 
Smoking and CHD, which, however, can be attributed to 
a causal relationship or/and a spurious correlation resulted 
from the change in gene. Consequently, the confounder fac-
tors should be untangled; otherwise, the treatment effect of 
smoking on CHD is overestimated by the spurious corre-
lation. The challenge is how to untangle these confounding 
factors and make valid treatment effect estimation [32,33].

Causal inference works under the common simplifying 
assumption of “no-hidden confounding,” i.e., all confouders 
can be observed and measured from observed covariates. The 
standard way to account for treatment effect is by “control-
ling” the confounders from the observed covariates [31,32]. 
Particularly, confounders lead to the distribution shift that 
exists between groups of individuals receiving different treat-
ments. The challenge is how to untangle confounding bias 
and make valid counterfactual predictions what if a different 
treatment had been applied. Existing methods for untan-
gling confounders (“controlling” confounders) generally 
fall into three categories, namely propensity-based, proxy 
variable-based, and representation-based methods. Among 
them, propensity-based methods “control” the confounders 
by adjusting representative covariates (e.g., age) that may 
contain confounding information. Through this, treatment 
effects can be estimated by direct comparison between the 
treated and the controlled individuals [11,36]. These methods 
are gaining grounds in various applications, but a signifi-
cant challenge is that confounders are usually latent in the 
observational data. However, such methods require the con-
founders to be measured from observed covariates [31,32], 
whereas, in practice, confounders are usually latent in the 
observational data.

An alternative to classic method leverages the observed 
“proxy variables” in place of unmeasured confounders to 
estimate the treatment effect [20,22]. However, even with 
the availability of proxy variables, the uncertainty of con-
founder type still makes causal inference a challenge [29]
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Fig. 1 The causal graph with the mediate variable and its example. The
confounder z and the mediate variable m in grey are unmeasured in
observational study. We can observe some covariates x that are in fact
noisy views of z and m, such as the headache and family heart disease

The mediate feature representation independent of unob-
served confounders can generate an unbiased estimation
of the mediate treatment effect.

– Our DTANet leverages the optimal transport theory to
learn a treatment-invariant representation that can allevi-
ate the confounders bias.
Moreover, the learned treatment-invariant features can be
employed as the off-the-shelf knowledge in estimating
causal effect on out-of-samples.

– Finally, DTANet is an end-to-end deep joint network
with two separate “heads” for two potential outcomes, by
using both the confounding representation and the medi-
ate feature representation. We also prove that the causal
effect can be identified from the observational data by
DTANet.

2 Background

This section introduces the preliminary knowledge and
related work in the field of observational studies.

2.1 The rationality of causal inference

The goal of causal inference is to estimate the causal effect
of an intervention/treatment. Randomized controlled trials
(RCTs) are now the gold standard for causal inference in
medicine and social science. In RCTs, individuals are receiv-
ing treatment or controlled treatment by randomization.
RCTs allow to estimate the treatment effect by directly com-
paring the results from assigning the intervention of interest
to the results from a “control” intervention. For example,
researcher in medicine are interested in assessing the effect
of smoking on the health outcome.

RCTs assign individuals randomly with smoking and
non-smoking. Due to randomization and given a large
enough study enrollment, the two study groups (smoking
and non-smoking) are fully comparable. That means they
will have roughly the same number of individuals at baseline
and the same number of individuals in each age (or gen-

der/occupation/etc.) group. The only differences between the
two groups should be due to the assignment, all other things
(e.g., gender, age, occupation, etc.) having been made equal.
Therefore, a direct comparison between two groups’ aver-
age health outcome is thus a valid effect estimation of the
smoking vs. non-smoking.

However, performing RCTs would be neither feasible in
behavioral and social science research due to practical or
ethical barriers, because it is impossible to assign people
chosen at random to smoke for decades.

Observational studies (or non RCTs) that do not impose
any intervention of the individuals’ treatment resort to purely
observational data. Unlike the randomized control trials, the
mechanism of treatment assignment in observational studies
is not explicit. For example, instead of randomized experi-
ments, individuals take smoke based on several factors rather
than being assigned randomly. As a result, the distribution
of smoking group will generally be different from the non-
smoking group. A direct comparison between the health
outcomes for smokers and the health outcomes for nonsmok-
ers is no longer valid for estimating the effect of smoking
on health outcomes. In this situation, causal inference that is
capable of estimating causal effects from observational study
is of paramount importance.

2.2 Potential outcome framework

Two well-known fundamental causal paradigms, including
the potential outcome framework [36] and structural causal
models [31,33], are adopted in causal inference from obser-
vational studies. In this paper, we focus on the potential
outcome framework.

The potential outcome framework [36] proposed by Ney-
man and Rubin has developed into a well-known causal
paradigm for treatment effect estimation in observational
studies. Considering binary treatments for a set of individu-
als, there are two possible outcomes for each individual. In
general, the potential outcome framework predicts counter-
factual (i.e., outcome under an alternative treatment) for each
treated individual and computes the difference between the
counterfactual and the factual (observed outcome).

Formally, for an observational dataset {xi , ti , yi }1≤i≤n of
n individuals, variable xi ∈ R

n×d is the d-dimensional
covariate of individual i , and treatment ti affects the out-
come yi . Considering the binary treatment case, individual
i will be assigned to the control group if ti = 0, or to the
treated group if ti = 1. The individual treatment effect (ITE)
is defined as the difference between potential outcomes of an
individual under two different treatments:

ITEi = E(yi (1)) − E(yi (0)) (1)
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In the medicine example, gene is a confounder variable, so
that people with different gene have different preferences
on smoking or not. The probability distribution p(y|t) not
only includes the effect of treatment on the outcome (i.e.,
p(y | do(t))), but also includes the statistical associations
produced by confounders on the outcome, which leads to
the spurious effect. Consequently, confounders render the
probability distribution p(y | t) and intervention distribu-
tion p(y | do(t)) distinct, whichmakes calculating ITEmore
difficult.

Definition 3 (Confounding Bias) Given variables x , y, con-
founding bias exists for causal effect t → y iff the obser-
vational probabilistic distribution is not always equivalent to
the interventional distribution, i.e., p(y | t) �= p(y | do(t)).
Confounding bias in observational study is equivalent to a
domain adaptation scenario where a model is trained on a
“source” (observed) data distribution, but should perform
well on a “target” (counterfactual) one.Handing confounding
bias is the essential part of causal inference, and the procedure
of handing confounder variables is calledadjust confounders.

3 Related work

Estimation of individual treatment effect in observational
data is a complicated task due to the challenges of confound-
ing bias [13,32,46]. Unlike the randomized control trials,
the mechanism of treatment assignment is not explicit in
observational data due to the confounding bias. Therefore,
interventions of treatment are not independent of the prop-
erty of the subjects, which results in the difference between
the intervention (i.e., counterfactual) distribution and the
observed distribution. To predict counterfactual outcomes
from the factual data, many practical solutions are proposed
to adjust confounders, which can be classified into four cat-
egories.

A common statistical solution is re-weighting certain data
instances to balance the observed distribution and interven-
tion distributions caused by confounding bias problem (as
described in Sect. 2.3). Apparently, confounding bias leads
to the fact that treatment assignment is not random but is cor-
related with covariates. By defining an appropriate weight as
the function of covariates to each individual in the obser-
vational data, a pseudo-population can be created on which
the distributions of the treated group and control group are
similar. In other words, the treatment assignment is synthe-
sized to be random after weighting individuals. The majority
of re-weighting approaches belong to the Inverse Propensity
Weighting (IPS) family of methods [2]. Here, the propensity
denotes the estimated probability of receiving a treatment
[36], which is often modelled by a logistic regression of
treatment on the covariates. IPS weights the individuals with

Clearly, each individual only belongs to one of these two 
groups, and therefore, we can only observe one of two possi-
ble outcomes. In particular, if individual i is in treated group, 
yi (1) is the observed/factual outcome, and yi (0) is missing 
data, i.e., counterfactual. The challenge to estimate ITE lies 
on how to estimate the missing counterfactual outcome yi (0) 
by intervening t = 0.

The potential outcome framework usually makes the 
following assumptions [17,23] to estimate the missing coun-
terfactual outcome.

Assumption 1 (Ignorability) Conditional on the covariates 
x, two potential outcomes are independent of the treatment,
i.e., yi (1), yi (0) ⊥ t | x.
Assumption 2 (Positivity) For any set of covariates x, the  
probability of receiving each treatment a is positive, i.e., 0 < 
p(t = a | x) < 1.

Estimating causal effects from observational data is different 
from classic learning because we never see the ground-truth 
individual-level effect in practice. For each individual, we 
only see their response to one of the possible actions - the 
one they had actually received.

2.3 Confounders and bias

The problem of calculating ITE is translated into the task 
of estimating the counterfactual outcome under an interven-
tion on treatment. Hence, the potential outcome framework 
introduces a mathematical operator called do-calculus do(t) 
to define hypothetical intervention on the treatment t [32]. 
Specifically, do(t) = 1 simulates an intervention by setting 
t = 1, which indicates that t is only determined by do thus 
renders t independent of the other variables.

Definition 1 (Interventional Distribution) The interventional 
distribution p(y | do(t ′)) denotes the distribution of the vari-
able y when we rerun the modified data-generation process 
where the value of variable t is set to t ′.

For example, for the causal graph in Fig. 1, the post-
intervention distribution p(y | do(0)) refers to the distri-
bution of CHD outcome y as if the smoking treatment t is set 
to 0 (e.g., non-smoking) by intervention, where all the arrows 
into t are removed. However, the interventional distribution 
p(y | do(t ′)) is different from observational distribution 
p(y | t ′) due to the existence of confounders.

Definition 2 (Confounders) Given a pair of treatment and 
outcome (t, y), we say a variable z is a confounder iff z 
affects both t and y.

Confounder is a common causes of the treatment and out-
come. The confounder variable affects the assignment of 
individuals’ treatment and thus leads to the confounding bias.
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inverse propensity to make a synthetic random treatment
assignment and further create unbiased estimators of treat-
ment effect.

Methods in the second category is matching, which pro-
vides a way to estimate the counterfactual while reducing the
confounding bias brought by the confounders. According to
the (binary) treatment assignments, a set of individuals can
be divided into a treatment group and a control group. For
each treated individual, matching methods select its counter-
part in the control group based on certain criteria, and treat
the selected individual as a counterfactual. Then the treat-
ment effect can be estimated by comparing the outcomes
of treated individuals and the corresponding selected coun-
terfactuals. Various distance metrics have been adopted to
compare the closeness between individuals and select coun-
terparts. Some popular matching estimators include nearest
neighbor matching (NNM) [37], propensity score matching
[36], and genetic matching [11], etc. In detail, a propen-
sity score measures the propensity of individuals to receive
treatment given the information available in the covariates.
In Fig. 1, we can estimate the propensity score by fitting a
logistic model for the probability of quitting smoking con-
ditional on the covariates. Propensity score methods match
each treated individual to the controlled individual(s)with the
similar propensity score (e.g., one-to-one or one-to-many),
and then treat the matched individual(s) as the controlled
outcome [3,11]. The individual treatment effect equals to the
difference between the matched pair of the treated individual
and the controlled individual.

Methods in the third category learn individualized treat-
ment effects (ITE) via parametric regression models to
exploit the correlations among the covariates, treatment and
outcome. Bayesian Additive Regression Trees (BART) [16],
Causal Random Forest (CF) [44] and Treatment-Agnostic
Representation Network (TARNet) [40] are typical meth-
ods of this category. In particular, BART in [16] applies a
Bayesian form of boosted regression trees on covariates and
treatment for estimating ITE, and it is capable of addressing
non-linear settings and obtain more accurate ITE than the
propensity score matching and inverse probability of weight-
ing estimators [16].Causal random forest (CF) views forests
as an adaptive neighborhood metric and estimates the treat-
ment effects at the leaf node [44]. TARNet [40] is a complex
deep model that builds on learning non-linear representa-
tions between the covariates and potential outcomes.Doubly
Robust Linear Regression (DR) [12] combines the propen-
sity score weighting with the outcome regression, so that the
estimator is robust even when one of the propensity scores
or outcome regression is incorrect (but not both).

The fourth category has predominantly focused on learn-
ing representations regularized to balance these confounding
factors by enforcing domain invariance with distributional
distances [18,39]. The big challenge in treatment effect esti-

mation is that the intervention distribution is not identical to
the observed distribution,which converts the causal inference
problem to a domain adaptation problem [25,27]. Building
on this work [18], the discrepancy distance between distribu-
tions is tailored to adaptation problems. An intuitive idea is to
enforce the similarity between the distributions of different
treatment groups in the representation space.

Two common discrepancy metrics in this area are used:
empirical discrepancy by Balancing Neural Network (BNN)
[18] and maximum mean discrepancy by Counterfactual
Factual Regression Network (CFRNet) [40]. Particularly,
BNN learns a balanced representation that adjusts the mis-
match between the entire sample distribution and treated
and control distributions in order to account for confound-
ing bias. CFRNet provides an intuitive generalization-error
bound. The expected ITE representation error is bounded
by the generalization-error and the distribution distance. The
drawback of methods in this category is that they overlooks
the important information that can be estimated from data:
the treatment/domain assignment probabilities [19].

4 Problem formulation

4.1 Motivation

Treatment can cause the outcome directly or indirectly
through mediation (e.g., blood pressure). The indirect cause
is largely unexploited by most of the previous representation
methods, which leads to the biased estimation of treatment
effect. In this paper, we consider the causal graph in Fig. 1
with confounder and mediate variable. Both the confounder
and the mediate variable may not be amenable to direct
measurements. It is reasonable to assume that both the con-
founder and the mediate variable can be reliably represented
by a set of covariates for each individual. For example, even
if the family gene and blood pressure cannot be measured
directly, they can also be reflected by the family disease and
the headache as shown in Fig. 1.Wewill prove that true treat-
ment effect in Fig. 1 can be identified from observations by
our DTANet.

4.2 Theoretical results

We admit the existence of mediate variable and consider the
causal graph inFig. 1.Next,wedefine the potential outcomes.
Previously, the potential outcomeswere only a function of the
treatment, but in our scenario the potential outcomes depend
on the mediate variable as well as the treatment variable.
Assume m(ti ) is the mediate variable under the treatment
status ti , and z is the unobserved confounder. The mediate
variable is a post-treatment variable and can be changed by
the intervention on treatment. This change will further affect
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the outcome, which results in the bias between the interven-
tional distribution and observed distribution as

p(yi | do(t = 1),mi (t), xi ) �= p(yi | t = 1,mi , xi ) (2)

In this case, the biaswill lead to invalid ITE in Eq. (1). Conse-
quently, extracting the mediate variable from the covariates
is vital for the unbiased the treatment effect estimation.

Our goal is to estimate ITE under the existence of mediate
variable. We reformulated ITE defined in Eq. (1) as Eq. (3)
and prove that it is be identified from observations.

τI T E (x) = E[y(t,m(t)) | x, do(t = 1)]
−E[y(t,m(t)) | x, do(t = 0)] (3)

Theorem 1 The causal effect defined by ITE in Eq. (3) can
be identified from the distribution p(x, t, y).

Proof ITE can be non-parametrically identified by

p(y(t,m(t)) | x, do(t = 1))

=
∫
m
p(y | x,m)p(m | x, do(t = 1))dm

(i)=
∫
m
p(y | x,m)p(m | x, t = 1)dm

=
∫
m

∫
z
p(y | x, z,m)p(z | x,m)p(m | x, t = 1)dmdz

(i i)=
∫
m

∫
z
p(y | z,m)p(z | x)p(m | x, t = 1)dmdz

(4)

Fig. 2 The representation-based causal graph for unobserved con-
founder z and mediate variable m

fundamental assumption for causal inference methods. In
this paper, we design a representation-based causal graph
shown in Fig. 2, based on which we propose deep treatment-
adaptive network (DTANet) for treatment effect estimation.
Our method is based on the same causal graph that is widely
used by previous causal inference methods, i.e., (T ← Z →
Y , T → Y ). In addition, we extend this causal graph by
involving the existence ofm between t and y. DTANet learns
the latent confounding representation and themediate feature
representation for the unmeasured confounders z andmediate
variables m, respectively. As proved in theorem 1, condi-
tioning on the z and m would amplify the treatment effect
estimation bias. Defining proxy variables for unmeasured z
and m requires domain-specific prior knowledge that is not
easy to obtain. Consequently, our task is to learn two latent
representations to filter out the information related to z and
m from covariates, which requires no prohibitive assumption
or knowledge on unobserved z and m.

Debiasing confounder z. The confounding representa-
tion is learned from covariates with the aim of alleviating the
confounding bias. The treatment assignment is not randomly
but typically biased by the confounder. For example, poor
patients are more likely to choose the cheap treatment, where
the economic status as a confounder determines the choice
of treatment. The distribution of individuals may therefore
differ significantly between the treated group and the overall
population. A supervised model naïvely trained to minimize
the factual error would overfit to the properties of the treated
group, and thus not generalize well to the entire population.

According to theorem 1, inferring causal effect would be
straightforward if the confounder z is available. So, as the
substitute for the unknown confounder, we would like to
learn a treatment-invariant representation from the observed
covariates.We justify the rationality of this strategy based on:
1) as the confounder is hidden in the observable covariates,
i.e., the family gene is hidden in the family disease, con-
founder can be learned from covariates; 2) as do-calculus
removes the dependence of treatment on confounder shown
in Fig. 2, the substitution of the confounder should cap-
ture the generalized or mutual information of covariates,
i.e., treatment-invariant property. The learned representation
with treatment-invariant property containing the covariate
features such that the induced distributions of individuals

According to Fig. 1, there is no common cause between the 
treatment and the mediate variable. Therefore, the interven-
tional distribution p(m | x, do(t = 1)) equals the observed 
distribution p(m | x, t = 1), which allows equality (i) in 
Eq. (4) to be satisfied. As indicated by Fig. 1, when the con-
founder z is conditioned, y is independent of x , i.e., y ⊥ x | z. 
Similarly, z is independent of m when x is conditioned, i.e., 
z ⊥ m | x. The equality (ii) holds because of y ⊥ x | z 
and z ⊥ m | x. The final expression only depends on the 
distribution p(x, z, m, t, y).

Similarly, we can also prove that p(y(t, m(t)) | x, do(t = 
1)) can be expressed by observations p(x, z, m, t, y). Based 
on ITE in Eq. (3), we can conclude that ITE can be com-
puted by recovering the distribution p(x, z, m, t, y) from the 
observational dataset (x, t, y). �	

4.3 Representation learning for z and m

Identification of treatment effects relies on causal assump-
tions, which can be encoded in a causal graph. This is the
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under different treatments look similar, which can thus gen-
eralize well to the entire population.

Mediate feature learning form.Previous representation-
based models neglect the interactions between the treatment
and the individuals’ covariates, i.e., doing different interven-
tions on the treatment may result in varied mediate treatment
effects that can further change the observed covariates as
well. Neglecting such change in the observed covariates will
lead to serious bias for the treatment effect estimation, as the
confounding representation is learned from the static covari-
ates. Namely, some covariates are in fact mediate variables
that can be changed by a different treatment value. To cap-
ture the dynamic changes private to different treatments, we
learn amediate feature representation of unobservedmediate
variables.

4.4 Causal quantities of interest

The treatment effect can be measured at the individual level
and group level.

4.4.1 Individual level

The key quantity of interest in causal inference is treatment
effect on outcome. Based on ITE in Eq. (3) and Theorem 1,
we have ITE for each individual i as

τI T Ei = yi (1,mi (1), xi ) − yi (0,mi (0), xi ) (5)

where yi (1,mi (1), xi ) is the treated outcome of individual
i after applying do(ti ) = 1, mi (1) is the mediate variable
resulting from do(ti ) = 1 and xi is the covariate vector.
Similar to treated outcome, yi (0,mi (0), xi ) is the controlled
outcome after applying do(ti ) = 0.

We define the Mediate Treatment Effect (MTE) to quan-
tify the effect of treatment on outcome that occurs through a
mediate variable.

τMT Ei (t) = yi (t,mi (1)) − yi (t,mi (0)) (6)

Note that τMT E is computed by applying do-calculus on m
and keeping t unchanged. The key to understanding Eq. (6)
is the following counterfactual question:What change would
occur to the outcome if one changes m from m(0) to m(1),
while holding the treatment status at t? If the treatment t has
no effect on the m , that is, m(0) �= m(1), then the mediate
treatment effect is zero.

We also are interested inDirect Treatment Effect that com-
putes how much of the treatment variable t directly affects
the outcome y. Similarly, we can define the individual direct
effect of the treatment as follows:

τDT Ei (t) = yi (1,mi (t)) − yi (0,mi (t)) (7)

which denotes the direct causal effect of the treatment on
the outcome other than the one represented by the mediate
variable. Here, the mediate variable is held constant at mi (t)
and the treatment variable is changed from zero to one.

Finally, the sum of (6) and (7) equals (5), which formally
decomposes ITE into Mediate Treatment Effect and Direct
Treatment Effect as follows.

τI T Ei = τMT Ei (t) + τDT Ei (1−t) (8)

4.4.2 Population level

Given these individual-level causal quantities of interest, we
can define the population average effect for each quantity. At
the population level, the individual treatment effect is named
as the Average Treatment Effect (ATE), which is defined as:

τAT E = 1

n

n∑
i

(yi (1,mi (1)) − yi (0,mi (0)))

= 1

n

n∑
i

τI T Ei

(9)

Suppose we have nt treated individuals, Average Treatment
effect on the Treated group (ATT) is defined as

τAT T = 1

nt

nt∑
i

τI T E (i |t = 1) (10)

where nt is the number of individuals having t = 1, i.e., the
treated group size. Here, τI T E (i |t = 1) is ITE for individual
i from the treated group.

Similarly,we define averageMediate Treatment Effect and
Direct Treatment Effect as

τAME = 1

n

n∑
i

τMT E (i), τADE = 1

n

n∑
i

τDT E (i) (11)

5 Methodology

In this section, we learn the representations for unmeasured
z and m given in Fig. 2 in order to compute the individual
treatment effect (ITE) of Eq. (3). We propose a novel deep
treatment-adaptive network (DTANet) as shown in Fig. 3.
Particularly, DTANet can jointly learn the unbiased con-
founding representation for z by the optimal transport. More-
over, the mediate features of m viewed as treatment-specific
variations can be guaranteed by the proposed orthogonal pro-
jection constraint.

The confounding representation is concatenated with
mediate feature representation for the potential outcome pre-
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Fig. 3 Our DTANet method provides an end-to-end procedure for pre-
dicting potential outcomes from covariates x, which can be further used
for estimating treatment effect. A confounding representation network

�(·), two mediate feature representation networks (�t (·) and �c(·))
and two predictors of potential outcomes together form DTANet

dictor network. With two potential outcomes, the individual
treatment effect (ITE) can be estimated by Eq. (3).

5.1 Debiasing confounder by optimal transport

Motivated by the intuition in Sect. 4.3, we define z =
�(;W ) : X → Z as the representation network for the
common confounding information between the treated indi-
viduals and the controlled individuals. The network �(;W )

has L layers with weight parameters W by

�(x;W ) = fL(. . . f1(w
�
(1)x) . . .) (12)

non-overlapping supports, and has good out-of-sample per-
formance [14]. We apply the Wasserstein distance to reduce
the discrepancy even with limited or no overlap between
p(�(xt )) and q(�(xc)).

Definition 4 Given a hypothesis set H, the Wasserstein dis-
tance between p� and q� is

W2(p�, q�) =
(
inf
π∈�

∫
�

d (�(xt ),�(xc)) dπ

) 1
2

(13)

where set� is the joint probabilitymeasures on� = �(xt )×
�(xc) with marginal probabilities p� and q�.

As both p� and q� have finite supports, we will only
consider Wasserstein distance for discrete distributions.

Given realizations {xti }nti=1 and {xc j }ncj=1, we reformulate
Eq. (13) on two discrete empirical distributions p� and q�

w.r.t. treatment individuals and control individuals, i.e.,

p� = 1

nc

nc∑
i=1

δi , q� = 1

nt

nt∑
j=1

δ j (14)

Minimizing the discrepancy between p� and q� with
Wasserstein distance is equivalent to solving the optimization

W2(p�, q�) : def= min
γ∈U 〈C�, γ 〉F (15)

where f1 · · ·  fL are nonlinear activation functions, w(
�
1)x 

is an affine transformation map controlled by weight param-
eters w1 for first layer, and W = {w(1), · · ·  , w(L)} is the 
weight matrix for L-th layers.

According to the binary treatment setting, an individual in 
the observational dataset can be either a treated or controlled 
individual. To allow � to satisfy the treatment-invariant 
property, we adopt the optimal transport [8,27,34,42,45] to  
minimize the discrepancy introduced by � between the dis-
tribution of treated and controlled individuals. We use xt for 
the treated covariates and xc for the controlled covariates. 
p(�(xt )) and q(�(xc)) are the treated and the controlled 
distribution induced by �(·). We resort to optimal trans-
port theory that allows to use Wasserstein distance [34] on  
the space of probability measures p(�(xt )) and q(�(xc)). 
Wasserstein metric incorporates the underlying geometry 
between outcomes, which can be applied to distributions with
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where 〈·, ·〉F is the Frobenius dot-product of matrices. The
optimal γ belongs to

U =
{
γ ∈ R

nc×nt+ | γ 1nt = p�, γ �1nc = q�

}
(16)

that refers to nonnegative matrices such that their row and
column marginals are equal to p� and q� respectively. The
distance matrix between xt and xc is C� ∈ R

nc×nt with
element

Ci j = ‖�(xci ;W ) − �(xt j ;W )‖22 (17)

Hence, we propose Eq. (15) as the lossLbalan that reduces
the discrepancy between the treated and control individuals,
i.e.,

Lbalan = min
γ∈U 〈C�, γ 〉F (18)

Solving Lbalan ensures the treatment-invariant represen-
tation � is similar across different treatment values and thus
is independent of the treatment assignment. The confound-
ing representation provides more stable gradients even if two
distributions of treated and controlled individuals are dis-
tant, as well as informative for treatment effect estimation.
Moreover, since treatment-invariant features are independent
of the treatment assignment, they can be considered as off-
the-shelf knowledge and used to estimate causal effect on
out-of-samples.

5.2 Orthogonal projection for mediate features
learning

According to the binary treatment assignments, individuals in
the observational dataset can be either divided into the treated
individuals or the controlled individuals. We design two
mediate feature representations encodingdifferent treatment-
specific variations private to both populations (i.e., the treated
individuals and the controlled individuals). Moreover, the
confounder is no long correlated with the treatment after
do intervention as shown in causal graph (Fig. 3). Thus, a
soft orthogonal projection term is also proposed to separate
the mediate features from the confounding representation as
much as possible. This guarantees the confounding represen-
tation is pure and not contaminated by treatment.

Similar to representation by Eq. (12), let functions
�(xt ; Vt ) and �(xc; Vc) map treated individuals xt and
controlled individuals xt to hidden mediate representations
specialized in each domain.

�t (xt ; Vt ) = fL(. . . f1(v
�
t(1)xt ) . . .),

�c(xc; Vc) = fL(. . . f1(v
�
c(1)xc) . . .),

(19)

where Vt = [vt(1) · · · vt(L)
] and Vc = [vc(1) · · · vc(L)

] are
weight matrices for L-layers of the treated and controlled
representation, respectively.

We propose an orthogonality constraint for the loss Lsim

to separate the confounding representation frommediate rep-
resentation. Let Zt and Zc be matrices whose rows are the
outputs of confounding representation �(·) from treated xt
and controlled individuals xc, respectively. Similarly, let Mt

andMc bematriceswhose rows are the outputs of themediate
feature representation �t (·) and �c(·), respectively. Mathe-
matically, we have

Lsim = ‖M�
t Zt‖2F + ‖M�

c Zc‖2F (20)

where ‖·‖2F is the squared Frobenius norm. The loss function
Lsim encourages �t (·) and �c(·) to encode discriminative
features that are specific to their own domain. As �t (·)
and �c(·) are deduced by the specific treatment, �(·) is
constrained to be as general as possible irrespective of the
treatment information.

5.3 Joint two-headed networks for outcome
prediction

Parametrizing two potential outcomes with a single network
as in [18] is not optimal, because the influence of t on the
potential outcomemight be toominor to lost during the train-
ing for the high-dimensional case of �.

We construct two separate “heads” of the deep joint net-
work ŷt and ŷc for the twopotential outcomesunder treatment
and control, as indicated in Fig. 3. The concatenation of
[�(·),�t (·)] or [�(·),�c(·)] is ultimately fed into the poten-
tial outcome network ŷt or ŷc, respectively. Namely, each
sample is used to update only the head corresponding to
observed treatment.

ŷt (�,�t ;	t ) = fL(. . . f1(θ
�
t (�(xt ),�t (xt ))) . . .)

ŷc(�,�c;	c) = fL(. . . f1(θ
�
c (�(xc),�c(xc))) . . .)

(21)

where 	t = [θt(1) · · · θt(L)
] and 	c = [θc(1) · · · θc(L)

] are
weight matrices for L layers of the treated and the controlled,
f1(·) is the first layer with the linear transformation weight
θt or θc for the treated group or the controlled group, respec-
tively. Minimizing the loss function Ly to approximate two
predicted potential outcomes to the ground-truths,

Ly = λ0

nt

nt∑
i=1

‖ŷti − yti ‖22 + 1 − λ0

nc

nc∑
j=1

‖ŷc j − yc j ‖22 (22)

whereλ0 is a hyperparameter compensating for the difference
between the sizes of treated samples and controlled samples.
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With the fitted models ŷt and ŷc parametrized by �,�t

and �c in hand, we can estimate the individual treatment
effect (ITE) as

τI T E (i) = ŷti − ŷci (23)

Remark.Themediate feature learning component enables
our approach to estimate the mediate treatment effect at the
presence ofmediate variable. Our approach can also estimate
theDirect Treatment Effect where no mediate variable exists
in observational data. This scenario implies the treatment t is
assumed to have a direct effect on the outcome y, i.e., t → y.
In case the prior knowledge of t → y is known in practice,
our approach can estimateDirect Treatment Effect bymerely
removing mediate feature learning component. Recall that
debiasing confounder adjusts the confounder variables by
learning a treatment-invariant representation φ(·), so that the
treatment assignment is independent of the confounding bias.
Without mediate variable m, φ(·) is no longer regularized
by the orthogonal constraint (20) and becomes an unique
cause of the outcomes. Then the learned φ(·) is directly feed
into outcome prediction for inferring treated and controlled
outcomes, respectively. Finally, ITE can be computed via
Eq. (21).

6 Optimization

We consider the deep feed-forward network that is trained
to minimize the final loss function Eq. (24) using mini-batch
stochastic gradient descent with the Adam optimizer [21].

Specifically, we propose an end-to-end algorithm that
alternatively trains the parameters of the potential network,
the confounder network and the mediate feature representa-
tion network with back-propagation.

L = Ly + λ1Lsim + λ2Lbalan (24)

where λ1 and λ2 are hyperparameters that control the inter-
action of the loss terms during learning.

6.1 Updating�t and ŷt

Based on Eq. (19) and Eq. (21), the representation �t and
outcome ŷt are parametrized by Vt and 	t , respectively.

Given the learning rate η, the gradients of objective func-
tion Eq. (24) with respect to parameters Vt and 	t are

∇VtL = ∂Ly

∂ ŷt

∂ ŷt
∂Vt

+ λ1
∂Lsim

∂Vt
, ∇	tL = ∂Ly

∂	t
(25)

So the gradient descent updates the corresponding param-
eters of �t and ŷt . The update for �c and ŷc is similar to �t

and ŷt , since they have similar optimization subproblems.

6.2 Updating8

Recall that the confounding representation � in Eq. (12) is
parametrized by W . Update the confounding representation
� which is non-trivial due to the existence of optimal trans-
port loss Lbalan in Eq. (24). The gradient of L w.r.t. the W
is

∇WL = ∇WLy + λ1∇WLsim + λ2∇WLbalan (26)

To compute the gradient of optimal transport loss Lbalan , we
regularize it by adding a strongly convex term

R(T ) = − 1

λ3

∑
i, j

Ti, j log γ i, j (27)

that is the entropy [4] of γ . Then, we solve the regularized
loss term by the Sinkhorn’s iterations [9]

γ k = diag(uk)K diag(vk) = uk1�
nt ◦ K ◦ 1nc (v

k)� (28)

where ◦ is element-wise multiplication, the element Ki, j =
exp(−λ3Ci, j ) in kernel matrix K is computed based onCi, j

in Eq. (17), and the updates of scaling vectors are

vk = 1nt /nt
K�uk−1 , uk = 1nc/nc

Kvk
(29)

Update the pairwise distance matrix between all treated and
controlled pairs C� with Wk−1 by Eq. (17). Then, we have

∇WLbalan = ∂〈γ k,C�〉
∂W

(30)

Apparently, the gradients of ∇WLy and ∇WLsim are

∇WLy = λt
∂Ly

∂ ŷt

∂ ŷt
∂W

+ λc
∂Ly

∂ ŷc

∂ ŷc
∂W

∇WLsim = ∂Lsim

∂W

(31)

With all these computed gradients, the steps of solving
Eq. (24) are shown in Alg. 1.

Note that the mediate feature representation network and
potential outcome network are trained only using the batch
with the respective treatment, e.g., the batch of treated indi-
viduals for treated features �t (·) and treated outcome ŷt .
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Algorithm 1 Treatment-Adaptive Network for Causal Infer-
ence
Input: Treated individuals (xti , yti )

nt
i=1 and controlled individuals

(xc j , yc j )
nc
j=1. Adam hyperparameters α, β1, β2. scaling parameters

λ0, λ1, λ2, λ3, u = 1nc
1: while not converged do
2: Sample a treated batch Dt and controlled batch Dc
3: Compute ∇WL,∇VtL,∇VcL,∇	tL, ∇	cL
4: Update W , Vt , Vc,	t ,	c by Adam optimizer
5: Compute representations �(·;W ),�t (·; Vt ),�c(·; Vc)
6: end while
Output: DTANet parameters (W , Vt , Vc,	t ,	c)

7 Experimental results

Our deep model is a feed-forward neural network consisting
of one confounder network, two mediate feature representa-
tion networks and two potential outcome networks. Both the
confounder network and the potential outcome network are
implemented as a three fully connected layers with 200 neu-
rons. The mediate feature representation network consists of
3 fully connected hidden layers. The activation function is
the exponential linear unit (ELU). The weights of all lay-
ers in each epoch are updated by the Adam optimizer with
default settings. We use the Adam optimizer with the ini-
tial learning rate of α = 10−3, decay rates β1 = 0.8 and
β2 = 0.95. Parameters λ0 and λ3 are empirically set to 0.5
and 0.1, respectively. We tune hyper parameters λ1, λ2 via
a grid search over combinations of λ1 ∈ [0.1, 0.2], λ2 ∈
[0.3, 0.45].

7.1 Datasets

Real-world Data. We use real-world datasets, i.e., News
[18] and JobsII [43].

News is a benchmark dataset designed for counterfac-
tual inference [18], which simulates the consumers’ opinions
on news items affected by different exposures of viewing
devices.

This dataset randomly samples n = 5000 news item from
NYTimes corpus 2. Each sample is one new item represented
byword counts xi ∈ R

d×1, where d = 3477 is the total num-
ber of words. The factual outcome yi is the reader’s opinion
on xi under the treatment ti . The treatment represents two
possible viewing devices, where t = 0 or t = 1 indicates
whether the new sample is viewed via desktop and mobile
(t = 1), respectively. The assignment of a news item xi to a
certain device t is biased toward the device preferred for that
item.

JobsII dataset is collected from an observation study
that investigates the effect of a job training (treatment) on
the outcome of one continuous variable of depressive symp-

2 https://archive.ics.uci.edu/ml/datasets/bag+of+words

toms [43]. Different from the treatment has direct causal
effect on outcome in News, the causal effect of the treat-
ment on the outcome in JobsII is direct or indirect via a
mediate variable job-search self-efficacy, because job-search
self-efficacy can be increased by job training (treatment) and
in turn affects the depressive symptoms (outcome).

JobsII includes 899 individuals with 17 covariates,
where 600 treated individuals with job training and 299 con-
trolled individuals without job training.

Synthetic Data. To illustrate our model could better
handle both hidden confounders and mediate variables, we
experiment on the simulated data of n = 1500 samples with
d-dimensional covariates (y, t, x,m)ni=1. For each i-th indi-
vidual, the dimension of the covariate xi is set up to 100. To
simulate the hidden confounding bias and noise, we need to
define several basis functions w.r.t. covariates x . We follow
the protocol used in [41] and define ten basis functions as
f1(x) = −2 sin(2x) f2(x) = x2 − 1/3, f3(x) = x − 0.5,
f4(x) = e−x − e−1 − 1, f5(x) = (x − 0.5)2 + 2, f6(x) =
I{x>0}, f7(x) = e−x f8(x) = cos(x), f9(x) = x2, and
f10(x) = x . In addition to {g1(x), · · · , g10(x)}, we addition-
ally define 5 basis functions for simulating mediate variable
influences g11(x) = sin(x) − 2 ∗ cos(5 ∗ x), g12(x) =
−2 ∗ exp(x), g13(x) = −2 ∗ x2 + 1, g14(x) = sin(3 ∗ x)
and g15(x) = −2 ∗ cos(x/2).

We also generate the binary treatment ti from a mis-
specified function that if

∑5
k=1 gk(x) > 0 for ti = 1

and ti = 0 otherwise. The mediate variable is mi ∼
N (

∑5
k=1 gk+10(x) + cti , 1).

The outcome is generated as follows.

yi ∼ N
5∑

k=1

gk+5 (xk) + ati + bmi , 1 (32)

The first five covariates are correlated to the treatment and
the outcome, simulating a confounding effect, while the
rest of them are noisy covariates. Following the routine of
[36], we use covariates {x1, · · · , x5} as informative vari-
ables that have confounding effects to both treatment and
outcome. Causal inference works are all under the common
simplifying assumption of “no-hidden confounding,” i.e., all
confouders can be observed and measured from observed
covariates. In other words, baseline methods can use covari-
ates {x1, · · · , x5} as inputs to generate both treatment t and
outcome y in the experiment.

7.2 Baselines

Wecompare ourmethodwith the following four categories of
baselines including (I) regression-based methods; (II) classi-
cal causal methods; (III) tree and forest-based methods; (IV)
representation-based methods;

https://archive.ics.uci.edu/ml/datasets/bag+of+words
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– OLS-1 [15] (I): this method takes the treatment as an
input feature and predicts the outcome by least square
regression.

– OLS-2 [15] (I) : this uses two separate least squares
regressions to fit the treated and controlled outcome
respectively.

– TARNet [40] (I): this method is Treatment-Agnostic Rep-
resentation Network that captures non-linear relation-
ships underlying features to fit the treated and controlled
outcome.

– PSM [36] (II): this method refers to Propensity Score
Matching that matches the controlled individuals which
received no treatment with those treated individuals
which received the treatment, based on the absolute dif-
ference between their propensity scores.

– DR [12] (II): this method refers toDoubly Robust Linear
Regression which is a combination of regression model
and propensity score estimation model to estimate the
treatment effect robustly.

– BART [16] (III): this method is Bayesian Additive
Regression Trees that directly applies a prior function
on the covariate and treatment to estimate the potential
outcomes, i.e., Bayesian form of the boosted regression
trees.

– CF [44] (III): this method refers to Causal Forest as an
extension of random forest. It includes a number of causal
trees and estimates the treatment effect on the leaves.

– BNN [18] (IV): this is called Balancing Neural Net-
work that attempts to learn a balanced representation by
minimizing the similarity between the treated and the
controlled individuals for counterfactual outcome pre-
diction.

– CFRNet [40] (IV): this method refers to Counterfac-
tual Regression Networks that attempts to find balanced
representations by minimizing the Wasserstein distance
between the treated and controlled individuals.

7.3 Metrics

The goal of causal inference is to estimate the treatment effect
at the individual and population level. Previous causal effect
estimation algorithms are prominently evaluated in terms of
both levels. For the individual-based measure τI T E defined
in Eq. (3), we have Precision in Estimation of Heterogeneous
Effect (PEHE) [16]

εPEHE = 1

n

n∑
i=1

(
τI T E (i) − τ̂I T E (i)

2 (33)

where τ̂I T E (i) is the estimated individual treatment effect by
ŷi (1) − ŷi (0).

For the population level, we use mean absolute error to
evaluate models. For instance, given the ground truth τAT E

and the inferred τ̂AT E in Eq. (5), the mean absolute error on
ATE is

εAT E = |τ̂AT E − τAT E | (34)

Similarly, the mean absolute error to evaluate performance
at population level is defined as follows:

εAT T = |τ̂AT T − τAT T |
εMT E = |τ̂MT E − τMT E |, εDT E = |τ̂DT E − τDT E | (35)

The abovemetrics cannot be applied on JobsII, because
there is no ground truth for ITE in JobsII. Specifically,
JobsII doesn’t include two potential outcomes for an indi-
vidual under both treated and controlled condition. Instead,
in order to evaluate the quality of ITE estimation, the policy
risk is used as the metric on JobsII dataset. The policy risk
Rpol [40] is used as the metric to measure the expected loss
if the treatment is taken according to ITE estimation.

Rpol(π f ) = 1 − E
[
ŷt | π f = 1

]
p(π f = 1)

−E ŷc | π f = 0
]
p(π f = 0)

(36)

In our case,we let the policy be to treat,π f = 1 if ŷt− ŷc > 0,
and to not treat, π f = 0, otherwise. We divide benchmark
data into a training set (80%) and an out-of-sample testing set
(20%), and then evaluate those three metrics on the testing
sample in 100 different experiments. For all the metrics, the
smaller value indicates the better performance.

7.4 Results and discussion

7.4.1 Treatment effect estimation

We first compare all methods on the task of treatment effect
estimation. We perform this task on two real-world datasets

For hyperparameters optimization, we use the default prior 
or network configurations for TARNet [18], BART [16], 
CFRNet [40], BNN [18].

For PSM, we apply 5-nearest neighbor matching with 
replacement, and impose a nearness criterion, i.e., 
caliper=0.05. The number of regression trees in BART is 
set to 200, and CF consists of 100 causal trees. Parameters 
in other benchmarks are tuned to achieve their best perfor-
mances. All datasets for all models are split as training/test 
sets with a proportion of 80/20, and 20% of the training set 
are validation set. The within-sample error is calculated over 
validation sets, and out-of-sample error is calculated over test 
set.
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Table 1 In-sample evaluation
on News and JobsII

Method News JobsII√
εPEHE εATE εATT Rpol ε̂ATT

OLS-1 5.2 ± 0.1 0.90 ± 0.3 0.89 ± 0.2 2.30 ± 0.2 0.02 ± 0.0

OLS-2 3.5 ± 0.2 0.45 ± 0.0 0.64 ± 0.1 2.37 ± 0.6 0.02 ± 0.0

PSM 4.8 ± 1.0 2.72 ± 0.7 2.62 ± 1.0 2.67 ± 0.5 0.02 ± 0.0

DR 4.7 ± 0.1 2.57 ± 0.6 1.42 ± 0.2 2.41 ± 0.7 0.02 ± 0.0

BART 5.2 ± 0.1 1.57 ± 0.5 1.05 ± 0.8 1.94 ± 0.4 0.05 ± 0.0

CF 4.6 ± 0.2 1.62 ± 0.1 2.19 ± 1.3 1.79 ± 0.2 0.06 ± 0.0

BNN 4.8 ± 0.2 0.65 ± 0.0 0.97 ± 0.0 1.78 ± 0.1 0.05 ± 0.0

TARNet 1.3 ± 0.2 0.28 ± 0.0 0.28 ± 0.0 1.67 ± 0.2 0.04 ± 0.0

CFRNet 0.8 ± 0.3 0.26 ± 0.0 0.24 ± 0.0 1.55 ± 0.5 0.04 ± 0.0

DTANet 0.6 ± 0.3 0.25 ± 0.0 0.21 ± 0.0 1.40 ± 0.6 0.01 ± 0.0

Table 2 Comparison results on the simulated dataset

Method In-sample Out-of-sample√
εPEHE εATE εATT εMTE

√
εPEHE εATE εATT εMTE

OLS-1 5.43 ± 0.3 3.07 ± 0.4 3.06 ± 0.5 2.15 ± 0.4 6.06 ± 0.5 3.11 ± 0.4 3.09 ± 0.6 2.28 ± 0.4

OLS-2 3.24 ± 0.4 2.43 ± 0.2 2.45 ± 0.5 1.53 ± 0.6 4.92 ± 0.5 3.03 ± 0.6 2.73 ± 0.6 2.01 ± 0.5

PSM 5.00 ± 0.3 3.21 ± 0.2 2.56 ± 0.5 1.63 ± 0.4 7.91 ± 0.5 4.06 ± 0.6 2.33 ± 0.5 1.39 ± 0.3

DR 4.50 ± 0.1 3.40 ± 0.2 2.71 ± 0.5 1.78 ± 0.5 6.91 ± 0.2 4.10 ± 0.1 4.40 ± 0.2 3.57 ± 0.3

BART 3.10 ± 0.2 2.70 ± 0.1 2.90 ± 0.1 1.85 ± 0.3 3.80 ± 0.3 3.01 ± 0.2 2.98 ± 0.1 1.95 ± 0.2

CF 1.95 ± 0.2 1.21 ± 0.4 1.25 ± 0.2 1.02 ± 0.2 2.63 ± 0.4 2.32 ± 0.2 1.33 ± 0.3 1.41 ± 0.4

BNN 1.69 ± 0.4 1.20 ± 0.3 1.20 ± 0.1 0.78 ± 0.2 2.51 ± 0.3 2.42 ± 0.2 2.05 ± 0.4 1.32 ± 0.5

TARNet 1.05 ± 0.2 0.82 ± 0.1 0.43 ± 0.1 0.35 ± 0.1 1.77 ± 0.2 0.73 ± 0.0 0.77 ± 0.1 0.45 ± 0.2

CFRNet 1.04 ± 0.2 0.69 ± 0.1 0.45 ± 0.2 0.32 ± 0.1 1.62 ± 0.3 0.87 ± 0.2 0.66 ± 0.1 0.34 ± 0.1

DTANet 0.86 ± 0.1 0.57 ± 0.1 0.34 ± 0.4 0.27 ± 0.3 1.37 ± 0.4 0.85 ± 0.4 0.54 ± 0.1 0.32 ± 0.1

(i.e., News and JobsII) and one synthetic dataset with
binary treatment. The performance of all methods on News
and JobsII is shown in Table 1. The results for News and
JobsII are reported by employing in-sample evaluation.
In-sample evaluation refers to evaluate the treatment effect
of the common scenario where one potential outcome under
treatment variable t = 1 or t = 0 is observed for each indi-
vidual [40]. For example, a patient has received a treatment
and is observed with the health outcome. The error of in-
sample evaluation is computed over validation set.

Apparently, our DTANet performs the best on News
dataset. The representationmethods performbetter thanother
baselines for News in all metrics. This is mainly because
they reduce the confounder bias by balancing the covariates
between treated and controlled individuals.

One major contribution of our DTANet is to alleviate the
bias of treatment effect estimation due to the ignorance of
mediate variables. Different from News, JobsII involves
the mediate variable m referring to the level of workers’ job
search self-efficacy. The outcome is a measure of depres-
sion for each worker. Compared with the results of News,

the performance of the representation learning is degraded,
i.e., the worst εATT. The comparison baselines neglect the
mediate-specific information introduced by themediate vari-
ables. This verifies that neglecting the mediate variable leads
to the unstable estimation of treatment effect. Our method
has both balancing property and treatment-adaptive ability to
improve the accuracy of treatment effect estimation, which
brings the best performance to both datasets.

To further evaluate the generalization of baselinemethods,
we perform the out-of-sample evaluation on the synthetic
dataset to estimate ITE for individuals with no observed
potential outcome. This refers to the scenario where a new
patient arrives and the goal is to choose the best possible
treatment. The error of out-of-sample is computed over the
test set. The out-of-sample aims to estimate ITE for unitswith
no observed outcomes. This corresponds to the case where a
new patient arrives without taking any treatment and the goal
is to select better treatment between treatment A and B. The
within-sampling setting refers to the case where a patient has
already taken treatment A but we then want to select the bet-
ter treatment between A and a new treatment B. In-sample
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Fig. 4 Our DTANet results on JobsII: The distributions of estimated
treatment effect caused by different covariates for our DTANet

Table 3 The distance (unit is 10−3) between the distribution ofMediate
Treatment Effect/Direct Treatment Effect (using entire covariates) and
that of excluding particular covariate

Age Marr. Econ. Educ. Inco. Occu.

Mediate 3.98 4.09 5.75 1.97 2.09 3.12

Direct 10.4 9.03 9.98 5.62 7.13 6.11

colored in orange are gained by inputting all covariates. Each
batch in blue corresponds to the estimated treatment effect by
DTANet without a specific covariate. The estimatedMediate
Treatment Effect is significantly different from zero, sug-
gesting that treatment (job training) changes the mediate
variable (job-search self-efficacy), which in turn changes the
outcome (depressive symptoms). We find that three covari-
ants, Econ (economic hardship), Marr (marital status) and
Age, are the main causes of the treatment effect, which is
consistent with study [43]. Particularly, we consider the dis-
tribution of Mediate/Direct Treatment Effect produced by
entire covariates as the baselines. As shown in Fig. 4, the
distributions of excluding Econ,Marr and Age, respectively,
are the three most significant ones that extend the baseline
distribution with larger ranges. To further quantify the dif-
ferences between baseline distributions and the distributions
of excluding covariates, we resort to the original Wasser-
stein distance [34] as a metric in Table 3. Particularly, we use
the function wasserstein_distance in python library
SciPy3 to compute the Wasserstein distance between two
distributions. For example, 3.98 × 10−3 is the Wasserstein
distance between the distribution ofMediate TreatmentEffect
with entire covariates and the distribution excluding covariate
Age. According to the results in Table 3, the distributions of
Econ,Marr and Age have larger Wasserstein distances from
the baseline distributions. In other words, these three covari-
ates can significantly impact the Mediate/Direct Treatment
Effect. This conclusion validates that the mediate feature
representation in our DTANet method can generate effec-
tive causal explanations for the Mediate Treatment Effect
estimation. On the other hand, the covariates contribute sim-
ilar amounts to Direct Treatment Effect except Age. We can
deduce that Age is the common cause for the treatment (job
training) and outcome (depressive symptoms), i.e., the con-
founder.

Figure 5 demonstrates the estimated treatment effect when
intervening on the mediator job search self-efficacy. The left
figure shows magnitude of the estimatedMediate Treatment
Effect increases slightly as one moves from lower to higher
intervention factor. But the change is small, indicating the
Mediate Treatment Effect is relatively constant across the
distribution. In contrast, the estimated direct effects vary sub-
stantially across different intervention factors, although the
confidence intervals are wide and always include zero.

7.4.3 Robustness analysis

There may exist unobserved confounders that causally affect
both themediator and outcome even after conditioning on the
observed treatment and pre-treatment covariates. Therefore,

3 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
wasserstein_distance.html

error is computed over the validation sets, and out-of-sample 
error over the test set. Table 2 is obtained by setting a = 2, 
b = 0.5 and c = 1 for the synthetic data. Their performance 
is worse than our DTANet on the simulated data.

This observation verifies that DTANet uses mediate fea-
ture representation for the unmeasured mediate variables 
and thus can improve treatment effect estimation. The 
out-of-sample setting is much more challenging than the 
in-sampling setting. Our approach produces a confounding 
representation that is invariant for both treatments via orthog-
onal projection constraint. This guarantees the inputs of 
confounding representation are uncontaminated with infor-
mation unique to each treatment. Consequently, the potential 
outcome predictor trained on confounding representation 
is better able to generalize across different treatments, and 
further to provide a basis for the estimation of unbiased treat-
ment effect.

7.4.2 Causal explanations

The covariate/feature importance for the predictions is a sim-
ple but effective solution for explanations. Since our DTANet 
is causality-oriented, this experiment attempts to provide 
causal explanations for the estimated treatment effect by ana-
lyzing the contributions of input covariates.

To accurately quantify the covariates importance, we 
repeatedly run our DTANet on JobsII and predict the treat-
ment effect with different input covariates. We run DTANet 
on JobsII 100 trials, so we get 100 results and then 
obtain their distributions. As shown in Fig. 4, y-axis is 
Mediate/Direct Treatment Effect and x-axis is the specific 
covariate excluded from entire covariates. The batch results

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
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Fig. 5 Our DTANet results on JobsII: the comparison of changes
in estimated treatment effects caused by doing an intervention on the
mediate variable. The blue cover represents 95% confidence interval of
the change

Fig. 6 Robustness analysis of our DTANet on unobserved confounder.
The dashed line represents the estimatedmediation treatment effect. The
areas represent 95% confidence interval forMediate Treatment Effect at
each ρ. The solid line represents the estimated average mediation effect
at different values of ρ

we investigate the robustness of our DTANet to unmeasured
confounding factor ρ. The robustness analysis is conducted
by varying the value of ρ and examining how the estimated
treatment effect changes. We define ρ as the correlation
between the error terms in themediator and theoutcomemod-
els. This is reasonable, since unobserved confounder can bias
both estimation ofmediator and outcome,which further leads
to unexplained variance or errors. If unobserved confounder
affects mediator and outcome, we expect ρ is non-zero.

The estimates with potential outcome framework in
Sect. 2.2 are identified if the ignorability assumption holds.
However, it is possible that this assumption doesn’t holds in
practice. Thus, we next ask how sensitive these estimates are
to violations of this assumption using our method. Figure 6
shows the estimated mediator treatment effect and Direct
Treatment Effect against different values of ρ, where y-axis
is the treatment effect and x-axis is the confounding fac-
tor. The trueMediate Treatment Effect and Direct Treatment
Effect marked as dash horizontal lines are -0.16 and -0.04,
respectively. That means no unobserved confounders exists
for mediator and outcomes (i.e., ρ = 0). The left figure
shows the confidence intervals forMediate Treatment Effect
(i.e., treatment effect due to mediation variable) covers the
value of zero only under ρ = −0.3. The Mediate Treatment
Effect is statistically indistinguishable from zero at the 95%
level when the parameter ρ < −0.3. Potentially, parame-
ter ρ should be higher than 0.3 so that the effect will be
insignificant in the left figure; however, such low ρ value
is unlikely to happen in practice. In other words, treatment

effect estimation by our DTANet is robust to possible unob-
served confounders in varying degrees.

8 Conclusion

Individual treatment effect (ITE) estimation is one major
goal of causal inference, which aims to reduce the treatment
assignment bias caused by the confounders. Although recent
representation-based methods achieve satisfactory computa-
tional accuracy, they overlook the unique characteristics of
the treatment under different do interventions. Moreover, the
confounding representation from original covariates is easily
affected by the treatment, which violates the fact that con-
founder is irrelevant to treatment after do intervention. In
order to overcome above challenges in individual treatment
estimation (ITE), we propose an end-to-end model DTANet
to learn the confounding representation by optimal transport,
and it satisfies the treatment-invariant property introduced by
doing an intervention. Meanwhile, by the proposed orthog-
onal projection strategy, DTANet is capable of capturing the
mediate features that are treatment-specific and are informa-
tive for the outcome prediction. The effectiveness of DTANet
is verified by both empirical and theoretical results.
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