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ABSTRACT

In recent years, transmitarrays have attracted growing attention for many wireless
communication systems. Transmitarrays combine both optical and antenna array theories,
leading to high gain, high efficiency, low cost and flexible radiation performance. In this
thesis, on the basis of the state-of-the-art of transmitarrays, three main contributions are

made to meet the challenges that arise from future wireless communications.

The first contribution is the new approach to reduce radar cross section (RCS) of trans-
mitarrays without sacrificing their radiation performance. Phase controllable absorptive
frequency-selective transmission (AFST) elements are developed for low RCS transmi-
tarrays, providing absorption-transmission-absorption responses. Moreover, the transmis-
sion phase within the transmission band can be controlled by rotating the AFST element.
Based on these elements, a low RCS transmitarray has been designed. Compared with
a reference transmitarray, the radiation performance of the low-RCS one is almost un-
changed. Furthermore, significant RCS reductions have been realized in two absorption

bands for wide-angle impinging electromagnetic (EM) waves.

The second contribution is the development of a dual-layer wideband conformal trans-
mitarray at E-band. The dual-layer transmitarray element is designed based on multiple
Huygens resonances at different frequencies to achieve both wideband and high efficiency
properties. Continuous phase compensation of 360° is achieved, reducing phase errors of
the array architecture. Employing the dual-layer Huygens elements, a cylindrically con-

formal transmitarray at 78 GHz has been designed. The measured results show a peak



realized gain of 26.6 dBi with an aperture efficiency of 35.9 % and 3-dB bandwidth of
20.4 % from 71 to 87 GHz, which can fully cover the E-band spectrum from 71 to 86
GHz.

The third contribution is the development of reconfigurable transmitarrays to achieve
2-dimensional (2-D) beam scanning. A new reconfigurable dual-layer Huygens element is
developed. A 1-bit phase compensation with low transmission loss is achieved by control-
ling two PIN diodes integrated on the element. Compared with many other reconfigurable
transmitarray elements using multi-layer structures with metallic vias, the developed re-
configurable Huygens element has a simpler configuration and a simpler biasing network,
leading to a very robust design. This particularly facilitates large aperture array at higher
frequencies. To validate the design concept, a transmitarray prototype at 13 GHz has been

designed. 2-D scanning beams within +50° in E-plane and £40° in H-plane are achieved.

All in all, the developed advanced transmitarrays and their beam scanning represent
significant knowledge advance on antenna technologies. They can find wide applications

in current and future wireless communication systems.
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