
E�cient and Robust Black-box
Integral-approximation and

Optimization

Yueming Lyu

Faculty of Engineering and Information Technology

University of Technology Sydney

A thesis submitted for the degree of

Doctor of Philosophy

September 2021

Certificate of Original Authorship

I hereby declare that this thesis, is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy, in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged.

In addition, I certify that all information sources and literature used are indicated in

the thesis. The contents of this dissertation are original and have not been submitted

in whole or in part for qualifications at any other academic institution. This research

is supported by the Australian Government Research Training Program.

Signature:

Date: 01-October-2021

Production Note:

Signature removed prior to publication.

I would like to dedicate this thesis to my loving parents, who support me all the

time.

3

Acknowledgements

First, I would like to express my deepest gratitude to my supervisor, Prof. Ivor

W. Tsang, who gave me the research opportunity in his group. My research journey

was not easy. I was depressed and su↵ered a lot. It was Prof. Ivor W. Tsang

who provided me an opportunity to continue research on machine learning. Prof.

Ivor W. Tsang always supported me to be patient to do in-depth analysis instead

of shallow work. His insightful guidance helped me to focus on the key reasons to

solve the problems. Prof. Ivor W. Tsang encouraged me to explore the research

area that I am interested. He guided me to know how to think in both theoretical

and empirical views of research. Prof. Ivor W. Tsang taught me how to divide and

conquer problems and hierarchically solve them. His critical thinking and broad view

gave me insightful guidance and let me know how a good researcher should be. Prof.

Ivor W. Tsang’s advice and support improved my skills and confidence to be an

independent researcher. It is a great fortune for me to be a Ph.D. student under his

supervision.

Second, I would like to thank many friends who have supported me. I want to

thank Dr. Jiangchao Yao and Dr. Yuangang Pan for discussing both research and life.

It was a memorable time for waiting for the subway and discussing research together.

I appreciate the time with them and Xiaowei Zhou, Xingrui Yu, Xu Chen, Yan Zhang,

Jin Li, Yaxin shi, Jinliang Deng, Yinghua Yao for discussion and lunch together. I

am so grateful for such a relaxed life and beautiful experience in Sydney. I would

also like to thank Dr. Yuan Yuan, Dr. Yanbin Liu, Dr. Xin Yu, Dr. Xiaolin Zhang,

Fan Ma, Tianqi Tang, Guangrui Li, and Guang Li for their support and discussion.

I would thank Dr. Peng Sun and Dr. Li Shen for the discussion and for working

together. I may miss mentioning many others, but I thank them for their help.

Finally, I would like to dedicate this thesis to my dearest parents and family.

Thank you so much for being there, supporting me all the time.

4

Abstract

Black-box optimization and black-box integral approximation are impor-

tant techniques for machine learning, industrial design, and simulation in

science. This thesis investigates black-box integral approximation and

black-box optimization by considering the closed relationship between

them. For integral approximation, we develop a simple closed-form rank-1

lattice construction method based on group theory. Our method reduces

the number of distinct pairwise distance values to generate a more reg-

ular lattice. Furthermore, we investigate structured points set for inte-

gral approximation on hyper-sphere. Our structured point sets can serve

as a good initialization for black-box optimization. Moreover, we pro-

pose stochastic black-box optimization with implicit natural gradients for

black-box optimization. Our method is very simple and has only the

step-size hyper-parameter. Furthermore, we develop a batch Bayesian op-

timization algorithm from the perspective of frequentist kernel methods,

which is powerful for low-dimensional black-box optimization problems.

We further apply our structured integral approximation techniques for

kernel approximation. In addition, we develop structured approximation

for robust deep neural network architecture, which results in an elegant

and simple architecture that preserves optimization properties. Moreover,

we develop adaptive loss as a tighter upper bound approximation for ex-

pected 0-1 risk, robust and trainable with SGD.

Contents

1 Introduction 1

1.1 Black-box optimization . 1

1.1.1 Sampling based Optimization 1

1.1.2 Bayesian Optimization . 3

1.2 Black-box Integral Approximation . 5

1.3 Connection Between Black-box Integral Approximation and Black-box

Optimization . 7

1.4 Integral Approximation for Kernel Methods and Deep Learning . . . 8

1.4.1 Integral Approximation for Kernel Approximation 8

1.4.2 Structured Integral Approximation for Robust Neural Network

Architecture . 10

1.4.3 Adaptive Loss As A Tighter Upper Bound Approximation of

Expected 0-1 Risk . 12

1.5 Research Objectives . 13

1.6 Publications . 13

2 Related Works 15

2.1 Black-box Optimization . 15

2.1.1 Bayesian Optimization . 16

2.1.2 Sampling-based Derivative-free Optimization 17

2.2 Black-box Integral Approximation 18

2.3 Integral Approximation for Kernel Methods and Deep Learning . . . 19

2.3.1 Kernel Approximation . 19

2.3.2 Deep Learning Theory from Optimization and Kernel Perspective 20

2.3.3 Robust Deep Learning under Label Noise 21

i

3 Implicit Natural Gradient Optimization 25

3.1 Chapter Abstract . 25

3.2 Optimization with Exponential-family Sampling 25

3.3 Implicit Natural Gradient . 27

3.4 Update Rule for Gaussian Sampling 28

3.4.1 Stochastic Update . 29

3.4.2 Mean field approximation for acceleration 31

3.4.3 Direct Update for µ and ⌃ . 31

3.5 Optimization for Discrete Variable 33

3.6 Convergence Rate . 34

3.7 Empirical Evaluation . 36

3.7.1 Evaluation on synthetic continuous test benchmarks 36

3.7.2 Evaluation on RL test problems 38

3.7.3 Evaluation on discrete test problems 39

3.8 Summary . 40

4 Batch Bayesian Optimization 42

4.1 Chapter Abstract . 42

4.2 Problem Setup . 42

4.3 BO in Noise-Free Setting . 44

4.3.1 Sequential Selection in Noise Free Setting 44

4.3.2 Batch Selection in Noise-Free Setting 45

4.4 BO in Perturbation Setting . 47

4.4.1 Sequential Selection in Perturbation Setting 47

4.4.2 Batch Selection in Perturbation Setting 48

4.5 Robust Initialization for BO . 49

4.6 Fast Rank-1 Lattice Construction . 52

4.6.1 The rank-1 lattice construction given a base vector 52

4.6.2 The separate distance of a rank-1 lattice 53

4.6.3 Searching the rank-1 lattice with maximized separate distance 54

4.6.4 Comparison of minimum distance generated by di↵erent methods 54

4.6.5 Comparison between lattice points and random points 55

4.7 Experiments . 55

4.7.1 Comparison with Bull’s Non-adaptive Batch Method 55

4.7.2 Empirical Evaluation on Synthetic Benchmark Problems . . . 56

ii

4.7.3 Empirical Evaluation on Hyperparameter tuning of Neural Net-

work . 57

4.7.4 Empirical Evaluation on Robot Pushing Task 59

4.8 Summary . 60

5 Subgroup-based Rank-1 Lattice Quasi-Monte Carlo 61

5.1 Chapter Abstract . 61

5.2 Background of Lattice . 61

5.2.1 The Lattice . 62

5.2.2 The separating distance of a lattice 62

5.3 Subgroup-based Rank-1 Lattice . 63

5.3.1 Construction of the Generating Vector 63

5.3.2 Regular Property of Rank-1 Lattice 65

5.4 QMC for Kernel Approximation . 66

5.5 Experiments . 67

5.5.1 Evaluation of the minimum distance 67

5.5.2 Integral approximation . 69

5.5.3 Kernel approximation . 69

5.5.4 Approximation on Graphical Model 70

5.6 Subgroup-based QMC on Sphere Sd�1 72

5.7 QMC for Generative models . 74

5.8 Generative Inference for CycleGAN 75

5.9 Summary . 76

6 Spherical Structured Feature Maps for Kernel Approximation 79

6.1 Chapter Abstract . 79

6.2 Background of Kernel Approximation 79

6.2.1 Random Feature Maps . 79

6.2.2 Discrete Riesz s-energy . 81

6.3 Spherical Structured Feature Maps 82

6.3.1 Feature Maps for Shift and Rotation Invariant Kernels 82

6.3.2 Feature Maps for bth-order Arc-cosine Kernels 84

6.4 Design of Matrix U . 85

6.4.1 Structure of Matrix U . 86

6.4.2 Minimize the Discrete Riesz s-energy 86

6.5 Fast Feature Maps Construction . 89

6.6 Empirical Studies . 91

iii

6.6.1 Convergence and Speedup . 91

6.6.2 Approximation Accuracy . 92

6.7 Summary . 94

7 Neural Optimization Kernel: Towards Robust Deep Learning 95

7.1 Chapter Abstract . 95

7.2 Neural Optimization Kernel . 95

7.3 Structured Approximation . 98

7.3.1 Convergence Rate for Finite Dimensional Approximation Prob-

lem . 99

7.3.2 Learning Parameter R . 100

7.3.3 Kernel Approximation . 102

7.4 Functional Optimization . 103

7.5 Rademacher Complexity and Generalization Bound 104

7.6 Experiments . 105

7.6.1 Empirical Evaluation on Classification under Gaussian Noise

Perturbation . 106

7.6.2 Empirical Evaluation on Classification under Laplace Noise Per-

turbation . 108

7.6.3 Empirical Evaluation on Classification with Adversarial Pertur-

bation . 109

7.7 Summary . 109

8 Curriculum Loss for Robust Deep Learning 111

8.1 Chapter Abstract . 111

8.2 Curriculum Loss . 111

8.2.1 Robustness of 0-1 loss against label corruption 112

8.2.2 Tighter upper bounds of the 0-1 Loss 113

8.2.3 Noise Pruned Curriculum Loss 117

8.3 Empirical Study . 119

8.3.1 Evaluation of Robustness against Label Corruption 119

8.3.2 More experiments with di↵erent network architectures 122

8.3.3 Impact of Misspecified Estimation of Noise Rate ✏ 124

8.4 Summary . 125

9 Conclusion 127

iv

10 Appendix 128

10.1 Proof of Theorem 2 . 128

10.2 Proof of Theorem 3 . 128

10.3 Proof of Theorem 4 . 129

10.4 Proof of Theorem 5 . 137

10.5 Variance Reduction . 139

10.6 Proof of Updating Theorem . 142

10.7 Proof of Gradient and Hessian Theorem 143

10.8 Discrete Update . 144

10.9 Proof of Theorem 6 . 145

10.10Proof of Theorem 7 . 147

10.11Proof of Theorem 8 . 151

10.12Proof of Theorem 9 . 153

10.13Proof of Theorem 10 . 156

10.14Proof of Theorem 11 . 157

10.15Proof of Theorem 12 . 157

10.16Proof of Corollary 2 . 157

10.17Proof of Theorem 13 . 158

10.18Proof of Theorem 14 . 159

10.19Proof of Corollary 1 . 161

10.20Proof of Proposition 1 . 163

10.21Proof of Theorem 22 . 163

10.22Proof of Theorem 21 . 170

10.23Proof of Theorem 23 . 172

10.24Proof of Theorem 24 . 173

10.25Proof of Theorem 25 . 176

10.26A Better Diagonal Random Rotation for SSF 180

10.27Rademacher Complexity . 181

10.28Generalization Bound . 185

10.29Rademacher Complexity and Generalization Bound for General Struc-

tured Neural Network Family . 186

10.30Explanation of Theorem 28 for robust learning 191

10.31Proof of Theorem 29 . 193

10.32Proof of Corollary 4 . 193

10.33Proof of Partial Optimization Theorem (Theorem 31) 194

10.34Proof of Proposition 2 . 195

v

10.35Proof of Theorem 30 . 196

10.36Proof of Corollary 5 . 197

10.37Multi-Class Extension . 198

10.38Evaluation of E�ciency of the Proposed Soft-hinge Loss 198

vi

List of Figures

3.1 Mean value of f(x) in log10 scale over 20 independent runs for 100-

dimensional problems. 37

3.2 Average Reward over 5 independent runs on benchmark RL environ-

ments . 39

3.3 Mean value of regret over 10 independent runs for di↵erent dimensional

discrete optimization problems . 40

4.1 Lattice Points and Random Points on [0, 1]2 51

4.2 More Lattice Points and Random Points on [0, 1]2 56

4.3 The mean value of simple regret over 30 runs on Rosenbrock and Ackley

function . 58

4.4 The mean value of simple regret on network tuning task and robot

pushing task. 58

4.5 The mean value of simple regret for di↵erent algorithms over 30 runs

on di↵erent test functions . 59

5.1 Mean approximation error over 50 independent runs.error bars are with

in 1⇥ std. 68

5.2 Relative Mean and Max Reconstruction Error for Gaussian, Zero-order

and First-order Arc-cosine Kernel on DNA dataset. Error bars are

within 1⇥ std. 70

5.3 Relative Mean and Max Reconstruction Error for Gaussian, Zero-order

and First-order Arc-cosine Kernel on SIFT1M dataset. 71

5.4 Mean approximation error over 50 independent runs. Error bars are

with in 1⇥ std . 72

5.5 Illustration of the generated images from models trained with subgroup

rank-1 lattice sampling, Monte-Carlo sampling, and Standard version

of CycleGAN. 77

vii

5.6 Illustration of the generated images from models trained with subgroup

rank-1 lattice sampling, Monte-Carlo sampling, and Standard version

of CycleGAN. 78

6.1 Convergence of the Logarithmic Energy 91

6.2 Speedup of the Feature Maps Construction 92

6.3 Relative Mean and Max Reconstruction Error for Gaussian, Zero-order

and First-order Arc-cosine Kernel on MNIST 93

7.1 Mean test accuracy ± std over 5 independent runs under Gaussian

noise with DenseNet backbone . 106

7.2 Mean test accuracy ± std over 5 independent runs under Gaussian

noise with ResNet backbone . 107

7.3 Mean test accuracy ± std over 5 independent runs under Laplace noise

with DenseNet backbone . 107

7.4 Mean test accuracy ± std over 5 independent runs under Laplace noise

with ResNet backbone . 108

7.5 Mean test accuracy± std over 5 independent runs on CIFAR10/CIFAR100

dataset under FGSM adversarial attack for DenseNet and ResNet back-

bone. 109

8.1 Test accuracy and label precision vs. number of epochs on MNIST

dataset. 120

8.2 Test accuracy and label precision vs. number of epochs on CIFAR10

dataset. 121

8.3 Test accuracy and label precision vs. number of epochs on CIFAR100

dataset. 122

8.4 Test accuracy vs. number of epochs on MNIST dataset. 123

8.5 Test accuracy vs. number of epochs on CIFAR100 dataset. 124

8.6 Test accuracy (%) on Tiny-ImageNet dataset with symmetric noise . 126

8.7 Test accuracy vs. number of epochs on CIFAR10 dataset. 126

10.1 Training/Test accuracy for soft and hard hinge loss with di↵erent op-

timizer on CIFAR100 . 199

viii

List of Tables

3.1 Test functions . 37

4.1 Minimum distance (2⇢X) of 1,000 lattice points in [0, 1]d for d = 10,

d = 20, d = 30, d = 40 and d = 50. 54

4.2 Minimum distance (2⇢X) of 2,000 lattice points in [0, 1]d for d = 10,

d = 20, d = 30, d = 40 and d = 50. 54

4.3 Minimum distance (2⇢X) of 3,000 lattice points in [0, 1]d for d = 10,

d = 20, d = 30, d = 40 and d = 50. 55

4.4 Benchmark functions . 57

5.1 Minimum l1-norm-based toroidal distance of rank-1 lattice constructed

by di↵erent methods. 67

5.2 Minimum l2-norm-based toroidal distance of rank-1 lattice constructed

by di↵erent methods. 67

5.3 Mutual coherence of points set constructed by di↵erent methods. Smaller

is better. 74

7.1 Regularizers and Proximal Operators 96

8.1 Test accuracy(%) of DenseNet on CIFAR10 and CIFAR100. 123

8.2 Test accuracy(%) of DenseNet on CIFAR10 and CIFAR100 with se-

mantic noise. 124

8.3 Test accuracy(%) of DenseNet on CIFAR10 with open-set noise. . . . 125

8.4 Average test accuracy of NPCL with di↵erent ✏ on MNIST over last

ten epochs . 125

ix

List of Algorithms

1 INGO . 30

2 Fast INGO-u . 31

3 INGOstep . 33

4 General Framework . 34

5 Sequential Noise-free Algorithm . 45

6 Batch Noise-free Algorithm . 46

7 Sequential Optimization with Perturbation 47

8 Batch Optimization with Perturbation 49

9 Greedy Batch Optimization . 50

10 Rank-1 Lattice Construction . 52

11 Rank-1 Lattice Construction with Successive Coordinate Search (SCS) 53

12 Coordinate Index Selection . 89

13 Partial Optimization . 116

14 Training with Batch Noise Pruned Curriculum Loss 119

x

Chapter 1

Introduction

1.1 Black-box optimization

1.1.1 Sampling based Optimization

Given a proper function f(x) : Rd ! R such that f(x) > �1, we aim at minimizing

f(x) by using function queries only, which is known as black-box optimization. It has

a wide range of applications, such as automatic hyper-parameters tuning in machine

learning and computer vision problems [156], adjusting parameters for robot control

and reinforcement learning [20, 36, 115], black-box architecture search in engineering

design [168] and drug discovery [128].

Several kinds of approaches have been widely studied for black-box optimiza-

tion, including Bayesian optimization (BO) methods [32,118,160], evolution strategies

(ES) [17,69] and genetic algorithms (GA) [158]. Among them, Bayesian optimization

methods are good at dealing with low-dimensional expensive black-box optimization,

while ES methods are better for relatively high-dimensional problems with cheaper

evaluations compared with BO methods. ES-type algorithms can well support par-

allel evaluation, and have drawn more and more attention because of its success in

reinforcement learning problems [38, 114,149], recently.

CMA-ES [2,69] is one of state-of-the-art ES methods with many successful applica-

tions. It uses second-order information to search candidate solutions by updating the

mean and covariance matrix of the likelihood of candidate distributions. Despite its

successful performance, the update rule combines several sophisticated components,

which is not well understood. Wierstra et al. show that directly applying standard re-

inforce gradient descent is very sensitive to variance in high precision search for black-

box optimization [173]. Thus, they propose Natural evolution strategies (NES) [173]

to estimate the natural gradient for black-box optimization. However, they use the

1

Monte Carlo sampling to approximate the Fisher information matrix (FIM), which

incurs additional error and computation cost unavoidably. Along this line, [3] show

the connection between the rank-µ update of CMA-ES and NES [173]. [135] further

show that several ES methods can be included in an unified framework. Despite these

theoretical attempts, the practical performance of these methods is still inferior to

CMA-ES. Moreover, these works do not provide any convergence rate analysis, which

is the key insight to expedite black-box optimizations.

Another line of research for ES-type algorithms is to reduce the variance of gra-

dient estimators. Choromanski et al. [38] proposed to employ Quasi Monte Carlo

(QMC) sampling to achieve more accurate gradient estimates. Recently, they further

proposed to construct gradient estimators based on active subspace techniques [37].

Although these works can reduce sample complexity, how does the variance of these

estimators influence the convergence rate remains unclear.

To take advantage of second-order information for the acceleration of black-box

optimizations, we propose a novel theoretical framework: stochastic Implicit Natural

Gradient Optimization (INGO) algorithms, from the perspective of information ge-

ometry. Raskutti et al. [143] give a method to compute the Fisher information matrix

implicitly using exact gradients, which is impossible for black-box optimization; while

our methods and analysis focus on black-box optimization. To the best of our knowl-

edge, we are the first to design stochastic implicit natural gradient algorithms for

black-box optimization. Our methods take a stochastic black-box estimate instead of

the exact gradient to update. Theoretically, this update is equivalent to a stochastic

natural gradient step w.r.t. natural parameters of an exponential-family distribution.

We present our INGO method in Chapter 3. Our contributions are summarized as

follows:

• To the best of our knowledge, we are the first to design stochastic implicit nat-

ural gradient algorithms w.r.t natural parameters for black-box optimization.

We propose e�cient algorithms for both continuous and discrete black-box op-

timization. Our methods construct stochastic black-box update without com-

puting the FIM. Our method can adaptively control the stochastic update by

taking advantage of the second-order information, which is able to accelerate

convergence and is primarily important for ill-conditioned problems. Moreover,

our methods have fewer hyperparameters and are much simpler than CMA-ES.

• Theoretically, we prove the convergence rate of our continuous optimization

methods for convex functions. We also show that reducing variance of the

2

black-box gradient estimators by orthogonal sampling can lead to a small regret

bound.

• Empirically, our continuous optimization method achieves a competitive per-

formances compared with the state-of-the-art method CMA-ES on benchmark

problems. We find that our method with full matrix update can obtain higher

optimization precision compared with IGO [135] on some challenging problems.

We further show the e↵ectiveness of our methods on RL control problems.

Moreover, our discrete optimization algorithm outperforms a GA method on

a benchmark problem.

1.1.2 Bayesian Optimization

To achieve greater e�ciency in the batch selection, we propose to simultaneously select

candidate queries of a batch in a holistic manner, rather than the previous sequential

manner. In this paper, we analyze both the batch BO and the sequential BO from a

frequentist perspective. For the batch BO, we propose a novel batch selection method

that takes both the mean prediction value and the correlation of points in a batch into

consideration. Our method leads to a novel batch acquisition function. By jointly

maximizing the novel acquisition function with respect to all the points in a batch,

the proposed method is able to attain a better exploitation/exploration trade-o↵.

Bayesian Optimization (BO) is another promising approach to address expensive

black-box (non-convex) optimization problems. Applications of BO include automatic

tuning of hyper-parameters in machine learning [156], gait optimization in robot con-

trol [115], molecular compounds identifying in drug discovery [128], and optimization

of computation-intensive engineering design [168].

BO aims to find the optimum of an unknown, usually non-convex function f . Since

little information is known about the underlying function f , BO requires to estimate

a surrogate function to model the unknown function. Therefore, one major challenge

of BO is to seek a balance between collecting information to model the function

f (exploration) and searching for an optimum based on the collected information

(exploitation).

For the sequential BO, we obtain a similar acquisition function as that in the

GP-UCB [160], except that our function employs a constant weight for the deviation

term. The constant weight is preferred over the previous theoretical weight proposed

in GP-UCB, because the latter is overly conservative, which has been observed in

many other works [25, 26, 160]. Moreover, for functions with a bounded norm in the

3

reproducing kernel Hilbert space (RKHS), we derive the non-trivial regret bounds for

both the batch BO method and the sequential BO method.

At the beginning of the BO process, since little information is known, the initial-

ization phase becomes vitally important. To obtain a good and robust initialization,

we first study the properties which are necessary for a robust initialization through

analyzing the adversarial regret. We prove that the regret bounds decrease with the

decrease of the covering radius (named fill distance in [87]). Minimizing the covering

radius of a lattice is equivalent to maximizing its packing radius (named separate

distance in [87]) [42,89], we then propose a novel fast searching method to maximize

the packing radius of a rank-1 lattice and obtain the points set with a small covering

radius. All details are presented in Chapter 4. Our contributions are summarized as

follows:

• We study the black-box optimization for functions with a bounded norm in

RKHS and achieve deterministic regret bounds for both the noise-free setting

and the perturbation setting. The study not only brings a new insight into the

BO literature but also provides better guidance for designing new acquisition

functions.

• We propose a more-e�cient novel adaptive algorithm for batch optimization,

which selects candidate queries of a batch in a holistic manner. Theoretically,

we prove that the proposed methods achieve non-trivial regret bounds.

• We analyze the adversarial regret for a robust initialization of BO, and theoret-

ically prove that the regret bounds decrease with the decrease of the covering

radius, and provide a criterion for generating points set to minimize the bound

for the initialization of BO.

• We propose a novel, fast searching algorithm to maximize the packing radius of

a rank-1 lattice and generate a set of points with a small covering radius. The

generated points set provides a robust initialization for BO. Moreover, the set of

points can be used for integral approximation on domain [0, 1]d. Experimental

results show that the proposed method can achieve a larger packing radius

(separate distance) compared with the baselines.

4

1.2 Black-box Integral Approximation

Black-box Integral-approximation is closely related to black-box optimization. For

example, the point set for integral approximation can also be used for black-box

optimization. Integral operation is critical in a large amount of interesting machine

learning applications, e.g. kernel approximation with random feature maps [140],

variational inference in Bayesian learning [22], generative modeling and variational

autoencoders [94]. Directly calculating an integral is usually infeasible in these real

applications. Instead, researchers usually try to find an approximation for the integral.

A simple and conventional approximation is Monte Carlo (MC) sampling, in which

the integral is approximated by calculating the average of the i.i.d. sampled integrand

values. Monte Carlo (MC) methods [65] are widely studied with many techniques to

reduce the approximation error, which includes importance sampling and variance

reduction techniques and more [10].

To further reduce the approximation error, Quasi-Monte Carlo (QMC) methods

utilize a low discrepancy point set instead of the i.i.d. sampled point set used in

the standard Monte Carlo method. There are two main research lines in the area of

QMC [46,130], i.e., the digital nets/sequences and lattice rules. The Halton sequence

and the Sobol sequence are the widely used representatives of digital sequences [46].

Compared with digital nets/sequences, the points set of lattice rules preserve the

properties of lattice. The points partition the space into small repeating cells. Among

previous research on the lattice rules, Korobov introduced integration lattice rules

in [95] for an integral approximation of the periodic integrands. [155] proves that

there also exist good lattice rules for non-periodic integrands. According to general

lattice rules, a point set is usually constructed by enumerating the integer vectors

and multiplying them with an invertible generator matrix. A general lattice rule has

to check each constructed point to see whether it is inside a unit cube and discard it

if it is not. The process is repeated until we reach the desired number of points. This

construction process is ine�cient since the checking step is required for every point.

Note that rescaling the unchecked points by the maximum norm of all the points may

lead to non-uniform points set in the cube.

An interesting special case of the lattice rules is the rank-1 lattice, which only

requires one generating vector to construct the whole point set. Given the generating

vector, rank-1 lattices can be obtained by a very simple construction form. It is thus

much more e�cient to construct the point set with the simple construction form.

Compared with the general lattice rule, the construction form of the rank-1 lattice

5

has already guaranteed the constructed point to be inside the unit cube, therefore,

no further checks are required. We refer to [46] and [130] for a more detailed survey

of QMC and rank-1 lattice.

To obtain a simple and fast QMC lattice, we propose a closed-form rank-1 lattice

rule that directly computes a generating vector without any search process. To gener-

ate a more evenly spaced lattice, we propose to reduce the number of distinct pairwise

distance in the lattice point set to make the lattice more regular w.r.t. the minimum

toroidal distance [64]. Larger minimum toroidal distance means more regular. Based

on group theory, we derive that if the generating vector z satisfies the condition that

set {z,�z} := {z1, · · · , zd,�z1, · · · ,�zd} is a subgroup of the multiplicative group

of integers modulo n, where n is the number of points, then the number of distinct

pairwise distance can be e�ciently reduced. We construct the generating vector by

ensuring this condition. We presented all details of our subgroup-based rank-1 lattice

in Chapter 5. Our contributions are summarized as follows:

• We propose a simple and e�cient closed-form method for rank-1 lattice con-

struction, which does not require the time-consuming exhaustive computer

search that previous rank-1 lattice algorithms rely on. A side product is a

closed-form method to generate QMC points set on sphere Sd�1 with bounded

mutual coherence, which is presented in Appendix.

• We generate a more regular lattice by reducing the number of distinct pairwise

distances. We prove a lower and an upper bound for the minimum l1-norm-

based and l2-norm-based toroidal distance of the rank-1 lattice. Theoretically,

our constructed lattice is the optimal rank-1 lattice for maximizing the minimum

toroidal distance when the number of points n is a prime number and n = 2d+1.

• Empirically, the proposed method generates near-optimal rank-1 lattice com-

pared with the Korobov search method in maximizing the minimum of the

l1-norm-based and l2-norm-based toroidal distance.

• Our method obtains better approximation accuracy on benchmark test prob-

lems and kernel approximation problem.

6

1.3 Connection Between Black-box Integral Ap-
proximation and Black-box Optimization

Black-box integral approximation and black-box optimization have a close relation-

ship between each other. Specifically, an integral over a bounded domain X

I(f) :=

Z

X

f(x)dx, (1.1)

can be viewed as the mean value of infinite function values over the bounded domain

X . A quasi-Monte Carlo approximation (equal-weight approximation) is given as

follows:

bI(f) := 1

n

nX

i=1

f(xi). (1.2)

It can be viewed as an approximation using the mean value over the function value

of n samples. The objective of black-box integral approximation is to find n samples

over domain X , such that the mean estimator is a good approximation of the integral.

Similarly, an optimization over a bounded domain X , i.e.,

M(f) := min
x2X

f(x), (1.3)

can be viewed as taking the minimum over infinite function values over the bounded

domain X .

A black-box optimization with n samples is given as follows:

cM(f) := min
i2{1,··· ,n}

f(xi). (1.4)

It can be viewed as an approximation using the min value over the function value of

n samples. The objective of black-box optimization is to find n samples over domain

X , such that the min estimator is a good approximation of the true minimum over

the entire domain X .

Thus, the key of both black-box integral-approximation and black-box optimiza-

tion is to construct n samples for a better approximation.Techniques for black-box

integral approximation can be used for black-box optimization and vice-visa. For ex-

ample, a good point set for integral-approximation can also be used as an initialization

for black-box optimization.

7

1.4 Integral Approximation for Kernel Methods
and Deep Learning

1.4.1 Integral Approximation for Kernel Approximation

Kernel methods such as Gaussian processes (GPs) [144, 157, 159] and support vector

machines (SVMs) [33, 56] have been successfully used in many statistical modeling

and machine learning tasks. Despite of strong expressive power, kernel methods

usually cannot scale up to the large scale datasets due to the cubic time complexity.

Integral approximation techniques can be used to approximate the kernel functions.

Specifically, a shift invariant kernel K(x, z) can be rewritten an integral

K(x, z) =
R
Rd e�i(x�z)Twdp(w).

In addition, a b-th order arc-cosine kernel can be reformulated as an integral

Kb(x, z) = 2
R
Rd s(wTx)s(wTz)(wTx)

b
(wTz)

b
p(w)dw.

The idea of kernel approximation is applying QMC or MC techniques to approximate

the integral. Namely, the kernel can be approximated as K(x, z) ⇡ (x)> (z), where

 is the explicit mapped feature constructed as (x) = f(WTx)/
p
N , where f(·)

denotes the nonlinear function, W 2 Rd⇥N is constructed by N i.i.d samples drawn

from a distribution determined by the kernel.

The training and inference of kernel methods can be greatly accelerated by work-

ing directly on the primal space of (·). For example, Gaussian Processes (GPs) have

O(L3) computation and O(L2) storage complexity. By using feature maps, it reduces

to O(N2L + N3) computation and O(NL + N2) storage complexity. All these ele-

gant properties make random feature maps promising for large scale kernel methods.

Thus, many kernel methods [41,106,134] have been proposed to deal with large scale

statistical learning by directly working on feature maps.

Generally, two aspects of random feature maps are mostly concerned by literature

for scaling up kernel methods. One is the approximation accuracy of feature maps

while the other is the computational cost of feature maps construction. To achieve

better approximation accuracy, [14, 178] employ QMC [47] sampling instead of stan-

dard Monte Carlo sampling to construct feature maps. By mapping QMC points on

[0, 1]d through the inverse cumulative distribution function, they construct more ef-

fective feature maps. To reduce time complexity, [105] propose Fastfood to construct

feature maps. Benefiting from the special structured matrix multiplication, it reduces

8

time complexity of feature maps construction from O(Nd) to O(N log d). However, it

achieves computational e�ciency at the expense of increasing the variance of approx-

imation. Recently, [57] employ the property of circulant matrix to accelerate feature

maps construction of Gaussian kernel without increasing the variance. [39] general-

ize the Fastfood and circulant feature maps to P model and particularly discuss the

structured matrix with low-displacement rank. Despite of the success of P model,

it still cannot achieve better approximation accuracy compared with feature maps

obtained with fully Gaussian matrix.

To achieve better approximation accuracy and loglinear time complexity, we pro-

pose Spherical Structured Feature (SSF) maps to approximate shift and rotation

invariant kernels as well as bth-order arc-cosine kernels [34]. Specifically, We con-

struct SSF maps based on the point set on d� 1 dimensional sphere Sd�1, where the

points are columns of a particular structured matrix produced by a discrete Fourier

matrix. The points on Sd�1 for SSF maps construction can be generated by opti-

mizing the discrete Riesz s-energy. According to [28], optimizing the discrete Riesz

s-energy (for s in some ranges) can generate QMC designs on Sd�1, which usually can

achieve smaller approximation error compared with fully random methods. More-

over, because of special structure of the point set, SSF maps construction can achieve

loglinear time complexity via Fast Fourier Transform (FFT).

We apply our spherical structured approximation techniques for kernel approxi-

mation in Chapter 6. Our contributions are summarized as follows:

• We present Spherical Structured Feature (SSF) maps to approximate shift and

rotation invariant kernels as well as bth-order arc-cosine kernels [34]. We prove

that the inner product of SSF maps are unbiased estimates for above kernels

if asymptotically uniformly distributed point set on d � 1 dimensional sphere

Sd�1 is given.

• We propose an e�cient coordinate decent method to find a local optimum of the

discrete Riesz s-energy [29], thereby approximately generating asymptotically

uniformly distributed points on Sd�1.

• We can construct SSF maps with linear space complexity and loglinear time

complexity. Empirically, SSF maps achieve superior performance compared

with other methods.

9

1.4.2 Structured Integral Approximation for Robust Neural
Network Architecture

Deep neural networks (DNNs) have obtained great success in many applications, in-

cluding computer vision [71], natural language processing [175] (NLP), and reinforce-

ment learning [124] etc. However, the theory of deep learning is much less explored

compared with its great empirical success. A key challenge of deep learning theory

is that deep neural networks are heavily overparameterized. Namely, the number of

parameters is much larger than training samples. In practice, as the depth and width

increasing, the performance of deep NN also becomes better [161, 184], which is far

beyond the traditional learning theory regime.

In the traditional neural networks and kernel methods literature, it is well known

the connection between the infinite width neural networks and Gaussian process [75],

and the universal approximation power of NN [112]. However, these theories cannot

explain why the success of deep neural networks. A recent work, Neural Tangent

Kernel [80] (NTK), shows the connection between training an infinite-width NN and

performing functional gradient descent in a Reproducing Kernel Hilbert Space(RKHS)

associated with the NTK. Because of the convexity of the functional optimization

problem, Jacot et al. show the global convergence for infinite-width NN under the

NTK regime. Along this direction, Hanin et al. [68] analyze the NTK with finite

width and depth. Shankar et al. [153] empirically investigate the performance of

some simple compositional kernels, NTKs, and deep neural networks. Nitanda et

al. [132] further show the minimax optimal convergence rate of average stochastic

gradient descent in a two-layer NTK regime.

Despite the success of NTK [80] on showing the global convergence of NN, its

expressive power is limited. Zhu et al. [4] provide an example that shallow kernel

methods (including NTK) need a much larger number of training samples to achieve

the same small population risk compared with a three-layer ResNet. They further

point out the importance of hierarchical learning in deep neural networks [5]. In [5],

they give the theoretical analysis of learning a target network family with square

activation function under deep NN regime. Besides, there are quite a few works

focus on the analysis of two-layer networks [18,27,52,88,113,180] and shallow kernel

methods without hierarchical learning [9, 44, 58, 109,190].

Although some particular examples show deep models have more powerful ex-

pressive power than shallow ones [4,5,54], how and why deep neural networks benefit

from the depth remain unclear. Zhu et al. [5] highlight the importance of a backward

10

feature correction. In this thesis, we investigate the deep neural networks from a

di↵erent kernel method perspective. All details are presented in Chapter 7.

Our contributions are summarized as follows:

• We first propose a novel Neural Optimization Kernel (NOK) family, which en-

ables kernel methods taking advantage of ResNet-type architecture.

• Theoretically, we show that the architecture of NOK performs optimization

of regularized problems. We prove the monotonic descent property for a wide

range of both convex and non-convex regularized problems. Moreover, we prove

a O(1/T) convergence rate for convex regularized problems. Namely, our NOK

family performs an optimization through model architecture. A T -layer model

performs T -step monotonic descent updates.

• We propose a novel data-dependent structured approximation method, which

establishes the connection between training deep neural networks and kernel

methods associated with NOKs. The resultant computation graph is a ResNet-

type finite width NN. The activation function of NN specifies the regularization

problem explicitly or implicitly. Our structured approximation preserved the

monotonic descent property and O(1/T) convergence rate. Furthermore, we

propose both supervised and unsupervised learning schemes. For the unsuper-

vised learning case and shared parameter case, as the width tends to infinity,

training finite structured NN with GD tends to functional gradient descent in

an RKHS associated with a NOK. Notably, for strongly convex regularized re-

gression problems, functional gradient descent leads to the global convergence.

For supervised learning cases with free parameters, training NN learns a kernel

balanced between the supervised signal and the prior regularization. We prove

the Rademacher complexity bound and generalization bound.

• Empirically, we show that our unsupervised data-dependent structured approxi-

mation block can serve as a simple plug-in of popular backbones for robust deep

learning. Extensive experiments on CIFAR10 and CIFAR100 with ResNet and

DenseNet backbones show the robustness of our structured approximated NOK

against the Gaussian noise, Laplace noise, and FGSM adversarial attack [62].

11

1.4.3 Adaptive Loss As A Tighter Upper Bound Approxima-
tion of Expected 0-1 Risk

The empirical risk is a Monte Carlo integral approximation of the expected risk.

When 0-1 loss is used for training, it is more robust to outliers compared with an

unbounded (convex) loss (e.g. hinge loss) [122]. This is due to unbounded convex

losses putting much weight on the outliers (with a large loss value) when minimizing

the losses [122]. If the unbounded (convex) loss is employed in deep network models,

this becomes more prominent. Since training loss of deep networks can often be

minimized to zero, outlier with a large loss has a large impact on the model. On the

other hand, the 0-1 loss treats each training sample equally. Thus, each sample does

not have too much influence on the model. Therefore, the model is tolerant of a small

number of outliers.

Although the 0-1 loss has many robust properties, its non-di↵erentiability and zero

gradients make it di�cult to optimize. One possible way to alleviate this problem is

to seek an upper bound of the 0-1 loss that is still e�cient to optimize but tighter than

conventional (convex) losses. Such a tighter upper bound of the 0-1 loss can reduce

the influence of the noisy outliers compared with conventional (convex) losses. At the

same time, it is easier to optimize compared with the 0-1 loss. When minimizing the

upper bound surrogate, we expect that the 0-1 loss objective is also minimized.

To e�ciently minimize the 0-1 loss while keeping the robust properties, we propose

a novel loss that is a tighter upper bound of the 0-1 loss compared with conventional

surrogate losses. Specifically, giving any base loss function l(u) � 1
�
u < 0

�
, u 2 R,

our loss Q(u) satisfies
P

n

i=1 1
�
ui < 0

�
 Q(u) 

P
n

i=1 l(ui), where u = [u1, · · · , un]

with ui being the classification margin of ith sample, and 1(·) is an indicator function.

We name it as Curriculum Loss (CL) because our loss automatically and adaptively

selects samples for training, which can be deemed as a curriculum learning paradigm.

Our adaptive loss can be viewed as an adaptive tighter upper bound approxima-

tion of the expected 0-1 loss. More detailed discussion of our loss are presented in

Chapter 8. Our contributions are listed as follows:

• We propose a novel loss (i.e. curriculum loss) for robust learning against la-

bel corruption. We prove that our CL is a tighter upper bound of 0-1 loss

compared with conventional summation based surrogate loss. Moreover, CL

can adaptively select samples for stagewise training, which bridges a connection

between curriculum learning and robust learning.

12

• We prove that CL can be performed by a simple and fast selection algorithm

withO(n log n) time complexity. Moreover, our CL supports mini-batch update,

which is convenient to be used as a plug-in in many deep models.

• We further propose a Noise Pruned Curriculum Loss (NPCL) to address label

corruption problem by extending CL to a more general form. Our NPCL auto-

matically prune the estimated noisy samples during training. Moreover, NPCL

is also very simple and e�cient, which can be used as a plug-in in deep models

as well.

1.5 Research Objectives

The research objectives of this thesis is given as follows:

• Develop simple and e�cient sampling-based black-box optimization framework

with theoretical convergence guarantee. (Chapter 3)

• Develop e�cient Bayesian optimization algorithms with theoretical convergence

guarantee to address expensive black-box optimization problems. (Chapter 4)

• Develop e�cient black-box integral approximation method on hypercube [0, 1]d

domain. Employ the techniques as a robust initialization for black-box opti-

mization. (Chapter 5)

• Develop e�cient black-box integral approximation method on hypersphere Sd�1.

Apply the proposed method for kernel approximation. (Chapter 6)

• Apply the proposed integral-approximation techniques for robust deep learning.

(Chapter 7 and Chapter 8)

1.6 Publications

C-1. Yueming Lyu, Yuan Yuan, Ivor W.Tsang “Subgroup-based Rank-1 Lattice

Quasi-Monte Carlo.” In Neural Information Processing Systems (NeurIPS),

2020. (Chapter 5)

C-2. Yueming Lyu, Ivor W. Tsang. “Curriculum Loss: Robust Learning and Gen-

eralization against Label Corruption.” In International Conference on Learning

Representations (ICLR), 2020. (Chapter 8)

13

C-3. Xingrui Yu, Yueming Lyu, Ivor W. Tsang. “Intrinsic reward driven imita-

tion learning via generative model.” In International Conference on Machine

Learning (ICML), 2020.

C-4. Yuan Yuan,Yueming Lyu, Xi Shen, Ivor W. Tsang, Dit-Yan Yeung. “Marginal-

ized Average Attentional Network for Weakly-Supervised Learning.” In Inter-

national Conference on Learning Representations (ICLR), 2019.

C-5. Yueming Lyu. “Spherical Structured Feature Maps for Kernel Approxima-

tion.” In International Conference on Machine Learning (ICML), 2017. (Chap-

ter 6)

C-6. Yueming Lyu, Ivor W. Tsang. “Black-box Optimizer with Stochastic Implicit

Natural Gradient.” ECML, 2021. (Chapter 3)

Preprint

P-1. Yueming Lyu, Yuan Yuan, Ivor W.Tsang “E�cient Batch Black-box Op-

timization with Deterministic Regret Bounds.”. Preprint arXiv:1905.10041,

2020. (Chapter 4)

P-2. Yueming Lyu, Ivor W. Tsang. “Neural Optimization Kernel: Towards Robust

Deep Learning.” Preprint, arXiv:2106.06097, 2021. (Chapter 7)

14

Chapter 2

Related Works

2.1 Black-box Optimization

Black-box optimization has been investigated by di↵erent communities for several

decades. In the mathematics optimization community, derivative-free optimization

(DFO) methods are widely studied for black-box optimization. These methods can

be further divided into three categories: the direct search methods, the model-based

methods, and the random search methods. Among them, the model-based methods

guide the searching procedure by using the model prediction as to the surrogate,

which is quite similar to the Bayesian optimization methods. We refer to [147], [12]

and [104] for detailed survey of the derivative-free optimization methods. In the

evolutionary computation community, researchers have developed the evolutionary

algorithm [158] and evolutionary strategy methods [17] for the black-box optimiza-

tion, where the latter is similar to the Nesterov random search [129] in the DFO

methods since both the evolutionary strategy methods and the Nesterov random

search employ the Gaussian smoothing technique to approximate the gradient. In

the machine learning community, investigating the black-box optimization from the

aspect of Bayesian optimization (BO) has attracted more and more attention recently.

BO has been successfully applied to address many expensive black-box optimization

problems, such as hyper-parameter tuning for deep networks [156], parametric policy

optimization for Reinforcement learning [174], and so on.

Among di↵erent methods, Bayesian optimization methods and sampling-based

derivative-free methods are promising directions for solving black-box optimization

problems. We thus review the Bayesian optimization methods and sampling-based

derivative-free methods in detail.

15

2.1.1 Bayesian Optimization

Bayesian Optimization (BO) aims to find the optimum of an unknown, usually non-

convex function f . Since little information is known about the underlying function f ,

BO requires to estimate a surrogate function to model the unknown function. There-

fore, one major challenge of BO is to seek a balance between collecting information

to model the function f (exploration) and searching for an optimum based on the

collected information (exploitation).

Typically, BO assumes that the underlying function f is sampled from a Gaussian

process (GP) prior. BO selects the candidate solutions for evaluation by maximizing

an acquisition function [85,102,125]), which balances the exploration and exploitation

given all previous observations. In practice, BO can usually find an approximate

maximum solution with a remarkably small number of function evaluations [150,156].

The research of BO for black-box optimization can be dated back to [126]. It

becomes popular since the e�cient global optimization method [86] for black-box op-

timization has been proposed. After that, various acquisition functions have been

widely investigated both empirically and theoretically. Acquisition functions are im-

portant in BO as they determine the searching behavior. Among them, the expected

improvement, probability improvement and upper confidence bound of the Gaussian

process (GP-UCB) are the most widely used acquisition functions in practice [156].

Specifically, Bull [32] has proved a simple regret bound of the expected improvement

method. Srinivas et al. [160] have theoretically analyzed both the cumulative regret

and the simple regret bounds of the GP-UCB method.

Recently, many sophisticated acquisition functions have been studied. Hennig

and Schuler [73] propose entropy search (ES) method, Hernández-Lobato et al. [74]

further propose a predictive entropy search (PES) method. Both ES and PES select

the candidate query by maximizing the mutual information between the query point

and the global optimum in the input space. As a result, they need intensive Monte

Carlo sampling that depends on the dimension of the input space. To reduce the

cost of sampling, Wang et al. [170] propose a max-value entropy search method,

selecting the candidate query by maximizing the mutual information between the

prediction of the query and the maximum value. The mutual information is computed

in one dimension, which is much easier to approximate compared to the Monte Carlo

sampling. Along the line of GP-UCB, Desautels et al. [45] propose the GP-BUCB

method to address the black-box optimization in a batch setting. In each batch,

GP-BUCB selects the candidate queries point by point sequentially until reaching

a preset batch size, according to upper confidence bound criterion [13, 160] with

16

a fixed mean function and an updated covariance function. Desautels et al. [45]

prove the sub-linear growth bounds on the cumulative regret, which guarantees a

bound on the number of required iterations to reaching close enough to the optimum.

Contal et al. [40] further propose the GP-UCB-PE method, which combines the upper

confidence bound strategy and the pure exploration [30] in the evaluations of the same

batch. The GP-UCB-PE achieves a better upper bound on the cumulative regret

compared with the GP-BUCB. Most recently, Berkenkamp et al. [24] propose a GP-

UCB based method (A-GP-UCB) to handle BO with unknown hyper-parameters.

In many applications, e.g, hyper-parameter tuning and RL, it is usually preferred

to process multiple function evaluations in parallel to achieve the time e�ciency. In

the setting of batch BO for batch black-box optimization, besides the batch, GP-UCB

methods discussed above, Shah and Ghahramani [152] propose a parallel predictive

entropy search method by extending the PES method [74] to the batch case. Wu et

al. [176] extend the knowledge gradient method to the parallel knowledge gradient

method. González et al. [61] propose a penalized acquisition function for batch se-

lection. However, these batch methods are limited in low dimensional problems. To

address the batch BO under the high-dimensional setting, Wang et al. [169] propose

an ensemble BO method by integrating multiple additive Gaussian process models.

However, no regret bound is analyzed in [169].

2.1.2 Sampling-based Derivative-free Optimization

CMA-ES [2, 69] is one of state-of-the-art ES methods with many successful applica-

tions. It uses second-order information to search candidate solutions by updating the

mean and covariance matrix of the likelihood of candidate distributions. Despite its

successful performance, the update rule combines several sophisticated components,

which is not well understood. Wierstra et al. show that directly applying standard re-

inforce gradient descent is very sensitive to variance in high precision search for black-

box optimization [173]. Thus, they propose Natural evolution strategies (NES) [173]

to estimate the natural gradient for black-box optimization. However, they use the

Monte Carlo sampling to approximate the Fisher information matrix (FIM), which

incurs additional error and computation cost unavoidably. Along this line, [3] show

the connection between the rank-µ update of CMA-ES and NES [173]. [135] further

show that several ES methods can be included in an unified framework. Despite these

theoretical attempts, the practical performance of these methods is still inferior to

CMA-ES. Moreover, these works do not provide any convergence rate analysis, which

is the key insight to expedite black-box optimizations.

17

Another line of research for ES-type algorithms is to reduce the variance of gra-

dient estimators. Choromanski et al. [38] proposed to employ Quasi Monte Carlo

(QMC) sampling to achieve more accurate gradient estimates. Recently, they further

proposed to construct gradient estimators based on active subspace techniques [37].

Although these works can reduce sample complexity, how does the variance of these

estimators influence the convergence rate remains unclear.

2.2 Black-box Integral Approximation

Integral operation is critical in a large amount of interesting machine learning appli-

cations, e.g. kernel approximation with random feature maps [140], variational infer-

ence in Bayesian learning [22], generative modeling and variational autoencoders [94].

Directly calculating an integral is usually infeasible in these real applications. In-

stead, researchers usually try to find an approximation for the integral. A simple and

conventional approximation is Monte Carlo (MC) sampling, in which the integral

is approximated by calculating the average of the i.i.d. sampled integrand values.

Monte Carlo (MC) methods [65] are widely studied with many techniques to reduce

the approximation error, which includes importance sampling and variance reduction

techniques and more [10].

To further reduce the approximation error, Quasi-Monte Carlo (QMC) methods

utilize a low discrepancy point set instead of the i.i.d. sampled point set used in

the standard Monte Carlo method. There are two main research lines in the area of

QMC [46,130], i.e., the digital nets/sequences and lattice rules. The Halton sequence

and the Sobol sequence are the widely used representatives of digital sequences [46].

Compared with digital nets/sequences, the points set of lattice rules preserve the

properties of lattice. The points partition the space into small repeating cells. Among

previous research on the lattice rules, Korobov introduced integration lattice rules

in [95] for an integral approximation of the periodic integrands. [155] proves that

there also exist good lattice rules for non-periodic integrands. According to general

lattice rules, a point set is usually constructed by enumerating the integer vectors

and multiplying them with an invertible generator matrix. A general lattice rule has

to check each constructed point to see whether it is inside a unit cube and discard it

if it is not. The process is repeated until we reach the desired number of points. This

construction process is ine�cient since the checking step is required for every point.

Note that rescaling the unchecked points by the maximum norm of all the points may

lead to non-uniform points set in the cube.

18

An interesting special case of the lattice rules is the rank-1 lattice, which only

requires one generating vector to construct the whole point set. Given the generating

vector, rank-1 lattices can be obtained by a very simple construction form. It is thus

much more e�cient to construct the point set with the simple construction form.

Compared with the general lattice rule, the construction form of the rank-1 lattice

has already guaranteed the constructed point to be inside the unit cube, therefore,

no further checks are required. We refer to [46] and [130] for a more detailed survey

of QMC and rank-1 lattice.

Although the rank-1 lattice can derive a simple construction form, obtaining the

generating vector remains di�cult. Most methods [48, 97, 103, 108, 111, 133, 137] in

the literature rely on an exhaustive computer search by optimizing some criteria to

find a good generating vector. Korobov [97] suggests searching the generating vector

in a form of [1,↵,↵2, · · · ,↵d�1] with ↵ 2 {1, · · · , n � 1}, where d is the dimension

and n is the number of points, such that the greatest common divisor of ↵ and

n equals to 1. Sloan et al. study the component-by-component construction for

the lattice rules [154]. It is a greedy search that is faster than an exhaustive search.

Nuyens et al. [133] propose a fast algorithm to construct the generating vector using a

component-by-component search method. Although the exhaustive checking steps are

avoided compared with general lattice rules, the rank-1 lattice still requires a brute-

force search for the generating vector, which is still very time-consuming, especially

when the dimension and the number of points are large.

2.3 Integral Approximation for Kernel Methods
and Deep Learning

2.3.1 Kernel Approximation

Kernel methods such as Gaussian processes (GPs) [144, 157, 159] and support vector

machines (SVMs) [33, 56] have been successfully used in many statistical modeling

and machine learning tasks. Despite of strong expressive power, kernel methods

usually cannot scale up to the large scale datasets with L samples due to the need of

manipulating L⇥L Gram matrix. Recently, random feature maps [141,142,164] have

demonstrated their e↵ectiveness on kernel approximation to scale up kernel methods.

Roughly speaking, a shift invariant kernel K(x, z) = K(x � z) : Rd ! C can

be approximated by K(x, z) ⇡ (x)T (z), where is the explicit mapped feature

constructed as (x) = f(WTx)/
p
N , where f(·) denotes the nonlinear function,

19

W 2 Rd⇥N is constructed by N i.i.d samples drawn from a distribution defined by K.

Therefore, the training and inference of kernel methods can be greatly accelerated by

working directly on the primal space of (·). For example, Gaussian Processes (GPs)

have O(L3) computation and O(L2) storage complexity. By using feature maps, it

reduces to O(N2L + N3) computation and O(NL + N2) storage complexity. All

these elegant properties make random feature maps promising for large scale kernel

methods. Thus, many kernel methods [41, 106, 134] have been proposed to deal with

large scale statistical learning by directly working on feature maps.

Generally, two aspects of random feature maps are mostly concerned by literature

for scaling up kernel methods. One is the approximation accuracy of feature maps

while the other is the computational cost of feature maps construction. To achieve

better approximation accuracy, [14, 178] employ QMC [47] sampling instead of stan-

dard Monte Carlo sampling to construct feature maps. By mapping QMC points on

[0, 1]d through the inverse cumulative distribution function, they construct more ef-

fective feature maps. To reduce time complexity, [105] propose Fastfood to construct

feature maps. Benefiting from the special structured matrix multiplication, it reduces

time complexity of feature maps construction from O(Nd) to O(N log d). However, it

achieves computational e�ciency at the expense of increasing the variance of approx-

imation. Recently, [57] employ the property of circulant matrix to accelerate feature

maps construction of Gaussian kernel without increasing the variance. [39] general-

ize the Fastfood and circulant feature maps to P model and particularly discuss the

structured matrix with low-displacement rank. Despite of the success of P model,

it still cannot achieve better approximation accuracy compared with feature maps

obtained with fully Gaussian matrix.

2.3.2 Deep Learning Theory from Optimization and Kernel
Perspective

Deep neural networks (DNNs) have obtained great success in many applications, in-

cluding computer vision [71], natural language processing [175], and reinforcement

learning [124], etc. However, the theory of deep learning is much less explored com-

pared with its great empirical success. A key challenge of deep learning theory is

that deep neural networks are heavily overparameterized. Namely, the number of

parameters is much larger than training samples. In practice, as the depth and width

increasing, the performance of deep NN also becomes better [161, 184], which is far

beyond the traditional learning theory regime.

20

In the traditional neural networks and kernel methods literature, it is well known

the connection between the infinite width neural networks and Gaussian process [75],

and the universal approximation power of NN [112]. However, these theories cannot

explain why the success of deep neural networks. A recent work, Neural Tangent

Kernel [80] (NTK), shows the connection between training an infinite-width NN and

performing functional gradient descent in a Reproducing Kernel Hilbert Space(RKHS)

associated with the NTK. Because of the convexity of the functional optimization

problem, Jacot et al. show the global convergence for infinite-width NN under the

NTK regime. Along this direction, Hanin et al. [68] analyze the NTK with finite

width and depth. Shankar et al. [153] empirically investigate the performance of

some simple compositional kernels, NTKs, and deep neural networks. Nitanda et

al. [132] further show the minimax optimal convergence rate of average stochastic

gradient descent in a two-layer NTK regime.

Despite the success of NTK [80] on showing the global convergence of NN, its

expressive power is limited. Zhu et al. [4] provide an example that shallow kernel

methods (including NTK) need a much larger number of training samples to achieve

the same small population risk compared with a three-layer ResNet. They further

point out the importance of hierarchical learning in deep neural networks [5]. In [5],

they give the theoretical analysis of learning a target network family with square

activation function under deep NN regime. Besides, there are quite a few works

focus on the analysis of two-layer networks [18,27,52,88,113,180] and shallow kernel

methods without hierarchical learning [9, 44, 58, 109,190].

Although some particular examples show deep models have more powerful ex-

pressive power than shallow ones [4,5,54], how and why deep neural networks benefit

from the depth remain unclear. Zhu et al. [5] highlight the importance of a backward

feature correction. In this thesis, we investigate the deep neural networks from a

di↵erent kernel method perspective.

2.3.3 Robust Deep Learning under Label Noise

Noise corruption is a common phenomenon in our daily life. For instance, noisy

corrupted (wrong) labels may be resulted from annotating for similar objects [162,

183], crawling images and labels from websites [76,165] and creating training sets by

program [93,145]. Learning with noisy labels is thus an promising area.

Deep neural networks (DNNs) have great expressive power (model complexity) to

learn challenging tasks. However, DNNs also undertake a higher risk of overfitting

to the data. Although many regularization techniques, such as adding regularization

21

terms, data augmentation, weight decay, dropout and batch normalization, have been

proposed, generalization is still vitally important for deep learning to fully exploit

the super-expressive power. [185] show that DNNs can even fully memorize samples

with incorrectly corrupted labels. Such label corruption significantly degenerates the

generalization performance of deep models. This calls a lot of attention on robustness

in deep learning with noisy labels.

Robustness of 0-1 loss: The problem resulted from data corruption or label

corruption is that test distribution is di↵erent from training distribution. [77] analyzed

the adversarial risk that the test distribution density is adversarially changed within

a limited f -divergence (e.g. KL-divergence) from the training distribution density.

They show that there is a monotonic relationship between the (empirical) risk and

the (empirical) adversarial risk when the 0-1 loss function is used. This suggests that

minimizing the empirical risk with the 0-1 loss function is equivalent to minimize

the empirical adversarial risk (worst-case risk). When we train a model based on

the corrupted training distribution, we want our model to perform well on the clean

distribution. Since we do not know the clean distribution, we want our model to

perform well for the worst case estimate of the clean distribution in some constrained

set. It is thus natural to employ the worst-case classification risk of the estimated clean

distribution as the objective. Note that the worst-case classification risk is an upper

bound of the classification risk of the true clean distribution, minimizing the worst-

case risk can usually decrease the true risk. When we employ the 0-1 loss, because of

the equivalence between the classification risk and the worst-case classification risk, we

can directly minimize the classification risk under the corrupted training distribution

instead of minimizing the worst-case classification risk.

From the learning perspective, the 0-1 loss is more robust to outliers compared

with an unbounded (convex) loss (e.g. hinge loss) [122]. This is due to unbounded

convex losses putting much weight on the outliers (with a large loss value) when

minimizing the losses [122]. If the unbounded (convex) loss is employed in deep

network models, this becomes more prominent. Since training loss of deep networks

can often be minimized to zero, outlier with a large loss has a large impact on the

model. On the other hand, the 0-1 loss treats each training sample equally. Thus,

each sample does not have too much influence on the model. Therefore, the model is

tolerant of a small number of outliers.

Although the 0-1 loss has many robust properties, its non-di↵erentiability and zero

gradients make it di�cult to optimize. One possible way to alleviate this problem is

to seek an upper bound of the 0-1 loss that is still e�cient to optimize but tighter than

22

conventional (convex) losses. Such a tighter upper bound of the 0-1 loss can reduce

the influence of the noisy outliers compared with conventional (convex) losses. At the

same time, it is easier to optimize compared with the 0-1 loss. When minimizing the

upper bound surrogate, we expect that the 0-1 loss objective is also minimized.

Learnability under large noise rate: The 0-1 loss cannot deal with large noise

rate. When the noise rate becomes large, the systematic error (due to label corrup-

tion) grows up and becomes not negligible. As a result, the model’s generalization

performance will degenerate due to this systematic error. To reduce the systematic er-

ror produced by training with noisy labels, several methods have been proposed. They

can be categorized into three kinds: transition matrix based method [59, 138, 163],

regularization based method [123] and sample selection based method [67,84]. Among

them, sample selection based method is one promising direction that selects samples

to reduce noisy ratio for training. These methods are based on the idea of curriculum

learning [23] which is one successful method that trains the model gradually with

samples ordered in a meaningful sequence. Although they achieve success to some

extents, most of these methods are heuristic based.

To e�ciently minimize the 0-1 loss while keeping the robust properties, this

thesis proposes a novel loss that is a tighter upper bound of the 0-1 loss com-

pared with conventional surrogate losses. Specifically, giving any base loss function

l(u) � 1
�
u < 0

�
, u 2 R, our loss Q(u) satisfies

P
n

i=1 1
�
ui < 0

�
 Q(u) 

P
n

i=1 l(ui),

where u = [u1, · · · , un] with ui being the classification margin of ith sample, and

1(·) is an indicator function. We name it as Curriculum Loss (CL) because our loss

automatically and adaptively selects samples for training, which can be deemed as a

curriculum learning paradigm.

Curriculum Learning: Curriculum learning is a general learning methodology

that achieves success in many area. The very beginning work of curriculum learn-

ing [23] trains a model gradually with samples ordered in a meaningful sequence,

which has improved performance on many problems. Since the curriculum in [23] is

predetermined by prior knowledge and remained fixed later, which ignores the feed-

back of learners, Kumar et al. [101] further propose Self-paced learning that selects

samples by alternative minimization of an augmented objective. Jiang et al. [82]

propose a self-paced learning method to select samples with diversity. After that,

Jiang et al. [83] propose a self-paced curriculum strategy that takes di↵erent priors

into consideration. Although these methods achieve success, the relation between the

augmented objective of self-paced learning and the original objective (e.g. cross en-

23

tropy loss for classification) is not clear. In addition, as stated in [84], the alternative

update in self-paced learning is not e�cient for training deep networks.

Learning with Noisy Labels: The most related works are the sample selection

based methods for robust learning. This kind of works are inspired by curriculum

learning [23]. Among them, Jiang et al. [84] propose to learn the curriculum from data

by a mentor net. They use the mentor net to select samples for training with noisy

labels. Co-teaching [67] employs two networks to select samples to train each other

and achieve good generalization performance against large rate of label corruption.

Co-teaching+ [182] extends Co-teaching by selecting samples with disagreement of

prediction of two networks. Compared with Co-teaching/Co-teaching+, our CL is

a simple plugin for a single network. Thus both space and time complexity of CL

are half of Co-teaching’s. Recently, [188] propose a generalized Cross-entropy loss for

robust learning.

24

Chapter 3

Implicit Natural Gradient
Optimization

3.1 Chapter Abstract

This chapter presents a novel theoretical framework for black-box optimization, in

which our method performs stochastic updates with an implicit natural gradient of

an exponential-family distribution. Theoretically, we prove the convergence rate of

our framework with full matrix update for convex functions under Gaussian dis-

tribution. Our methods are very simple and contain fewer hyper-parameters than

CMA-ES [69]. Empirically, our method with full matrix update achieves competitive

performance compared with one of the state-of-the-art methods CMA-ES on bench-

mark test problems. Moreover, our methods can achieve high optimization precision

on some challenging test functions (e.g., l1-norm ellipsoid test problem and Levy test

problem), while methods with explicit natural gradient, i.e., IGO [135] with full ma-

trix update can not. This shows the e�ciency of our methods. Furthermore, e�cient

algorithms for b discrete black-box optimization are proposed under the proposed

framework.

3.2 Optimization with Exponential-family Sampling

Notation and Symbols: Denote k · k2 and k · kF as the spectral norm and Frobe-

nius norm for matrices, respectively. Define kY ktr :=
P

i
|�i|, where �i denotes the ith

eigenvalue of matrix Y . Notation k · k2 will also denote l2-norm for vectors. Symbol

h·, ·i denotes inner product under l2-norm for vectors and inner product under Frobe-

nius norm for matrices. Define kxkC :=
p

hx, Cxi. Denote S+ and S++ as the set of

positive semi-definite matrices and the set of positive definite matrices, respectively.

25

Denote ⌃
1
2 as the symmetric positive semi-definite matrix such that ⌃ = ⌃

1
2⌃

1
2 for

⌃ 2 S+.

We aim at minimizing a proper function f(x), x 2 X with only function queries,

which is known as black-box optimization.

Due to the lack of gradient information for black-box optimization, we here present

an exponential-family sampling trick to relax any black-box optimization problem.

Specifically, the objective is relaxed as the expectation of f(x) under a parametric

distribution p(x; ⌘) with parameter ⌘, i.e., J(⌘) := Ep(x;⌘)[f(x)] [173]. The optimal

parameter ⌘ is found by minimizing J(⌘) as

min
⌘

�
Ep(x;⌘)[f(x)]

. (3.1)

This relaxed problem is minimized when the probability mass is all assigned on the

minimum of f(x). The distribution p is the sampling distribution for black-box

function queries. Note that p can be either continuous or discrete distribution.

In this work, we assume that the distribution p(x;⌘) is an exponential-family

distribution:

p(x;⌘) = h(x) exp {h�(x),⌘i � A(⌘)}, (3.2)

where ⌘ and �(x) are the natural parameter and su�cient statistic, respectively. And

A(⌘) is the log partition function defined as:

A(⌘) = log

Z
exp {h�(x),⌘ih(x)dx. (3.3)

We call an exponential-family distribution minimal when there is a one-to-one

mapping between the mean parameter m := Ep[�(x)] and natural parameter ⌘. This

one-to-one mapping ensures that we can reparameterize J(⌘) as J̃(m) = J(⌘) [7,90].

J̃ is w.r.t parameter m, while J is w.r.t parameter ⌘.

To minimize the objective J̃(m), we desire the updated distribution lying in a

trust region of the previous distribution at each step. Formally, we update the mean

parameters by solving the following optimization problem.

mt+1=argmin
m

D
m,rmJ̃(mt)

E
+

1

�t

KL (pmkpmt) , (3.4)

where rmJ̃(mt) denotes the gradient at m = mt.

The KL-divergence term measures how close the updated distribution and the

previous distribution. For an exponential-family distribution, the KL-divergence term

in (3.4) is equal to Bregman divergence between m and mt [16]:

KL (pmkpmt)=A⇤(m)�A⇤(mt)�hm�mt,rmA⇤(mt)i , (3.5)

26

where A⇤(m) is the convex conjugate of A(⌘). Thus, the problem (3.4) is a convex

optimization problem, and it has a closed-form solution.

3.3 Implicit Natural Gradient

Intractability of Natural Gradient for Black-box Optimization: Natural gra-

dient [6] can capture information geometry structure during optimization, which en-

ables us to take advantage of the second-order information to accelerate convergence.

Direct computation of natural gradient needs the inverse of Fisher information matrix

(FIM), which needs to estimate the FIM. The method in [143] provides an alternative

way to compute natural gradient without computation of FIM. However, it relies on

the exact gradient, which is impossible for black-box optimization.

Hereafter, we propose a novel stochastic implicit natural gradient algorithms for

black-box optimization of continuous and discrete variables in Section 3.4 and Sec-

tion 3.5, respectively. We first show how to compute the implicit natural gradient.

In problem Eq.(3.4), we take the derivative w.r.t m, and set it to zero, also note that

rmA⇤(m) = ⌘ [143], we can obtain that

⌘
t+1 = ⌘

t
� �trmJ̃(mt) (3.6)

Natural parameters ⌘ of the distribution lies on a Riemannian manifold with

metric tensor specified by the Fisher Information Matrix:

F (⌘) := Ep

h
r⌘ log p(x;⌘)r⌘ log p(x;⌘)

>

i
(3.7)

For exponential-family with the minimal representation, the natural gradient has a

simple form for computation.

Theorem 1. [91,143] For an exponential-family in the minimal representation, the

natural gradient w.r.t ⌘ is equal to the gradient w.r.t. m, i.e.,

F (⌘)�1r⌘J(⌘) = rmJ̃(m) (3.8)

Remark: Theorem 1 can be easily obtained by the chain rule and the fact F (⌘) =
@
2
A(⌘)

@⌘@⌘> . It enables us to compute the natural gradient implicitly without computing

the inverse of the Fisher information matrix. As shown in Theorem 1, the update

rule in (3.6) is equivalent to the natural gradient update w.r.t ⌘ in (3.9):

⌘
t+1 = ⌘

t
� �tF (⌘

t
)�1r⌘J(⌘t

) (3.9)

Thus, update rule in (3.6) selects the steepest descent direction along the Riemannian

manifold induced by the Fisher information matrix as natural gradient descent. It

can take the second-order information to accelerate convergence.

27

3.4 Update Rule for Gaussian Sampling

We first present an update method for the case of Gaussian sampling for continuous

optimization. For other distributions, we can derive the update rule in a similar

manner.

For a Gaussian distribution p := N (µ,⌃) with mean µ and covariance matrix ⌃,

the natural parameters ⌘ = {⌘1,⌘2} are given as follows:

⌘1 := ⌃�1
µ (3.10)

⌘2 := �1

2
⌃�1 (3.11)

The related mean parameters m = {m1,m2} are given as:

m1 := Ep[x] = µ (3.12)

m2 := Ep[xx
>] = µµ

> + ⌃ (3.13)

Using the chain rule, the gradient with respect to mean parameters can be ex-

pressed in terms of the gradients w.r.t µ and ⌃ [90, 92] as:

rm1 J̃(m) = rµJ̃(m)� 2[r⌃J̃(m)]µ (3.14)

rm2 J̃(m) = r⌃J̃(m) (3.15)

It follows that

⌃�1
t+1 = ⌃�1

t
+ 2�tr⌃J̃(mt) (3.16)

µ
t+1 = µ

t
� �t⌃t+1rµJ̃(mt) (3.17)

Note that J̃(m) = Ep[f(x)], the gradients of J̃(m) w.r.t µ and ⌃ can be obtained

by log-likelihood trick as Theorem 2.

Theorem 2. [173] The gradient of the expectation of an integrable function f(x)

under a Gaussian distribution p := N (µ,⌃) with respect to the mean µ and the

covariance ⌃ can be expressed as Eq.(3.18) and Eq.(3.19), respectively.

rµEp[f(x)] = Ep

⇥
⌃�1(x� µ)f(x)

⇤
(3.18)

r⌃Ep[f(x)] =
1

2
Ep

⇥�
⌃�1(x� µ)(x� µ)>⌃�1�⌃�1

�
f(x)

⇤
(3.19)

Together Theorem 2 with Eq. (3.16) and (3.17), we present the update with only

function queries as:

⌃�1
t+1 = ⌃�1

t
+�tEp

⇥�
⌃�1

t
(x�µ

t
)(x�µ

t
)>⌃�1

t
�⌃�1

t

�
f(x)

⇤
(3.20)

µ
t+1 = µ

t
� �t⌃t+1Ep

⇥
⌃�1

t
(x� µ

t
)f(x)

⇤
(3.21)

28

Remark: Our method updates the inverse of the covariance matrix instead of the

covariance matrix itself.

3.4.1 Stochastic Update

The above gradient update needs the expectation of a black-box function. However,

this expectation does not have a closed-form solution. Here, we estimate the gradient

w.r.t µ and ⌃ by Monte Carlo sampling. Eq.(3.20) and (3.21) enable us to estimate

the gradient by the function queries of f(x) instead of rf(x). This property is very

crucial for black-box optimization because gradient (rf(x)) is not available.

Update rules using Monte Carlo sampling are given as:

⌃�1
t+1= ⌃�1

t
+

�t

N

NX

i=1

⇥�
⌃�1

t
(xi�µ

t
)(xi�µ

t
)>⌃�1

t
�⌃�1

t

�
f(xi)

⇤
(3.22)

µ
t+1 = µ

t
� �t

N

NX

i=1

⇥
⌃t+1⌃

�1
t
(xi � µ

t
)f(xi)

⇤
(3.23)

To avoid scaling problem of f(x), we use a monotonic score function h(·) to transform

f(x) as:

h(f(xi)) = N
logbi

P
N

j=1 log j
(3.24)

where bi denotes the ranking index of f(xi) (index after non-decreasingly sort) among

N samples f(x1), ..., f(xN). (Break ties by some determinate rules).

In addition, we can use a normalization as the monotonic transformation:

g(f(xi)) =
f(xi)� bµ

b� (3.25)

where bµ and b� denote mean and stand deviation of function values in a batch of

samples.

Plug Eq.(3.25) into Eq.(3.22) and (3.23), we obtain that

⌃�1
t+1 = ⌃�1

t
+ �

NX

i=1

h(f(xi))

N

�
⌃�1

t
(xi�µ

t
)(xi�µ

t
)>⌃�1

t

�
(3.26)

µ
t+1 = µ

t
� �t

NX

i=1

h(f(xi))

N
⌃t+1⌃

�1
t
(xi � µ

t
) (3.27)

The update rule in Eq.(3.26) and Eq.(3.27) does not require the exact value. It

only needs the ranking of the observations for a set of samples. This is useful when the

29

Algorithm 1 INGO
Input: Number of Samples N , step-size �.
while Termination condition not satisfied do
Take i.i.d samples zi ⇠ N (0, I) for i 2 {1, · · ·N}.
Set xi = µ

t
+ ⌃

1
2
t zi for i 2 {1, · · ·N}.

Query the batch observations {f(x1), ..., f(xN)}
Compute b� = std(f(x1), ..., f(xN)).
Compute bµ = 1

N

P
N

i=1 f(xi).

Set ⌃�1
t+1 = ⌃�1

t + �
P

N

i=1
f(xi)�bµ

Nb� ⌃
�

1
2

t ziz
>

i
⌃

�
1
2

t .

Set µ
t+1 = µ

t
� �

P
N

i=1
f(xi)�bµ

Nb� ⌃t+1⌃
�

1
2

t zi

end while

function value is not observable, e.g., only a preference list of customers is given. The

downside of the update based on the ranking is that the gradient estimator is biased.

In addition, the information of function is lost. To take advantage of the smoothness of

function while avoiding scale problem, we present an unbiased estimator for gradient

update as follows:

⌃�1
t+1 = ⌃�1

t
+ �

NX

i=1

f(xi)� bµ
Nb�

�
⌃�1

t
(xi�µ

t
)(xi�µ

t
)>⌃�1

t

�
(3.28)

µ
t+1 = µ

t
� �t

NX

i=1

f(xi)� bµ
Nb� ⌃t+1⌃

�1
t
(xi � µ

t
) (3.29)

where b� denotes the stand deviation of function values in a batch of samples, i.e.,

b� = std(f(x1), ..., f(xN)).

We present our black-box optimization algorithm in Alg. 1. We can select a set

of random samples [Z,�Z], this trick still leads to an unbiased estimator for the

Gaussian distribution [117]. We can use the structured samples in [117] to reduce the

variance of estimators. Alg. 1 employs the normalization transformation, we can also

employ the ranking scores to update ⌃ and function values to update µ.

The update of mean µ in Alg. 1 is properly scaled by ⌃. Moreover, our method

updates the inverse of the covariance matrix instead of the covariance matrix itself,

which provides us a stable way to update covariance independent of its scale. Thus,

our method can update properly when the algorithm adaptively reduces variance for

high precision search. In contrast, directly applying standard reinforce type gradient

update is unstable as shown in [173].

30

Algorithm 2 Fast INGO-u
Input: Number of Samples N , step-size �.
while Termination condition not satisfied do
Take i.i.d samples zi ⇠ N (0, I) for i 2 {1, · · ·N/2}.
Set zi+N/2 = �zi for i 2 {1, · · ·N/2}.
Set xi = µ

t
+ �t � zi for i 2 {1, · · ·N}.

Query the batch observations {f(x1), ..., f(xN)}
Compute weights wi = logbi

�P
N

j=1 log j for i 2 {1, · · · , N} according to
Eq.(3.25).

Set ��2
t+1 = (1� �)��2

t + ���2
t �

⇣P
N

i=1wiz
2
i

⌘
.

Compute b� = std(f1, · · · fN).
Set µ

t+1 = µ
t
� ��2

t+1 � �
�1
t �

⇣P
N

i=1
fi

Nb�zi

⌘
.

end while

3.4.2 Mean field approximation for acceleration

Alg. 1 needs to compute the inverse of covariance matrix, which has O(d3) complexity.

In this section, we present a fast algorithm for separate problems.

Suppose the covariance matrix is diagonal with diagonal elements denoted as �2.

From (3.26) and (3.27), we can obtain the update rule as

�
�2
t+1 = (1� �t)�

�2
t

+ �t�
�2
t

�
� NX

i=1

wiz
2
i

�
(3.30)

µ
t+1 = µ

t
� �t�

2
t+1 � �

�1
t

�
� NX

i=1

wizi

�
(3.31)

where� denotes element-wise product. And the power operation denotes the element-

wise operation. And xi = µ
t
+ �t � zi. And wi = logbi

�P
N

j=1 log j.

We present an algorithm using unbiased gradient estimator in Alg. 2. It only

involves element-wise operation in vectors, which is very simple to implement. The

complexity in per iteration is O(Nd), which scales well for high-dimensional opti-

mization.

3.4.3 Direct Update for µ and ⌃

We provide an alternative updating equation with simple concept and derivation.

The implicit natural gradient algorithms are working on the natural parameter space.

Alternatively, we can also directly work on the µ and ⌃ parameter space. Formally,

31

we derive the update rule by solving the following trust region optimization problem.

✓t+1=argmin
✓

⌦
✓,r✓J̄(✓t)

↵
+

1

�t

KL (p✓kp✓t) (3.32)

where ✓ := {µ,⌃} and J̄(✓) := Ep(x;✓)[f(x)] = J(⌘).

For Gaussian sampling, the optimization problem in (3.32) is a convex optimiza-

tion problem. We can achieve a closed-form update given in Theorem 3:

Theorem 3. For Gaussian distribution with parameter ✓ := {µ,⌃}, problem (3.32)

is convex w.r.t ✓. The optimum of problem (3.32) leads to closed-form update (3.33)

and (3.34):

⌃�1
t+1 = ⌃�1

t
+ 2�tr⌃J̄(✓t) (3.33)

µ
t+1 = µ

t
� �t⌃trµJ̄(✓t) (3.34)

Remark: Comparing the update rule in Theorem 3 with Eq.(3.16) and (3.17), we

can observe that the only di↵erence is in the update of µ. In Eq.(3.34), the update

employs ⌃t, while the update in Eq.(3.17) employs ⌃t+1. The update in Eq.(3.17)

takes one step look ahead information, it helps to improve sample e�ciency.

We can obtain the black-box update for µ and ⌃ by Theorem 3 and Theorem 2.

The update rule is given as follows:

⌃�1
t+1=⌃�1

t
+�tEp

⇥�
⌃�1

t
(x�µ

t
)(x�µ

t
)>⌃�1

t
�⌃�1

t

�
f(x)

⇤

µ
t+1 = µ

t
� �tEp [(x� µ

t
)f(x)] (3.35)

Using the score function g(·), we can obtain Monte Carlo approximation update as

⌃�1
t+1 = ⌃�1

t
+ �

NX

i=1

f(xi)� bµ
Nb�

�
⌃�1

t
(xi�µ

t
)(xi�µ

t
)>⌃�1

t

�
(3.36)

µ
t+1 = µ

t
� �t

NX

i=1

f(xi)� bµ
Nb� (xi � µ

t
) (3.37)

From Eq.(3.37), we can see that the update rule for µ is similar to that of CMA-

ES. In contrast, the update rule for covariance matrix ⌃ is the same as the implicit

natural gradient update in Eq.(3.26), which updates the inverse covariance matrix

instead of the covariance matrix itself in CMA-ES. The algorithm is summarized in

Algorithm 3.

32

Algorithm 3 INGOstep
Input: Number of Samples N , step-size �.
while Termination condition not satisfied do
Take i.i.d samples zi ⇠ N (0, I) for i 2 {1, · · ·N}.
Set xi = µ

t
+ ⌃

1
2
t zi for i 2 {1, · · ·N}.

Query the batch observations {f(x1), ..., f(xN)}
Compute b� = std(f(x1), ..., f(xN)).
Compute bµ = 1

N

P
N

i=1 f(xi).

Set ⌃�1
t+1 = ⌃�1

t + �
P

N

i=1
f(xi)�bµ

Nb� ⌃
�

1
2

t ziz
>

i
⌃

�
1
2

t .

Set µ
t+1 = µ

t
� �

P
N

i=1
f(xi)�bµ

Nb� ⌃
1
2
t zi

end while

3.5 Optimization for Discrete Variable

Binary Optimization: For function f(x) over binary variable x 2 {0, 1}d, we

employ the Bernoulli distribution with parameter p = [p1, · · · , pd]> as the underlying

distribution, where pi denote the probability of xi = 1. Let ⌘ denote the natural

parameter, then we know the inverse parameter mapping p = 1
1+e�⌘ . The mean

parameter is m = p [131].

From Eq.(3.6), we know that

⌘
t+1 = ⌘

t
� �trpEp[f(x)] (3.38)

= ⌘
t
� �tEp [f(x)h] (3.39)

where hi = 1
pi
1(xi = 1) � 1

1�pi
1(xi = 0). Detailed derivation can be found in

Appendix 10.8.

Approximate the gradient by Monte Carlo sampling, we obtain that

⌘
t+1 = ⌘

t
� �t

1

N

NX

n=1

f(xn)hn (3.40)

where h
n

i
= 1

pi
1(xn

i
= 1)� 1

1�pi
1(xn

i
= 0).

In order to achieve stable update, we normalize function value by its standard

deviation b� in a batch, i.e., b� = std(f1, ..., fN). The normalized update is given as

follows.

⌘
t+1 = ⌘

t
� �t

1

Nb�

NX

n=1

f(xn)hn (3.41)

General Discrete Optimization: Similarly, for function f(x) over discrete

variable x 2 {1, · · · , K}d, we employ categorical distribution with parameter P =

33

Algorithm 4 General Framework
Input: Number of Samples N , step-size �.
while Termination condition not satisfied do
Construct unbiased estimator bgt of gradient w.r.t µ.
Construct unbiased/biased estimator bGt 2 S++ such that bI � bGt � �

2I

Set ⌃�1
t+1 = ⌃�1

t + 2� bGt.
Set µ

t+1 = µ
t
� �⌃t+1bgt.

end while

[p1, · · · ,pd
]> as the underlying distribution, where the ij-th element of P (P ij) de-

note the probability of xi = j. Let ⌘ 2 Rd⇥K denote the natural parameter, then

we know the inverse parameter mapping P ij = e
⌘ij

PK
j=1 e

⌘ij
. The mean parameter is

m = P [131].

From Eq.(3.6), we know that

⌘
t+1 = ⌘

t
� �trPEP [f(x)] (3.42)

= ⌘
t
� �tEp [f(x)H] (3.43)

where H ij =
1

P ij
1(xi = j). Detailed derivation can be found in Appendix 10.8.

Approximate the gradient by Monte Carlo sampling,

⌘
t+1 = ⌘

t
� �t

1

N

NX

n=1

f(xn)Hn (3.44)

where H
n

ij
= 1

P ij
1(xn

i
= j). We can also normalize the update by the std b�. It

is worth noting that for each row of ⌘, plus an o↵set constant does not change the

probability P . Thus, we can plus a constant to each row of ⌘ to avoid numerical

problem.

3.6 Convergence Rate

We first show a general framework for continuous optimization in Alg. 4. Alg. 4

employs an unbiased estimator (bgt) for gradient rµJ̄(✓t). In contrast, it can employ

both the unbiased and biased estimators bGt for update. It is worth noting that bgt can
be both the first-order estimate (stochastic gradient) and the zeroth-order estimate

(function value based estimator).

The update step of µ and ⌃ is achieved by solving the following convex minimiza-

tion problem.

m
t+1 = argmin

m2M
�t hm, bvti+KL (pmkpmt) (3.45)

34

where m := {m1,m2} = {µ,⌃ + µµ
>} 2 M, M denotes a convex set, and bvt =

{bgt � 2 bGtµt
, bGt}.

The optimum of problem (3.45) leads to closed-form update (3.46) and (3.47):

⌃�1
t+1 = ⌃�1

t
+ 2�t

bGt (3.46)

µ
t+1 = µ

t
� �t⌃t+1bgt (3.47)

General Stochastic Case: The convergence rate of Algorithm 4 is shown in

Theorem 4.

Theorem 4. Given a convex function f(x), define J̄(✓) := Ep(x;✓)[f(x)] for Gaussian

distribution with parameter ✓ := {µ,⌃ 1
2} 2 ⇥ and ⇥ := {µ,⌃ 1

2

�� µ 2 Rd,⌃ 2
S+}. Suppose J̄(✓) be �-strongly convex. Let bGt be positive semi-definite matrix such

that bI � bGt � �

2I. Suppose ⌃1 2 S++ and k⌃1k  ⇢, Ebgt = rµ=µt
J̄ . Assume

furthermore kr⌃=⌃t J̄ktr  B1 and kµ⇤�µ1k2⌃�1
1

 R, Ekbgtk22  B . Set �t = �, then

Algorithm 4 can achieve

1

T

"
TX

t=1

Ef(µ
t
)

#
� f(µ⇤)  (3.48)

2bR+2b�⇢(4B1+�B)+4B1(1+log T)+(1+log T)�B
4�bT

= O
✓
log T

T

◆
(3.49)

Remark: Theorem 4 does not require the function f(x) be di↵erentiable. It holds

for non-smooth function f(x). Theorem 4 holds for convex function f(x), as long

as J̄(✓) := Ep(x;✓)[f(x)] be �-strongly convex. Particularly, when f(x) is �-strongly

convex, we know J̄(✓) is �-strongly convex [49]. Thus, the assumption here is weaker

than strongly convex assumption of f(x). Moreover, Theorem 4 does not require

the boundedness of the domain. It only requires the boundedness of the distance

between the initialization point and an optimal point. Theorem 4 shows that the

bound depends on the bound of Ekbgtk22, which means that reducing variance of the

gradient estimators can leads to a small regret bound.

Black-box Case: For black-box optimization, we can only access the function

value instead of the gradient. We give an unbiased estimator of rµJ̄(✓t) using func-

tion values as below

bgt = ⌃
�

1
2

t z

⇣
f(µ

t
+ ⌃

1
2
t z)� f(µ

t
)
⌘

(3.50)

where z ⇠ N (0, I).

35

The estimator bgt is unbiased, i.e., E[bgt] = rµJ̄(✓t). The proof of unbiasedness

of the estimator bgt is given in Lemma 7 in the Appendix. With this estimator, we

give the convergence rate of Algorithm 4 for convex black-box optimization as in

Theorem 5.

Theorem 5. For a L-Lipschitz continuous convex black box function f(x), define

J̄(✓) := Ep(x;✓)[f(x)] for Gaussian distribution with parameter ✓ := {µ,⌃ 1
2} 2 ⇥

and ⇥ := {µ,⌃ 1
2

�� µ 2 Rd,⌃ 2 S+}. Suppose J̄(✓) be �-strongly convex. Let bGt

be positive semi-definite matrix such that bI � bGt � �

2I. Suppose ⌃1 2 S++ and

k⌃1k2  ⇢, Assume furthermore kr⌃=⌃t J̄ktr  B1 and kµ⇤ � µ1k2⌃�1
1

 R, . Set

�t = � and employ estimator bgt in Eq.(3.50), then Algorithm 4 can achieve

1

T

"
TX

t=1

Ef(µ
t
)

#
� f(µ⇤) (3.51)

 bR + b�⇢(4B1 + 2�L2(d+ 4)2)

2�bT
(3.52)

+
4B1(1 + log T) + (1 + log T)�L2(d+ 4)2

4�bT

= O
✓
d2 log T

T

◆
(3.53)

Remark: Theorem 5 holds for non-di↵erentiable function f(x). Thus, Theorem 5

can cover more interesting cases e.g. sparse black box optimization. In contrast, Bal-

asubramanian et al. ([19]) require function f(x) has Lipschitz continuous gradients.

Both Alg. 1 and Alg. 2 employ an unbiased gradient estimator bg for µ update and

biased estimator bG for variance ⌃ (�2) update. When further ensure bI � bGt � �

2I,

Theorem 5 holds for Alg. 1 and Alg. 2. Theorem 5 is derived for single sample

per iteration. We can reduce the variance of estimators by constructing a set of

structured samples that are conjugate of inverse covariance matrix in a batch, i.e.,

zi⌃
�1
t zj = 0, i 6= j. Particularly, when we use b⌃t = �tI, sampling N = d orthogonal

samples [38] per iteration can lead to a convergence rate O
�
d log T

T

�
. For N > d

samples, we can use the method in [117] with a random rotation to reduce variance.

3.7 Empirical Evaluation

3.7.1 Evaluation on synthetic continuous test benchmarks

We evaluate the proposed INGO , INGOstep and Fast-INGO (diagonal case of INGO)

by comparing with one of the state-of-the-art method CMA-ES [69] and IGO [135]

36

(a) Ellipsoid (b) `1-Ellipsoid (c) ` 1
2
-Ellipsoid

(d) Discus (e) Levy (f) Rastrigin10

Figure 3.1: Mean value of f(x) in log10 scale over 20 independent runs for 100-
dimensional problems.

with full covariance matrix update, and vanilla ES with antithetic gradient estima-

tors [149] on several synthetic benchmark test problems. All the test problems are

listed in Table 3.1.

Table 3.1: Test functions
name function

Ellipsoid f(x) :=
P

d

i=1 10
6(i�1)
d�1 x2

i

Discus f(x) := 106x1 +
P

d

i=2 x
2
i

`1-Ellipsoid f(x) :=
P

d

i=1 10
6(i�1)
d�1 |xi|

` 1
2
-Ellipsoid f(x) :=

P
d

i=1 10
6(i�1)
d�1 |xi|

1
2

Levy f(x) :=
sin2(⇡w1)+

d�1P
i=1

(wi�1)2(1 + 10sin2(⇡wi + 1)) + (wd�1)2(1 + sin2(2⇡wd))

where wi = 1 + (xi � 1)/4, i 2 {1, ..., d}

Rastrigin10 f(x) := 10d+
dP

i=1
(10

i�1
d�1xi)2 � 10 cos

�
2⇡10

i�1
d�1xi

�

Parameter Settings: For INGO, INGOstep and IGO, we use the same normal-

ization transformation h(f(xi) =
f(xi)�bµ

b� and all same hyper-parameters to test the

e↵ect of implicit natural gradient. We set step size � = 1/d for all of them. For Fast-

INGO, we set step size � = 1/
p
d, where d is the dimension of the test problems. The

number of samples per iteration is set to N = 2b3+ b3⇥ ln dc/2c for all the methods,

37

where b·c denotes the floor function. This setting ensures N to be an even number.

We set �1 = 0.5⇥ 1 and sample µ1 ⇠ Uni[0,1] as the same initialization for all the

methods, where Uni[0, 1] denotes the uniform distribution in [0, 1]. For ES [149], we

use the default step-size hyper-parameters.

The mean value of f(x) over 20 independent runs for 100-dimensional problems

are show in Figure 3.1. From Figure 3.1, we can see that INGO, INGOstep and

Fast-INGO converge linearly in log scale. Fast-INGO can arrive 10�10 precision on

five cases except the highly non-convex Rastrigin10 problem. Fast-INGO employs the

separate structure of the problems, thus it obtains better performance than the other

methods with full matrix update. It is worth to note that Fast-INGO is not rotation

invariant compared with Full-INGO. The INGO and INGOstep (with full matrix

update) can arrive 10�10 on four cases, while IGO with full matrix update can not

achieve high precision. This shows that the update of inverse of covariance matrix is

more stable. Moreover, CMA-ES converge linearly in log scale for the convex Ellipsoid

problem but slower than Fast-INGO. In addition, CMAES converge slowly on the non-

smooth `1-Ellipsoid and the non-convex ` 1
2
-Ellipsoid problem. Furthermore, CMAES

fails on the non-convex Levy problem, while INGO, INGOstep and Fast-INGO obtain

10�10. CMAES converges faster or achieves smaller value than ES. On the non-convex

Rastrigin10 problem, all methods fail to obtain 10�10 precision. Fast-INGO obtains

smaller value. The results on synthetic test problems show that methods employing

second-order information converge faster than first-order method ES. And employing

second-order information is important to obtain high optimization precision, i.e.,

10�10. Moreover, taking stochastic implicit natural gradient update can converge

faster than IGO. The test functions are highly ill-conditioned and non-convex; the

experimental results show that it is challenging for ES to optimize them well without

adaptively update covariance and mean.

3.7.2 Evaluation on RL test problems

We further evaluate the proposed Fast-INGO by comparing AESBO [37] and ES

with antithetic gradient estimators [149] on MuJoCo control problems: Swimmer,

HalfCheetah, HumanoidStandup, InvertedDoublePendulum, in Open-AI Gym envi-

ronments. CMA-ES is too slow due to the computation of eigendecomposition for

high-dimensional problems.

We use one hidden layer feed-forward neural network with tanh activation function

as policy architecture. The number of hidden unit is set to h = 16 for all problems.

The goal is to find the parameters of this policy network to achieve large reward.

38

(a) Swimmer (b) HalfCheetah

(c) InvertedDoublePendulum (d) HumanoidStandup

Figure 3.2: Average Reward over 5 independent runs on benchmark RL environments

The same policy architecture is used for all the methods on all test problems. The

number of samples per iteration is set to N = 20+4bb3⇥ ln dc/2c for all the methods.

For Fast-INGO, we set step-size � = 0.3 . We set �1 = 0.1 ⇥ 1 and µ1 = 0 as the

initialization for both Fast-INGO and ES. For ES [149], we use the default step-size

hyper-parameters. Five independent runs are performed. The experimental results

are shown in Figure 3.2. We can observe that Fast-INGO increase AverageReward

faster than ES on all four cases. This shows that the update using seconder order

information in Fast-INGO can help accelerate convergence.

3.7.3 Evaluation on discrete test problems

We evaluate our discrete INGO by comparing with GA method on binary reconstruc-

tion benchmark problem, i.e., f(x) := ksign(x � 0.5) �wk22 � ksign(w) �wk22 with

x 2 {0, 1}d . We construct w by sampling from standard Gaussian. The dimension d

of test problem is set to {100, 500, 1000, 2000}, respectively. For our discrete INGO,

we set the stepsize � = 1/d. The number of samples per iteration is same as INGO,

i.e., N = 20 + 4b3 + b3⇥ ln dc/2c.

39

(a) 100-dimensional problem (b) 500-dimensional problem

(c) 1000-dimensional problem (d) 2000-dimensional problem

Figure 3.3: Mean value of regret over 10 independent runs for di↵erent dimensional
discrete optimization problems

The experimental resutls are shown in Fig. 3.3. We can observe that our discrete

INGO achieves much smaller regret compared with GA. Our discrete INGO converges

to near zero regret on 100-dimensional and 500-dimensional test problems, while GA

decrease very slowly after a short initial greedy phase.

3.8 Summary

In this Chapter, I proposed a novel stochastic implicit natural gradient frameworks for

black-box optimization. Under this framework, I presented algorithms for both con-

tinuous and discrete black-box optimization. Theoretically, I proved the O (log T/T)

convergence rate of our continuous algorithms with stochastic update for non-di↵erentiable

convex function under expectation �-strongly convex assumption. I provedO (d2 log T/T)

converge rate for black-box function under same assumptions above. For isometric

Gaussian case, we proved the O (d log T/T) converge rate when using d orthogonal

40

samples per iteration, which well supports parallel evaluation. Our method is very

simple, and it contains less hyper-parameters than CMA-ES. Empirically, our meth-

ods obtain a competitive performance compared with CMA-ES. Moreover, our INGO

and INGOstep with full matrix update can achieve high precision on Levy test prob-

lem and Ellipsoid problems, while IGO [135] with full matrix update can not. This

shows the e�ciency of our methods. On RL control problems, our algorithms increase

average reward faster than ASEBO [37] and ES, which shows employing second or-

der information can help accelerate convergence. Moreover, our discrete algorithm

outperforms than GA on test functions.

41

Chapter 4

Batch Bayesian Optimization

4.1 Chapter Abstract

In this chapter, we investigate black-box optimization from the perspective of frequen-

tist kernel methods. We propose a novel batch optimization algorithm, which jointly

maximize the acquisition function and select points from a whole batch in a holistic

way. Theoretically, we derive regret bounds for both the noise-free and perturbation

settings irrespective of the choice of kernel. Moreover, we analyze the property of the

adversarial regret that is required by a robust initialization for Bayesian Optimiza-

tion (BO). We prove that the adversarial regret bounds decrease with the decrease

of covering radius, which provides a criterion for generating a point set to minimize

the bound. We then propose fast searching algorithms to generate a point set with

a small covering radius for the robust initialization. Experimental results on both

synthetic benchmark problems and real-world problems show the e↵ectiveness of the

proposed algorithms.

4.2 Problem Setup

Notations and Symbols: Let Hk denote a separable reproducing kernel Hilbert

space associated with the kernel k(·, ·), and Let k·k
Hk

denote the RKHS norm in Hk

. k · k denotes the l2 norm (Euclidean distance). Let Bk = {f : f 2 Hk, kfkHk
 B}

denotes a bounded subset in the RKHS, and X ⇢ Rd denote a compact set in Rd.

Symbol [N] denotes the set {1, ..., N}. N and P denote the integer set and prime

number set, respectively. Bold capital letters are used for matrices.

Let f : X ! R be the unknown black-box function to be optimized, where

42

X ⇢ Rd is a compact set. BO aims to find a maximum x⇤ of the function f , i.e.,

f(x⇤) = max
x2X

f(x).

In sequential BO, a single point xt 2 X is selected to query an observation at

round t. Batch BO is introduced in the literature for the benefits of parallel execution.

Batch BO methods select a batch of points Xn = {x(n�1)L+1, ..., xnL} simultaneously

at round n, where L is the batch size. The batch BO is di↵erent from the sequential

BO because the observation is delayed for batch BO during the batch selection phase.

An additional challenge is introduced in batch BO since it needs to select a batch of

points at one time, without knowing the latest information about the function f .

In BO, the e↵ectiveness of a selection policy can be measured by the cumulative

regret RT and the simple regret (minimum regret) rT over T steps. The cumulative

regret RT and simple regret rT are defined as follows,

RT =
TX

t=1

(f(x⇤)� f(xt)) , (4.1)

rT = f(x⇤)� max
1tT

f(xt). (4.2)

The regret bound introduced in numerous theoretical works is based on the maximum

information gain defined as

�T = max
x1,...,xT

1

2
log det(IT + ��2KT), (4.3)

where KT = [k(xi,xj)]1i,jT
denotes the kernel matrix, and x1, · · · ,xT 2 X denotes

the T data points in the input domain.

The bounds of �T for commonly used kernels are studied in [160]. Specifically, [160]

state that �T = O(d log T) for the linear kernel, �T = O((log T)d+1) for the squared

exponential kernel and �T = O(T ↵(log T)) for the Matérn kernels with ⌫ > 1, where

↵ = d(d+1)
2⌫+d(d+1)  1. We employ the term �T to build the regret bounds of our

algorithms.

In this work, we consider two settings: noise-free setting and perturbation setting:

Noise-Free Setting: We assume the underlying function f belongs to an RKHS

associated with kernel k(·, ·) , i.e., f 2 Hk, with kfk
Hk

< 1 . In the noise-free

setting, we can directly observe f(x), x 2 X without noise perturbation.

Perturbation Setting: In the perturbation setting, we cannot observe the function

evaluation f(x) directly. Instead, we observe y = h(x) = f(x) + g(x), where g(x) is

an unknown perturbation function.

43

Define k�(x, y) := k(x, y) + �2�(x, y) for x, y 2 X , where �(x, y) =

⇢
1 x = y
0 x 6= y

and � � 0. We assume f 2 Hk , g 2 H�2� with kfk
Hk

< 1 and kgk
H�2�

< 1,

respectively. Therefore, we know h 2 Hk� and khk
Hk�

< 1. The same point is

assumed never selected twice, this can be ensured by the deterministic selection rule.

4.3 BO in Noise-Free Setting

In this section, we will first present algorithms and theoretical analysis in the se-

quential case. We then discuss our batch selection method. All detailed proofs are

included in the supplementary material.

4.3.1 Sequential Selection in Noise Free Setting

Define mt(x) and �t(x) as follows:

mt(x) = kt(x)
TK�1

t
ft (4.4)

�2
t
(x) = k(x, x)� kt(x)

TK�1
t
kt(x), (4.5)

where kt(x) = [k(x, x1), ..., k(x, xt)]T and the kernel matrix Kt = [k(xi, xj)]1i,jt
.

These terms are closely related to the posterior mean and variance functions of GP

with zero noise. We use them in the deterministic setting. A detailed review of the

relationships between GP methods and kernel methods can be found in [87].

The sequential optimization method in the noise-free setting is described in Algo-

rithm 5. It has a similar form to GP-UCB [160], except that it employs a constant

weight of the term �t�1(x) to balance exploration and exploitation. In contrast, GP-

UCB uses a O(log(t)) increasing weight. In practice, a constant weight is preferred

in the scenarios where an aggressive selection manner is needed. For example, only

a small number of evaluations can be done in the hyperparameter tuning in RL al-

gorithms due to limited resources. The regret bounds of Algorithm 5 are given in

Theorem 6.

Theorem 6. Suppose f 2 Hk associated with k(x, x)  1 and kfk
Hk

< 1. Let

C1 = 8
log(1+��2) . Algorithm 5 achieves a cumulative regret bound and a simple

regret bound given as follows:

RT  kfk
Hk

p
TC1�T (4.6)

rT  kfk
Hk

r
C1�T
T

. (4.7)

where 0 < c < +1.

44

Algorithm 5 Sequential Noise-free Algorithm
for t = 1 to T do
Obtain mt�1(·) and �2

t�1(·) via equations (4.4) and (4.5).
Choose xt = argmax

x2X
mt�1(x) + kfk

Hk
�t�1(x).

Query the observation f(xt) at location xt.
end for

Remark: We can achieve concrete bounds w.r.t T by replacing �T with the

specific bound for the corresponding kernel. For example, for SE kernels, we can

obtain that RT = O(
p
T (log T)d+1) and rT = O((log T)d+1

p
T

), respectively. [32] presents

bounds for Matérn type kernels. The bound in Theorem 6 is tighter than Bull’s bound

of pure EI (Theorem 4 in [32]) when the smoothness parameter of the Matérn kernel

⌫ > d(d+1)
d�2 = O(d). This is no better than the bound of mixed strategies (Theorem

5) in Bull’s work. Nevertheless, the bound in Theorem 6 makes fewer assumptions

about the kernels, and covers more general results (kernels) compared with Bull’s

work.

4.3.2 Batch Selection in Noise-Free Setting

Let N and L be the number of batches and the batch size, respectively. Without

loss of generality, we assume T = NL. Let Xn = {x(n�1)L+1, ..., xnL} and Xn =

{X1, ..., Xn} = {x1, ..., xnL} be the nth batch of points and all the n batches of points,

respectively. The covariance function of X 2 Rd⇥L for the noise free case is given as

follows:

covn(X,X) = K(X,X)�K(Xn, X)TK(Xn, Xn)
�1K(Xn, X) (4.8)

where K(X,X) is the L ⇥ L kernel matrix, K(Xn, X) denotes the nL ⇥ L kernel

matrix between Xn and X. When n = 0, cov0(X,X) = K(X,X) is the prior kernel

matrix. We assume that the kernel matrix is invertible in the noise-free setting.

The proposed batch optimization algorithm is presented in Algorithm 8. It em-

ploys the mean prediction value of a batch together with a term of covariance to

balance the exploration/exploitation trade-o↵. The covariance term in Algorithm 8

penalizes the batch with over-correlated points. Intuitively, for SE kernels and Matérn

kernels, it penalizes the batch with points that are too close to each other (w.r.t Eu-

clidean distance). As a result, it encourages the points in a batch to spread out for

better exploration. The regret bounds of our batch optimization method are summa-

rized in Theorem 7.

45

Algorithm 6 Batch Noise-free Algorithm
for n = 1 to N do
Obtain m(n�1)L(·) and covn�1(·) via equations (4.4) and (4.8), respectively.

ChooseXn=argmax
X⇢X

1
L

LP
i=1

m(n�1)L(X·,i)+khk
Hk

✓
2
q

tr(covn�1(X,X))
L

�
q

1T covn�1(X,X)1
L2

◆
.

Query the batch observations {f(x(n�1)L+1), ..., f(xnL)} at locations Xn.
end for

Theorem 7. Suppose f 2 Hk associated with k(x, x)  1 and kfk
Hk

< 1. Let

T = NL, � = maxn2{1,...,N}kccovn�1(Xn, Xn)k2 and C2 = 8�
log(1+���2) . Algorithm 8

with batch size L achieves a cumulative regret bound and a simple regret bound given

by equations (4.9) and (4.10), respectively:

RT  kfk
Hk

p
TC2�T (4.9)

rT  kfk
Hk

r
C2�T
T

. (4.10)

Remark: (1) A large � leads to a large bound, while a small � attains a small

bound. Algorithm 2 punishes the correlated points and encourages the uncorrelated

points in a batch, which can attain a small � in general. (2) A trivial bound of � is

�  L.

To prove Theorem 7, the following Lemma is proposed. The detailed proof can

be found in the Appendix.

Lemma 1. Suppose f 2 Hk associated with kernel k(x, x) and kfk
Hk

< 1, then

we have
⇣P

L

i=1 mt(bxi)�
P

L

i=1 f(bxi)
⌘2

 kfk2
Hk

(1TA1), where A denotes the kernel

covariance matrix with Aij = k(bxi, bxj)� kt(bxi)TK
�

t kt(bxj).

Remark: Lemma 1 provides a tighter bound for the deviation of the summation

of a batch than directly applying the bound for a single point L times.

The intuition of the batch selection scheme: the selection acquisition func-

tion consists of two parts, the mean of prediction in a batch and the variance/covariance

terms in a batch. The mean of prediction provides an estimation of the black-box

function. The variance/covariance terms encourage exploration in a batch. These two

parts balance between exploits of current estimation for optimization and maintain a

diversity exploration to gain information.

46

Algorithm 7 Sequential Optimization with Perturbation
for t = 1 to T do
Obtain bmt�1(·) and b�2

t�1(·) via equation (4.11) and (4.12).
Choose xt = argmax

x2X
bmt�1(x) + khk

Hk�
b�t�1(x)

Query the observation yt = h(xt) at location xt.
end for

4.4 BO in Perturbation Setting

In the perturbation setting, we cannot observe the function evaluation f(x) directly.

Instead, we observe y = h(x) = f(x) + g(x), where g(x) is an unknown perturbation

function. We will discuss the sequential selection and batch selection methods in the

following sections, respectively.

4.4.1 Sequential Selection in Perturbation Setting

Define bmt(x) and b�t(x) as follows:

bmt(x) = kt(x)
T (Kt + �2I)�1yt (4.11)

b�2
t
(x) = k(x, x)� kt(x)

T (Kt + �2I)�1kt(x), (4.12)

where kt(x) = [k(x, x1), ..., k(x, xt)]T and the kernel matrix Kt = [k(xi, xj)]1i,jt
.

The sequential selection method is presented in Algorithm 7. It has a similar

formula to Algorithm 5; while Algorithm 7 employs a regularization �2I to handle the

uncertainty of the perturbation. The regret bounds of Algorithm 7 are summarized

in Theorem 8.

Theorem 8. Define k�(x, y) := k(x, y)+�2�(x, y)  B, where �(x, y) =

⇢
1 x = y
0 x 6= y

and � � 0. Suppose f 2 Hk, g 2 H�2� associated with kernel k and kernel �2�

with kfk
Hk

< 1 and kgk
H�2�

< 1, respectively. Let C3 = 8B
log(1+B��2) . Algorithm

7 achieves a cumulative regret bound and a simple regret bound given by equations

(4.13) and (4.14), respectively.

RT  khk
Hk�

p
TC3�T+2T

⇣
khk

Hk�
+kgk

H�2�

⌘
� (4.13)

rT  khk
Hk�

r
C3�T
T

+ 2
⇣
khk

Hk�
+ kgk

H�2�

⌘
� (4.14)

Remark: In the perturbation setting, the unknown perturbation function g re-

sults in some unavoidable dependence on � in the regret bound compared with GP-

UCB [160]. Note that the bounds in [160] are probabilistic bounds. There is always

47

a positive probability that the bounds in [160] fail. In contrast, the bounds in Theo-

rem 8 are deterministic.

Corollary 1. Suppose h = f 2 Hk associated with k(x, y)  1 and kfk
Hk

< 1. Let

C1 =
8

log(1+��2) . Algorithm 7 achieves a cumulative regret bound and a simple regret

bound given by equations (4.15) and (4.16), respectively:

RT  kfk
Hk

p
TC1�T + 2Tkfk

Hk
� (4.15)

rT  kfk
Hk

r
C1�T
T

+ 2kfk
Hk

�. (4.16)

Proof. Setting g = 0 and B = 1 in Theorem 8, we can achieve the results.

Remark: In practice, a small constant �2I is added to the kernel matrix to avoid

numeric problems in the noise-free setting. Corollary 1 shows that the small constant

results in an additional biased term in the regret bound. Theorem 6 employs (4.4)

and (4.5) for updating, while Corollary 1 presents the regret bound for the practical

updating by (4.11) and (4.12).

4.4.2 Batch Selection in Perturbation Setting

The covariance kernel function of X 2 Rd⇥L for the perturbation setting is defined as

equation (4.17),

ccovn(X,X) = K(X,X)�K(Xn, X)T
�
�2I +K(Xn, Xn)

��1
K(Xn, X), (4.17)

where K(X,X) is the L⇥L kernel matrix, and K(Xn, X) denotes the nL⇥L kernel

matrix between Xn and X. The batch optimization method for the perturbation

setting is presented in Algorithm 8. The regret bounds of Algorithm 8 are summarized

in Theorem 9.

Theorem 9. Define k�(x, y) := k(x, y)+�2�(x, y)  B, where �(x, y) =

⇢
1 x = y
0 x 6= y

and � � 0. Suppose f 2 Hk and g 2 H�2� associated with kernel k and ker-

nel �2� with kfk
Hk

< 1 and kgk
H�2�

< 1, respectively. Let T = NL, � =

maxn2{1,...,N}kccovn�1(Xn, Xn)k2 and C4 =
8�

log(1+���2) . Algorithm 8 with batch size

L achieves a cumulative regret bound and a simple regret bound given by equations

(4.18) and (4.19), respectively:

RT  khk
Hk�

p
TC4�T+2T

⇣
khk

Hk�
+kgk

H�2�

⌘
� (4.18)

rT  khk
Hk�

r
C4�T
T

+ 2
⇣
khk

Hk�
+ kgk

H�2�

⌘
�. (4.19)

Remark: When the batch size is one, the regret bounds reduce to the sequential

case.

48

Algorithm 8 Batch Optimization with Perturbation
for n = 1 to N do
Obtain bm(n�1)L(·) and ccovn�1(·) via equation (4.11) and (4.17) respectively.

ChooseXn=argmax
X⇢X

1
L

LP
i=1
bm(n�1)L(X·,i)+khk

Hk�

✓
2
q

tr(dcovn�1(X,X))
L

�
q

1Tdcovn�1(X,X)1
L2

◆
.

Query the batch observations {h(x(n�1)L+1), ..., h(xnL)} at locations Xn =
{x(n�1)L+1, ..., xnL}.

end for

4.5 Robust Initialization for BO

In practice, the initialization phase of BO is important. In this section, we will discuss

how to achieve robust initialization by analyzing regret in the adversarial setting. We

will first show that algorithms that attain a small covering radius (fill distance) can

achieve small adversarial regret bounds. Based on this insight, we provide a robust

initialization to BO.

Let ft : X ! R, t 2 [T] be the black-box function to be optimized at round t. Let

ft(x⇤

t
) = maxx2Xft(x) with ft 2 Bk. The simple adversarial regret erT is defined as:

erT = min
t2[T]

sup
ft2Bk,8i2[t�1],
ft(xi)=fi(xi)

{ft(x⇤

t
)� ft(xt)}, (4.20)

where the constraints ensure that each ft has the same observation values as the

history at previous query points Xt�1 = {x1, ..., xt�1}. This can be viewed as an

adversarial game. During each round t, the opponent chooses a function ft from a

candidate set, and we then choose a query xt to achieve a small regret. A robust

initialization setting can be viewed as the batch of points that can achieve a low

simple adversarial regret irrespective of the access order.

Define covering radius (fill distance [87]) and packing radius (separate distance [87])

of a set of points X = {x1, ..., xT} as follows:

hX = sup
x2X

min
xt2X

kx� xtk (4.21)

⇢X =
1

2
min

xi,xj2X,

xi 6=xj

kxi � xjk. (4.22)

Our method for robust initialization is presented in Algorithm 9, which constructs

an initialization set XT�1 by minimizing the covering radius. We present one such

method in Algorithm 10 in the next section. The initialization set XT�1 can be

evaluated in a batch manner, which is able to benefit from parallel evaluation. The

regret bounds of Algorithm 9 are summarized in Theorem 10 and Theorem 11.

49

Theorem 10. Define Bk = {f : f 2 Hk, kfkHk
 B} associated with k(x, x) for

x 2 X ⇢ Rd. Suppose f 2 Bk and Hk is norm-equivalent to the Sobolev space of

order s. Then there exits a constant C > 0, such that the query point set generated

by Algorithm 5 with a su�ciently small covering radius (fill distance) hX achieves

a regret bound given by equation (4.23):

erT  BChs�d/2
X

. (4.23)

Remark: The regret bound decreases as the covering radius becomes smaller.

This means that a query set with a small covering radius can guarantee a small

regret. [32] gives bounds of fixed points set for Matérn kernels (Theorem 1). However,

it does not link to the covering radius. The bound in Theorem 10 directly links to

the covering radius, which provides a criterion for generating points to achieve small

bounds.

Theorem 11. Define Bk = {f : f 2 Hk, kfkHk
 B} associated with square-

exponential k(x, x) on unit cube X ⇢ Rd. Suppose f 2 Bk. Then there exits a

constant c > 0, such that the query point set generated by Algorithm 5 with a

su�ciently small covering radius (fill distance) hX achieves a regret bound given by

equation (4.24):

erT  B exp(c log(hX)/(2
p
hX)). (4.24)

Remark: Theorem 11 presents a regret bound for the SE kernel. It attains higher

rate w.r.t covering radius hX compared with Theorem 10, because functions in RKHS

with SE kernel are more smooth than functions in Sobolev space.

We analyze the regret under a more adversarial setting. This relates to a more

robust requirement. The regret bounds under a fully adversarial setting when little

information is known are summarized in Theorem 12.

Algorithm 9 Greedy Batch Optimization
Construct Candidate set XT�1 with T �1 points by minimizing the fill distance
(e.g.Algorithm 10).
Query the observations at XT�1.
Obtain mT�1(·) and �2

T�1(·) via equation (4.4) and (4.5).
Choose xT = argmax

x2X

mT�1(x) +B�T�1(x)

Query the observation yT = f(xT) at location xT .

50

(a) 100 lattice points (b) 100 random points

Figure 4.1: Lattice Points and Random Points on [0, 1]2

Theorem 12. Define Bk = {f : f 2 Hk, kfkHk
 B} associated with a shift invariant

kernel k(x, y) = �(kx � yk)  1 that decreases w.r.t kx � yk. Suppose 9x⇤ such

that ft(x⇤) = maxx2Xft(x) with ft 2 Bk for t 2 [T]. Then the query point set

X = {x1, ..., xT} generated by Algorithm 9 with covering radius (fill distance) hX

achieves a regret bound as

r̄T = min
t2{1,...,T}

sup
ft2Bk

{ft(x⇤)�ft(xt)}B
p
2�2�(hX).

Remark: Theorem 9 gives a fully adversarial bound. Namely, the opponent can

choose functions from Bk without the same history. The regret bound decreases with

the decrease of the covering radius (fill distance). The assumption requires each ft to

have the x⇤ as one of its maximum. Particularly, it is satisfied when f1= · · ·= fT =f .

Corollary 2. Define Bk = {f : f 2 Hk, kfkHk
 B} associated with squared expo-

nential kernel. Suppose 9x⇤ such that ft(x⇤) = maxx2Xft(x) with ft 2 Bk for t 2 [T].

Then the query point set X = {x1, ..., xT} generated by Algorithm 9 with covering

radius (fill distance) hX achieves a regret bound as

r̄T = min
t2{1,...,T}

sup
ft2Bk

{ft(x⇤)� ft(xt)}  O(hX). (4.25)

Remark: For a regular grid, hX = O(T�
1
d) [172], we then achieve r̄T = O(T�

1
d).

Computer search can find a point set with a smaller covering radius than that of a

regular grid.

All the adversarial regret bounds discussed above decrease with the decrease of the

covering radius. Thus, the point set generated by Algorithm 9 with a small covering

radius can serve as a good robust initialization for BO.

51

Algorithm 10 Rank-1 Lattice Construction
Input: Number of primes M , dimension d, number of lattice points N
Output: Lattice points X⇤, base vector b⇤

Set p0 = 2⇥ d+ 1, initialize ⇢⇤ = �1.
Construct set U := {p|p 2 P, p � p0} containing M primes.
for each p 2 U do
for i = 0 to p� 1 do
Set g = mod(q+ i, p), where q 2 Rd�1 and qj=j.
Set g = round(N ⇥mod(|2cos(2⇡g

p
)|, 1)).

Set b as [1,g] by concatenating vector 1 and g.
Generate lattice X given base vector b as Eq.(4.26).
Calculate the packing radius (separate distance) ⇢X of X as Eq.(5.8).
if ⇢X > ⇢⇤ then
Set b⇤ = b and ⇢⇤ = ⇢X .

end if
end for

end for
Generate lattice X⇤ given base vector b⇤ as Eq.(4.26).

4.6 Fast Rank-1 Lattice Construction

In this section, we describe the procedure of generating a query points set that

has a small covering radius (fill distance). Since minimizing the covering radius of

the lattice is equivalent to maximizing the packing radius (separate distance) [89],

we generate the query points set through maximizing the packing radius (separate

distance) of the rank-1 lattice. An illustration of the rank-1 lattice constructed by

Algorithm 10 is given in Fig. 4.1

4.6.1 The rank-1 lattice construction given a base vector

Rank-1 lattice is widely used in the Quasi-Monte Carlo (QMC) literature for integral

approximation [89,96]. The lattice points of the rank-1 lattice in [0, 1]d are generated

by a base vector. Given an integer base vector b 2 Nd, a lattice set X that consists

of N points in [0, 1]d is constructed as

X := {xi := mod(i⇥ b, N)/N |i2{0, ..., N�1}}, (4.26)

where mod(a, b) denotes the component-wise modular function, i.e., a%b. We use

mod(a, 1) to denote the fractional part of number a in this work.

52

Algorithm 11 Rank-1 Lattice Construction with Successive Coordinate Search
(SCS)
Input: Number of primes M , dimension d, number of lattice points N , number of
iteration of SCS search subroutine T .
Output: Lattice points X⇤, base vector b⇤

Set p0 = 2⇥ d+ 1, initialize ⇢⇤ = �1.
Construct set U := {p|p 2 P, p � p0} containing M primes.
for each p 2 U do
for i = 0 to p� 1 do
Set g = mod(q+ i, p), where q 2 Rd�1 and qj=j.
Set g = round(N ⇥mod(|2cos(2⇡g

p
)|, 1)).

Set b as [1,g] by concatenating vector 1 and g .
Perform SCS search [1, 117] with b as the initialization base vector to get a
better base bb and ⇢X .
if ⇢X > ⇢⇤ then
Set b⇤ = bb and ⇢⇤ = ⇢X .

end if
end for

end for
Generate lattice X⇤ given base vector b⇤ as Eq.(4.26).

4.6.2 The separate distance of a rank-1 lattice

Denote the toroidal distance [64] between two lattice points y 2 [0, 1]d and z 2 [0, 1]d

as:

ky � zkT :=

vuut
dX

i=1

(min(|yi � zi|, 1� |yi � zi|))2. (4.27)

Because the di↵erence (subtraction) between two lattice points is still a lattice point,

and a rank-1 lattice has a period of 1, the packing radius (separate distance) ⇢X of a

rank-1 lattice with set X in [0, 1]d can be calculated as

⇢X = min
x2X\0

1

2
kxkT , (4.28)

where kxkT can be seen as the toroidal distance between x and 0. This formulation

calculates the packing radius (separate distance) with a time complexity of O(Nd)

rather than O(N2d) in pairwise computation.

53

Table 4.1: Minimum distance (2⇢X) of 1,000 lattice points in [0, 1]d for d = 10, d = 20,
d = 30, d = 40 and d = 50.

d = 10 d = 20 d = 30 d = 40 d = 50
Algorithm 10 0.59632 1.0051 1.3031 1.5482 1.7571

Korobov 0.56639 0.90139 1.0695 1.2748 1.3987
SCS 0.60224 1.0000 1.2247 1.4142 1.5811

Algorithm 11 0.62738 1.0472 1.3620 1.6175 1.8401

Table 4.2: Minimum distance (2⇢X) of 2,000 lattice points in [0, 1]d for d = 10, d = 20,
d = 30, d = 40 and d = 50.

d = 10 d = 20 d = 30 d = 40 d = 50
Algorithm 10 0.54658 0.95561 1.2595 1.4996 1.7097

Korobov 0.51536 0.80039 0.96096 1.1319 1.2506
SCS 0.57112 0.98420 1.2247 1.4142 1.5811

Algorithm 11 0.58782 1.0144 1.3221 1.5758 1.8029

4.6.3 Searching the rank-1 lattice with maximized separate
distance

Given the number of primes M , the dimension d, and the number of lattices points

N , we try to find the optimal base vector b⇤ and its corresponding lattice points X⇤

such that the separation distance ⇢X⇤ is maximized over a candidate set. We adopt

the algebra field based construction formula in [78] to construct the base vector of a

rank-1 lattice. Instead of using the same predefined form as [78], we adopt a searching

procedure as summarized in Algorithm 10. The main idea is a greedy search starting

from a set of M prime numbers. For each prime number p, it also searches the p o↵set

from 0 to p�1 to construct the possible base vector b and its corresponding X. After

the greedy search procedure, the algorithm returns the optimal base vector b⇤ and the

lattice points set X⇤ that obtains the maximum separation distance. Algorithm 10

can be extended by including successive coordinate search (SCS) [1, 117] as an inner

searching procedure. The extended method is summarized in Algorithm 11. This

method can achieve superior performance compared to other baselines.

4.6.4 Comparison of minimum distance generated by di↵er-
ent methods

We evaluate the proposed Algorithm 10 and Algorithm 11 by comparing them with

searching in Korobov form [96] and SCS [1,117]. We fix M = 50 for Algorithm 10 and

Algorithm 11 in all the experiments. The number of iterations of SCS search [1,117] is

54

Table 4.3: Minimum distance (2⇢X) of 3,000 lattice points in [0, 1]d for d = 10, d = 20,
d = 30, d = 40 and d = 50.

d = 10 d = 20 d = 30 d = 40 d = 50
Algorithm 10 0.53359 0.93051 1.2292 1.4696 1.7009

Korobov 0.50000 0.67185 0.82285 0.95015 1.0623
SCS 0.52705 0.74536 0.91287 1.0541 1.1785

Algorithm 11 0.56610 0.98601 1.2979 1.5553 1.7771

set to T = 150, and number of iterations of SCS search as a subroutine in Algorithm 11

is set to T = 3.

The minimum distances (2⇢X) of 1, 000 points, 2, 000 points and 3, 000 points

generated by di↵erent methods are summarized in Tables 4.1, 4.2 and 4.3, respectively.

Algorithm 11 can achieve a larger separate (minimum) distance than other searching

methods. This means that Algorithm 11 can generate points set with a smaller

covering radius (fill distance). Thus, it can generate more robust initialization for BO.

Moreover, Algorithm 11 can also be used to generate points for integral approximation

on [0, 1]d.

4.6.5 Comparison between lattice points and random points

The points generated by Algorithm 10 and uniform sampling are presented in Fig-

ure 4.2. We can observe that the points generated by Algorithm 10 cut the domain

into several cells. It obtains a smaller covering radius (fill distance) than the random

sampling. Thus, it can be used as a robust initialization of BO.

4.7 Experiments

In this section, we focus on the evaluation of the proposed batch method. We evaluate

the proposed Batch kernel optimization (BKOP) by comparing it with GP-BUCB [45]

and GP-UCB-PE [40] on several synthetic benchmark test problems, hyperparameter

tuning of a deep network on CIFAR100 [98] and the robot pushing task in [171].

4.7.1 Comparison with Bull’s Non-adaptive Batch Method

[32] presents a non-adaptive batch method with all the query points except one

being fixed at the beginning. As mentioned by Bull, this method is not practical.

However, [32] does not present an adaptive batch method. We compare our adaptive

batch method with Bull’s non-adaptive method on Rosebrock and Ackley functions.

55

(a) 100 lattice points (b) 100 random points

(c) 1000 lattice points (d) 1000 random points

Figure 4.2: More Lattice Points and Random Points on [0, 1]2

The mean values of simple regret over 30 independent runs are presented in Figure 4.3,

which shows that Bull’s non-adaptive method has a very slowly decreasing simple

regret. Moreover, we find that Bull’s non-adaptive method performs particularly

worse when the size of the domain is large and the dimension of the problem is high.

4.7.2 Empirical Evaluation on Synthetic Benchmark Prob-
lems

Synthetic benchmark problems: The synthetic test functions and the domains

employed are listed in Table 4.4, which includes nonconvex, nonsmooth and multi-

modal functions.

We fix the weight of the covariance term in the acquisition function of BKOP to

one in all the experiments. For all the synthetic test problems, we set the dimension of

the domain d = 6, and we set the batch size to L = 5 and L = 10 for all the batch BO

algorithms. We use the ARDMatérn 5/2 kernel for all the methods. Instead of finding

56

Table 4.4: Benchmark functions
name function domain

Rosenbrock
d�1P
i=1

⇣
100(xi+1 � x2

i
)2 + (1� xi)

2
⌘

[�2, 2]d

Nesterov 1
4 |x1 � 1|+

d�1P
i=1

|xi+1 � 2 |xi|+ 1| [�2, 2]d

Di↵erent-Powers
dP

i=1
|xi|2+10 i�1

d�1 [�2, 2]d

Dixon-Price (x1 � 1)2 +
dP

i=2
i(2x2

i
� xi�1)

2 [�2, 2]d

Ackley �20 exp(�0.2

s
1
d

dP
i=1

x2
i
)� exp(1

d

dP
i=1

cos(2⇡xi)) + 20 + exp(1) [�2, 2]d

Levy
sin2(⇡w1) +

d�1P
i=1

(wi � 1)2(1 + 10sin2(⇡wi + 1))

+(wd � 1)2(1 + sin2(2⇡wd))
where wi = 1 + (xi � 1)/4, i 2 {1, ..., d}

[�10, 10]d

the optimum by discrete approximation, we employ the CMA-ES algorithm [70] to

optimize the acquisition function in the continuous domain X for all the methods,

which usually improves the performance compared with discrete approximation. For

each test problem, we use 20 rank-1 lattice points resized in the domain X as the

initialization. All the methods use the same initial points.

The mean value and error bar of the simple regret over 30 independent runs

concerning di↵erent algorithms are presented in Figure 4.5. We can observe that

BKOP with batch sizes 5 and 10 performs better than the other methods with the

same batch size. Moreover, algorithms with batch size 5 achieve faster-decreasing

regret compared with batch size 10. BKOP achieves significantly low regret compared

with the other methods on the Di↵erent-Powers and Rosenbrock test functions.

4.7.3 Empirical Evaluation on Hyperparameter tuning of Neu-
ral Network

We evaluate BKOP on hyperparameter tuning of the network on the CIFAR100

dataset. The network we employed contains three hidden building blocks, each one

consists of one convolution layer, one batch normalization layer and one RELU layer.

The depth of a building block is defined as the repeat number of these three layers.

Seven hyperparameters are used in total for searching, namely, the depth of the

building block ({1, 2, 3}), the initialized learning rate for SGD ([10�4, 10�1]), the

momentum weight ([0.1, 0.95]), weight of L2 regularization ([10�10, 10�2]), and three

57

(a) Rosenbrock function (b) Ackley function

Figure 4.3: The mean value of simple regret over 30 runs on Rosenbrock and Ackley
function

(a) Simple regret on network tuning task on CIFAR100 (b) Simple regret on robot pushing task

Figure 4.4: The mean value of simple regret on network tuning task and robot pushing
task.

hyperparameters related to the filter size for each building block, the domain of these

three parameters is {2 ⇥ 2, 3 ⇥ 3, 4 ⇥ 4}. We employ the default training set (i.e.,

50, 000 samples) for training, and use the default test set (i.e., 10, 000 samples) to

compute the validation error regret of automatic hyperparameter tuning for all the

methods.

We employ five rank-1 lattice points resized in the domain as the initialization. All

the methods use the same initial points. The mean value of the simple regret of the

validation error in percentage over 10 independent runs is presented in Figure 4.4(a).

We can observe that BKOP with both batch size 5 and 10 outperforms the others.

Moreover, the performance of GP-UCB-PE with batch size 10 is worse than the

others.

58

(a) Rosenbrock function (b) Nesterov function (c) Di↵erent-Powers function

(d) Dixon-Price function (e) Levy function (f) Ackley function

Figure 4.5: The mean value of simple regret for di↵erent algorithms over 30 runs on
di↵erent test functions

4.7.4 Empirical Evaluation on Robot Pushing Task

We further evaluate the performance of BKOP on the robot pushing task in [171].

The goal of this task is to select a good action for pushing an object to a target

location. The 4-dimensional robot pushing problem consists of the robot location

(x, y) and angle ✓ and the pushing duration ⌧ as the input. And it outputs the

distance between the pushed object and the target location as the function value.

We employ 20 rank-1 lattice points as initialization. All the methods use the same

initialization points. Thirty goal locations are randomly generated for testing. All the

methods use the same goal locations. The mean value and error bars over 30 trials are

presented in Figure 4.4(b). We can observe that BKOP with both batch size 5 and

batch size 10 can achieve lower regret compared with GP-BUCB and GP-UCB-PE.

Moreover, BKOP with a batch-size 10 obtains a very competitive regret compared

with BKOP with a batch-size 5. This shows that BKOP can be scalable to a large

batch. In addition, we can observe that BKOP with a batch-size 10 achieve a lower

regret compared with GP-UCB-PE with a small batch-size 5. This shows a great

sample e�ciency of BKOP as a batch Bayesian optimization algorithm.

59

4.8 Summary

In this Chapter, I analyzed black-box optimization for functions with a bounded norm

in RKHS. For sequential BO, I obtain a similar acquisition function to GP-UCB, but

with a constant deviation weight. For batch BO, I proposed the BKOP algorithm,

which is competitive with, or better than, other batch confidence-bound methods

on a variety of tasks. Theoretically, I derive regret bounds for both the sequential

and batch cases regardless of the choice of kernels, which are more general than the

previous studies. Furthermore, I derive adversarial regret bounds with respect to the

covering radius, which provides an important insight to design robust initialization

for BO. To this end, I proposed fast searching methods to construct a good rank-

1 lattice. Empirically, the proposed searching methods can obtain a large packing

radius (separate distance).

60

Chapter 5

Subgroup-based Rank-1 Lattice
Quasi-Monte Carlo

5.1 Chapter Abstract

Quasi-Monte Carlo (QMC) is an essential tool for integral approximation, Bayesian

inference, and sampling for simulation in science, etc. In the QMC area, the rank-1

lattice is important due to its simple operation, and nice properties for point set con-

struction. However, the construction of the generating vector of the rank-1 lattice is

usually time-consuming because of an exhaustive computer search. In this chapter,

we propose a simple closed-form rank-1 lattice construction method based on group

theory. Our method reduces the number of distinct pairwise distance values to gen-

erate a more regular lattice. We theoretically prove a lower and an upper bound of

the minimum pairwise distance of any non-degenerate rank-1 lattice. Empirically,

our methods can generate a near-optimal rank-1 lattice compared with the Korobov

exhaustive search regarding the l1-norm and l2-norm minimum distance. Moreover,

experimental results show that our method achieves superior approximation perfor-

mance on benchmark integration test problems and kernel approximation problems.

5.2 Background of Lattice

We first give the definition and the properties of lattices in Section 5.2.1. Then we

introduce the minimum distance criterion for lattice construction in Section 5.2.2.

61

5.2.1 The Lattice

A d-dimensional lattice ⇤ is a set of points that contains no limit points and satis-

fies [116]

8x,x0 2 ⇤) x+ x
0 2 ⇤ and x� x

0 2 ⇤. (5.1)

A widely known lattice is the unit lattice Zd whose components are all integers.

A general lattice is constructed by a generator matrix. Given a generator matrix

B 2 Rd⇥d, a d-dimensional lattice ⇤ can be constructed as

⇤ = {By
�� y 2 Zd}. (5.2)

A generator matrix is not unique to a lattice ⇤, namely, a lattice ⇤ can be obtained

from a di↵erent generator matrices.

A lattice point set for integration is constructed as ⇤ \ [0, 1)d. This step may

require an additional search (or check) for all the points inside the unit cube.

A rank-1 lattice is a special case of the general lattice, which has a simple operation

for point set construction instead of directly using Eq.(5.2). A rank-1 lattice point

set can be constructed as

xi :=

⌧
iz

n

�
, i 2 {0, 1, · · · , n� 1}, (5.3)

where z 2 Zd is the so-called generating vector, and the big h·i denotes the operation
of taking the fractional part of the input number elementwise. Compared with the

general lattice rule, the construction form of the rank-1 lattice already ensures the

constructed points to be inside the unit cube without the need for any further checks.

Given a rank-1 lattice set X in the unit cube, we can also construct a randomized

point set. Sample a random variable � ⇠ Uniform[0, 1]d, we can construct a point

set eX by random shift as [46]

eX = hX +�i . (5.4)

5.2.2 The separating distance of a lattice

Several criteria have been studied in the literature for good lattice construction

through computer search. Worst case error is one of the most widely used crite-

ria for functions in a reproducing kernel Hilbert space (RKHS) [46]. However, this

criterion requires the prior knowledge of functions and the assumption of the RKHS.

Without assumptions of the functions, it is reasonable to construct a good lattice by

62

designing an evenly spaced point set. Minimizing the covering radius is a good way

for evenly spaced point set construction.

As minimizing the covering radius of the lattice is equivalent to maximizing the

packing radius [43], we can construct the point set through maximizing the packing

radius (separating distance) of the lattice. Define the covering radius and packing

radius of a set of points X = {x1, ..., xN} as Eq.(5.5) and Eq.(5.6), respectively:

hX = sup
x2X

min
xk2X

kx� xkk, (5.5)

⇢X =
1

2
min

xi,xj2X,

xi 6=xj

kxi � xjk. (5.6)

The lp-norm-based toroidal distance [64] between two lattice points x 2 [0, 1]d and

x0 2 [0, 1]d can be defined as:

kx� x0kTp :=

dX

i=1

(min(|xi � x0

i
|, 1� |xi � x0

i
|))p
! 1

p

(5.7)

Because the di↵erence (subtraction) between two lattice points is still a lattice point,

and a rank-1 lattice has a period 1, the packing radius ⇢X of a rank-1 lattice can be

calculated as

⇢X = min
x2X\0

1

2
kxkT2 , (5.8)

where kxkT2 denotes the l2-norm-based toroidal distance between x and 0, symbol

X \0 denotes the set X excludes the point 0. This formulation calculates the packing

radius with a time complexity of O(Nd) rather than O(N2d) in pairwise comparison.

However, the computation of the packing radius is not easily accelerated by fast

Fourier transform due to the minimum operation in Eq.(5.8).

5.3 Subgroup-based Rank-1 Lattice

In this section, we derive our construction of a rank-1 lattice based on the subgroup

theory. Then we analyze the properties of our method. We provide detailed proofs

in the supplement.

5.3.1 Construction of the Generating Vector

From the definition of rank-1 lattice, we know the packing radius of rank-1 lattice

with n points can be reformulated as

⇢X = min
i2{1,··· ,n�1}

1

2
kxikT2 , (5.9)

63

where

xi :=
iz mod n

n
, i 2 {1, ..., n� 1}. (5.10)

Then, we have

⇢X = min
i2{1,··· ,n�1}

1

2

����min

✓
iz mod n

n
,
n� iz mod n

n

◆����
2

= min
i2{1,··· ,n�1}

1

2

����min

✓
iz mod n

n
,
(�iz) mod n

n

◆����
2

, (5.11)

where min(·, ·) denotes the elementwise min operation between two inputs.

Suppose n is a prime number, from number theory, we know that for a primitive

root g, the residue of {g0, g1, · · · , gn�2} modulo n forms a cyclic group under mul-

tiplication, and gn�1 ⌘ 1 mod n. Since (g
n�1
2)2 = gn�1 ⌘ 1 mod n, we know that

g
n�1
2 ⌘ �1 mod n.

Because of the one-to-one correspondence between the residue of {g0, g1, · · · , gn�2}
modulo n and the set {1, 2, · · · , n� 1}, we can construct the generating vector as

z = [gm1 , gm2 , · · · , gmd] mod n (5.12)

without loss of generality, where m1, · · · ,md are integer components to be designed.

Denote z̄ = [g
n�1
2 +m1 , g

n�1
2 +m2 , · · · , g n�1

2 +md] mod n, maximizing the separating dis-

tance ⇢X is equivalent to maximizing

J= min
k2{0,··· ,n�2}

��min(gkz mod n, gkz̄ mod n)
��
2
. (5.13)

Suppose 2d divides n�1, i.e., 2d|(n�1), by setting mi = g
(i�1)(n�1)

2d for i 2 {1, · · · , d},
we know that H = {gm1 , gm2 , · · · , gmd , g

n�1
2 +m1 , g

n�1
2 +m2 , · · · , g n�1

2 +md} is equivalent

to setting {g0, g n�1
2d , · · · , g

(2d�1)(n�1)
2d } mod n , and it forms a subgroup of the group

{g0, g1, · · · , gn�2} mod n. From Lagrange’s theorem in group theory [53], we know

that the cosets of the subgroup H partition the entire group {g0, g1, · · · , gn�2} into

equal-size, non-overlapping sets, and the number of cosets of H is n�1
2d . Thus, we know

that distance min(gkz mod n, gkz̄ mod n) for k 2 {0, · · · , n � 2} has n�1
2d di↵erent

values, and there are the same numbers of items for each value.

Thus, we can construct the generating vector as

z = [g0, g
n�1
2d , g

2(n�1)
2d , · · · , g

(d�1)(n�1)
2d] mod n. (5.14)

In this way, the constructed rank-1 lattice is more regular as it has few di↵erent

distinct pairwise distance values, and for each distance, the same number of items

64

obtain this value. Usually, the constructed regular lattice is more evenly spaced,

and it has a large minimum pairwise distance. We confirm this empirically through

extensive experiments in Section 5.5.

We summarize our construction method and the properties of the constructed

rank-1 lattice in Theorem 13.

Theorem 13. Suppose n is a prime number and 2d|(n � 1). Let g be a primitive

root of n. Let z = [g0, g
n�1
2d , g

2(n�1)
2d , · · · , g

(d�1)(n�1)
2d] mod n. Construct a rank-1 lattice

X={x0, · · · ,xn�1} with xi =
iz mod n

n
, i 2 {0, ..., n� 1}. Then, there are n�1

2d distinct

pairwise toroidal distance values among X, and each distance value is taken by the

same number of pairs in X.

As shown in Theorem 13, our method can construct regular rank-1 lattice through

a very simple closed-form construction, which does not require any exhaustive com-

puter search.

5.3.2 Regular Property of Rank-1 Lattice

We show the regular property of rank-1 lattices in terms of lp-norm-based toroidal

distance.

Theorem 14. Suppose n is a prime number and n � 2d+ 1. Let z = [z1, z2, · · · , zd]
with 1  zk  n � 1. Construct a rank-1 lattice X = {x0, · · · ,xn�1} with xi =
iz mod n

n
, i 2 {0, ..., n� 1} and zi 6= zj . Then, the minimum pairwise toroidal distance

can be bounded as

d(d+ 1)

2n
 min

i,j2{0,··· ,n�1},i 6=j

kxi � xjkT1 
(n+ 1)d

4n
(5.15)

p
6d(d+ 1)(2d+ 1)

6n
 min

i,j2{0,··· ,n�1},i 6=j

kxi � xjkT2 
r

(n+ 1)d

12n
, (5.16)

where k · kT1 and k · kT2 denote the l1-norm-based toroidal distance and the l2-norm-

based toroidal distance, respectively.

Theorem 14 gives the upper and lower bounds of the minimum pairwise distance

of any non-degenerate rank-1 lattice. The term ‘non-degenerate’ means that the

elements in the generating vector are not equal, i.e., zi 6= zj.

We now show that our subgroup-based rank-1 lattice can achieve the optimal

minimum pairwise distance when n = 2d+ 1 is a prime number.

65

Corollary 3. Suppose n = 2d + 1 is a prime number. Let g be a primitive root of

n. Let z = [g0, g
n�1
2d , g

2(n�1)
2d , · · · , g

(d�1)(n�1)
2d] mod n. Construct rank-1 lattice X =

{x0, · · · ,xn�1} with xi = iz mod n

n
, i 2 {0, ..., n � 1}. Then, the pairwise toroidal

distance of the lattice X attains the upper bound.

kxi � xjkT1 =
(n+ 1)d

4n
, 8i, j 2 {0, · · · , n� 1}, i 6= j, (5.17)

kxi � xjkT2 =

r
(n+ 1)d

12n
, 8i, j 2 {0, · · · , n� 1}, i 6= j. (5.18)

Corollary 1 shows a case when our subgroup rank-1 lattice obtains the maximum

minimum pairwise toroidal distance. It is useful for expensive black-box functions,

where the number of function queries is small. Empirically, we find that our subgroup

rank-1 lattice can achieve near-optimal pairwise toroidal distance in many other cases.

5.4 QMC for Kernel Approximation

Another application of our subgroup rank-1 lattice is kernel approximation. Ker-

nel approximation has been widely studied. A random feature maps is a promising

way for kernel approximation. Rahimi et al. study the shift-invariant kernels by

Monte Carlo sampling [140]. Yang et al. suggest employing QMC for kernel approx-

imation [15, 179]. Several previous methods work on the construction of structured

feature maps for kernel approximation [39,105,117]. Apart from other kernel approx-

imation methods designed for specific kernels, QMC can serve as a plug-in for any

integral representation of kernels to improve kernel approximation. We include this

section to be self-contained.

From Bochner’s Theorem, shift invariant kernels can be expressed as an inte-

gral [140]

K(x,y) =
R
Rd e�i(x�y)>wp(w)dw, (5.19)

where i =
p
�1, and p(w) is a probability density. p(w) = p(�w) � 0 ensure the

imaginary parts of the integral vanish. Eq.(5.19) can be rewritten as

K(x,y) =

Z

[0,1]d
e�i(x�y)>��1(✏)d✏. (5.20)

We can approximate the integral Eq.(5.19) by using our subgroup rank-1 lattice ac-

cording to the QMC approximation in [166, 179]

K(x,y) =

Z

[0,1]d
e�i(x�y)>��1(✏)d✏ ⇡ 1

n

nX

i=1

e�i(x�y)>��1(✏i) = h (x), (y)i , (5.21)

where (x) = 1
p
n

h
e�ix>��1(✏1), · · · , e�ix>��1(✏n)

i
is the feature map of the input x.

66

Table 5.1: Minimum l1-norm-based toroidal distance of rank-1 lattice constructed by
di↵erent methods.

d=50

n=101 401 601 701 1201 1301 1601 1801 1901 2801
SubGroup 12.624 11.419 11.371 11.354 11.029 10.988 10.541 10.501 10.454 10.748
Hua [78] 10.426 10.421 9.8120 10.267 10.074 9.3982 9.5890 9.5175 8.9868 9.2260

Korobov [97] 12.624 11.419 11.371 11.354 11.029 10.988 10.665 10.561 10.701 10.748

d=100

401 601 1201 1601 1801 2801 3001 4001 4201 4801
SubGroup 24.097 23.760 22.887 23.342 22.711 23.324 22.233 22.437 22.573 21.190
Hua [78] 21.050 21.251 21.205 20.675 19.857 20.683 20.700 19.920 19.967 20.574

Korobov [97] 24.097 23.760 23.167 23.342 22.893 23.324 22.464 22.437 22.573 22.188

d=200

401 1201 1601 2801 4001 4801 9601 12401 14401 15601
SubGroup 50.125 48.712 47.500 47.075 47.810 45.957 45.819 46.223 43.982 45.936
Hua [78] 43.062 43.057 43.052 43.055 43.053 43.055 43.053 42.589 42.558 42.312

Korobov [97] 50.125 48.712 47.660 47.246 47.810 46.686 46.154 46.223 45.949 45.936

d=500

3001 4001 7001 9001 13001 16001 19001 21001 24001 28001
SubGroup 121.90 121.99 119.60 118.63 120.23 119.97 116.41 120.56 120.24 113.96
Hua [78] 108.33 108.33 108.33 108.33 108.33 108.33 108.33 108.33 108.33 108.33

Korobov [97] 121.90 121.99 120.46 120.16 120.23 119.97 119.41 120.56 120.24 118.86

Table 5.2: Minimum l2-norm-based toroidal distance of rank-1 lattice constructed by
di↵erent methods.

d=50

n=101 401 601 701 1201 1301 1601 1801 1901 2801
SubGroup 2.0513 1.9075 1.9469 1.9196 1.8754 1.8019 1.8008 1.8709 1.7844 1.7603
Hua [78] 1.7862 1.7512 1.7293 1.7049 1.7326 1.6295 1.6659 1.6040 1.5629 1.5990

Korobov [97] 2.0513 1.9075 1.9469 1.9196 1.8754 1.8390 1.8356 1.8709 1.8171 1.8327

d=100

401 601 1201 1601 1801 2801 3001 4001 4201 4801
SubGroup 2.8342 2.8143 2.7077 2.7645 2.7514 2.6497 2.6337 2.6410 2.6195 2.5678
Hua [78] 2.5385 2.5739 2.4965 2.4783 2.4132 2.5019 2.4720 2.4138 2.4537 2.4937

Korobov [97] 2.8342 2.8143 2.7409 2.7645 2.7514 2.6956 2.6709 2.6562 2.6667 2.6858

d=200

401 1201 1601 2801 4001 4801 9601 12401 14401 15601
SubGroup 4.0876 3.9717 3.9791 3.8425 3.9276 3.8035 3.7822 3.8687 3.6952 3.8370
Hua [78] 3.7332 3.7025 3.6902 3.6944 3.7148 3.6936 3.6571 3.5625 3.6259 3.5996

Korobov [97] 4.0876 3.9717 3.9791 3.9281 3.9276 3.9074 3.8561 3.8687 3.8388 3.8405

d=500

3001 4001 7001 9001 13001 16001 19001 21001 24001 28001
SubGroup 6.3359 6.3769 6.3141 6.2131 6.2848 6.2535 6.0656 6.2386 6.2673 6.1632
Hua [78] 5.9216 5.9216 5.9215 5.9215 5.9216 5.9216 5.9215 5.9215 5.8853 5.9038

Korobov [97] 6.3359 6.3769 6.3146 6.2960 6.2848 6.2549 6.2611 6.2386 6.2673 6.2422

5.5 Experiments

In this section, we first evaluate the minimum distance generated by our subgroup

rank-1 lattice in section 5.5.1. We then evaluate the subgroup rank-1 lattice on

integral approximation tasks and kernel approximation task in section 5.5.2 and 5.5.3,

respectively.

5.5.1 Evaluation of the minimum distance

We evaluate the minimum distance of our subgroup rank-1 lattice by comparing with

Hua’s method [78] and the Korobov [97] searching method. We denote ‘SubGroup’ as

our subgroup rank-1 lattice, ‘Hua’ as rank-1 lattice constructed by Hua’s method [78],

and ‘Korobov’ as rank-1 lattice constructed by exhaustive computer search in Korobov

form [97].

67

(a) 50-d Integral Approx-

imation

(b) 100-d Integral Ap-

proximation

(c) 500-d Integral Approx-

imation

(d) 1000-d Integral Ap-

proximation

Figure 5.1: Mean approximation error over 50 independent runs.error bars are with
in 1⇥ std.

We set the dimension d as in {50, 100, 200, 500}. For each dimension d, we set

the number of points n as the first ten prime numbers such that 2d divides n�1, i.e.,

2d
��(n�1). The minimum l1-norm-based toroidal distance and the minimum l2-norm-

based toroidal distance for each dimension are reported in Table 5.5.1 and Table 5.2,

respectively. The larger the distance, the better.

We can observe that our subgroup rank-1 lattice achieves consistently better

(larger) minimum distances than Hua’s method in all the cases. Moreover, we see

that subgroup rank-1 lattice obtains, in 20 out of 40 cases, the same l2-norm-based

toroidal distance and in 24 out of 40 cases the same l1-norm-based toroidal distance

compared with the exhaustive computer search in Korobov form. The experiments

show that our subgroup rank-1 lattice achieves the optimal toroidal distance in ex-

haustive computer searches in Korobov form in over half of all the cases. Furthermore,

the experimental result shows that our subgroup rank-1 lattice obtains a competitive

distance compared with the exhaustive Korobov search in the remaining cases. Note

that our subgroup rank-1 lattice is a closed-form construction which does not require

computer search, making our method more appealing and simple to use.

Time Comparison of Korobov searching and our sub-group rank-1

lattice. The table below shows the time cost (seconds) for lattice construction.

The run time for Korobov searching grows fast to hours. Our method can run in less

than one second, achieving a 104⇥ to 105⇥ speed-up. The speed-up increases when

n and d becomes larger.

d=500

n=3001 4001 7001 9001 13001 16001 19001 21001 24001 28001
SubGroup 0.0185 0.0140 0.0289 0.043 0.0386 0.0320 0.0431 0.0548 0.0562 0.0593
Korobov 34.668 98.876 152.86 310.13 624.56 933.54 1308.9 1588.5 2058.5 2815.9

d=1000

n=4001 16001 24001 28001 54001 70001 76001 88001 90001 96001
SubGroup 0.0388 0.0618 0.1041 0.1289 0.2158 0.2923 0.3521 0.4099 0.5352 0.5663
Korobov 112.18 1849.4 4115.9 5754.6 20257 34842 43457 56798 56644 69323

68

5.5.2 Integral approximation

We evaluate our subgroup rank-1 lattice on the integration test problem

f(x) := exp
⇣
c

dX

j=1

xjj
�b

⌘
(5.22)

I(f) :=

Z

[0,1]d
f(x)dx =

dY

j=1

exp(cj�b)� 1

cj�b
. (5.23)

We compare with i.i.d. Monte Carlo, a Hua’s rank-1 lattice [78], Korobov searching

rank-1 lattice [95], Halton sequence, and Sobol sequence [46]. For both Halton

sequence and Sobol sequence, we use the scrambling technique suggested in [46]. For

all the QMC methods, we use the random shift technique as in Eq.(5.4).

We fix b = 2 and c = 1 in all the experiments. We set dimension d = 100 and

d = 500, respectively. We set the number of points n as the first ten prime numbers

such that 2d divides n�1, i.e., 2d
��(n�1).

The mean approximation error (|Q(f)�I(f)|
|I(f)|) with error bars over 50 independent

runs for each dimension d is presented in Figure 5.1. We can see that Hua’s method

obtains a smaller error than i.i.d Monte Carlo on the 50-d problem, however, it

becomes worse than MC on 500-d and 1000-d problems. Moreover, our subgroup rank-

1 lattice obtains a consistent smaller error on all the tested problems than Hua and

MC. In addition, our subgroup rank-1 lattice achieves a slightly better performance

than Halton, Sobol and Korobov searching method.

5.5.3 Kernel approximation

We evaluate the performance of subgroup rank-1 lattice on kernel approximation tasks

by comparing with other QMC baseline methods. We test the kernel approximation of

the Gaussian kernel, the zeroth-order arc-cosine kernel, and the first-order arc-cosine

kernel as in [39].

We compare subgroup rank-1 lattice with a Hua’s rank-1 lattice [78], Halton se-

quence, Sobol sequence [46] and standard i.i.d. Monte Carlo sampling. For both

the Halton sequence and Sobol sequence, we use the scrambling technique suggested

in [46]. For both subgroup rank-1 lattice and Hua’s rank-1 lattice, we use the random

shift as in Eq.(5.4). We evaluate the methods on the DNA [139] and the SIFT1M [81]

dataset over 50 independent runs. Each run contains 2000 random samples to con-

struct the Gram matrix. The bandwidth parameter of Gaussian kernel is set to 15 in

all the experiments.

69

(a) k eK�KkF
kKkF

for Gaussian Kernel (b) k eK�KkF
kKkF

for First-order Arc

Kernel

(c) k eK�KkF
kKkF

for Zero-order Arc

Kernel

(d) k eK�Kk1
kKk1

for Gaussian Kernel (e) k eK�Kk1
kKk1

for First-order Arc

Kerne

(f) k eK�Kk1
kKk1

for Zero-order Arc

Kernel

Figure 5.2: Relative Mean and Max Reconstruction Error for Gaussian, Zero-order
and First-order Arc-cosine Kernel on DNA dataset. Error bars are within 1⇥ std.

The mean Frobenius norm approximation error (k eK�Kk
F
/kKk

F
) and maximum

norm approximation error (k eK�Kk
1
/kKk

1
) with error bars on DNA [139] dataset

are plotted in Figure 5.2. The results on SIFT1M [81] is given in Figure 6 in the

supplement. The experimental result shows that subgroup rank-1 lattice consistently

obtains a smaller approximation error compared with other baselines.

5.5.4 Approximation on Graphical Model

For general Boltzmann machines with continuous state in [0, 1], the energy function

of x 2 [0, 1]d is defined as E(x) = �(x>
Wx+b

>
x)/d. The normalization constant is

Z =
R
[0,1]d exp (�E(x))dx. For inference, the marginal likelihood of observation v 2

Rd is L(v) =
R
[0,1]d exp (�f(v)) exp (�E(h))/Zdh with function f(v) = �(v>

W vv+

2v>
W hh+ b

>

v
v)/d, where h 2 Rd denotes the hidden states.

We evaluate our method on approximation of the normalization constant and in-

ference by comparing with i.i.d. Monte Carlo (MC), slice sampling (SS) and Hamil-

tonian Monte Carlo (HMC). We generate the elements of W , W v, W h, b and bv by

sampling from standard Gaussian N (0, 1). These parameters are fixed and kept the

same for all the methods in comparison. For inference, we generate an observation

v 2 [0, 1]d by uniformly sampling and keep it fixed and same for all the methods. For

70

(a) k eK�KkF
kKkF

for Gaussian Kernel (b) k eK�KkF
kKkF

for First-order Arc

Kernel

(c) k eK�KkF
kKkF

for Zero-order Arc

Kernel

(d) k eK�Kk1
kKk1

for Gaussian Kernel (e) k eK�Kk1
kKk1

for First-order Arc

Kernel

(f) k eK�Kk1
kKk1

for Zero-order Arc

Kernel

Figure 5.3: Relative Mean and Max Reconstruction Error for Gaussian, Zero-order
and First-order Arc-cosine Kernel on SIFT1M dataset.

SS and HMC, we use the slicesample function and hmcSampler function in MAT-

LAB, respectively. We use the approximation of i.i.d. MC with 107 samples as the

pseudo ground-truth. The approximation errors | bZ �Z|/Z and | bL�L|/L are shown

in Fig.5.4(a)-5.4(d) and Fig.5.4(e)-5.4(h), respectively. our method consistently out-

performs MC, HMC and SS on all cases. Moreover, our method is much cheaper than

SS and HMC.

Comparison to sequential Monte Carlo. When the positive density region

takes a large fraction of the entire domain, our method is very competitive. When

it is only inside a small part of a large domain, our method may not be better than

sequential adaptive sampling. In this case, it is interesting to take advantage of both

lattice and adaptive sampling. E.g., one can employ our subgroup rank-1 lattice as a

rough partition of the domain to find high mass regions, then take sequential adaptive

sampling on the promising regions with the lattice points as the start points. Also, it

is interesting to consider recursively apply our subgroup rank-1 lattice to refine the

partition. Moreover, our subgroup-based rank-1 lattice enables black-box evaluation

without the need for gradient information. In contrast, several sequential sampling

methods, e.g., HMC, need a gradient of density function for sampling.

71

(a) 10-d| bZ � Z|/Z (b) 50-d | bZ � Z|/Z (c) 100-d | bZ � Z|/Z (d) 500-d | bZ � Z|/Z

(e) 10-d | bL� L|/L (f) 50-d | bL� L|/L (g) 100-d | bL� L|/L (h) 500-d | bL� L|/L

Figure 5.4: Mean approximation error over 50 independent runs. Error bars are
with in 1⇥ std

5.6 Subgroup-based QMC on Sphere Sd�1

In this section, we propose a closed-form subgroup-based QMC method on the sphere

Sd�1 instead of unit cube [0, 1]d. QMC uniformly on sphere can be used to con-

struct samples for isotropic distribution, which is helpful for variance reduction of the

gradient estimators in Evolutionary strategy for reinforcement learning [149].

Lyu [117] constructs structured sampling matrix on Sd�1 by minimizing the dis-

crete Riesz energy. In contrast, we construct samples by a closed-form construction

without the time-consuming optimization procedure. Our construction can achieve a

small mutual coherence.

Without loss of generality, we assume that d = 2m,N = 2n, and n is a prime

such that m|(n� 1). Let F 2 Cn⇥n be a n⇥ n discrete Fourier matrix. Fk,j = e
2⇡ikj

n

is the (k, j)thentry of F , where i =
p
�1. Let ⇤ = {k1, k2, ..., km} ⇢ {1, ..., n� 1} be

a subset of indexes.

The structured sampling matrix V in [117] can be defined as equation (10.398).

V = 1
p
m


ReF⇤ �ImF⇤

ImF⇤ ReF⇤

�
2 Rd⇥N (5.24)

where Re and Im denote the real and imaginary part of a complex number, and F⇤

in equation (10.399) is the matrix constructed by m rows of F

F⇤=

2

64
e

2⇡ik11
n · · · e

2⇡ik1n
n

...
. . .

...

e
2⇡ikm1

n · · · e
2⇡ikmn

n

3

75 2 Cm⇥n. (5.25)

72

With the V given in equation (10.398), we know that kvik2 = 1 for i 2 {1, ..., n}.
Thus, each column of matrix V is a point on Sd�1.

Let g denote a primitive root modulo n. We construct the index ⇤ = {k1, k2, ..., km}
as

⇤ = {g0, g
n�1
m , g

2(n�1)
m , · · · , g

(m�1)(n�1)
m } mod n. (5.26)

The set {g0, g n�1
m , g

2(n�1)
m , · · · , g

(m�1)(n�1)
m } mod n forms a subgroup of the the group

{g0, g1, · · · , gn�2} mod n. Based on this, we derive upper bounds of the mutual

coherence of the points set V . The results are summarized in Theorem 32 and

Theorem 16.

Theorem 15. Suppose d = 2m,N = 2n, and n is a prime such that m|(n � 1).

Construct matrix V as in Eq.(10.398) with index set ⇤ as Eq.(10.400). Let mutual

coherence µ(V) := maxi 6=j

|v>
i vj |

kvik2kvjk2
. Then µ(V) 

p
n

m
.

Theorem 16. Suppose d = 2m,N = 2n, and n is a prime such that m|(n� 1), and

m  n
2
3 . Construct matrix V as in Eq.(10.398) with index set ⇤ as Eq.(10.400).

Let mutual coherence µ(V) := maxi 6=j

|v>
i vj |

kvik2kvjk2
. Then µ(V)  Cm�1/2n1/6 log1/6 m,

where C denotes a positive constant independent of m and n.

Theorem 32 and Theorem 16 show that our construction can achieve a bounded

mutual coherence. A smaller mutual coherence means that the points are more evenly

spread on sphere Sd�1.

Remark: Our construction does not require a restrictive constraint of the dimen-

sion of data. The only assumption of data dimension d is that d is a even number,

i.e.,2|d, which is commonly satisfied in practice. Moreover, the product V >
x can be

accelerated by fast Fourier transform as in [117].

Evaluation of the mutual coherence:

We evaluate our subgroup-based spherical QMC by comparing with the construc-

tion in [117] and i.i.d Gaussian sampling.

We set the dimension d as in {50, 100, 200, 500, 1000}. For each dimension d,

we set the number of points N = 2n, with n as the first ten prime numbers such

that d

2 divides n�1, i.e., d

2

��(n�1). Both subgroup-based QMC and Lyu’s method

are deterministic. For Gaussian sampling method, we report the mean ± standard

deviation of mutual coherence over 50 independent runs. The mutual coherence for

each dimension are reported in Table 5.3. The smaller the mutual coherence, the

better.

73

We can observe that our subgroup-based spherical QMC achieves a competitive

mutual coherence compared with Lyu’s method in [117]. Note that our method

does not require a time consuming optimization procedure, thus it is appealing for

applications that demands a fast construction. Moreover, both our subgroup-based

QMC and Lyu’s method obtain a significant smaller coherence than i.i.d Gaussian

sampling.

Table 5.3: Mutual coherence of points set constructed by di↵erent methods. Smaller
is better.

d=50

202 302 502 802 1202 1402 1502 2102 2302 2402
SubGroup 0.1490 0.2289 0.1923 0.2930 0.2608 0.3402 0.3358 0.3211 0.4534 0.3353
Lyu [117] 0.2313 0.2377 0.2901 0.2902 0.3005 0.3154 0.3155 0.3209 0.3595 0.3718

Gaussian
0.5400± 0.5738± 0.5904± 0.6158± 0.6270± 0.6254± 0.6328± 0.6447± 0.6520± 0.6517±
0.0254 0.0291 0.0257 0.0249 0.0209 0.0184 0.0219 0.0184 0.0204 0.0216

d=100

202 302 502 802 1202 1402 1502 2102 2302 2402
SubGroup 0.1105 0.1529 0.1923 0.1764 0.2397 0.2749 0.2513 0.2679 0.4534 0.3353
Lyu [117] 0.1234 0.1581 0.1586 0.1870 0.2041 0.2191 0.1976 0.2047 0.2244 0.2218

Gaussian
0.4033± 0.4210± 0.4422± 0.4577± 0.4616± 0.4734± 0.4716± 0.4878± 0.4866± 0.4947±
0.0272 0.0274 0.0225 0.0230 0.0170 0.0174 0.0234 0.0167 0.0172 0.0192

d=200

202 802 1202 1402 2402 2602 3202 3602 3802 5602
SubGroup 0.0100 0.1251 0.1835 0.1966 0.2365 0.1553 0.1910 0.1914 0.2529 0.2457
Lyu [117] 0.0100 0.1108 0.1223 0.1262 0.1417 0.1444 0.1505 0.1648 0.1624 0.1679

Gaussian
0.2887± 0.3295± 0.3362± 0.3447± 0.3564± 0.3578± 0.3645± 0.3648± 0.3689± 0.3768±
0.0163 0.0155 0.0148 0.0182 0.0140 0.0142 0.0143 0.0142 0.0140 0.0151

d=500

502 1502 4502 6002 6502 8002 9502 11002 14002 17002
SubGroup 0.0040 0.0723 0.1051 0.1209 0.1107 0.1168 0.1199 0.1425 0.1587 0.1273
Lyu [117] 0.0040 0.0650 0.0946 0.0934 0.0930 0.1004 0.0980 0.1022 0.1077 0.1110

Gaussian
0.2040± 0.2218± 0.2388± 0.2425± 0.2448± 0.2498± 0.2528± 0.2527± 0.2579± 0.2607±
0.0111 0.0099 0.0092 0.0081 0.0113 0.0110 0.0100 0.0084 0.0113 0.0092

d=1000

6002 8002 11002 14002 17002 18002 21002 26002 32002 38002
SubGroup 0.0754 0.0778 0.0819 0.0921 0.0935 0.0764 0.1065 0.0931 0.0908 0.1125
Lyu [117] 0.0594 0.0637 0.0662 0.0680 0.0684 0.0744 0.0774 0.0815 0.0781 0.0814

Gaussian
0.1736± 0.1764± 0.1797± 0.1828± 0.1846± 0.1840± 0.1869± 0.1888± 0.1909± 0.1920±
0.0067 0.0059 0.0060 0.0062 0.0052 0.0057 0.0052 0.0055 0.0067 0.0056

5.7 QMC for Generative models

Our subgroup rank-1 lattice can be used for generative models. Buchholz et al. [31]

suggest using QMC for variational inference to maximize the evidence lower bound

(ELBO). We present a new method by directly learning the inverse of the cumulative

distribution function (CDF).

In variational autoencoder, the objective is the evidence lower bound (ELBO) [94]

defined as

L(x,�, ✓) = Eq�(z|x) [log p✓(x|z)]�KL [q�(z|x)||p✓(z)] . (5.27)

The ELBO consists of two terms, i.e., the reconstruction term Eq�(z|x) [log p✓(x|z)]
and the regularization term KL [q�(z|x)||p✓(z)]. The reconstruction term is learning

74

to fit, while the regularization term controls the distance between distribution q�(z|x)
to the prior distribution p✓(z).

The reconstruction term Eq�(z|x) [log p✓(x|z)] can be reformulated as

Eq�(z|x) [log p✓(x|z)] =
Z

Z

q�(z|x) log p✓(x|z)dz (5.28)

=

Z

[0,1]d
log p✓

�
x|��1(✏)

�
d✏. (5.29)

where ��1(·) denotes the inverse cumulative distribution function with respect to the

density q�(z|x).
Eq.(5.29) provides an alternative training scheme, we directly learn the inverse of

CDF F (✏; x) = ��1(✏) given x instead of the density q�(z|x). We parameterize F (✏, x)

as a neural network with input ✏ and data x. The inverse of CDF function F (✏, x)

can be seen as an encoder of x for inference. It is worth noting that learning the

inverse of CDF can bring more flexibility without the assumption of the distribution,

e.g., Gaussian.

To ensure the distribution q close to the prior distribution p(z), we can use other

regularization terms instead of the KL-divergence for any implicit distribution q, e.g.,

the maximum mean discrepancy. Besides this, we can also use a discriminator-based

adversarial loss similar to adversarial autoencoders [121]

eL(x, F,D)=Ep✓(z) [log(D(z))]+Ep(✏) [log(1�D(F (✏, x)))] , (5.30)

where p(✏) denotes a uniform distribution on unit cube [0, 1]d, D is the discriminator,

F denotes the inverse of CDF mapping.

When the domain Z coincides with a target domain Y , we can use an empirical

data distribution Y as the prior. This leads to a training scheme similar to cycle

GAN [189]. In contrast to cycle GAN, the encoder F depends on both data x in

source domain and ✏ in unit cube. The expectation term Ep(✏)[·] can be approximated

by QMC methods.

5.8 Generative Inference for CycleGAN

We evaluate our subgroup rank-1 lattice on training generative model. As shown

in section 5.7, we can learn the inverse CDF functions F (✏, x) as a generator from

domain X to domain Y in cycle GAN. We set F (✏, x) = G1(x)+G2(✏), where G1 and

G2 denotes the neural networks. Network G1 maps input image x to a target mean,

75

while network G2 maps ✏ 2 [0, 1]d as the residue. Similarly, eF (e✏, y) = eG1(y) + eG2(e✏)
denotes an generator from domain Y to domain X .

We implement the model based on the open-sourced Pytorch code of [189]. All

G1, G2, eG1 and eG2 employ the default ResNet architecture with 9 blocks in [189].

The input size of both ✏ and e✏ are d = 256⇥ 256. We keep all the hyperparameters

same for all the methods as the default value in [189].

We compare our subgroup rank-1 lattice with Monte Carlo sampling for training

the generative model. For subgroup rank-1 lattice, we set the number of points n =

12d+1 = 786433. We do not store all the points, instead we sample i 2 {0, · · · , n�1}
uniformly and construct ✏ and e✏ based on Eq.(5.3) during the training process. For

Monte Carlo sampling, ✏ and e✏ are sampled from Uniform[0, 1]d.

We train generative models on the Vangogh2photo data set and maps data set

employed in [189]. We present experimental results of the generated images from mod-

els trained with subgroup-based rank-1 lattice sampling, Monte-Carlo sampling, and

standard version of CycleGAN. The experimental results on Vangogh2photo dataset

and maps dataset are shown in Figure 5.5 and Figure 5.6, respectively. From Fig-

ure 5.5, we can observe that the images generated by the model trained with Monte-

Carlo sampling have some blurred patches. This phenomenon may be because the

additional flexibility of randomness makes the training more di�cult to converge to

a good model. In contrast, the model trained with subgroup-based rank-1 lattice

sampling generates more clearer images. It may be because the rank-1 lattice sam-

pling has finite possible choices, i.e., n = 786433 possible points in the experiments,

which is much smaller than the case of Monte-Carlo uniform sampling. The rank-1

lattice sampling is more deterministic than Monte Carlo sampling, which alleviates

the training di�culty to fit a good model. Since in our subgroup-based rank-1 lattice

it is very simple to construct new samples, it can serve as a good alternative to Monte

Carlo sampling for generative model training.

5.9 Summary

In this Chapter, we propose a closed-form method for rank-1 lattice construction,

which is simple and e�cient without exhaustive computer search. Theoretically, we

prove that our subgroup rank-1 lattice has few di↵erent pairwise distance values,

which is more regular to be evenly spaced. Moreover, we prove a lower and an

upper bound for the minimum toroidal distance of a non-degenerate rank-1 lattice.

76

Figure 5.5: Illustration of the generated images from models trained with subgroup
rank-1 lattice sampling, Monte-Carlo sampling, and Standard version of CycleGAN.

Empirically, our subgroup rank-1 lattice obtains near-optimal minimum toroidal dis-

tance compared with Korobov exhaustive search. Moreover, subgroup rank-1 lattice

achieves smaller integration approximation error. In addition, we propose a closed-

form method to generate QMC points set on sphere Sd�1. We proved upper bounds

of the mutual coherence of the generated points. Further, we show an example of

CycleGAN training in the supplement. Our subgroup rank-1 lattice sampling and

QMC on sphere can serve as an alternative for training generative models.

77

Figure 5.6: Illustration of the generated images from models trained with subgroup
rank-1 lattice sampling, Monte-Carlo sampling, and Standard version of CycleGAN.

78

Chapter 6

Spherical Structured Feature Maps
for Kernel Approximation

6.1 Chapter Abstract

In this chapter, we propose Spherical Structured Feature (SSF) maps to approximate

shift and rotation invariant kernels as well as bth-order arc-cosine kernels [34]. We

construct SSF maps based on the point set on d � 1 dimensional sphere Sd�1. We

prove that the inner product of SSF maps are unbiased estimates for above kernels

if asymptotically uniformly distributed point set on Sd�1 is given. According to

[29], optimizing the discrete Riesz s-energy can generate asymptotically uniformly

distributed point set on Sd�1. Thus, we propose an e�cient coordinate decent method

to find a local optimum of the discrete Riesz s-energy for SSF maps construction.

Theoretically, SSF maps construction achieves linear space complexity and loglinear

time complexity. Empirically, SSF maps achieve superior performance compared with

other methods.

6.2 Background of Kernel Approximation

We provide a brief review of random feature maps and the discrete Riesz s-energy in

this section as preliminaries.

6.2.1 Random Feature Maps

Random feature maps can be viewed as equal weight approximation of multidimen-

sional integrals. One earlier work [142] approximates the shift invariant kernels based

on the Bochner’s Theorem.

79

Theorem. Bochner’s Theorem ([148]) : A continuous shift invariant scaled kernel

function K(x, z) = K(x � z) : Rd ! C is positive definite if and only if it is the

Fourier Transform of a unique finite probability measure p on Rd.

K(x, z) =
R
Rd e�i(x�z)Twp(w)dw (6.1)

For a real valued kernel K(x, z), p(w) = p(�w) � 0 can ensure the imaginary

parts of the integral vanish. According to the Bochner’s theorem, there is a one-to-one

correspondence between the kernel functions K(x, z) and probability densities p(w)

defined on Rd.

Shift and rotation invariant kernels are shift invariant kernels with the ro-

tation invariant property, i.e. K(x, z) = K(Rx, Rz), given any rotation R 2 SO(d),

where SO(d) denotes rotation groups. The Gaussian kernel K(x, z) = e�kx�zk22/2�
2
is

a member of this family. From Bochner’s theorem, the corresponding probability den-

sity is also Gaussian. For a general Gaussian RBF kernel K(x, z) = e�(x�z)T⌃(x�z)/2,

it can be transformed into rotation invariant form by using y = ⌃1/2x in the original

domain.

bth-order arc-cosine kernels are rotation invariant kernels. As discussed in [34],

bth-order arc-cosine kernels have the following form:

Kb(x, z) =
1
⇡
kxkb2 kzk

b

2 Jb(✓) (6.2)

where ✓ = cos�1
⇣

xT z
kxk2kzk2

⌘

bth-order arc-cosine kernels have trivial dependence on the norm of x and z. The

dependence on the angle is defined by function Jb(✓). bth-order arc-cosine kernels are

rotation invariant kernels but not shift invariant kernels in general. For example, the

zero-order (6.3) and first-order (6.4) arc-cosine kernel are not shift invariant kernels.

K0(x, z) = 1� ✓

⇡
(6.3)

K1(x, z) =
1
⇡
kxk2 kzk2 (sin ✓ + (⇡ � ✓) cos ✓) (6.4)

The bth-order arc-cosine kernel Kb(x, z) can be reformulated via the integral rep-

resentation:

Kb(x, z) = 2
R
Rd s(wTx)s(wTz)(wTx)

b
(wTz)

b
p(w)dw (6.5)

where s(·) is a step function (i.e. s(x) = 1 if x > 0 and 0 otherwise) and the density

p is standard Gaussian.

80

Feature maps: Both Monte Carlo and Quasi-Monte Carlo approximation [47]

are equal weight approximation to integrals. Based on equal weight approximation,

the feature maps can be constructed as:

K(x, z) ⇡ 1
N

NP
i=1

f
�
wT

i
x
�
f
�
wT

i
x
�
= (x)T (z) (6.6)

where wi, i 2 1, ..., N are samples constructed by Monte Carlo or Quasi-Monte Carlo

methods. f(·) is a nonlinear function depending on the kernel. (·) is the explicit

finite dimensional feature map. For Gaussian kernel with bandwidth �, the associated

nonlinear function is a complex exponential function f(x) = eix/�. For a zero-order

arc-cosine kernel in (6.3) and first-order arc-cosine kernel in (6.4), the associated

nonlinear functions are step function f(x) = s(x) and ReLU activation function

f(x) = max(0, x) respectively.

6.2.2 Discrete Riesz s-energy

The discrete Riesz s-energy is related to the equal weight numerical integration and

uniformly distributed point set.

Equal weight numerical integration over a d-dimensional sphere Sd := {x 2
Rd+1 | kxk2 = 1} uses equal weight summation of finite point evaluations of the inte-

grands to approximate the integrals:

R
Sd f(v)d�(v) ⇡

1
N

NP
i=1

f(vi) (6.7)

where � denotes the normalized surface area measure on Sd.

According to [29], the point set V = [v1, ...,vN] 2 Sd⇥N is asymptotically uni-

formly distributed if equation (10.539) holds true.

lim
N!1

1
N

NP
i=1

f(vi) =
R
Sd f(v)d�(v) (6.8)

The discrete Riesz s-energy [29,63] is defined as equation (10.542):

Es (V) :=

8
>>><

>>>:

NP
i=1

NP
j=1,j 6=i

1
kvi�vjk

s
2

, s 6= 0

NP
i=1

NP
j=1,j 6=i

log 1
kvi�vjk2

, s = 0
(6.9)

Theorem. ([29]): For s > �2, the optimum N-point configuration of the Riesz s-

energy on Sd is asymptotically uniformly distributed w.r.t the normalized surface area

measure � on Sd.

81

According to [28, 29], the discrete Riesz s-energy can serve as a criterion to con-

struct the point set V = [v1, ...,vN] 2 Sd⇥N for QMC designs. Particularly, [28] have

proved that maximizing the discrete Riesz s-energy with s 2 (�2, 0) can generate

QMC designs for functions in Sobolev space. They also prove that QMC designs

have higher convergence rate of worst-case error than fully randomly chosen points

for functions in Sobolev space.

6.3 Spherical Structured Feature Maps

In this section, we propose SSF maps to approximate shift and rotation invariant

kernels as well as bth-order arc-cosine kernels by employing their rotation invariant

property.

6.3.1 Feature Maps for Shift and Rotation Invariant Kernels

Shift and rotation invariant kernels are highly symmetric and structured because they

satisfy both shift invariant property and rotation invariant property. Rotation invari-

ant property means that K(x, z) = K(Rx, Rz), given any rotation R 2 SO(d), where

SO(d) denotes rotation groups. To benefit from rotation invariant property, it is rea-

sonable to construct the feature maps by using spherical equal weight approximation

in equation (10.537) and (10.539).

The feature maps for real valued shift and rotation invariant kernels K(x, z) can

be constructed as equation (6.10):

 (x) = 1
p
NM

[cos
�
��(t1)xTv1

�
, sin

�
��(t1)xTv1

�
,

..., cos
�
��(tM)xTvN

�
, sin

�
��(tM)xTvN

�
]T

(6.10)

where tj = j

M+1 , V = [v1, ...,vN] 2 Sd�1⇥N denotes the point set asymptotically

uniformly distributed on Sd�1and ��(x) denotes the inverse cumulative distribution

function w.r.t the nonnegative radial scale.

Theorem 17. (x)T (z) is an unbiased estimate of a real valued shift and rotation

invariant kennel K(x, z).

Proof: From Bochner’s Theorem, a shift invariant kernel K(x, z) can be written

as equation (6.1). Let r = kwk2and p(r) be the density function of r. Because of the

rotation invariant property of K(x, z), we achieve equation (6.11).

K(x, z) =
R
R+

R
Sd�1 e�ir(x�z)Tvp(r)drd�(v)

=
R
[0,1]

R
Sd�1 e�i ��(t)(x�z)Tvd�(v)dt

(6.11)

82

where R+ denotes the nonnegative real values.

For real valued kernel K(x, z), the imaginary parts of the integral vanish. We can

achieve equation (6.12).

K(x, z) =
R
[0,1]

R
Sd�1 cos

⇣
��(t)(x� z)Tv

⌘
d�(v)dt (6.12)

According to the property of asymptotically uniformly distributed point set V in

equation (10.539) and the one-dimensional QMC rule, we obtain equation (6.13).

lim
M,N!1

 (x)T (z) =

lim
M,N!1

1
MN

NP
i=1

MP
j=1

(cos
�
��(tj)xTvi

�
cos
�
��(tj)zTvi

�

+sin
�
��(tj)xTvi

�
sin
�
��(tj)zTvi

�
)

= lim
M,N!1

1
MN

MP
j=1

NP
i=1

cos
⇣
��(tj)(x� z)Tvi

⌘

=
R
[0,1]

R
Sd�1 cos

⇣
��(t)(x� z)Tv

⌘
d�(v)dt

= K(x, z)

(6.13)

⇤

Proposition 1. : Let U = [V,�V], using point set U to approximate a real valued

shift and rotation invariant kernel K(x, z) by using equation (6.10) is equal to using

point set V to approximate K(x, z):

 (x;U)T (z;U) = (x;V)T (z;V) (6.14)

Proof: Note that cosine function is an even function. Thus, we obtain equa-

tion (6.15).

cos
⇣
��(tj)(x� z)Tvi

⌘
= cos

⇣
���(tj)(x� z)Tvi

⌘
(6.15)

Thus, we achieve equation (6.16).

 (x;U)T (z;U)

= 1
2NM

NP
i=1

MP
j=1

cos
⇣
��(tj)(x� z)Tvi

⌘

+ 1
2NM

NP
i=1

MP
j=1

cos
⇣
���(tj)(x� z)Tvi

⌘

= 1
2NM

NP
i=1

MP
j=1

2 cos
⇣
��(tj)(x� z)Tvi

⌘

= (x;V)T (z;V)

(6.16)

⇤
Proposition 1 shows that for a shift and rotation invariant kernel, computing N

points can achieve the same approximation e↵ect compared with using 2N points.

83

6.3.2 Feature Maps for bth-order Arc-cosine Kernels

In this subsection, we discuss the feature maps for bth-order arc-cosine kernels. We

discuss them separately because they are rotation invariant kernels but not shift

invariant kernels in general. Moreover, they are closely related to deep neural networks

[34], which demonstrate super performance in many areas.

Lemma 2. The bth-order arc-cosine kernels can be calculated as equation (6.17).

Kb(x, z) = Cb

R
Sd�1 �

�
vTx

�
�
�
vTz

�

+�(�vTx)�(�vTz)d�(v)
(6.17)

where �(x) = max(0, sign(x)|x|b), Cb =
R
R+

r2bp(r)dr. Cb is a constant that is inde-

pendent of x and z. p(r) is the density function of the chi-distribution with d degrees

freedom. For example, the constants associated with the zero, first and second-order

arc-cosine kernels are C0 = 1, C1 = d and C2 = d(d+ 2) respectively.

Proof: From equation (6.5), we can achieve equation (6.18).

Kb(x, z) = 2
R
Rd s(wTx)s(wTz)(wTx)

b
(wTz)

b
p(w)dw

= 2
R
Rd �

�
wTx

�
�
�
wTz

�
p(w)dw

(6.18)

Let r = kwk2. Since p is standard Gaussian, by taking rotation invariant property,

we obtain equation (6.19).

Kb(x, z) = 2
R
Rd �

�
wTx

�
�
�
wTz

�
p(w)dw

= 2
R
Sd�1

R
R+

�
�
rbvTx

�
�
�
rbvTz

�
p(r)d�(v)dr

= 2
R
Sd�1

R
R+

r2b�
�
vTx

�
�
�
vTz

�
p(r)d�(v)dr

= 2
R
R+

r2bp(r)dr
R
Sd�1 �

�
vTx

�
�
�
vTz

�
d�(v)

= 2Cb

R
Sd�1 �

�
vTx

�
�
�
vTz

�
d�(v)

(6.19)

Since Kb(x, z) is rotation invariant, we have Kb(x, z) = Kb(�x,�z). Together with

equation (6.19), we achieve equation (6.20).

Kb(x, z) = Cb

R
Sd�1 �

�
vTx

�
�
�
vTz

�

+�(�vTx)�(�vTz)d�(v)
(6.20)

⇤
The feature maps for a bth-order arc-cosine kernel Kb(x, z) can be constructed as

equation (6.21).

 (x) =
q

Cb
N
[�
�
vT

1 x
�
,�
�
�vT

1 x
�
,,

�
�
vT

N
x
�
,�
�
�vT

N
x
�
]T 2 R2N

(6.21)

Theorem 18. (x)T (z) is an unbiased estimate of a bth-order arc-cosine kernel

Kb(x, z).

84

Proof: According to the Lemma 3.1 and the property of the asymptotically uni-

formly distributed point set V, we obtain equation (6.22).

lim
N!1

 (x)T (z)

= lim
N!1

Cb
N

NP
i=1

�
�
vT

i
x
�
�
�
vT

i
z
�
+ �(�vT

i
x)�(�vT

i
z)

= Cb

R
Sd�1 �

�
vTx

�
�
�
vTz

�
+ �(�vTx)�(�vTz)d�(v)

= Kb(x, z)

(6.22)

⇤
From equation (6.17) and (6.22), we observe that the approximation is actually

operated on the (d � 1)-dimensional domain instead of d-dimensional domain [34].

Generally, the approximation error of Quasi Monte Carlo methods with N points de-

pends on the dimension of integration. A lower dimension leads to smaller approxima-

tion error, thus the feature maps in equation (6.21) can achieve lower approximation

error.

The feature maps in equation (6.21) are closely related to the bidirectional activa-

tion neural network. Specifically, the feature maps for the first-order arc-cosine kernel

are related to the bidirectional ReLU activation function [8] which has the distance

preservation property compared with ReLU.

From equation (6.14) and (6.21), we know that the feature maps actually rely

on the point set U = [V,�V]. The design of the point set U will be discussed in

section 6.4.

6.4 Design of Matrix U

We have discussed the construction of SSF maps in last section. However, one un-

solved problem is how to obtain the matrix U = [V,�V]. We employ the discrete

Riesz s-energy as the objective function to obtain matrix U because it can generate

asymptotically uniformly distributed points on Sd�1 [29]. Moreover, to achieve com-

putation and storage e�ciency for feature maps construction , we add a structured

constraint to the matrix U. In this section, we show the structure of matrix U first

and then the optimization of discrete Riesz s-energy.

It is worth noting that matrix U can be used not only for kernel approximation,

but also for approximation of general integrals over hypersphere. Moreover, by using

FFT, matrix U can accelerate the integral approximation which involves projection

operations. In addition, it only needs to store the indexes with linear storage cost

(i.e. O(d)) instead of to explicitly store the matrix with cost O(Nd).

85

6.4.1 Structure of Matrix U

Since U can be constructed by V, i.e. U = [V,�V], we only need to define struc-

tured matrix V. To achieve loglinear time complexity of SSF maps construction,

we construct V by extracting rows from a discrete Fourier matrix. The complexity

analysis of SSF maps construction based on matrix V is given in section 6.5.

Mathematically, the construction of matrix V is shown as follows. Without loss

of generality, we assume that d = 2m,N = 2n, m < n. Let F 2 Cn⇥n be a n ⇥ n

discrete Fourier matrix. Fk,j = e
2⇡ikj

n is the (k, j)thentry of F , where i =
p
�1. Let

⇤ = [k1, k2, ..., km] ⇢ {1, ..., n� 1} be a subset of indexes.

The structured matrix V can be defined as equation (10.398).

V = 1
p
m


ReF⇤ �ImF⇤

ImF⇤ ReF⇤

�
2 Rd⇥N (6.23)

where F⇤ in equation (10.399) is the matrix constructed by m rows of F .

F⇤=

2

64
e

2⇡ik11
n · · · e

2⇡ik1n
n

...
. . .

...

e
2⇡ikm1

n · · · e
2⇡ikmn

n

3

75 2 Cm⇥n (6.24)

With the V given in equation (10.398), it is easy to verify that kvik2 = 1 for

i 2 {1, ..., n}. Thus, each column of matrix V is a point on Sd�1.

6.4.2 Minimize the Discrete Riesz s-energy

With structured matrix V defined in equation (10.398), our goal is to select a subset

of indexes ⇤ that optimizes the discrete Riesz s-energy. Specifically, we will discuss

how to minimize the Riesz 0-energy in equation (6.25). The other Riesz s-energy can

be optimized in a similar way.

E(U) =
2NP
i=1

2NP
j=1,j 6=i

log 1
kui�ujk

(6.25)

where U = [V,�V] = [u1, ...,u2N].

In the following, we will discuss how to minimize equation (6.25) by using a

coordinate decent method.

Theorem 19. Let U = [V,�V] with V defined in (10.398), the discrete Riesz 0-

energy of U can be calculated as equation (6.26).

E(U) = C � 2n
n�1P
p=1

log

✓
1� (Im 1

m

mP
s=1

e
2⇡iksp

n)
2◆

�2n
n�1P
p=1

log

✓
1� (Re 1

m

mP
s=1

e
2⇡iksp

n)
2◆ (6.26)

86

where C is a constant independent of the choice of ⇤.

Proof: Since U = [V,�V] 2 S(d�1)⇥2N, we obtain equation (6.27).

E(U) = �
2NP
i=1

2NP
j=1,j6=i

log kui � ujk

= �2
NP
i=1

log k2vik

�2
NP
i=1

NP
j=1,j 6=i

(log kvi � vjk+ log kvi + vjk)

= C � 2
NP
i=1

NP
j=1,j 6=i

log (kvi � vjk kvi + vjk)

= C � 2
NP
i=1

NP
j=1,j 6=i

log
⇣p

2� 2vT

i
vj

p
2 + 2vT

i
vj

⌘

(6.27)

Recall that N = 2n. By separating the summation term into two parts (each part

has n⇥ n term), we achieve equation (6.28).

E(U) = C� 2
2nP
i=1

2nP
j=1,j6=i

log

✓
2
q

1� (vT
i vj)

2
◆

= C � 4
nP

i=1

2nP
j=n+1

log

✓
2
q

1� (vT

i
vj)

2
◆

�4
nP

i=1

nP
j=1,j 6=i

log

✓
2
q

1� (vT

i
vj)

2
◆

(6.28)

Let V·,1:n = [v1, ...,vn] and V·,n+1:2n = [vn+1, ...,v2n] be the matrix consisting of

the first n and last n columns of V respectively. We can obtain equation (6.29).

VT
·,1:nV·,n+1:2n = 1

mReF⇤
T(�ImF⇤) +

1
m(ImF⇤)TReF⇤ (6.29)

Note that all diagonal elements of VT
·,1:nV·,n+1:2n are zero. By further separating

the first summation term of equation (6.28) into two parts, we obtain equation (6.30).

E(U) = C� 4
nP

i=1

2nP
j=n+i

log
�
2
p
1� 0

�

�4
nP

i=1

2nP
j=n+1,j 6=n+i

log

✓
2
q

1� (vT

i
vj)

2
◆

�4
nP

i=1

nP
j=1,j 6=i

log

✓
2
q

1� (vT

i
vj)

2
◆

= C � 4
nP

i=1

2nP
j=n+1,j 6=n+i

log

✓
2
q

1� (vT

i
vj)

2
◆

�4
nP

i=1

nP
j=1,j 6=i

log

✓
2
q

1� (vT

i
vj)

2
◆

(6.30)

87

To be concise, let Z = [z1, , ..., zn] =
1

p
m
F⇤.

For 1  j  n, j 6= i, we achieve equation (6.31).

(vT
i vj)2 = (Rez⇤i zj)

2 =

✓
1
m
Re

mP
s=1

e2⇡iksp/n
◆2

(6.31)

For n+ 1  j  2n, , j 6= n+ i, we attain equation (6.32).

(vT
i vj)2 = (Imz⇤i zj�n)2 =

✓
1
m
Im

mP
s=1

e2⇡iksp/n
◆2

(6.32)

In equation (6.31) and (6.32), p ⌘ i � j (mod n), where mod denotes the modulus

operation on integers.

Note that z⇤i zj has at most n� 1 distinct values when i 6= j (mod n) . Together

with equation (6.30), we achieve equation (6.33).

E(U) = C� 4
nP

i=1

2nP
j=n+1,j6=n+i

log

✓
2
q

1� (vT
i vj)

2
◆

�4
nP

i=1

nP
j=1,j 6=i

log

✓
2
q

1� (vT
i vj)

2
◆

= C � 4
nP

i=1

2nP
j=n+1,j 6=n+i

log

✓
2
q

1� (Imz⇤i zj�n)
2

◆

�4
nP

i=1

nP
j=1,j 6=i

log

✓
2
q

1� (Rez⇤i zj)
2

◆

= C � 4n
n�1P
p=1

log

2

s

1� (Im 1
m

mP
s=1

e2⇡iksp/n)
2
!

�4n
n�1P
p=1

log

2

s

1� (Re 1
m

mP
s=1

e2⇡iksp/n)
2
!

= C � 2n
n�1P
p=1

log

✓
1� (Im 1

m

mP
s=1

e2⇡iksp/n)
2◆

�2n
n�1P
p=1

log

✓
1� (Re 1

m

mP
s=1

e2⇡iksp/n)
2◆

(6.33)

⇤
From Theorem 4.1, we know that minimizing E(U) is equivalent to maximizing

J(⇤) which is defined in equation (6.34).

J(⇤) =
n�1P
p=1

log

✓
1� (Im 1

m

mP
s=1

e2⇡iksp/n)
2◆

+
n�1P
p=1

log

✓
1� (Re 1

m

mP
s=1

e2⇡iksp/n)
2◆ (6.34)

88

Algorithm 12 Coordinate Index Selection
Initialization: random sample ⇤ = [k1, k2, ..., km] from {1, 2, ...n � 1} without
replacement. Set eh = 1TF⇤

repeat
Set J = J(⇤)
for q = 1 to m do
Set g = [e2⇡ikq/n, e2⇡ikq2/n..., e2⇡ikq(n�1)/n]
Set h = eh� g
Find k⇤

q
by k⇤

q
= argmax

kq2{1,...,n�1}
J(kq) in (6.35)

Update g = [e2⇡ik
⇤
q/n, e2⇡ik

⇤
q2/n..., e2⇡ik

⇤
q (n�1)/n]

Set eh = h+ g
end for

until J does not change

By keeping all the indexes in ⇤ = [k1, k2, ..., km] fixed except the qth element, we

can obtain equation (6.35).

J(kq) =
n�1P
p=1

log
⇣
1� (Im

�
hp + e2⇡ikqp/n

�
/m)

2
⌘

+
n�1P
p=1

log
⇣
1� (Re

�
hp + e2⇡ikqp/n

�
/m)

2
⌘ (6.35)

where kq 2 {1, 2, ...n� 1}, hp =
mP

s=1,s 6=q

e2⇡iksp/n.

With equation (6.35), we can maximize J(⇤) by maximizing J(kq) with other

indexes fixed each time. Let h = [h1, ..., hn�1] , g = [e2⇡ikq/n, e2⇡ikq2/n..., e2⇡ikq(n�1)/n].

1 = [1, ..., 1]T 2 Rm is the vector of all ones. A coordinate ascent method to maximize

J(⇤) is given in Algorithm 12.

Obviously, it is a discrete optimization problem. Algorithm 12 can find a local

optimum. The time complexity of the Algorithm 12 is O(Tmn2), where T denotes

the number of outer iteration. Empirically, the outer iteration T is less than ten.

6.5 Fast Feature Maps Construction

In this section, we will discuss how to construct SSF maps in loglinear time complexity

and linear space complexity by using the structure property of V.

Theorem 20. Assume that d = 2m,N = 2n, m < n. Let x =


x1

x2

�
2 R2m and

z = x1 + ix2 2 Cm. Given ⇤ = [k1, k2, ..., km] ⇢ {1, ..., n � 1} , let y 2 Cn with

89

y⇤ = z. Other elements outside the index set ⇤ are equal to zero. Given V defined

in equation (10.398), equation (6.36) holds.

VTx = 1
p
m
[Re(F ⇤y), Im(F ⇤y)]T (6.36)

Proof: Let ⌦ 2 Rn⇥n be a diagonal matrix with all diagonal elements inside the

index set ⇤ equal to one , the others equal to zero.

VTx = 1
p
m


ReF⇤ �ImF⇤

ImF⇤ ReF⇤

�T 
x1

x2

�

= 1
p
m


(ReF⇤

T)x1 + (ImF⇤
T)x2

(�ImF⇤
T)x1 + (ReF⇤

T)x2

�

= 1
p
m


Re(F ⇤

⇤z)
Im(F ⇤

⇤z)

�

= 1
p
m


Re(F ⇤⌦y)
Im(F ⇤⌦y)

�

= 1
p
m


Re(F ⇤y)
Im(F ⇤y)

�

(6.37)

⇤
Thus, the projection operation VTx (previously mentioned in equation (6.10) and

(6.21)) can be calculated by Fast Fourier Transform algorithm (FFT) in O(n log n)

time complexity. Because scaling and taking nonlinear transform can be finished in

O(n), the total time complexity to construct SSF maps is O(n log n).

All steps to construct SSF maps are summarized as follows:

(a) Compute ex by ex = Dx, where D 2 {�1,+1}d⇥d is a diagonal matrix where

diagonal elements are uniformly sampled from {�1,+1}.
(b) Construct y such that y⇤ = ex1 + iex2, other elements outside the index set ⇤

are equal to zero.

(c) Compute VTex by equation (6.36) via FFT.

(d) Construct feature maps (x) via equation (6.10) or (6.21).

For each (m,n) pair , the index set ⇤ only need to be computed once. It takes

O(m) space to store ⇤. For shift and rotation invariant kernels, it takes O(M) space

to store ��(tj), j 2 1, ...,M and takes O(d) (d = 2m) space to store ⇤ and D. For

bth-order arc-cosine kernels, it only needs to store one parameter Cb and takes O(d)

space to store ⇤ and D. By setting M  d, the total space complexity to store the

projection matrix is O(d).

90

6.6 Empirical Studies

We compare SSF maps with feature maps obtained by fully Gaussian [34,142], the Cir-

culant [39] matrices, QMC with Halton set and QMC with Sobol set [14]. For Halton

set and Sobol set, the implementation in MATLAB are employed in the experiments.

The scrambling and shifting techniques are used for Haltonset and Sobolset. In all

the experiments, we fix M = 1 (the number of one-dimensional QMC points) for SSF

maps.

Figure 6.1: Convergence of the Logarithmic Energy

6.6.1 Convergence and Speedup

First, the convergence of the logarithmic energy (�J(⇤) in equation (6.34)) with

(m,n) = (160, 1600) is shown in Figure 6.1. From Figure 6.1, we find that it takes

less than ten iterations (i.e. T < 10) for Algorithm 12 to find a local optimum.

91

Figure 6.2: Speedup of the Feature Maps Construction

Second, the speedup results of all methods are shown in Figure 6.2. We set N = 2d

for all the methods. The speedup of fully Gaussian projection is the baseline. We

can observe that the speedup of QMC with Halton set is constant as the dimension

d increases and is slower than the baseline. The speedup of both SSF maps and the

Circulant increase fast as dimension increases, which is consistent with theoretical

analysis. The speedup of Sobol set is not shown because the inbuilt Sobolset routine

of MATLAB does not support dimension larger than 1,111.

6.6.2 Approximation Accuracy

We evaluate reconstruction error of Gaussian kernel, zero-order arc-cosine kernel and

first-order arc-cosine kernel on CIFAR10 [99], MNIST [107], usps and dna dataset.

MNIST is a handwritten digit image dataset, which contains 70,000 samples with 784-

dimensional features(pixel). For CIFAR10 with 60,000 samples, the 320-dimensional

gist feature [60] are employed in the experiments. Both the relative Frobenius er-

92

(a) k eK�KkF
kKkF

for Gaussian Kernel (b) k eK�KkF
kKkF

for Zero-order Arc

Kernel

(c) k eK�KkF
kKkF

for First-order Arc

Kernel

(d) k eK�Kk1
kKk1

for Gaussian Kernel (e) k eK�Kk1
kKk1

for Zero-order Arc

Kernel

(f) k eK�Kk1
kKk1

for First-order Arc

Kernel

Figure 6.3: Relative Mean and Max Reconstruction Error for Gaussian, Zero-order
and First-order Arc-cosine Kernel on MNIST

ror (i.e.
k eK�Kk

F
kKkF

) and the relative element-wise maximum error (i.e.
k eK�Kk1

kKk1
) are

evaluated, where K and eK denote the exact and approximated Gram matrices re-

spectively. The Frobenius norm and the elementwise maximum norm are defined as

kXk
F
=
qP

i

P
j
|Xij|2 and kXk

1
= max

i,j

|Xij| respectively.
The reconstruction error in the experiments is the mean value over 10 independent

runs. The dimensions of the feature maps are set to {2 ⇥ d, 3 ⇥ d, 4 ⇥ d, 5 ⇥ d},
where d is the dimension of the data. For MNIST and CIFAR10 dataset, each run

randomly select 2,000 samples to construct the Gram matrix. The mean value of

the reconstruction errors with di↵erent norms on MNIST are shown in Figure 6.3.

Results on the other datasets are similar to that of Figure 6.3. One can refer to the

supplementary material for results on other datasets.

Figure 6.3 shows that the feature maps obtained with fully Gaussian matrix,

the Circulant matrix, QMC with Halton set and QMC with Sobol set have similar

reconstruction error. SSF maps have the smallest approximation error among five

methods. Especially for the first-order arc-cosine kernel, it achieves nearly one-fifth

relative mean error and one-seventh relative max error of other methods. Moreover,

even if M = 1, SSF maps can achieve about one-third relative mean error and half of

the relative max error of other methods for Gaussian Kernel approximation.

93

6.7 Summary

In this Chapter, we propose Spherical Structured Feature (SSF) maps to approxi-

mate shift and rotation invariant kernels as well as bth-order arc-cosine kernels. SSF

maps can achieve computation and storage e�ciency as well as better approximation

accuracy.

94

Chapter 7

Neural Optimization Kernel:
Towards Robust Deep Learning

7.1 Chapter Abstract

Deep neural networks (NN) have achieved great success in many applications. How-

ever, why do deep neural networks obtain good generalization at an over-parameterization

regime is still unclear. To better understand deep NN, in this chapter, we establish

the connection between deep NN and a novel kernel family, i.e., Neural Optimization

Kernel (NOK), from an approximation perspective. The architecture of structured

approximation of NOK performs monotonic descent updates of implicit regulariza-

tion problems. We can implicitly choose the regularization problems by employing

di↵erent activation functions, e.g., ReLU, max pooling, and soft-thresholding. We

further establish a new generalization bound of our deep structured approximated

NOK architecture. Our unsupervised structured approximated NOK block can serve

as a simple plug-in of popular backbones for a good generalization against input noise.

7.2 Neural Optimization Kernel

Denote L2 as the Gaussian square-integrable functional space, i.e.,

L2 := {f
��Ew⇠N (0,Id)[f(w)2] < 1}, and denote L2 as the spherically square-integrable

function space, i.e., L2 := {f
��Ew⇠Uni[

p

dSd�1][f(w)2] < 1}.
For functional f 2 F , where F = L2 or F = L2, define function k(·, ·) : X ⇥X !

R as

k(x,y) = Ew[f(w,x)f(w,y)]. (7.1)

Then, we know k(·, ·) is a bounded kernel, which is shown in Proposition 1. All

detailed proofs are given in Appendix.

95

Table 7.1: Regularizers and Proximal Operators
l0-norm [51] l1-norm [50] MCP [186]

��(z) �kzk0 �kzk1 �
R
|z|

0 max(0, 1� x/(��)) dx

h(z) h(z)=

⇢
z, |z| �

p
2�

0, |z| <
p
2�

. h(z)=sign(z)max(0, |z|��) h(z)=

8
<

:

z, |z| > ��
sign(z)(|z|��)

1�1/� , � < |z|  ��

0, |z|  �

.

Capped l1-norm [187] SCAD [55] MCP0 [136]

��(z) �min(|z|, �) �
R
|z|

0 min(1, max(0,���z)
(��1)�) dx , (� > 2) ��(z)=

1
2(��max(

p
��|z|, 0)2)

h(z) h(z)=

⇢
x1, q(x1)  q(x2)
x2, q(x1) > q(x2)

, where
x1 = sign(z)max(|z|, �)
x2 = sign(z)min(�,max(0, |z|� �))
q(x) = 0.5(x� z)2 + �min(|x|, �)

h(z)=

8
<

:

z, |z| > ��
(��1)z�sign(z)��

��2 , 2� < |z|  ��
sign(z)max(|z|� �, 0), |z|  2�

h(z)=

8
<

:

z, |z| >
p
�

�
p
� (|�|  1), |z| =

p
�

0, |z| <
p
�

.

Proposition 1. For 8f 2 F (F = L2 or F = L2), define function k(x,y) =

Ew[f(w,x)f(w,y)] : X ⇥ X ! R, then k(x,y) is a bounded kernel, i.e., k(x,y) =

k(y,x) < 1 and k(x,y) is positive definite.

For functional f 2 F , where F = L2 or F = L2, define operator A(·) : F !
Rd as A(f) := Ew[wf(w)]. Define operator A⇤ : Rd ! F as A⇤(x) = w

>
x,

w ⇠ N (0, Id) or w ⇠ Uni[
p
dSd�1]. We know A � A⇤(·) = Ew[ww

>] = Id :

Rd ! Rd. Details are provided in Appendix. Define operator ��(·) : F ! R as

��(f) := Ew[��(f(w))], where ��(·) is a function with parameter � and bounded

from below, and Ew[��(f(w))] exists for some f 2 F . Several examples of �� and

the corresponding proximal operators are shown in Table 7.1. It is worth noting that

��(·) can be either convex or non-convex.

Our Neural Optimization Kernel (NOK) is defined upon the solution of opti-

mization problems. Before giving our Neural Optimization Kernel (NOK) definition,

we first introduce a family of functional optimization problems. The ��-regularized

optimization problem is defined as

min
f2F

1

2
kx�A(f)k22 + ��(f) =

1

2
kx� Ew[wf(w)]k22 + Ew[��(f(w))], (7.2)

where F = L2 or F = L2. f(·) := f(·,x) is a function specified by x. We simplify

the notation f(w,x) as f(w) when the dependence of x is clear from the context.

For ��(·) with e�cient proximal operators h(·) defined as

h(z) = argmin
x

1
2(x� z)2 + ��(x), we can optimize the problem (7.2) by iterative

updating with Eq.(7.3):

ft+1(·) = h
�
A⇤(x) + ft(·)�A⇤ �A(ft(·))

�
. (7.3)

The initialization is f0(·) = 0.

Remark: In the update rule (7.3), the term �A⇤ � A(ft(·)) can be viewed as a

two-layer transformed residual modular of ft(·). Then adding a skip connection ft(·)
and a biased term A⇤(x). As shown in [4, 5], a ResNet-type architecture (residual

96

modular with skip connections) is crucial for obtaining a small error with sample and

time e�ciency.

For both convex and non-convex function ��, our update rule in Eq.(7.3) leads to

a monotonic descent.

Theorem 21. (Monotonic Descent) For a function ��(·), denote h(·) as the proximal

operator of ��(·). Suppose |h(x)|  c|x| (or |h(x)|  c), 0 < c < 1 (e.g., hard

thresholding function). Given a bouned x 2 Rd, set function ft+1(·) = h
�
A⇤(x) +

ft(·)�A⇤�A(ft(·))
�
and f0 2 F (e.g., f0 = 0). Denote Q(f) = 1

2kx�A(f)k22+��(f).

For 8t � 0, we have

Q(ft+1)Q(ft)�
1

2
Ew[(ft+1(w)�ft(w)�w

>Ew[w(ft+1(w)�ft(w))])2]  Q(ft).

(7.4)

Remark: Assumption|h(x)|  c|x| (or |h(x)|  c) is used to ensure that each

ft 2 F . Neural networks with a activation function h(·), e.g., sigmoid, tanh, and

ReLU, as long as h(·) satisfies the above assumption, it corresponds to a (implicit)

�(·)-regularized problem. Theorem 21 shows that a T -layer network performs T -steps

monotonic descent updates of the �(·)-regularized objective Q(·).
For a convex ��, we can achieve a O(1

T
) convergence rate, which is formally shown

in Theorem 22.

Theorem 22. For a convex function ��(·), denote h(·) as the proximal operator of

��(·). Suppose |h(x)|  c|x| (or |h(x)|  c), 0 < c < 1. Given a bouned x 2 Rd, set

function ft+1(·) = h
�
A⇤(x)+ ft(·)�A⇤ �A(ft(·))

�
and f0 2 F (e.g., f0 = 0). Denote

Q(f) = 1
2kx � A(f)k22 + ��(f) and f⇤ 2 F as an optimal of Q(·). For 8T � 1, we

have

T
�
Q(fT)�Q(f⇤)

�
 1

2
Ew[(f0(w)�f⇤(w))2]� 1

2
Ew[(fT (w)�f⇤(w))2]

� 1

2

T�1X

t=0

kEw[w
�
ft(w)�f⇤(w)

�
]k22

� 1

2

T�1X

t=0

(t+ 1)Ew[(ft+1(w)�ft(w))2]. (7.5)

Remark: A ReLU h(z) = max(z, 0) corresponds a ��(z) ==

⇢
0, z � 0
+1, z < 0

(a lower semi-continuous convex function) , which results in a convex regularization

problem. A T -layer NN obtains O(1/T) convergence rate , which is faster than non-

convex cases. This explains the success of ReLU on training deep NN from a NN

97

architecture optimization perspective. When ReLU and f0 = 0 is used, the resultant

first-layer kernel is the arc-cosine kernel in [35]. More interestingly, when ReLU

is used (related to indicator function ��(·)), the learned functional representation

p(w)ft(w) is an unnormalized non-negative measure, where p(w) denotes the density

of Gaussian or Uniform sphere surface distribution. We can achieve a probability

measure representation by normalizing p(w)ft(w) with Z =
R
p(w)ft(w) dw.

Our Neural Optimization Kernel (NOK) is defined upon the optimized func-

tional fT (T -layer) as

kT,1(x,y) := Ew[fT (w,x)fT (w,y)]. (7.6)

With f0 2 F , we know fT 2 F . From the Proposition 1, we know kT,1 is a bounded

kernel.

7.3 Structured Approximation

The orthogonal sampling [181] and spherically structured sampling [117, 119] have

been successfully used for Gaussian and spherical integral approximation. In the

QMC area, randomization of structured points set is standard and widely used to

achieve an unbiased estimator (the same marginal distribution p(w)). In the hy-

percube domain [0, 1]d, a uniformly distributed vector shift is employed. In the

hypersphere domain Sd�1, a uniformly random rotation is used. For the purpose

of acceleration, [117] employs a diagonal random rotation matrix to approximate the

full matrix rotation, which results in a O(d) rotation time complexity instead of O(d3)

complexity in computing SVD of random Gaussian matrix (full rotation). When the

goal is to reduce approximation error, we can use the standard full matrix random

orthogonal rotation of the structured points [117] as an unbiased estimator of integral

on Uni[Sd�1]. Moreover, we propose a new diagonal rotation method that maintains

the O(nlogn) time complexity and O(d) space complexity by FFT as [117], which

may of independent interest for integral approximation.

For all-layer trainable networks, we propose a data-dependent structured approx-

imation as

W =
p
dR>

B 2 Rd⇥N , (7.7)

where R>
R = RR

> = Id is a trainable orthogonal matrix parameter, N denotes the

number of samples, and structured matrix B can either be a concatenate of random

orthogonal matrices [181], or be the structured matrix in [117,119].

98

Define operator bA := 1
N
W : RN ! Rd and bA⇤ := W

> : Rd ! RN . Operator
bA is an approximation of A by taking expectation over finite samples. Remarkably,

by using our structured approximation, we have bA � bA⇤ = 1
N
WW

> = Id.

Remark: The orthogonal property of the operator A �A⇤ = Id is vitally impor-

tant to achieve O(1
T
) convergence rate with our update rule. It leads to a ResNet-type

network architecture, which enables a stable gradient flow for training. When approx-

imation with finite samples, standard Monte Carlo sampling does not maintain the

orthogonal property, which degenerates the convergence. In contrast, our structured

approximation preserves the second order moment E[ww
>] = Id. Namely, our ap-

proximation maintains the orthogonal property, i.e., bA � bA⇤ = Id . With the orthog-

onal property, we can obtain the same convergence rate (w.r.t. the approximation

objective) with our update rule. Moreover, for a k-sparse constrained problem, we

prove the strictly monotonic descent property of our structured approximation when

using B in [117, 119].

7.3.1 Convergence Rate for Finite Dimensional Approxima-
tion Problem

The finite approximation of problem (7.2) is given as

bQ(y) :=
1

2
kx� bA(y)k22 +

1

N
��(y) =

1

2
kx� 1

N
Wyk22 +

1

N
��(y), (7.8)

where y 2 RN and ��(y) :=
P

N

i=1 ��(yi).

The finite dimension update rule is given as :

y
t+1 = h

�
W

>
x+ (I � 1

N
W

>
W)y

t

�
. (7.9)

Thanks to the structured W =
p
dR>

B, we show the monotonic descent property,

convergence rate for convex ��, and a strictly monotonic descent for a k-sparse con-

strained problem.

For both convex and non-convex ��, our update rule in Eq.(7.9) leads to a mono-

tonic descent.

Theorem 23. (Monotonic Descent) For a function ��(·), denote h(·) as the proximal

operator of ��(·). Given a bouned x 2 Rd, set y
t+1 = h

�
W

>
x + (I � 1

N
W

>
W)y

t

�

with 1
N
WW

> = Id. Denote bQ(y) := 1
2kx� bA(y)k22 + 1

N
��(y). For t � 0, we have

bQ(y
t+1) bQ(y

t
)� 1

2N
ky

t+1 � y
t
k22 +

1

2
k 1

N
W (y

t+1 � y
t
)k22 (7.10)

= bQ(y
t
)� 1

2N
k(Id �

1

N
W

>
W)(y

t+1 � y
t
)k22  bQ(y

t
). (7.11)

99

Remark: For the finite dimensional case, the monotonic descent property is pre-

served. For popular activation function, e.g., sigmoid, tanh and ReLU, it corresponds

to a finite dimensional (implicit) �(·)-regularized problem. A T -layer NN performs

T -steps monotonic descent of the �(·)-regularized problem bQ(·) desipte of the non-

convexity of the activation function h(·).
For convex ��, we can achieve a O(1

T
) convergence rate, which is formally shown

in Theorem 24.

Theorem 24. For a convex function ��(·), denote h(·) as the proximal operator

of ��(·). Given a bouned x 2 Rd, set y
t+1 = h

�
W

>
x + (I � 1

N
W

>
W)y

t

�
with

1
N
WW

> = Id. Denote bQ(y) := 1
2kx � bA(y)k22 + 1

N
��(y) and y

⇤ as an optimal of
bQ(·). For T � 1, we have

T
� bQ(y

T
)� bQ(y⇤)

�
 1

2N
ky0 � y

⇤k22 �
1

2N
ky

T
� y

⇤k22 �
1

2

T�1X

t=0

k 1

N
W (y

t
� y

⇤)k22

� 1

2

T�1X

t=0

t+ 1

N
ky

t+1 � y
t
k22. (7.12)

Theorem 25. (Strictly Monotonic Descent of k-sparse problem) Let L(y) = 1
2kx �

Dyk22, s.t. kyk0  k with D =
p

d
p
N
R

>
B, where B is constructed as in [119] with

N = 2n, d = 2m. Set y
t+1 = h(at+1) with sparity k and at+1 = D

>
x+(I�D

>
D)y

t
.

For 8t � 1, we have

L(y
t+1)

 L(y
t
) +

1

2
ky

t+1 � at+1k22 �
1

2
ky

t
� at+1k22 �

n� (2k � 1)
p
n�m

2n
ky

t+1 � y
t
k22

 L(y
t
), (7.13)

where h(·) is defined as

h(zj) =

⇢
zj if |zj| is one of the k-highest values of |z| 2 RN

0 otherwise
. (7.14)

Remark: When sparsity k < n�m+
p
n

2
p
n

, we have L(y
t+1) < L(y

t
) unless y

t+1 = y
t
.

Our update with the structured D makes a strictly monotonic descent progress each

step.

7.3.2 Learning Parameter R

Supervised Learning: For the each tth layer, we can maintain an orthogonal ma-

trix Rt. The orthogonal matrix Rt can be parameterized by exponential mapping or

100

Cayley mapping [72] of a skew-symmetric matrix. We can employ the Cayley map-

ping to enable gradient update w.r.t a loss function `(·) in an end-to-end training.

Specifically, the orthogonal matrix Rt can be obtained by the Cayley mapping of a

skew-symmetric matrix as

Rt = (I +M t)(I �M t)
�1, (7.15)

where M t is a skew-symmetric matrix, i.e., M t = �M
>

t
2 Rd⇥d. For a skew-

symmetric matrix M t, only the upper triangular matrix (without main diagonal) are

free parameters. Thus, total the number of free parameters of T -Layer is Td(d�1)/2.

Unsupervised Learning: The parameter R can also be learned in an unsuper-

vised manner. Specifically, for a finite dataset X, the finite dimensional approxima-

tion problem with the structured W =
p
dR>

B is given as

min
Y ,R

1

2
kX �

p
d

N
R

>
BY k2

F
+

1

N
��(Y) (7.16)

subject to R
>
R = RR

> = Id,

where ��(·) is a separable non-convex or convex regularization function with param-

eter �, i.e., ��(Y) =
P

i
��(y(i)).

The problem (7.16) can be solved by the alternative descent method. For a fixed

R, we perform a iterative update of Y a few steps to decrease the objective. For the

fixed Y , parameter R has a closed-form solution.

Fix R, Optimize Y : The problem (7.16) can be rewritten as :

1

2
kX �

p
d

N
R

>
BY k2

F
+

1

N
��(Y) =

X

i

bQ(y(i)). (7.17)

Thus, with fixed R, we can update each y
(i) by Eq.(7.9) in parallel. We can perform

T1 steps update with initialization as the output of previous alternative phase, i.e.,

Y
j

0 = Y
j�1
T1

(and initialization Y
0
0 = 0 and R0 = Id).

Fix Y , Optimize R: This is the nearest orthogonal matrix problem, which has a

closed-form solution as shown in [151]. Let
p

d

N
BY X

> = U�V > obtained by singular

value decomposition (SVD), where U ,V are orthgonal matrix. Then, Eq.(7.16) is

minimized by R = UV
>.

Remark: A T2-step alternative descent computation graph of R and Y can be

viewed as a T1T2-layer NN block, which can be used as a plug-in of popular backbones

for robust deep learning.

101

7.3.3 Kernel Approximation

Define kT,N(x,x0) = 1
N
< y

T
(W ,x),y

T
(W ,x0) >, where y

T
(W ,x) : Rd ! RN is a

finite approximation of fT (·,x) 2 HkT . We know kT,N(x,x0) is bounded kernel, and

it is an approximation of kernel kT,1 = Ew[fT (w,x)fT (w,x0)].

Remark: Let B be a points set that marginally uniformly distributed on the

surface of sphere Sd�1 (e.g, Block-wise random orthogonal rotation of structured

samples [117]). Employing our structured approximation W = R
>
B, we know

8R 2 SO(d) and 8f 2 L2, limN!1

PN
i=1 f(wi)

N
= Ew⇠Uni[Sd�1][f(w)]. It means that

although the orthogonal rotation parameter R is learned, we still maintain an unbi-

ased estimator of Ew[f(w)].

First-Layer Kernel: Set y = 0 and f0 = 0, we know yi(x) = h(w>

i
x) and

f1(w,x) = h(w>
x). Suppose |h(x)|  c|x| (or |h(x)|  c), 0 < c < 1, it follows that

lim
N!1

k1,N(x,x
0) = lim

N!1

1

N

NX

i=1

h(w>

i
x)h(w>

i
x
0) = Ew[h(w

>
Rx)h(w>

Rx
0)]

= Ew[h(w
>
x)h(w>

x
0)] = k1,1(x,x0). (7.18)

In Eq.(7.18), we use the fact that a rotation does not change the uniform surface

measure on Sd�1. The first layer kernel k1,N uniformly converge to k1,1 over a bounded

domain X ⇥ X .

Higher-Layer Kernel: For both the shared R case and the unsupervised up-

dating R case, the monotonic descent property and convergence rate is well preserved

for any bounded x 2 X . With the same assumption of h(·) and y = 0, as N ! 1,

we know y
t
! bft 2 L2 , where bft is a countable-infinite dimensional functional. And

inequality (7.10) and inequality (7.12) uniformly converges to inequality (7.19) and

inequality (7.21) over a bounded domain X , respectively.

Q(bft+1)Q(bft)�
1

2
Ew[

� bft+1(w)� bft(w)
�2
] +

1

2
kEw[w

� bft+1(w)� bft(w)
�
]k22 (7.19)

= Q(bft)�
1

2
Ew[(bft+1(w)� bft(w)�w

>Ew[w(bft+1(w)� bft(w))])2]  Q(bft),
(7.20)

T
�
Q(bfT)�Q(f⇤)

�
 1

2
Ew[(f0(w)�f⇤(w))2]� 1

2
Ew[(bfT (w)�f⇤(w))2]

� 1

2

T�1X

t=0

kEw[w
� bft(w)�f⇤(w)

�
]k22�

1

2

T�1X

t=0

(t+1)Ew[(bft+1(w)� bft(w))2].

(7.21)

102

It is worth noting that limN!1 kT,N converge to a bkT,1 that is determined by the

initialization R0 and dataset X. Specifically, for both the unsupervised learning case

and the shared parameter case, the approximated kernel converge to a fixed kernel

as the width tends to infinity. As N ! 1, training a finite structured NN with GD

tends to perform a functional gradient descent with a fixed kernel. For a strongly

convex regularized regression problem, functional gradient descent leads to global

convergence.

For the case of updating T -layer parameter Rt, t 2 {1, · · · , T} in a supervised

manner, the sequence {Rt} determines the kernel. When the data distribution is

isotropic, e.g., Sd�1, the monotonic descent property is preserved for the expecta-

tion EX [Q(bft, X)] (at least one step descent). Actually, when parameters of each

layer are learned in a supervised manner, the model is adjusted to fit the supervised

signal. When the prior regularization Ew[��(bf(w))] is consistent with learning the

supervised signal, the monotonic descent property is well preserved. When the prior

regularization contradicts the supervised signal, the monotonic descent property for

prior is weakened.

7.4 Functional Optimization

We can minimize a regularized expected risk defined as

J(f) := EX,Y [`(g(X)), Y]+
�

2
kgk2

Hk

| {z }
J1

+� EX

⇥1
2
kX�Ew[wf(w, X)]k22 + Ew[��(f(w, X))]

⇤

| {z }
J2

,

(7.22)

where the functional space Hk 3 g is is determined by the kernel

k(x,y) =Ew[f(w,x)f(w,y)]. Our NOK enables us to optimize the objective J by

optimizing J1 and J2 separately. Namely, the functional space HkT 3 g is determined

by the kernel associated with the T -step update fT . With our NOK, J2 with convex

regularization ��(·) can be optimized with a convergence rate O(1
T
) by the T -layer

network architecture. When ��(·) is an indicator function, the optimal J2 actually is

the l2-norm optimal transport between p(X) and a probability measure induced by

A(f ⇤

X
, X) = Ew[wf ⇤

X
(w, X)].

For a convex function `(·), J1(g) is strongly convex w.r.t the functional g 2 Hk.

Functional gradient descent can converge to a minimizer of J1. For regression prob-

lems, `(z, y) = 1
2(z � y)2, the functional gradient of J1 is

@J1(g) = EX,Y [@z=g(X)`(g(X), Y)k(·, X)] + �g = (⌃+ �I)g � EX,Y [Y k(·, X)],
(7.23)

103

where ⌃ := EX⇠pX [k(·, X)⌦H k(X, ·)] denotes the covariance operator.

We can perform the average stochastic gradient descent using a stochastic un-

biased estimator of Eq.(7.23). For strongly convex problem, we can achieve O(1
T
)

convergence rate (Theorem A in [132]).

7.5 Rademacher Complexity and Generalization Bound

We show the Rademacher complexity bound and the generalization bound of our

structured approximated NOK (SNOK).

Neural Network Structure: For structured approximated NOK networks (SNOK),

the 1-T layers are given as

y
t+1 = h(D>

Rtx+ (I �D
>
D)y

t
), (7.24)

where Rt are free parameters such that R
>

t
Rt = R

>

t
Rt = Id. And D is a scaled

structured spherical samples such that DD
> = Id [117], and y0 = 0.

The last layer ((T+1)th layer) is given by z = w
>
y
T+1. Consider a L-Lipschitz

continuous loss function `(z, y) : Z ⇥ Y ! [0, 1] with Lipschitz constant L w.r.t the

input z.

Rademacher Complexity [21]: Rademacher complexity of a function class G
is defined as

RN(G) :=
1

N
E
"
sup
g2G

NX

i=1

✏ig(xi)

#
, (7.25)

where ✏i, i 2 {1, · · · , N} are i.i.d. samples drawn uniformly from {+1,�1} with

probality P[✏i = +1] = P[✏i = �1] = 1/2. And xi, i 2 {1, · · · , N} are i.i.d. samples

from X .

Theorem 26. (Rademacher Complexity Bound) Consider a Lipschitz continuous loss

function `(z, y) : Z ⇥ Y ! [0, 1] with Lipschitz constant L w.r.t the input z. Let
è(z, y) := `(z, y) � `(0, y). Let bG be the function class of our (T+1)-layer SNOK

mapping from X to Z. Suppose the activation function |h(y)|  |y| (element-wise),

and the l2-norm of last layer weight is bounded, i.e., kwk2  Bw. Let (xi, yi)Ni=1 be

i.i.d. samples drawn from X ⇥ Y. Denote Y T+1 as the T th layer output. Denote the

mutual coherence of Y T+1 as µ⇤, i.e., µ⇤ = µ(Y T+1)  1. Then, we have

RN(è� bG) =
1

N
E
"
sup
g2bG

NX

i=1

✏iè(g(xi), yi)

#


LBw

q�
(N � 1)µ⇤ + 1

�

N

vuut
T�1X

i=0

�ikXkF ,

(7.26)

104

where � = kI�D
>
Dk22  1, X = [x1,· · ·,xN]. k · kF and k · k2 denote the matrix

Frobenius norm and matrix spectral norm,respectively.

Remark: A small mutual coherence µ(Y T+1) leads to a small Rademacher com-

plexity bound. When the width of NN ND > d, we have � = 1. In this case, the

Rademacher complexity bound has a complexity O(
p
T) w.r.t. the depth of NN

(SNOK).

Theorem 27. (Generalization Bound) Consider a Lipschitz continuous loss function

`(z, y) : Z ⇥ Y ! [0, 1] with Lipschitz constant L w.r.t the input z. Let è(z, y) :=

`(z, y)�`(0, y). Let bG be the function class of our (T+1)-layer SNOK mapping from X
to Z. Suppose the activation function |h(y)|  |y| (element-wise), and the l2-norm of

last layer weight is bounded, i.e., kwk2  Bw. Let (xi, yi)Ni=1 be i.i.d. samples drawn

from X ⇥ Y. Denote Y T+1 as the T th layer output with input X. Denote the mutual

coherence of Y T+1 as µ⇤, i.e., µ⇤ = µ(Y T+1)  1. Then, for 8N and 8�, 0 < � < 1,

with a probability at least 1� �, 8g 2 bG, we have

E
⇥
`(g(X), Y)

⇤
 1

N

NX

i=1

`(g(xi), yi)+
LBw

q�
(N�1)µ⇤+1

�

N

vuut
T�1X

i=0

�ikXkF+
r
8 ln(2/�)

N

(7.27)

where � = kI�D
>
Dk22  1, X = [x1,· · ·,xN]. k · kF and k · k2 denote the matrix

Frobenius norm and matrix spectral norm,respectively.

Remark: The mutual coherence µ(Y T+1) (or kY >

T+1Y T+1�Ik2F , etc.) can serve as

a good regularization to reduce Rademacher complexity and generalization bound.

When the width of SNOK (ND) is large enough, specifically, when ND > N , it is

possible to obtain µ(Y T+1)=0 (orthogonal representation), which significantly reduces

the generalization bound. Namely, overparameterized deep NNs can increase the

expressive power to reduce empirical risk and reduce the generalization bound at the

same time.

7.6 Experiments

We evaluate the performance of our unsupervised SNOK blocks on classification tasks

under input noise perturbation (Gaussian noise or Laplace noise), and under FGSM

adversarial attack [62].

105

7.6.1 Empirical Evaluation on Classification under Gaussian
Noise Perturbation

We first evaluate our unsupervised SNOK blocks as a plug-in on classification tasks

under Gaussian noise perturbation. In all the experiments, the Gaussian noise is

added after input normalization. The standard deviation of input noise is set to

{0, 0.1, 0.2, 0.3}, respectively. We employ both DenseNet-100 [79] and ResNet-34 [71]

as backbone. We test the performance of four methods in comparison: (1) Vanilla

Backbone, (2) Backbone + Mean Filter, (3) Backbone + Median Filter, (4) Backbone +

SNOK. For both Mean Filter and Median Filter cases, we set the filter neighborhood

size as 3⇥ 3 same as in [177]. For our SNOK case, we plug two SNOK blocks before

and after the first learnable Conv2D layer. In all the experiments, CIFAR10 and

CIFAR100 datasets [100] are employed for evaluation. All the methods are evaluated

over five independent runs with seeds {1, 2, 3, 4, 5}. During training, we stored the

model every five epochs, and reported all evaluation results over all the stored models.

It covers the whole training trajectory, which is more informative.

(a) CIFAR10-Clean (b) CIFAR10-Gaussian-

0.1

(c) CIFAR10-Gaussian-0.2 (d) CIFAR10-Gaussian-

0.3

(e) CIFAR100-Clean (f) CIFAR100-Gaussian-

0.1

(g) CIFAR100-Gaussian-

0.2

(h) CIFAR100-Gaussian-

0.3

Figure 7.1: Mean test accuracy ± std over 5 independent runs under Gaussian noise
with DenseNet backbone

The results of classification under Gaussian noise perturbation with DenseNet

backbone and ResNet backbone are shown in Fig. 7.1 and Fig 7.2, respectively. We can

observe that Backbone + Mean Filter, Backbone + Median Filter, and our Backbone

+ SNOK achieve a sightly lower classification accuracy on the case without noise

perturbation. Moreover, on the case without input noise, our SNOK plug-in obtains

a similar classification performance compared with other plug-in blocks. Furthermore,

106

(a) CIFAR10-Clean (b) CIFAR10-Gaussian-

0.1

(c) CIFAR10-Gaussian-0.2 (d) CIFAR10-Gaussian-

0.3

(e) CIFAR100-Clean (f) CIFAR100-Gaussian-

0.1

(g) CIFAR100-Gaussian-

0.2

(h) CIFAR100-Gaussian-

0.3

Figure 7.2: Mean test accuracy ± std over 5 independent runs under Gaussian noise
with ResNet backbone

our Backbone + SNOK obtains a increasingly higher test accuracy compared with

other baselines as the standard deviation of the noise grows. This shows a superior

robustness of our SNOK blocks against Gaussian noise perturbation. Notably, the

Vanilla Backbone achieves a degenerate performance when the standard deviation of

the noise is large. In contrast, our Backbone + SNOK achieves almost two times test

accuracy compared with the Vanilla Backbone on the large noise case. This shows

a significant improvement, which demonstrates a promising application value of our

SNOK blocks.

(a) CIFAR10-Clean (b) CIFAR10-Laplace-0.1 (c) CIFAR10-Laplace-0.2 (d) CIFAR10-Laplace-0.3

(e) CIFAR100-Clean (f) CIFAR100-Laplace-0.1 (g) CIFAR100-Laplace-0.2 (h) CIFAR100-Laplace-0.3

Figure 7.3: Mean test accuracy ± std over 5 independent runs under Laplace noise
with DenseNet backbone

107

(a) CIFAR10-Clean (b) CIFAR10-Laplace-0.1 (c) CIFAR10-Laplace-0.2 (d) CIFAR10-Laplace-0.3

(e) CIFAR100-Clean (f) CIFAR100-Laplace-0.1 (g) CIFAR100-Laplace-0.2 (h) CIFAR100-Laplace-0.3

Figure 7.4: Mean test accuracy ± std over 5 independent runs under Laplace noise
with ResNet backbone

7.6.2 Empirical Evaluation on Classification under Laplace
Noise Perturbation

We further evaluate our unsupervised SNOK blocks as a plug-in on classification

tasks under Laplace noise perturbation. In all the experiments, the Laplace noise

is added after input normalization. The standard deviation of the Laplace noise is

set to {0, 0.1, 0.2, 0.3}, respectively. We employ both DenseNet-100 [79] and ResNet-

34 [71] as backbone. We test the performance of four methods in comparison same

as in Section 7.6.1. For both Mean Filter and Median Filter cases, we set the filter

neighborhood size as 3⇥ 3 same as in [177]. For our SNOK case, we plug two SNOK

blocks before and after the first learnable Conv2D layer. In all the experiments,

CIFAR10 and CIFAR100 datasets [100] are employed for evaluation. All the methods

are evaluated over five independent runs with seeds {1, 2, 3, 4, 5}. During training,

we stored the model every five epochs, and reported all evaluation results over all the

stored models.

The results of classification under Laplace noise perturbation with DenseNet back-

bone and ResNet backbone are shown in Fig. 7.3 and Fig 7.4, respectively. We can

observe that all the robust baseline methods obtain a sightly lower test accuracy

compared with vanilla backbone on the clean case. Moreover, we find that all robust

baseline methods achieve a significant higher test accuracy compared with vanilla

backbone on the case with noise perturbation. In addition, the vanilla backbone to-

tally degenerate when the standard deviation of the input noise is 0.3. Furthermore,

we find that DenseNet backbone with our SNOK plug-in performs better than ResNet

108

backbone with SNOK. This may show that ResNet is more sensitive to input Laplace

noise.

7.6.3 Empirical Evaluation on Classification with Adversar-
ial Perturbation

We further evaluate our unsupervised SNOK blocks as a plug-in on classification tasks

under adversarial perturbation. We employ both DenseNet-100 [79] and ResNet-

34 [71] as backbone. We test the performance of four methods in comparison same

as in Section 7.6.1. In all the experiments, CIFAR10 and CIFAR100 datasets [100]

are employed for evaluation. All the methods are evaluated over five independent

runs with seeds {1, 2, 3, 4, 5}. During training, we stored the model every five epochs,

and reported all evaluation results over all the stored models. We employ the FGSM

method to generate the adversarial perturbation.

The experimental results of di↵erent models under the FGSM attack are shown

in Fig. 7.5. Our SNOK plug-in achieves a significantly higher test accuracy than

baselines. Moreover, we can observe that mean filter and median filter plug-in do not

gain an improvement of test accuracy compared with vanilla backbone under FGSM

attack. This shows that these two filter block fail to gain additional robustness

against the FGSM attack, although they obtains robustness against Gaussian noise

and Laplace noise. In contrast, our SNOK plug-in not only bring a robustness against

Gaussian noise/Laplace noise, but also gain a robustness under FGSM attack. This

show a superior robustness of our SNOK block in a consistent way.

(a) DenseNet-CIFAR10 (b) DenseNet-CIFAR100 (c) ResNet34-CIFAR10 (d) ResNet34-CIFAR100

Figure 7.5: Mean test accuracy ± std over 5 independent runs on CI-
FAR10/CIFAR100 dataset under FGSM adversarial attack for DenseNet and ResNet
backbone.

7.7 Summary

We first proposed a novel kernel family NOK. We also analyzed its approximation, the

connection to deep NNs, the NN architecture optimization properties, and the gener-

109

alization bounds. Our studies show that overparameterized NN (SNOK) with a wide

range of popular activation functions, e.g., ReLU, max pooling, soft-thresholding, can

increase the expressive power to reduce the empirical risk, and reduce the generaliza-

tion bound at the same time. In future, we will investigate the convergence behavior

of training the supervised SNOK with SGD.

110

Chapter 8

Curriculum Loss for Robust Deep
Learning

8.1 Chapter Abstract

Deep neural networks (DNNs) have great expressive power, which can even memorize

samples with wrong labels. It is vitally important to reiterate robustness and gen-

eralization in DNNs against label corruption. To this end, this chapter studies the

0-1 loss, which has a monotonic relationship with empirical adversary (reweighted)

risk [77]. Although the 0-1 loss has some robust properties, it is di�cult to optimize.

To e�ciently optimize the 0-1 loss while keeping its robust properties, we propose a

very simple and e�cient loss, i.e. curriculum loss (CL). Our CL is a tighter upper

bound of the 0-1 loss compared with conventional summation based surrogate losses,

which is an tighter approximation of expected risk. Moreover, CL can adaptively

select samples for model training. As a result, our loss can be deemed as a novel

perspective of curriculum sample selection strategy, which bridges a connection be-

tween curriculum learning and robust learning. Experimental results on benchmark

datasets validate the robustness of the proposed loss.

8.2 Curriculum Loss

In this section, we present the framework of our proposed Curriculum Loss (CL). We

begin with discussion about robustness of the 0-1 loss in Section 8.2.1. We then show

that our CL is a tighter upper bound of the 0-1 loss compared with conventional sum-

mation based surrogate losses in Section 8.2.2. A tighter bound of the 0-1 loss means

that it is less sensitive to the noisy outliers, and it better preserves the robustness of

the 0-1 loss with a small rate of label corruption. For a large rate of label corruption,

111

we extend our CL to a Noise Pruned Curriculum Loss (NPCL) to address this issue

in Section 8.2.3. A simple multi-class extension and a novel soft multi-hinge loss are

included in the Appendix. All the detailed proofs can be found in the Appendix as

well.

8.2.1 Robustness of 0-1 loss against label corruption

We rephrase Theorem 1 in [77] from a di↵erent perspective, which motivates us to

employ the 0-1 loss for training against label corruption.

Theorem 28. (Monotonic Relationship) (Hu et al. [77]) Let p(x, y) and q(x, y)

be the training and test density,respectively. Define r(x, y) = q(x, y)/p(x, y) and

ri = r(xi, yi). Let l(by, y) = 1
�
sign(by) 6= y

�
and l(by, y) = 1

�
argmaxk(byk) 6= y

�
be 0-1

loss for binary classification and multi-class classification, respectively. Let f(·) be

convex with f(1) = 0. Define risk R(✓), empirical risk bR(✓), adversarial risk Radv(✓)

and empirical adversarial risk bRadv(✓) as

R(✓) = Ep(x,y) [l(g✓(x), y)] (8.1)

bR(✓) =
1

n

Xn

i=1
l(g✓(xi), yi) (8.2)

Radv(✓) = sup
r2Uf

Ep(x,y) [r(x, y)l(g✓(x), y)] (8.3)

bRadv(✓) = sup
r2bUf

1

n

Xn

i=1
ril(g✓(xi), yi), (8.4)

where Uf =
�
r(x, y)

��Ep(x,y) [f (r(x, y))]  �,Ep(x,y) [r(x, y)] = 1, r(x, y) � 0, 8(x, y) 2 X ⇥ Y

and bUf =
�
r
�� 1

n

P
n

i=1 f(ri)  �, 1
n

P
n

i=1 ri = 1, r � 0

. Then we have that

If Radv(✓1) < 1, then R(✓1) < R(✓2) () Radv(✓1) < Radv(✓2). (8.5)

If Radv(✓1) = 1, then R(✓1)  R(✓2) () Radv(✓2) = 1. (8.6)

The same monotonic relationship holds between their empirical approximation: bR(✓)

and bRadv.

Theorem 28 [77] shows that the monotonic relationship between the (empirical)

risk and the (empirical) adversarial risk (worst-case risk) when 0-1 loss function is

used. It means that minimizing (empirical) risk is equivalent to minimize the (em-

pirical) adversarial risk (worst-case risk) for 0-1 loss. When we train a model based

on the corrupted training distribution p(x, y), we want our model to perform well

on the clean distribution q(x, y). Since we do not know the clean distribution q, we

112

want our model to perform well for the worst-case estimate of the clean distribution,

with the assumption that the f -divergence between the corrupted distribution p and

the clean distribution q is bounded by �. Note that the underlying clean distribu-

tion is fixed but unknown, given the corrupted training distribution, the smallest �

that bounds the divergence between the corrupted distribution and clean distribution

measures the intrinsic di�culty of the corruption, and it is also fixed and unknown.

The corresponding worst-case distribution w.r.t the smallest � is an estimate of the

true clean distribution, and this worst-case risk upper bounds the risk of the true

clean distribution. In addition, this bound is tighter than the other worst-case risks

w.r.t larger �. It is natural to use this upper bound as the objective for robust learn-

ing. When we use 0-1 loss (that is commonly employed for evaluation), because of

the equivalence of the risk and the worst-case risk, we can directly minimize risk

under training distribution p instead of directly minimizing the worst-case risk (i.e.,

the upper bound). Moreover, this enables us to minimize the upper bound without

knowing the true � beforehand. When the true � is small, i.e., the corruption of the

training data is not heavy, the upper bound is not too pessimistic. Usually, minimiz-

ing the upper bound can decrease the true risk under clean distribution. Particularly,

when the clean distribution coincides with the worst-case estimate w.r.t the smallest

�, minimizing the risk under the corrupted training distribution leads to the same

minimizer as minimizing the risk under the clean distribution.

8.2.2 Tighter upper bounds of the 0-1 Loss

Unlike commonly used loss functions in machine learning, the non-di↵erentiability

and zero gradients of the 0-1 loss make it di�cult to optimize. We thus propose

a tighter upper bound surrogate loss. We use the classification margin to define

the 0-1 loss. For binary classification, classification margin is u = byy, where by and

y 2 {+1,�1} denotes the prediction and ground truth, respectively. (A simple multi-

class extension is discussed in the Appendix.) Let ui 2 R be the classification margin

of the ith sample for i 2 {1, ..., n}. Denote u = [u1, ..., un]. The 0-1 loss objective can

be defined as follows:

J(u) =
P

n

i=1 1
�
ui < 0

�
. (8.7)

Given a base upper bound function l(u) � 1
�
u < 0

�
, u 2 R, the conventional surro-

gate of the 0-1 loss can be defined as

bJ(u) =
P

n

i=1 l(ui). (8.8)

113

Our curriculum loss Q(u) can be defined as Eq.(8.9). Q(u) is a tighter upper

bound of 0-1 loss J(u) compared with the conventional surrogate loss bJ(u), which is

summarized in Theorem 29:

Theorem 29. (Tighter Bound) Suppose that base loss function l(u) � 1
�
u < 0

�
, u 2

R is an upper bound of the 0-1 loss function. Let ui 2 R be the classification margin

of the ith sample for i 2 {1, ..., n}. Denote max(·, ·) as the maximum between two

inputs. Let u = [u1, ..., un]. Define Q (u) as follows:

Q (u)= min
v2{0,1}n

max
�Xn

i=1
vil(ui), n�

Xn

i=1
vi +

Xn

i=1
1
�
ui < 0

��
. (8.9)

Then J(u)  Q (u)  bJ (u) holds true.

Remark: For any fixed u, we can obtain an optimum solution v⇤ of the partial

optimization. The index indicator v⇤ can naturally select samples as a curriculum

paradigm for training models. The partial optimization w.r.t index indicator v can be

solved by a very simple and e�cient algorithm (Algorithm 13) in O(n log n). Thus,

the loss is very e�cient to compute. Moreover, since Q (u) is tighter than conventional

surrogate loss bJ(u), it is less sensitive to outliers compared with bJ(u). Furthermore,

it better preserves the robust property of the 0-1 loss against label corruption.

The di�culty of optimizing the 0-1 loss is that the 0-1 loss has zero gradients

in almost everywhere (except at the breaking point). This issue prevents us from

using first-order methods to optimize the 0-1 loss. Eq.(8.9) provides a surrogate

of the 0-1 loss with non-zero subgradient for optimization, while preserving robust

properties of the 0-1 loss. Note that our goal is to construct a tight upper bound of

the 0-1 loss while maintaining informative (sub)gradients. Eq.(8.9) balances the 0-1

loss and conventional surrogate by selecting (the trust) samples (index) for training

progressively.

Updating with all the samples at once is not e�cient for deep models, while

training with mini-batch is more e�cient and well supported for many deep learning

tools. We thus propose a batch based curriculum loss bQ(u) given as Eq.(8.10). We

show that bQ(u) is also a tighter upper bound of 0-1 loss objective J(u) compared

with conventional loss bJ(u). This property is summarized in Corollary 4.

Corollary 4. (Mini-batch Update) Suppose that base loss function l(u) � 1
�
u < 0

�
, u 2

R is an upper bound of the 0-1 loss function. Let b, m be the number of batches and

batch size, respectively. Let uij 2 R be the classification margin of the ith sample in

114

batch j for i 2 {1, ...,m} and j 2 {1, ..., b}. Denote u = [u11, ..., umb]. Let n = mb.

Define bQ (u) as follows:

bQ (u)=
Xb

j=1
min

v2{0,1}m
max

�Xm

i=1
vijl(uij),m�

Xm

i=1
vij +

Xm

i=1
1
�
uij < 0

��
.

(8.10)

Then J(u)  Q (u)  bQ (u)  bJ (u) holds true.

Remark: Corollary 4 shows that a batch-based curriculum loss is also a tighter

upper bound of 0-1 loss J(u) compared with the conventional surrogate loss bJ(u).
This enables us to train deep models with mini-batch update. Note that random shuf-

fle in di↵erent epoch results in a di↵erent batch-based curriculum loss. Nevertheless,

we at least know that all the induced losses are upper bounds of 0-1 loss objective and

are tighter than bJ(u). Moreover, all these losses are induced by the same base loss

function l(·). Note that, our goal is to minimize the 0-1 loss. Random shu✏e leads

to a multiple surrogate training scheme. In addition, training deep models without

shu✏e does not have this issue.

We now present another curriculum loss E (u) which is tighter than Q(u). E (u)

is an (scaled) upper bound of 0-1 loss. This property is summarized as Theorem 30.

Theorem 30. (Scaled Bound) Suppose that base loss function l(u) � 1
�
u < 0

�
, u 2

R is an upper bound of the 0-1 loss function. Let ui 2 R be the classification margin

of the ith sample for i 2 {1, ..., n}. Denote u = [u1, ..., un]. Define E (u) as follows:

E (u)= min
v2{0,1}n

max
�Xn

i=1
vil(ui), n�

Xn

i=1
vi
�
. (8.11)

Then J(u)  2E (u)  2bJ (u) holds true.

Remark: E(u) has similar properties to Q(u) discussed above. Moreover, it is

tighter than Q(u), i.e. E(u)  Q(u). Thus, it is less sensitive to outliers compared

with Q(u). However, Q(u) can construct more adaptive curriculum by taking 0-1

loss into consideration during the training process.

Directly optimizing E(u) is not as e�cient as that optimizing Q(u). We now

present a batch loss objective bE(u) given as Eq.(8.12). bE(u) is also a tighter upper

bound of 0-1 loss objective J(u) compared with conventional surrogate loss bJ(u).

Corollary 5. (Mini-batch Update for Scaled Bound) Suppose that base loss

function l(u) � 1
�
u < 0

�
, u 2 R is an upper bound of the 0-1 loss function. Let b, m

be the number of batches and batch size, respectively. Let uij 2 R be the classification

115

Algorithm 13 Partial Optimization
Input: ui for i 2 {1, ..., n}, the selection threshold C;
Output: Index set v = (v1, v2, . . . , vn);
Compute the losses li = l(ui) for i = 1, ..., n;
Sort samples (index) w.r.t. the losses {li}ni=1 in a non-decreasing order; // Get
l1  · · ·  ln
Initialize L0 = 0;
for i = 1 to n do
Li = Li�1 + li;
if Li  (C + 1� i) then
Set vi = 1;

else
Set vi = 0;

end if
end for

margin of the ith sample in batch j for i 2 {1, ...,m} and j 2 {1, ..., b}. Denote

u = [u11, ..., umb]. Let n = mb. Define bE(u) as follows:

bE (u)=
Xb

j=1
min

v2{0,1}m
max

�Xm

i=1
vijl(uij),m�

Xm

i=1
vij
�
. (8.12)

Then J(u)  2E (u)  2 bE (u)  2bJ (u) holds true.

All the curriculum losses defined above rely on minimizing a partial optimization

problem (Eq.(8.13)) to find the selection index set v⇤. We now show that the opti-

mization of v with given classification margin ui 2 R, i 2 {1, ..., n} can be done in

O(n log n).

Theorem 31. (Partial Optimization) Suppose that base loss function l(u) �
1
�
u < 0

�
, u 2 R is an upper bound of the 0-1 loss function. For fixed ui 2 R, i 2

{1, ..., n}, an minimum solution v⇤ of the minimization problem in Eq. (8.13) can be

achieved by Algorithm 13:

min
v2{0,1}n

max
�P

n

i=1 vil(ui), C �
P

n

i=1 vi
�
, (8.13)

where C is the threshold parameter such that 0  C  2n.

Remark: The time complexity of Algorithm 13 is O(n log n). Moreover, it does

not involve complex operations, and is very simple and e�cient to compute.

Algorithm 13 can adaptively select samples for training. It has some useful proper-

ties to help us better understand the objective after partial minimization, we present

them in Proposition 2.

116

Proposition 2. (Optimum of Partial Optimization) Suppose that base loss

function l(u) � 1
�
u < 0

�
, u 2 R is an upper bound of the 0-1 loss function. Let

ui 2 R for i 2 {1, ..., n} be fixed values. Without loss of generality, assume l(u1) 
l(u2) · · ·  l(un). Let v⇤ be an optimum solution of the partial optimization problem

in Eq.(8.13). Let T ⇤ =
P

n

i=1 v
⇤

i
and LT ⇤ =

P
T

⇤

i=1 l(ui). Then we have

LT ⇤  C + 1� T ⇤ (8.14)

LT ⇤+1 > C � T ⇤ (8.15)

LT ⇤+1 > max(LT ⇤ , C � T ⇤) (8.16)

min
v2{0,1}n

max
�Xn

i=1
vil(ui), C �

Xn

i=1
vi
�
= max(LT ⇤ , C � T ⇤). (8.17)

Remark: When C  n +
P

n

i=1 1
�
ui < 0

�
, Eq.(8.17) is tighter than the con-

ventional loss bJ(u). When C � n, Eq. (8.17) is a scaled upper bound of 0-1 loss

J(u) . From Eq.(8.17) , we know the optimum of the partial optimization problem

(8.13) (i.e. our objective) is max(LT ⇤ , C � T ⇤). When LT ⇤ � C � T ⇤, we can di-

rectly optimize LT ⇤ with the selected samples for training. When LT ⇤ < C � T ⇤,

note that LT ⇤+1 > max(LT ⇤ , C � T ⇤) from Eq.(8.16), we can optimize LT ⇤+1 for

training. Note that when T ⇤ < n, we have that LT ⇤+1  Ln =
P

n

i=1 l(ui), which

is still tighter than the conventional loss bJ(u). When T ⇤ = n, for the parameter

C  n+
P

n

i=1 1
�
ui < 0

�
, we have that LT ⇤ = bJ(u) � J(u) � C � n = C � T ⇤. Thus

we can optimize max(LT ⇤ , C � T ⇤) = bJ(u). In practice, when training with random

mini-batch, we find that optimizing LT ⇤ in both cases instead of LT ⇤+1 does not make

much influence.

8.2.3 Noise Pruned Curriculum Loss

The curriculum loss in Eq.(8.9) and Eq.(8.11) expect to minimize the upper bound

of the 0-1 loss for all the training samples. When model capability (complexity) is

high, (deep network) model will still attain small (zero) training loss and overfit to

the noisy samples.

The ideal model is that it correctly classifies the clean training samples and mis-

classifies the noisy samples with wrong labels. Suppose that the rate of noisy samples

(by label corruption) is ✏ 2 [0, 1]. The ideal model is to correctly classify the (1� ✏)n

clean training samples, and misclassify the ✏n noisy training samples. This is because

the label is corrupted. Correctly classify the training samples with corrupted (wrong)

label means that the model has already overfitted to noisy samples. This will harm

the generalization to the unseen data.

117

Considering all the above reasons, we thus propose the Noise Pruned Curriculum

Loss (NPCL) as

L (u) = min
v2{0,1}n

max
�Xn

i=1
vil(ui), C�

Xn

i=1
vi
�
, (8.18)

where C = (1� ✏)n or C = (1� ✏)2n+ (1� ✏)
P

n

i=1 1
�
ui < 0

�
.

When we know there are ✏n noisy samples in the training set, we can leverage

this as our prior. (The impact of misspecification of the prior is included in the

supplement.) When C = (1 � ✏)n (assume C, ✏n are integers for simplicity), from

the selection procedure in Algorithm 13, we know ✏n1 samples with largest losses l(u)

will be pruned. This is because C �
P

n

i=1 vi + 1  0 when
P

n

i=1 vi � (1 � ✏)n + 1.

Without loss of generality, assume l(u1)  l(u2) · · ·  l(un). After pruning, we have

v(1�✏)n+1 = · · · = vn = 0, the pruned loss becomes

eL (u) = min
v2{0,1}(1�✏)n

max
�X(1�✏)n

i=1
vil(ui), (1� ✏)n�

X(1�✏)n

i=1
vi
�
. (8.19)

It is the basic CL for (1� ✏)n samples and it is the upper bound of
P(1�✏)n

i=1 1
�
ui < 0

�
.

If we prune more noisy samples than clean samples, it will reduce the noise ratio.

Then the basic CL can handle. Fortunately, this assumption is supported by the

”memorization” e↵ect in deep networks [11], i.e. deep networks tend to learn clean

and easy pattern first. Thus, the loss of noisy or hard data tend to remain high for a

period (before being overfitted). Therefore, the pruned samples with largest loss are

more likely to be the noisy samples. After the rough pruning, the problem becomes

optimizing basic CL for the remaining samples as in Eq.(8.19). Note that our CL is

a tight upper bound approximation to the 0-1 loss, it preserves the robust property

to some extent. Thus, it can handle case with small noise rate. Specifically, our

CL(Eq.8.19) further select samples from the remaining samples for training adaptively

according to the state of training process. This generally will further reduce the noise

ratio. Thus, we may expect our NPCL to be robust to noisy samples. Note that,

all the above can be done by the simple and e�cient Algorithm 13 without explicit

pruning samples in a separated step. Namely, our loss can do all these automatically

under a unified objective form in Eq.(8.18).

When C = (1�✏)n, the NPCL in Eq.(8.18) reduces to basic CL E(u) in Eq.(8.11)

with ✏ = 0. When C = (1 � ✏)2n + (1 � ✏)
P

n

i=1 1
�
ui < 0

�
, for an ideal target

model (that misclassifies noisy samples only), we know that E[C] = (1� ✏)2n+ (1�
✏)E[

P
n

i=1 1
�
ui < 0

�
] = (1 � ✏)2n + (1 � ✏)✏n = (1 � ✏)n. It has similar properties as

1When
P(1�✏)n+1

i=1 l(ui) 6= 0, ✏n samples will be pruned. Otherwise, ✏n�1 samples will be pruned.

118

Algorithm 14 Training with Batch Noise Pruned Curriculum Loss
Input: Number of epochs N , batch size m, noise ratio ✏;
Output: The model parameter w;
Initialize model parameter w.
for k = 1 to N do
Shu✏e training set D;
while Not fetch all the data from D do
Fetch a mini-batch bD from D;
Compute losses {li}mi=1 for data in bD;
Compute the selection threshold C according to Eq.(8.21).
Compute selection index v⇤ by Algorithm 13;

Update w = w � ↵rl
⇣
bDv⇤

⌘
w.r.t the subset bDv⇤ of bD selected by v⇤;

end while
end for

choosing C = (1� ✏)n. Moreover, it is more adaptive by considering 0-1 loss during

training at di↵erent stages. In this case, the NPCL in Eq.(8.18) reduces to the CL

Q(u) in Eq.(8.9) when ✏ = 0. Note that C is a prior, users can defined it based on

their domain knowledge.

To leverage the benefit of deep learning, we present the batched NPCL as

bL (u) =
Xb

j=1
min

v2{0,1}m
max

�Xm

i=1
vijl(uij), bCj�

Xm

i=1
vij
�
, (8.20)

where bCj = (1� ✏)m or as in Eq.(8.21):

bCj = (1� ✏)2m+ (1� ✏)
Xm

i=1
1
�
uij < 0

�
. (8.21)

Similar to Corollary 4, we know that L (u)  bL (u). Thus, optimizing the batched

NPCL is indeed minimizing the upper bound of NPCL. This enables us to train the

model with mini-batch update, which is very e�cient for modern deep learning tools.

The training procedure is summarized in Algorithm 14. It uses Algorithm 13 to

select a subset of samples from every mini-batch. Then, it uses the selected samples

to perform gradient update.

8.3 Empirical Study

8.3.1 Evaluation of Robustness against Label Corruption

We evaluate our NPCL by comparing Generalized Cross-Entropy (GCE) loss [188],

Co-teaching [67], Co-teaching+ [182], MentorNet [84] and standard network train-

ing on MNIST, CIFAR10 and CIFAR100 dataset as in [59, 67, 138]. Two types of

119

(a) (b) (c)

(d) Pairflip-35% (e) Symmetry-50% (f) Symmetry-20%

Figure 8.1: Test accuracy and label precision vs. number of epochs on MNIST
dataset.

random label corruption, i.e. Symmetry flipping [167] and Pair flipping [66], are

considered in this work. Symmetry flipping is that the corrupted label is uniformly

assign to one of K�1 incorrect classes. Pair flipping is that the corrupted label

is assign to one specific class similar to the ground truth. The noise rate ✏ of la-

bel flipping is chosen from {20%, 50%, 35%} as a representative. As a robust loss

function, we further compare NPCL with GCE loss in detail with noise rate in

{0%, 10%, 20%, 30%, 40%, 50%}. We employ same network architecture and network

hyperparameters as in Co-teaching [67] for all the methods in comparison. Specifically,

the batch size and the number of epochs is set to m=128 and N=200, respectively.

The Adam optimizer with the same parameter as [67] is employed. For NPCL, we

employ hinge loss as the base upper bound function of 0-1 loss. In the first few epochs,

we train model using full batch with soft hinge loss (in the supplement) as a burn-in

period suggested in [84]. Specifically, we start NPCL at 5th epoch on MNIST and 10th

epoch on CIFAR10 and CIFAR100, respectively. For Co-teaching [67] and MentorNet

in [84], we employ the open sourced code of Co-teaching [67]. For Co-teaching+ [182],

we employ the code provided by the authors. We implement NPCL by Pytorch. For

NPCL, Co-teaching and Co-teaching+, we employ the true noise rate as parameter.

Experiments are performed five independent runs. The error bar for STD is shaded.

For performance measurements, we employ both test accuracy and label precision

as in [67]. Label precision is defined as : number of clean samples / number of selected

120

(a) (b) (c)

(d) Symmetry-20% (e) Symmetry-50% (f) Pairflip-35%

Figure 8.2: Test accuracy and label precision vs. number of epochs on CIFAR10
dataset.

samples, which measures the selection accuracy for sample selection based methods.

A higher label precision in the mini-batch after sample selection can lead to a update

with less noisy samples, which means that model su↵ers less influence of noisy samples

and thus preforms more robustly to label corruption.
The pictures of test accuracy and label precision vs. number of epochs on MNIST

are presented in Figure 8.1. The results on CIFAR10 and CIFAR100 are shown in

Figure 8.2 and Figure 8.3, respectively. It shows that NCPL achieves superior perfor-

mance compared with GCE loss in terms of test accuracy. Particularly, NPCL obtains

significant better performance compared with GCE loss in hard cases: Symmetry-50%

and Pair-flip-35%, which shows that NPCL is more robust to label corruption com-

pared with GCE loss. Moreover, NPCL obtains better performance on MNIST, and

competitive performance on CIFAR10 and CIFAR100 compared with Co-teaching.

Furthermore, NPCL achieves better performance than Co-teaching+ on CIFAR10

and two cases on MNIST. In addition, we find that Co-teaching+ is not stable on

CIFAR100 with 50% symmetric noise. Note that NPCL is a simple plug-in for a

single network, while Co-teaching/Co-teaching+ employs two networks to train the

model concurrently. Thus, both the space complexity and time complexity of Co-

teaching/Co-teaching+ is doubled compared with our NPCL.

Both our NPCL and Generalized Cross Entropy (GCE) loss are robust loss func-

tions as plug-in for single network. Thus, we provide a more detailed comparison

between our NPCL and GCE loss with noise rate in {0%, 10%, 20%, 30%, 40%, 50%}.

121

(a) (b) (c)

(d) Symmetry-20% (e) Symmetry-50% (f) Pairflip-35%

Figure 8.3: Test accuracy and label precision vs. number of epochs on CIFAR100
dataset.

The experimental results on CIFAR10 are presented in Figure 8.7. The experimental

results on CIFAR100 and MNIST are provided in Figure 8.5 and Figure 8.4. From

Figure 8.7, Figure 8.5 and Figure 8.4, we can observe that NPCL obtains similar and

higher test accuracy in all the cases. Moreover, from Figure 8.7 and Figure 8.4, we

can see that NPCL achieves similar test accuracy compared with the GCE loss when

the noise rate is small. The improvement increases with the increase of the noise rate.

Particularly, NPCL obtains remarkable improvement compared with the GCE loss on

CIFAR10 with noise rate 50%. It shows that NPCL is more robust compared with

GCE loss against label corruption. GCE loss employs all samples for training, while

NPCL prunes the noisy samples adaptively. As a result, GCE loss still employs sam-

ples with wrong labels for training, which misleads the model. Thus, NPCL obtains

better performance when the noise rate becomes large.

8.3.2 More experiments with di↵erent network architectures

We follow the experiments setup in [110]. We use the online code of [110] , and only

change the loss for comparison. We cite the numbers of Softmax, RoG and D2L [120]

in [110] for comparison.

The test accuracy results on uniform noise, semantic noise and open-set noise

are shown in Table 8.1, Table 8.2 and Table 8.3, respectively. From Table 8.1, we

can observe that both NPCL and CL outperforms Softmax (cross-entropy) and RoG

122

(a) Symmetry-0% (b) Symmetry-10% (c) Symmetry-20%

(d) Symmetry-30% (e) Symmetry-40% (f) Symmetry-50%

Figure 8.4: Test accuracy vs. number of epochs on MNIST dataset.

(cross-entropy) on five cases for uniform noise. Note that RoG is an ensemble method,

while CL/NPCL is a single loss for network training, one can combine them to boost

the performance. From Table 8.2, we can see that CL obtains consistently better

performance than cross-entropy and D2L [120] for the semantic noise. Table 8.3

shows that NPCL achieves competitive performance compared with RoG for open-

set noise.

Table 8.1: Test accuracy(%) of DenseNet on CIFAR10 and CIFAR100.

Noise type
CIFAR10 CIFAR100

NPCL CL Softmax RoG NPCL CL Softmax RoG
uniform (20%) 89.49 89.32 81.01 87.41 64.88 67.92 61.72 64.29
uniform (40%) 83.24 85.57 72.34 81.83 56.34 58.63 50.89 55.68
uniform (60%) 66.2 68.52 55.42 75.45 44.49 46.65 38.33 44.12

We further evaluate the performance of CL/NPCL on the Tiny-ImageNet dataset.

We use the ResNet18 network as the test-bed. For GCE loss, we employ the default

hyper-parameter q = 0.7 in all cases. All the methods are performed five runs with

seeds {1, 2, 3, 4, 5}. The curve of mean test accuracy (shaded in std) are provided

in Figure 8.6. We can see that NPCL and CL obtain higher test accuracy than

generalized cross-entropy loss and stand cross-entropy loss on both cases. Note that

CL does not have parameters, it is much convenient to use.

123

(a) Symmetry-0% (b) Symmetry-10% (c) Symmetry-20%

(d) Symmetry-30% (e) Symmetry-40% (f) Symmetry-50%

Figure 8.5: Test accuracy vs. number of epochs on CIFAR100 dataset.

Table 8.2: Test accuracy(%) of DenseNet on CIFAR10 and CIFAR100 with semantic
noise.

Dataset Label generator (noise rate) NPCL CL Cross-entropy D2L

CIFAR10
DenseNet(32%) 66.5 67.45 67.24 66.91
ResNet(38%) 61.88 62.88 62.26 59.10
VGG(34%) 68.37 69.61 68.77 57.97

CIFAR100
DenseNet(34%) 57.59 55.14 50.72 5.00
ResNet(37%) 54.49 53.20 50.68 23.71
VGG(37%) 55.41 52.71 51.08 40.97

8.3.3 Impact of Misspecified Estimation of Noise Rate ✏

When the noise rate ✏ is not known as a prior, we can select the parameter ✏ by cross-

validation. A more interesting method is to set ✏ as a parameter, and we update ✏

automatically by minimizing a loss on a validation set.

We empirically analyze the impact of misspecified prior for the noise rate ✏. The

average test accuracy over last ten epochs on MNIST for di↵erent priors are reported

in Table 8.4. We can observe that NPCL is robust to misspecified prior for small noise

cases (Symmetry-20%). Moreover, it becomes a bit more sensitive on large noise case

(Symmetry-50%) and on the pair flipping case (Pair-35%).

124

Table 8.3: Test accuracy(%) of DenseNet on CIFAR10 with open-set noise.
Open-set Data NPCL Softmax RoG
CIFAR100 82.85 79.01 83.37
ImageNet 87.95 86.88 87.05

CIFAR100-ImageNet 84.28 81.58 84.35

Table 8.4: Average test accuracy of NPCL with di↵erent ✏ on MNIST over last ten
epochs
Flipping Rate 0.5✏ 0.75✏ ✏ 1.25✏ 1.5✏
Symmetry-20% 96.31% ± 0.17% 97.72% ± 0.09% 99.41% ± 0.01% 99.55% ± 0.02% 99.10% ± 0.04%
Symmetry-50% 78.67% ± 0.36% 87.36% ± 0.29% 98.53% ± 0.02% 97.92% ± 0.06% 67.61% ± 0.06%

Pair-35% 80.59% ± 0.40% 87.86% ± 0.48% 97.90% ± 0.04% 99.33% ± 0.02% 86.66% ± 0.08%

8.4 Summary

In this work, we proposed a curriculum loss (CL) for robust learning. Theoretically,

we analyzed the properties of CL and proved that it is tighter upper bound of the

0-1 loss compared with conventional summation based surrogate losses. We extended

our CL to a more general form (NPCL) to handle large rate of label corruption.

Empirically, experimental results on benchmark datasets show the robustness of the

proposed loss. As a further work, we may improve our CL to handle imbalanced

distribution by considering diversity for each class. Moreover, it is interesting to

investigate the influence of di↵erent base loss functions in CL and NPCL.

125

(a) Symmetric-20% (b) Symmetric-50%

Figure 8.6: Test accuracy (%) on Tiny-ImageNet dataset with symmetric noise

(a) Symmetry-0% (b) Symmetry-10% (c) Symmetry-20%

(d) Symmetry-30% (e) Symmetry-40% (f) Symmetry-50%

Figure 8.7: Test accuracy vs. number of epochs on CIFAR10 dataset.

126

Chapter 9

Conclusion

In this thesis, we investigate black-box integral approximation and black-box opti-

mization by considering the closed relationship between them. For integral approx-

imation, we develop a simple closed-form rank-1 lattice construction method based

on group theory (Chapter 5).. Our method reduces the number of distinct pair-

wise distance values to generate a more regular lattice. Furthermore, we investigate

structured points set for integral approximation on hyper-sphere (Chapter 5 and

Chapter 6). Our structured point sets can serve as a good initialization for black-box

optimization. Moreover, we propose stochastic black-box optimization with implicit

natural gradients for black-box optimization (Chapter 3). Our method is very sim-

ple and has only the step-size hyper-parameter. Furthermore, we develop a batch

Bayesian optimization algorithm from the perspective of frequentist kernel methods,

which is powerful for low-dimensional black-box optimization problems (Chapter 4).

We further apply our structured integral approximation techniques for kernel approx-

imation (Chapter 6). In addition, we develop structured approximation for robust

deep neural network architecture, which results in an elegant and simple architecture

that preserves optimization properties (Chapter 7). Moreover, we develop adaptive

loss as a tighter upper bound approximation for expected 0-1 risk, robust and train-

able with SGD (Chapter 8).

127

Chapter 10

Appendix

10.1 Proof of Theorem 2

Proof. For Gaussian distribution p := N (µ,⌃), the gradient of Ep[f(x)] w.r.t µ can

be derived as follows:

rµEp[f(x)] = Ep[f(x)rµ log(p(x;µ,⌃))] (10.1)

= Ep


f(x)rµ


�1

2
(x� µ)>⌃�1(x� µ)

��
(10.2)

= Ep

⇥
⌃�1(x� µ)f(x)

⇤
(10.3)

The gradient of Ep[f(x)] w.r.t ⌃ can be derived as follows:

r⌃Ep[f(x)] = Ep[f(x)r⌃ log(p(x;µ,⌃))] (10.4)

= Ep


f(x)r⌃


�1

2
(x� µ)>⌃�1(x� µ)� 1

2
log det(⌃)

��
(10.5)

=
1

2
Ep

⇥�
⌃�1(x� µ)(x� µ)>⌃�1�⌃�1

�
f(x)

⇤
(10.6)

10.2 Proof of Theorem 3

Proof. For Guassian distribution with parameter ✓ := {µ,⌃}, problem (3.32) can be

rewrited as

⌦
✓,r✓J̄(✓t)

↵
+ 1

�t
KL (p✓kp✓t) = µ

>rµJ̄(✓t)+tr(⌃r⌃J̄(✓t))+
1

2�t

h
tr(⌃�1

t ⌃)+(µ�µ
t
)>⌃�1

t (µ�µ
t
)+log |⌃t|

|⌃|
�d
i

(10.7)

where rµJ̄(✓t) denotes the derivative w.r.t µ taking at µ = µ
t
,⌃ = ⌃t. r⌃J̄(✓t)

denotes the derivative w.r.t ⌃ taking at µ = µ
t
,⌃ = ⌃t. Note that rµJ̄(✓t) and

r⌃J̄(✓t) are not functions now.

128

From Eq.(10.7), we can see that the problem is convex with respect to µ and ⌃.

Taking the derivative of (10.7) w.r.t µ and ⌃, and setting them to zero, we can obtain

that

rµJ̄(✓t) +
1

�t

⌃�1
t
(µ�µ

t
) = 0 (10.8)

r⌃J̄(✓t)) +
1

2�t

⇥
⌃�1

t
� ⌃�1

⇤
= 0 (10.9)

It follows that

µ = µ
t
� �t⌃trµJ̄(✓t) (10.10)

⌃�1 = ⌃�1
t

+ 2�tr⌃J̄(✓t) (10.11)

By definition, µ
t+1 and ⌃t+1 are the optimum of this convex optimization problem.

Thus, we achieve that

µ
t+1 = µ

t
� �t⌃trµJ̄(✓t) (10.12)

⌃�1
t+1 = ⌃�1

t
+ 2�tr⌃J̄(✓t) (10.13)

10.3 Proof of Theorem 4

Lemma 1. For Gaussian distribution with parameter ✓ := {µ,⌃} 2 ⇥. Let Ft(m) =

�t hm, bvti for all t � 1, where m := {m1,m2} = {µ,⌃+µµ
>} 2 M, M denotes a

convex set. Let mt+1 as the solution of

m
t+1 = argmin

m2M
Ft(m) +KL (pmkpmt) (10.14)

Then, for 8m 2 M, we have

F (m) +KL (pmkpmt) � F (mt+1) +KL (pmt+1kpmt) +KL (pmkpmt+1) (10.15)

Proof. Since KL-divergence of Gaussian is a Bregman divergence associated with base

function A⇤(m) w.r.t mean parameter m, we know problem in Eq.(10.14) is convex.

Since mt+1 is the optimum of the convex optimization problem in Eq.(10.14), we have

that

⌦
�tbvt +rm=mt+1KL (pmkpmt) ,m�m

t+1
↵
� 0, 8m 2 M (10.16)

129

Note that rm=mt+1KL (pmkpmt) = rA⇤(mt+1)�rA⇤(mt). For 8m 2 M we have

that

F (m) = �t

⌦
bvt,mt+1

↵
+
⌦
�tbvt,m�m

t+1
↵

(10.17)

� �t

⌦
bvt,mt+1

↵
�
⌦
rA⇤(mt+1)�rA⇤(mt),m�m

t+1
↵

(10.18)

Rewritten the term �hrA⇤(mt+1)�rA⇤(mt),m�m
t+1i, we have that

�
⌦
rA⇤(mt+1)�rA⇤(mt),m�m

t+1
↵

= A⇤(mt+1)�A⇤(mt)�
⌦
rA⇤(mt),mt+1�m

t
↵

(10.19)

� A⇤(m) + A⇤(mt) +
⌦
rA⇤(mt),m�m

t
↵

(10.20)

+A⇤(m)�A⇤(mt+1)�
⌦
rA⇤(mt+1),m�m

t+1
↵

(10.21)

=KL (pmt+1kpmt)�KL (pmkpmt)+KL (pmkpmt+1) (10.22)

Plug Eq.(10.22) into (10.18), we obtain that

F (m) + KL (pmkpmt) � F (mt+1) + KL (pmt+1kpmt) + KL (pmkpmt+1) (10.23)

Lemma 2. Let bvt = {bgt � 2 bGtµt
, bGt}, updating parameter as (10.14), then we have

1

2
kµ⇤�µ

t+1k2⌃�1
t+1

 1

2
kµ⇤�µ

t
k2
⌃�1

t
+�t

⌦
bgt,µ⇤�µ

t+1

↵
�1

2
kµ

t+1�µ
t
k2
⌃�1

t+1
+�tkµ⇤�µ

t
k2bGt

(10.24)

Proof. First, recall that the KL-divergence is defined as

KL (pmkpmt) =
1

2

⇢
kµ� µ

t
k2
⌃�1

t
+ tr

�
⌃⌃�1

t

�
+ log

|⌃t|
|⌃| � d

�
(10.25)

From Lemma 1, we know that

KL (pm⇤kpmt+1)  KL (pm⇤kpmt)�KL (pmt+1kpmt) + F (m⇤)� F (mt+1) (10.26)

It follows that

1

2

⇢
kµ⇤�µ

t+1k2⌃�1
t+1

+tr
�
⌃⇤⌃�1

t+1

�
+log

|⌃t+1|
|⌃⇤|

�

 1

2

⇢
kµ⇤ � µ

t
k2
⌃�1

t
+ tr

�
⌃⇤⌃�1

t

�
+ log

|⌃t|
|⌃⇤|

�
(10.27)

� 1

2

⇢
kµ

t+1�µ
t
k2
⌃�1

t
+tr

�
⌃t+1⌃

�1
t

�
+log

|⌃t|
|⌃t+1|

�d

�

+ �t

⌦
bvt,m⇤ �m

t+1
↵

130

Then, we obtain that

1

2

n
kµ⇤ � µ

t+1k2⌃�1
t+1

+ tr
�
⌃⇤⌃�1

t+1

�o
 1

2

n
kµ⇤ � µ

t
k2
⌃�1

t
+ tr

�
⌃⇤⌃�1

t

�o
(10.28)

� 1

2

n
kµ

t+1 � µ
t
k2
⌃�1

t
+ tr

�
⌃t+1⌃

�1
t

�
� d
o

+ �t

⌦
bvt,m⇤ �m

t+1
↵

In addition, we have that

tr
�
⌃⇤⌃�1

t

�
�tr

�
⌃⇤⌃�1

t+1

�
�tr

�
⌃t+1⌃

�1
t

�
+d

= tr
�
⌃⇤(⌃�1

t
� ⌃�1

t+1)
�
� tr

�
⌃t+1⌃

�1
t

� I
�

(10.29)

= tr
�
⌃⇤(⌃�1

t
� ⌃�1

t+1)
�
�tr

�
⌃t+1(⌃

�1
t

� ⌃�1
t+1)

�
(10.30)

= tr
�
(⌃⇤ � ⌃t+1)(⌃

�1
t

� ⌃�1
t+1)

�
(10.31)

= tr
⇣
(m⇤

2 � µ
⇤
µ

⇤> �m
t+1
2 + µ

t+1µ
>

t+1)(⌃
�1
t

� ⌃�1
t+1)

⌘
(10.32)

Note that ⌃�1
t � ⌃�1

t+1 = �2�t
bGt by updating rule, it follows that

tr
�
⌃⇤⌃�1

t

�
�tr

�
⌃⇤⌃�1

t+1

�
�tr

�
⌃t+1⌃

�1
t

�
+ d = �2�ttr

⇣
(m⇤

2 � µ
⇤
µ

⇤> �m
t+1
2 + µ

t+1µ
>

t+1) bGt

⌘

(10.33)

Then, recall that
⌦
bvt,m⇤ �m

t+1
↵
=
D
bgt � 2 bGtµt

,µ⇤ � µ
t+1

E
+ tr

⇣
(m⇤

2 �m
t+1
2) bGt

⌘
(10.34)

Plug (10.34) and (10.33) into (10.28), we can get that

1

2
kµ⇤ � µ

t+1k2⌃�1
t+1

 1

2
kµ⇤ � µ

t
k2
⌃�1

t
� 1

2
kµ

t+1 � µ
t
k2
⌃�1

t
+ �t

⌦
bgt,µ⇤ � µ

t+1

↵

(10.35)

� 2�t

D
bGtµt

,µ⇤ � µ
t+1

E
+ �ttr

⇣
(µ⇤

µ
⇤> � µ

t+1µ
>

t+1) bGt

⌘

Note that

� 2
D
bGtµt

,µ⇤ � µ
t+1

E
+ tr

⇣
(µ⇤

µ
⇤> � µ

t+1µ
>

t+1) bGt

⌘

=
D
bGtµ

⇤,µ⇤

E
� 2

D
bGtµt

,µ⇤

E
+
D
bGtµt

,µ
t

E
(10.36)

�
D
bGtµt+1,µt+1

E
+ 2

D
bGtµt

,µ
t+1

E
�
D
bGtµt

,µ
t

E

= kµ⇤ � µ
t
k2bGt

� kµ
t+1 � µ

t
k2bGt

(10.37)

Plug into (10.35), we can obtain that

1

2
kµ⇤ � µ

t+1k2⌃�1
t+1

 1

2
kµ⇤ � µ

t
k2
⌃�1

t
� 1

2
kµ

t+1 � µ
t
k2
⌃�1

t
+ �t

⌦
bgt,µ⇤ � µ

t+1

↵

(10.38)

+ �tkµ⇤ � µ
t
k2bGt

� �tkµt+1 � µ
t
k2bGt

131

Also note that 1
2kµt+1�µ

t
k2
⌃�1

t
+�tkµt+1�µ

t
k2bGt

= 1
2kµt+1�µ

t
k2
⌃�1

t+1
, we obtain that

1

2
kµ⇤�µ

t+1k2⌃�1
t+1

 1

2
kµ⇤�µ

t
k2
⌃�1

t
�1

2
kµ

t+1�µ
t
k2
⌃�1

t+1
+�t

⌦
bgt,µ⇤ � µ

t+1

↵
+�tkµ⇤�µ

t
k2bGt

(10.39)

Lemma 3. Given a convex function f(x), for Gaussian distribution with parameters

✓ := {µ,⌃ 1
2}, let J̄(✓) := Ep(x;✓)[f(x)]. Then J̄(✓) is a convex function with respect

to ✓.

Proof. For � 2 [0, 1], we have

�J̄(✓1) + (1� �)J̄(✓2) = �E[f(µ1 + ⌃
1
2
1 z)] + (1� �)E[f(µ2 + ⌃

1
2
2 z)] (10.40)

= E[�f(µ1 + ⌃
1
2
1 z) + (1� �)f(µ2 + ⌃

1
2
2 z)] (10.41)

� E[f
⇣
�µ1 + (1� �)�µ2 + (�⌃

1
2
1 + (1� �)⌃

1
2
2)z
⌘
] (10.42)

= J̄(�✓1 + (1� �)✓2) (10.43)

Lemma 4. Let J̄(✓) := Ep(x;✓)[f(x)] for Guassian distribution with parameter ✓ :=

{µ,⌃ 1
2} 2 ⇥ and ⇥ := {µ,⌃ 1

2

�� µ 2 Rd,⌃ 2 S+} be a �-strongly convex function.

Suppose bI � bGt � �

2I be positive definite matrix and ⌃1 2 ⇥, then we have

1
2Ekµ

⇤ � µ
t+1k2⌃�1

t+1
 1

2Ekµ
⇤ � µ

t
k2
⌃�1

t
+ �tE(J̄(✓⇤)� J̄(✓t)) + �tE hGt, 2⌃ti+ �

2
t
2 Ek⌃t+1k2kbgtk22

(10.44)

Proof. From Lemma 2, we know that

1
2kµ

⇤�µ
t+1k2⌃�1

t+1
 1

2kµ
⇤ � µ

t
k2
⌃�1

t
� 1

2kµt+1 � µ
t
k2
⌃�1

t+1
+ �t

⌦
bgt,µ⇤ � µ

t+1

↵
+ �tkµ⇤ � µ

t
k2bGt

(10.45)

It follows that

1
2kµ

⇤�µ
t+1k2⌃�1

t+1
 1

2kµ
⇤�µ

t
k2
⌃�1

t
� 1

2kµt+1�µ
t
k2
⌃�1

t+1
+�t hbgt,µ⇤ � µ

t
i+�t

⌦
bgt,µt

� µ
t+1

↵
+�tkµ⇤ � µ

t
k2bGt

(10.46)

Note that

� 1

2
kµ

t+1 � µ
t
k2
⌃�1

t+1
+ �t

⌦
bgt,µt

� µ
t+1

↵

= �1

2
kµ

t+1 � µ
t
k2
⌃�1

t+1
+ �t

⌦
⌃t+1bgt,⌃�1

t+1(µt
� µ

t+1)
↵

(10.47)

= �1

2
kµ

t+1 � µ
t
+ �t⌃t+1bgtk2⌃�1

t+1
+

�2
t

2
k⌃t+1bgtk2⌃�1

t+1
(10.48)

 �2
t

2
k⌃t+1bgtk2⌃�1

t+1
 �2

t

2
k⌃t+1k2kbgtk22 (10.49)

132

Note that ⌃�1
t+1 = ⌃�1

t + 2�t
bGt and bGt ⌫ bI, we have smallest eigenvalues

�min(⌃
�1
t+1) � �min(⌃

�1
t) � · · · � �min(⌃

�1
1). Then, we know k⌃t+1k2  k⌃1k2.

In addition, ⌃t+1 is positive definite matrix, thus ⌃t+1 2 ⇥ for t 2 {1, 2, 3 · · · }.
Plug (10.49) into (10.46), we can achieve that

1

2
kµ⇤�µ

t+1k2⌃�1
t+1

 1

2
kµ⇤�µ

t
k2
⌃�1

t
+�t hbgt,µ⇤ � µ

t
i+�tkµ⇤�µ

t
k2bGt

+
�2
t

2
k⌃t+1k2kbgtk22

(10.50)

Since bI � bGt � �

2I, we get that

1

2
kµ⇤�µ

t+1k2⌃�1
t+1

 1

2
kµ⇤�µ

t
k2
⌃�1

t
+�t hbgt,µ⇤ � µ

t
i+�t

�

2
kµ⇤�µ

t
k22+

�2
t

2
k⌃t+1k2kbgtk22

(10.51)

Taking conditional expectation on both sides, we obtain that

1

2
Ekµ⇤ � µ

t+1k2⌃�1
t+1

 1

2
Ekµ⇤ � µ

t
k2
⌃�1

t
+ �t hEbgt,µ⇤ � µ

t
i+ �t

�

2
kµ⇤ � µ

t
k22 +

�2
t

2
Ek⌃t+1k2kbgtk22

(10.52)

 1

2
Ekµ⇤ � µ

t
k2
⌃�1

t
+ �t hEbgt,µ⇤ � µ

t
i � �t hGt, 2⌃ti+ �t hGt, 2⌃ti

+ �t

�

2
kµ⇤ � µ

t
k22 +

�2
t

2
Ek⌃t+1k2kbgtk22 (10.53)

Note that gt = Ebgt = rµ=µt
J̄ and Gt = r⌃=⌃t J̄ and r

⌃
1
2
J̄ = ⌃

1
2r⌃J̄ + r⌃J̄⌃

1
2 ,

where Gt, r⌃J̄ and ⌃
1
2 are symmetric matrix. Since J̄(✓) is a �-strongly convex

function with optimum at ✓⇤ = {µ⇤,0}, we have that

⌦
rµ=µt

J̄ ,µ⇤ � µ
t

↵
+

⌧
r

⌃
1
2=⌃

1
2
t

J̄ ,0� ⌃
1
2
t

�

= hgt,µ⇤ � µ
t
i+

D
⌃

1
2
t Gt +Gt⌃

1
2
t ,0� ⌃

1
2
t

E
(10.54)

= hgt,µ⇤ � µ
t
i � hGt, 2⌃ti (10.55)

 (J̄(✓⇤)� J̄(✓t))�
�

2
kµ⇤ � µ

t
k22 (10.56)

Plug it into (10.53), we can obtain that

1
2Ekµ

⇤ � µ
t+1k2⌃�1

t+1
 1

2Ekµ
⇤ � µ

t
k2
⌃�1

t
+ �t(J̄(✓

⇤)� J̄(✓t)) + �t hGt, 2⌃ti+ �
2
t
2 Ek⌃t+1k2kbgtk22

Taking expectation on both sides, we know that

1
2Ekµ

⇤ � µ
t+1k2⌃�1

t+1
 1

2Ekµ
⇤ � µ

t
k2
⌃�1

t
+ �tE(J̄(✓⇤)� J̄(✓t)) + �tE hGt, 2⌃ti+ �

2
t
2 Ek⌃t+1k2kbgtk22

(10.57)

133

Lemma 5. Given a symmetric matrix X and a symmetric positive semi-definite

matrix Y , then we have tr (XY)  kY k2kXktr, where kXktr :=
P

d

i=1 |�i| with �i

denotes the eigenvalues.

Proof. Since X is symmetric, it can be orthogonal diagonalized as X = U⇤U>, where

⇤ is a diagonal matrix contains eigenvalues �i, i 2 {1, · · · , d}. Since Y is a symmetric

positive semi-definite matrix, it can be written as Y = Y
1
2Y

1
2 . It follows that

tr (XY) = tr
⇣
U⇤U>Y

1
2Y

1
2

⌘
= tr

⇣
Y

1
2U⇤U>Y

1
2

⌘
=

dX

i=1

�ia
>

i
ai (10.58)

where ai denotes the ith column of the matrix A = U>Y
1
2 . Then, we have

tr (XY) 
dX

i=1

|�i|a>

i
ai = tr

⇣
Y

1
2U |⇤|U>Y

1
2

⌘
= tr

⇣
Y

1
2 X̄

1
2 X̄

1
2Y

1
2

⌘
= kY 1

2 X̄
1
2k2

F

(10.59)

where X̄
1
2 = U |⇤| 12U>.

Using the fact kY 1
2 X̄

1
2k2

F
 kY 1

2k22kX̄
1
2k2

F
, we can obtain that

tr (XY) = kY 1
2 X̄

1
2k2

F
 kY 1

2k22kX̄
1
2k2

F
= kY k2kX̄ktr = kY k2kXktr (10.60)

Lemma 6. Suppose gradients kGtktr  B1 and bGt ⌫ bI with b > 0, by setting �t = �

as a constant step size, we have

TX

t=1

�tE hGt, 2⌃ti  2B1

✓
�k⌃1k2 +

1 + log T

2b

◆
(10.61)

Proof. Note that ⌃�1
t+1 � ⌃�1

t = 2�t
bGt and bGt ⌫ bI with b > 0, we know the smallest

eigenvalue of ⌃�1
t+1, i.e. �min(⌃

�1
t+1) satisfies that

�min(⌃
�1
t+1) � �min(⌃

�1
t
) + 2�tb � �min(⌃

�1
1) + 2

tX

i=1

�ib � 2
tX

i=1

�ib (10.62)

Thus, we know that

k⌃t+1k2 =
1

�min(⌃
�1
t+1)

 1

2
P

t

i=1 �ib
=

1

2t�b
(10.63)

134

Note that ⌃t is symmetric positive semi-definite and Gt is symmetric. From

Lemma 5, we know that tr(Gt⌃t)  k⌃tk2kGtktr. It follows that

TX

t=1

�tE hGt, 2⌃ti  2�
TX

t=1

E[kGtktrk⌃tk2]  2�B1

TX

t=1

Ek⌃tk2 (10.64)

 2�B1k⌃1k2 + 2B1(
T�1X

t=1

1

2bt
) (10.65)

Since
P

T

t=1
1
t
 1 + log T , we know that

TX

t=1

�tE hGt, 2⌃ti  2�B1k⌃1k2 + 2B1

✓
1 + log T

2b

◆
= 2B1

✓
�k⌃1k2 +

1 + log T

2b

◆

(10.66)

Theorem. Given a convex function f(x), define J̄(✓) := Ep(x;✓)[f(x)] for Guassian

distribution with parameter ✓ := {µ,⌃ 1
2} 2 ⇥ and ⇥ := {µ,⌃ 1

2

�� µ 2 Rd,⌃ 2
S+}. Suppose J̄(✓) be �-strongly convex. Let bGt be positive semi-definite matrix such

that bI � bGt � �

2I. Suppose ⌃1 2 S++ and k⌃1k  ⇢, Ebgt = rµ=µt
J̄ . Assume

furthermore kr⌃=⌃t J̄ktr  B1 and kµ⇤�µ1k2⌃�1
1

 R, Ekbgtk22  B . Set �t = �, then

Algorithm 4 can achieve

1
T

hP
T

t=1 Ef(µt
)
i
� f(µ⇤)  2bR+2b�⇢(4B1+�B)+4B1(1+log T)+(1+log T)�B

4�bT = O
�
log T
T

�

(10.67)

Proof. From Lemma 1 to Lemma 4, we know that

1
2Ekµ

⇤ � µ
t+1k2⌃�1

t+1
 1

2Ekµ
⇤ � µ

t
k2
⌃�1

t
+ �tE(J̄(✓⇤)� J̄(✓t)) + �tE hGt, 2⌃ti+ �

2
t
2 Ek⌃t+1k2kbgtk22

(10.68)

Sum up both sides from t = 1 to t = T and rearrange terms, we get

TX

t=1

�tE
⇥
J̄(✓t)� J̄(✓⇤⇤)

⇤
 1

2
Ekµ⇤ � µ1k2⌃�1

1
� 1

2
Ekµ⇤ � µ

T+1k2⌃�1
T+1

(10.69)

+
TX

t=1

�tE hGt, 2⌃ti+
TX

t=1

�2
t

2
Ek⌃t+1k2kbgtk22 (10.70)

135

Since �t = �, we can obtain that

1

T

"
TX

t=1

EJ̄(✓t)

#
� J̄(✓⇤)


1
2Ekµ

⇤ � µ1k2⌃�1
1

+
P

T

t=1 �tE hGt, 2⌃ti+ �
2

2

P
T

t=1 Ek⌃t+1k2kbgtk22
T�

(10.71)


1
2R +

P
T

t=1 �tE hGt, 2⌃ti+ �
2

2 B
P

T

t=1 Ek⌃t+1k2
T�

(10.72)

From Eq.(10.63), we know that

k⌃t+1k2 
1

2t�b
(10.73)

Since
P

T

t=1
1
t
 1+log T , we know that

P
T

t=1 Ek⌃t+1k2  k⌃1k2+ 1+log T
2�b  ⇢+ 1+log T

2�b

In addition, from Lemma 6, we know that
TX

t=1

�tE hGt, 2⌃ti  2B1

✓
�k⌃1k2 +

1 + log T

2b

◆
 2B1

✓
�⇢+

1 + log T

2b

◆
(10.74)

Plug all them into (10.72), we can get

1

T

"
TX

t=1

EJ̄(✓t)

#
� J̄(✓⇤)


1
2R + 2B1

�
�⇢+ 1+log T

2b

�
+ �

2
⇢B

2 + (1+log T)�B
4b

T�
(10.75)

=
2bR + 8B1b�⇢+ 4B1(1 + log T) + 2b�2⇢B + (1 + log T)�B

4�bT
(10.76)

=
2bR + 2b�⇢(4B1 + �B) + 4B1(1 + log T) + (1 + log T)�B

4�bT
(10.77)

= O
✓
log T

T

◆
(10.78)

Since f(x) is a convex function, we know f(µ)  J̄(µ,⌃) = E[f(x)]. Note that for an
optimum point µ⇤ of f(x), ✓⇤ = (µ⇤,0) is an optimum of J̄(✓), i.e., f(µ⇤) = J̄(✓⇤).

Thus, we can obtain that

1

T

"
TX

t=1

Ef(µ
t
)

#
� f(µ⇤)  1

T

"
TX

t=1

EJ̄(✓t)

#
�J̄(✓⇤) (10.79)

 2bR + 2b�⇢(4B1 + �B) + 4B1(1 + log T) + (1 + log T)�B
4�bT

(10.80)

 O
✓
log T

T

◆
(10.81)

136

10.4 Proof of Theorem 5

Lemma 7. For a L-Lipschitz continuous black box function f(x). Let bGt be positive

semi-definite matrix such that bI � bGt with b > 0. Suppose the gradient estimator bgt
is defined as

bgt = ⌃
�

1
2

t z

⇣
f(µ

t
+ ⌃

1
2
t z)� f(µ

t
)
⌘

(10.82)

where z ⇠ N (0, I). Then bgt is an unbiased estimator of rµEp[f(x)] and Ek⌃t+1k2kbgtk22 
L2k⌃tk2(d+ 4)2

Proof. We first show the unbiased estimator.

E[bgt] = E
h
⌃

�
1
2

t zf(µ
t
+ ⌃

1
2
t z)
i
� E

h
⌃

�
1
2

t zf(µ
t
)
i

(10.83)

= E
h
⌃

�
1
2

t zf(µ
t
+ ⌃

1
2
t z)
i

(10.84)

= Ep(µt,⌃t)

⇥
⌃�1

t
(x� µ

t
)f(x)

⇤
(10.85)

= rµEp[f(x)] (10.86)

The last equality holds by Theorem 2.

Now, we prove the bound of Epk⌃t+1k2kbgtk22.

k⌃t+1k2 kbgtk22 = k⌃t+1k2 k⌃
�

1
2

t zk22
⇣
f(µ

t
+ ⌃

1
2
t z)� f(µ

t
)
⌘2

(10.87)

 k⌃t+1k2 k⌃
�

1
2

t zk22 L2k⌃
1
2
t zk22 (10.88)

 k⌃t+1k2 k⌃
�

1
2

t k22 kzk22 L2k⌃
1
2
t zk22 (10.89)

= k⌃t+1k2 k⌃�1
t
k2 kzk22 L2k⌃

1
2
t zk22 (10.90)

Since k⌃t+1k2  k⌃
t
k2 proved in Lemma 4 (below Eq.(10.49)), we get that

k⌃t+1k2 kbgtk22  kzk22 L2k⌃
1
2
t zk22  L2k⌃tk2 kzk42 (10.91)

Since Ekzk42  (d+ 4)2 shown in [129], we can obtain that

Ek⌃t+1k2kbgtk22  L2k⌃tk2(d+ 4)2 (10.92)

Theorem. For a L-Lipschitz continuous convex black box function f(x), define J̄(✓) :=

Ep(x;✓)[f(x)] for Guassian distribution with parameter ✓ := {µ,⌃ 1
2} 2 ⇥ and ⇥ :=

{µ,⌃ 1
2

�� µ 2 Rd,⌃ 2 S+}. Suppose J̄(✓) be �-strongly convex. Let bGt be positive

137

semi-definite matrix such that bI � bGt � �

2I. Suppose ⌃1 2 S++ and k⌃1k2  ⇢.

Assume furthermore kr⌃=⌃t J̄ktr  B1 and kµ⇤ � µ1k2⌃�1
1

 R, . Set �t = � and

employ estimator bgt in Eq.(3.50), then Algorithm 4 can achieve

1

T

"
TX

t=1

Ef(µ
t
)

#
� f(µ⇤)

 2bR + 2b�⇢(4B1 + 2�L2(d+ 4)2) + 4B1(1 + log T) + (1 + log T)�L2(d+ 4)2

4�bT
(10.93)

= O
✓
d2 log T

T

◆
(10.94)

Proof. We are now ready to prove Theorem 5.

From Lemma 7, we know Ek⌃t+1k2kbgtk22  L2k⌃tk2(d+4)2. Note that k⌃t+1k2 
1

2t�b from Eq.(10.63), we can obtain that

Ek⌃t+1k2kbgtk22  L2k⌃tk2(d+ 4)2  L2(d+ 4)2

2(t� 1)�b
(10.95)

Plug it into Eq.(10.71), also note that k⌃2k2  k⌃1k2, we get that

1

T

"
TX

t=1

EJ̄(✓t)

#
� J̄(✓⇤)


1
2Ekµ

⇤ � µ1k2⌃�1
1

+
P

T

t=1 �tE hGt, 2⌃ti+ �2k⌃1k2L2(d+ 4)2 + �L
2(d+4)2

4b

P
T

t=1
1
t

T�
(10.96)


1
2R +

P
T

t=1 �tE hGt, 2⌃ti+ �2k⌃1k2L2(d+ 4)2 + �L
2(d+4)2

4b (1 + log T)

T�
(10.97)

In addition, from Lemma 6, we know that

TX

t=1

�tE hGt, 2⌃ti  2B1

✓
�k⌃1k2 +

1 + log T

2b

◆
 2B1

✓
�⇢+

1 + log T

2b

◆
(10.98)

138

Then, we can get that

1

T

"
TX

t=1

EJ̄(✓t)

#
� J̄(✓⇤)


1
2R + 2B1

�
�⇢+ 1+log T

2b

�
+ �2⇢L2(d+ 4)2 + �L

2(d+4)2

4b (1 + log T)

T�
(10.99)

=
2bR + 2b�⇢(4B1 + 2�L2(d+ 4)2) + 4B1(1 + log T) + (1 + log T)�L2(d+ 4)2

4�bT
(10.100)

= O
✓
d2 log T

T

◆
(10.101)

Since f(x) is a convex function, we know that

1

T

"
TX

t=1

Ef(µ
t
)

#
� f(µ⇤)

 1

T

"
TX

t=1

J̄(✓t)

#
� J̄(✓⇤) (10.102)

 2bR + 2b�⇢(4B1 + 2�L2(d+ 4)2) + 4B1(1 + log T) + (1 + log T)�L2(d+ 4)2

4�bT
(10.103)

= O
✓
d2 log T

T

◆
(10.104)

10.5 Variance Reduction

Lemma 8. For a L-Lipschitz continuous black box function f(x). Suppose ⌃t = �2
t
I

with �t > 0 for t 2 {1, · · · , T}. Suppose the gradient estimator bgt is defined as

bgt =
1

N

NX

i=1

⌃
�

1
2

t zi

⇣
f(µ

t
+ ⌃

1
2
t zi)� f(µ

t
)
⌘

(10.105)

where Z = [z1, · · · , zN] has marginal distribution N (0, I) and Z
>
Z = I. Then bgt is

an unbiased estimator of rµEp[f(x)] and EZk⌃t+1k2kbgtk22 
�
2
t+1L

2(d+4)2

N
for N  d.

139

Proof. We first show the unbiased estimator.

EZ [bgt] = EZ

"
1

N

NX

i=1

⌃
�

1
2

t zi

⇣
f(µ

t
+ ⌃

1
2
t zi)� f(µ

t
)
⌘#

(10.106)

=
1

N

NX

i=1

EZ

h
⌃

�
1
2

t zi

⇣
f(µ

t
+ ⌃

1
2
t zi)� f(µ

t
)
⌘i

(10.107)

= Ez

h
⌃

�
1
2

t z

⇣
f(µ

t
+ ⌃

1
2
t z)� f(µ

t
)
⌘i

(10.108)

= Ez

h
⌃

�
1
2

t zf(µ
t
+ ⌃

1
2
t z)
i
� Ez

h
⌃

�
1
2

t zf(µ
t
)
i

(10.109)

= E
h
⌃

�
1
2

t zf(µ
t
+ ⌃

1
2
t z)
i

(10.110)

= Ep(µt,⌃t)

⇥
⌃�1

t
(x� µ

t
)f(x)

⇤
(10.111)

= rµEp[f(x)] (10.112)

The last equality holds by Theorem 2.

Now, we prove the bound of Epk⌃t+1k2kbgtk22.

k⌃t+1k2 kbgtk22 (10.113)

= �2
t+1

�����
1

N

NX

i=1

��1
t
zi (f(µt

+ �
t
zi)� f(µ

t
))

�����

2

2

(10.114)

=
�2
t+1

N2

NX

i=1

����1
t
zi (f(µt

+ �
t
zi)� f(µ

t
))
��2
2

+
�2
t+1�

�2
t

N2

NX

i=1

NX

i 6=j

z
>

i
zj(f(µt

+ �
t
zi)�f(µ

t
))(f(µ

t
+ �

t
zj)�f(µ

t
)) (10.115)

=
�2
t+1

N2

NX

i=1

����1
t
zi (f(µt

+ �
t
zi)� f(µ

t
))
��2
2

(10.116)


�2
t+1�

�2
t �2

t
L2

N2

NX

i=1

kzik42 =
�2
t+1L

2

N2

NX

i=1

kzik42 (10.117)

Thus,we know that

EZ

⇥
k⌃t+1k2kbgtk22

⇤


�2
t+1L

2

N2
EZ

NX

i=1

kzik42 =
�2
t+1L

2

N
Ez[kzk42] (10.118)

Since Ezkzk42  (d+ 4)2 shown in [129], we can obtain that

EZk⌃t+1k2kbgtk22 
�2
t+1L

2(d+ 4)2

N
(10.119)

140

Theorem. For a L-Lipschitz continuous convex black box function f(x), define J̄(✓) :=

Ep(x;✓)[f(x)] for Guassian distribution with parameter ✓ := {µ, �tI 2 ⇥ and ⇥ :=

{µ,⌃ 1
2

�� µ 2 Rd,⌃ 2 S+}. Suppose J̄(✓) be �-strongly convex. Let bGt = bI with

b  �

2 . Suppose k⌃1k2  ⇢ = 1
d
. Assume furthermore kr⌃=⌃t J̄ktr  B1 and

kµ⇤ � µ1k2⌃�1
1

 R, . Set �t = � and employ orthogonal estimator bgt in Eq.(10.105)

with N = d, then Algorithm 4 can achieve

1

T

"
TX

t=1

Ef(µ
t
)

#
� f(µ⇤)

 2bR + 2b�(4B1/d+ 2�L2(d+ 4)2/d) + 4B1(1 + log T) + (1 + log T)�L2(d+ 4)2/d

4�bT
(10.120)

= O
✓
d log T

T

◆
(10.121)

Proof. The proof is similar to the proof of Theorem 5,

From Lemma 8 and N = d, we know Ek⌃t+1k2kbgtk22  �
2
t+1L

2(d+4)2

d
. Note that

�2
t+1 = k⌃t+1k2  1

2t�b from Eq.(10.63), we can obtain that

Ek⌃t+1k2kbgtk22 
�2
t+1L

2(d+ 4)2

d
 L2(d+ 4)2

2t�bd
(10.122)

Plug it into Eq.(10.71), we get that

1

T

"
TX

t=1

EJ̄(✓t)

#
� J̄(✓⇤)


1
2Ekµ

⇤ � µ1k2⌃�1
1

+
P

T

t=1 �tE hGt, 2⌃ti+ �2k⌃1k2L2(d+ 4)2 + �L
2(d+4)2

4bd

P
T

t=1
1
t

T�
(10.123)


1
2R +

P
T

t=1 �tE hGt, 2⌃ti+ �2k⌃1k2L2(d+ 4)2 + �L
2(d+4)2

4bd (1 + log T)

T�
(10.124)

In addition, from Lemma 6, we know that

TX

t=1

�tE hGt, 2⌃ti  2B1

✓
�k⌃1k2 +

1 + log T

2b

◆
 2B1

✓
�⇢+

1 + log T

2b

◆
(10.125)

141

Then, we can get that

1

T

"
TX

t=1

EJ̄(✓t)

#
� J̄(✓⇤)


1
2R + 2B1

�
�⇢+ 1+log T

2b

�
+ �2⇢L2(d+ 4)2 + �L

2(d+4)2

4bd (1 + log T)

T�
(10.126)

=
2bR + 2b�⇢(4B1 + 2�L2(d+ 4)2) + 4B1(1 + log T) + (1 + log T)�L2(d+ 4)2/d

4�bT
(10.127)

=
2bR + 2b�(4B1/d+ 2�L2(d+ 4)2/d) + 4B1(1 + log T) + (1 + log T)�L2(d+ 4)2/d

4�bT
(10.128)

= O
✓
d log T

T

◆
(10.129)

Since f(x) is a convex function, we know that

1

T

"
TX

t=1

Ef(µ
t
)

#
� f(µ⇤)  1

T

"
TX

t=1

EJ̄(✓t)

#
� J̄(✓⇤)  O

✓
d log T

T

◆
(10.130)

10.6 Proof of Updating Theorem

Theorem. For Gaussian distribution with parameter m := {m1,m2} = {µ,⌃ +

µµ
>}, let bvt = {bgt � 2 bGtµt

, bGt}, then the optimum of problem (10.131) leads to the

closed-form update (10.132) and (10.133):

m
t+1 = argmin

m2M
�t hm, bvti+KL (pmkpmt) (10.131)

⌃�1
t+1 = ⌃�1

t
+ 2�t

bGt (10.132)

µ
t+1 = µ

t
� �t⌃t+1bgt (10.133)

Proof. For Guassian distribution with mean parameter m := {m1,m2} = {µ,⌃ +

µµ
>}, also note that bvt := {bgt � 2 bGtµt

, bGt}, the problem (3.45) can be rewrited as

�t hm, bvti+KL (pmkpmt) = �t

D
m1, bgt � 2 bGtµt

E
+ �t

D
m2, bGt

E
+KL (pmkpmt)

(10.134)

Taking derivative and set to zero, also note that rmKL (pmkpmt)) = ⌘ � ⌘
t, ⌘1 :=

⌃�1
µ and ⌘2 := �1

2⌃
�1, we can obtain that

142

� 1

2
⌃�1

t+1 = �1

2
⌃�1

t
� �t

bGt (10.135)

⌃�1
t+1µt+1 = ⌃�1

t
µ

t
� �t

⇣
bgt � 2 bGtµt

⌘
(10.136)

Rearrange terms, we can obtain that

⌃�1
t+1 = ⌃�1

t
+ 2�t

bGt (10.137)

µ
t+1 = ⌃

t+1⌃
�1
t
µ

t
� �t⌃t+1

⇣
bgt � 2 bGtµt

⌘
(10.138)

Merge terms in Eq.(10.138), we get that

µ
t+1 = ⌃

t+1⌃
�1
t
µ

t
� �t⌃t+1

⇣
bgt � 2 bGtµt

⌘
(10.139)

= ⌃
t+1

⇣
⌃�1

t
+ 2�t

bGt

⌘
µ

t
� �t⌃t+1bgt (10.140)

= ⌃
t+1⌃

�1
t+1µt

� �t⌃t+1bgt (10.141)

= µ
t
� �t⌃t+1bgt (10.142)

10.7 Proof of Gradient and Hessian Theorem

Theorem. Suppose f(x) be an integrable and twice di↵erentiable function under

a Gaussian distribution p := N (µ,⌃) such that Ep [rxf(x)] and Ep

h
@
2
f(x)

@x@x>

i
ex-

ists. Then, the expectation of the gradient and Hessian of f(x) can be expressed as

Eq.(10.143) and Eq.(10.144), respectively.

Ep [rxf(x)] = Ep

⇥
⌃�1(x� µ)f(x)

⇤
(10.143)

Ep


@2f(x)

@x@x>

�

= Ep

⇥�
⌃�1(x� µ)(x� µ)>⌃�1�⌃�1

�
f(x)

⇤
(10.144)

Proof. For Gaussian distribution, from Bonnet’s theorem [146], we know that

rµEp[f(x)] = Ep [rxf(x)]]. (10.145)

From Theorem 2, we know that

rµEp[f(x)] = Ep

⇥
⌃�1(x� µ)f(x)

⇤
. (10.146)

143

Thus, we can obtain that

Ep [rxf(x)] = Ep

⇥
⌃�1(x� µ)f(x)

⇤
. (10.147)

From Price’s Theorem [146], we know that

r⌃Ep[f(x)] = Ep


@2f(x)

@x@x>

�
. (10.148)

From Theorem 2, we know that

r⌃Ep[f(x)] =
1

2
Ep

⇥�
⌃�1(x� µ)(x� µ)>⌃�1�⌃�1

�
f(x)

⇤
(10.149)

It follows that

Ep


@2f(x)

@x@x>

�
= Ep

⇥�
⌃�1(x� µ)(x� µ)>⌃�1�⌃�1

�
f(x)

⇤
(10.150)

10.8 Discrete Update

For function f(x) over binary variable x 2 {0, 1}d, we employ Bernoulli distribution

with parameter p = [p1, · · · , pd]> as the underlying distribution, where pi denote the

probability of xi = 1. The gradient of Ep[f(x)] w.r.t p can be derived as follows:

rpEp[f(x)] = Ep[f(x)rp log(p(x;p))] (10.151)

=
X

x2{0,1}d

dY

i=1

p1(xi=1)
i

(1� pi)
1(xi=0)f(x)rp log

� dY

i=1

p1(xi=1)
i

(1� pi)
1(xi=0)

�

(10.152)

= Ep

"
f(x)rp

� dX

i=1

1(xi = 1) log pi + 1(xi = 0) log(1� pi)
�
#

(10.153)

= Ep [f(x)h] (10.154)

where hi =
1
pi
1(xi = 1)� 1

1�pi
1(xi = 0).

For function f(x) over discrete variable x 2 {1, · · · , K}d, we employ categorical

distribution with parameter P = [p1, · · · ,pd
]> as the underlying distribution, where

the ij-th element of P (i.e., P ij) denote the probability of xi = j. The gradient of

144

Ep[f(x)] w.r.t P can be derived as follows:

rPEp[f(x)] = Ep[f(x)rP log(p(x;P))] (10.155)

=
X

x2{1,··· ,K}d

dY

i=1

KY

j=1

P
1(xi=j)
ij

f(x)rP log
� dY

i=1

KY

j=1

P
1(xi=j)
ij

�
(10.156)

= Ep

"
f(x)rP

� dX

i=1

KX

j=1

1(xi = j) logP ij

�
#

(10.157)

= Ep [f(x)H] (10.158)

where H ij =
1

P ij
1(xi = j).

10.9 Proof of Theorem 6

Lemma 3. Suppose f 2 Hk associated with k(x, x), then (mt(x)� f(x))2  kfk2
Hk

�2
t
(x)

Proof. Let ↵ = K�

t kt(x). Then we have

(mt(x)� f(x))2 =

tX

i=1

↵if (xi)� f(x)

!2

(10.159)

=

 *
tX

i=1

↵ik (xi, ·)� k(x, ·), f
+!2

(10.160)

 hf, fi
*

tX

i=1

↵ik (xi, ·)� k(x, ·),
tX

i=1

↵ik (xi, ·)� k(x, ·),
+

(10.161)

= kfk2
Hk

�����

tX

i=1

↵ik (xi, ·)� k(x, ·)

�����

2

Hk

(10.162)

In addition, we can achieve that
�����

tX

i=1

↵ik (xi, ·)� k(x, ·)

�����

2

Hk

= k(x, x)� 2
tX

i=1

↵ik (xi, x)+
tX

i=1

tX

j=1

↵i↵jk (xi, xj)

(10.163)

= k(x, x)� 2↵Tkt(x) + ↵TKt↵ (10.164)

= k(x, x)� 2kt(x)
TKt

�kt(x) + kt(x)
TKt

�KtKt

�kt(x)
(10.165)

= k(x, x)� kt(x)
TKt

�kt(x) (10.166)

= �2
t
(x) (10.167)

Plug (10.167) into (10.162), we can attain (mt(x)� f(x))2  kfk2
Hk

�2
t
(x).

145

Lemma 4. f(x⇤)� f(xt)  2 kfk
Hk

�
t�1(xt).

Proof. From Lemma 1 and Algorithm 1, we can achieve that

f(x⇤)� f(xt)  mt�1(x
⇤) + kfk

Hk
�t�1(x

⇤)� f(xt) (10.168)

 mt�1(xt) + kfk
Hk

�t�1(xt)� f(xt) (10.169)

 kfk
Hk

�t�1(xt) + kfk
Hk

�t�1(xt) (10.170)

= 2kfk
Hk

�t�1(xt) (10.171)

Lemma 5. Let b�2
t
(x) = k(x, x)� kt(x)T (�2I +Kt)�kt(x). Then �2

t
(x)  b�2

t
(x).

Proof. Since kernel matrix Kt is positive semi-definite, it follows that Kt = UT⇤U ,

where U is orthonormal matrix consists of eigenvectors, ⇤ is a diagonal matrix consists

of eigenvalues.

Let � = Ukt(x), then we can achieve that

kt(x)
T (�2I +Kt)

�kt(x) =
tX

i=1

�2
i

�2 + �i

(10.172)


tX

i=1

�2
i

�i

= �T⇤�� (10.173)

= kt(x)
TUT⇤�Ukt(x) (10.174)

= kt(x)
TK�

t
kt(x) (10.175)

It follows that

�2
t
(x) = k(x, x)� kt(x)

TK�

t
kt(x) (10.176)

 k(x, x)� kt(x)
T (�2I +Kt)

�kt(x) (10.177)

= b�2
t
(x) (10.178)

Now, we are ready to prove Theorem 6.

146

Proof. First, we have

RT =
TX

i=1

f(x⇤)� f(xt) (10.179)

 2kfk
Hk

TX

i=1

�t�1(xt) (10.180)

 2kfk
Hk

vuutT
TX

i=1

�2
t�1(xt) (10.181)

Since s  1
log(1+��2) log (1 + ��2s) for s 2 [0, 1] and 0  b�2

t�1(xt)  k(x, x)  1 for

all t � 1, it follows that

TX

i=1

�2
t�1(xt) 

TX

i=1

b�2
t�1(xt) 

1

log(1 + ��2)

TX

i=1

log(1 + ��2b�2
t�1(xt)) (10.182)

 2�T
log(1 + ��2)

(10.183)

Together (10.181) and (10.183), we can attain that

RT  2kfk
Hk

s

T
2�T

log(1 + ��2)
(10.184)

= kfk
Hk

p
TC1�T (10.185)

It follows that rT  RT
T

 kfk
Hk

q
C1�T

T
.

10.10 Proof of Theorem 7

Lemma 6. Suppose f 2 Hk associated with kernel k(x, x), then
�P

L

i=1mt(bxi)�
P

L

i=1 f(bxi)
�2

 kfk2
Hk

(1TA1), where A denotes the kernel matrix (covariance matrix) with Aij =

k(bxi, bxj)� kt(bxi)TK
�

t kt(bxj).

Proof. Let ↵i = kt(bxi)TK
�

t . Then we have

LX

i=1

mt(bxi)�
LX

i=1

f(bxi)

!2

=

LX

i=1

tX

l=1

↵i

l
f (xl)�

LX

i=1

f(bxi)

!2

(10.186)

=

 *
LX

i=1

tX

l=1

↵i

l
k (xl, ·)�

LX

i=1

k(bxi, ·), f
+!2

(10.187)

 kfk2
Hk

�����

LX

i=1

tX

l=1

↵i

l
k (xl, ·)�

LX

i=1

k(bxi, ·)

�����

2

Hk

(10.188)

147

In addition, we have

�����

LX

i=1

tX

l=1

↵i

l
k (xl, ·)�

LX

i=1

k(bxi, ·)

�����

2

Hk

=
LX

i=1

LX

j=1

k(bxi, bxj)� 2
LX

i=1

LX

j=1

tX

l=1

↵i

l
k (xl, bxj) +

LX

i=1

LX

j=1

tX

n=1

tX

l=1

↵i

l
↵j

n
k (xl, xn)

(10.189)

=
LX

i=1

LX

j=1

k(bxi, bxj)� 2
LX

i=1

LX

j=1

kt(bxi)
TK�

t
kt(bxj) +

LX

i=1

LX

j=1

kt(bxi)
TK�

t
kt(bxj)

(10.190)

=
LX

i=1

LX

j=1

Aij = 1TA1 (10.191)

Thus, we obtain
⇣P

L

i=1mt(bxi)�
P

L

i=1 f(bxi)
⌘2

 kfk2
Hk

(1TA1).

Lemma 7. Suppose f 2 Hk associated with kernel k(x, x), then
1
L

LP
i=1

�
f(x⇤)�f(x(n�1)L+i)

�

 2 kfk
Hk

q
tr(covn�1(Xn,Xn))

L
, where covariance matrix covn�1(Xn, Xn) constructed as

Eq.(4.8) and Xn = {x(n�1)L+1, ..., xnL}.

Proof. Let X⇤ = {x⇤, ..., x⇤} be L copies of x⇤. Then, we obtain that

1

L

LX

i=1

�
f(x⇤)� f(x(n�1)L+i)

�
= f(x⇤)� 1

L

LX

i=1

f(x(n�1)L+i) (10.192)

 m(n�1)L(x
⇤) + kfk

Hk
�(n�1)L(x

⇤)� 1

L

LX

i=1

f(x(n�1)L+i) (10.193)

=
1

L

LX

i=1

m(n�1)L(x
⇤) + kfk

Hk

2

r
tr (covn�1(X⇤, X⇤))

L
�
r

1T covn�1(X⇤, X⇤)1

L2

!

� 1

L

LX

i=1

f(x(n�1)L+i) (10.194)

 1

L

LX

i=1

m(n�1)L(x(n�1)L+i) + kfk
Hk

2

r
tr (covn�1(Xn, Xn))

L
�
r

1T covn�1(Xn, Xn)1

L2

!

� 1

L

LX

i=1

f(x(n�1)L+i) (10.195)

148

It follows that

1

L

LX

i=1

�
f(x⇤)� f(x(n�1)L+i)

�
= f(x⇤)� 1

L

LX

i=1

f(x(n�1)L+i) (10.196)

 kfk
Hk

2

r
tr (covn�1(Xn, Xn))

L
�
r

1T covn�1(Xn, Xn)1

L2

!
+kfk

Hk

r
1T covn�1(Xn, Xn)1

L2

(10.197)

= 2kfk
Hk

r
tr (covn�1(Xn, Xn))

L
(10.198)

Lemma 8. Let Bn and An be the covariance matrix constructed by Eq.(4.8) and

Eq.(4.17), respectively. Then tr(Bn)  tr(An)

Proof. It follows directly from Lemma 5.

Lemma 9. Let matrix An�1 = covn�1 (Xn, Xn) as Eq.(4.17). Denote the spectral

norm of matrix An�1 as �n�1 = kAn�1k2.
Then tr (An�1)  �n�1

log(1+�n�1�
�2) log det (I + ��2An�1) for any � 6= 0.

Proof. Since An�1 is a positive semidefinite matrix, we can attain that the eigenvalues

of An�1 are all nonnegative. Without loss of generality, assume eigenvalues of An�1

as 0  �L  ...  �1. By the definition of the spectral norm �n�1 = kAn�1k2, we
obtain that 0  �L  ...  �1  �n�1

Since s  �n�1

log(1+�n�1�
�2) log (1 + ��2s) for s 2 [0, �n�1] and 0  �i  �n�1, i 2

{1, ..., L}, we can obtain that inequality (10.199) holds true for all i 2 {1, ..., L}

�i  �n�1

log(1+�n�1�
�2) log (1 + ��2�i) (10.199)

Because log det (I + ��2An�1) =
LP
i=1

log (1 + ��2�i), we can achieve that

tr (An�1) =
LP
i=1

�i  �n�1

log(1+�n�1�
�2) log det (I + ��2An�1) (10.200)

Lemma 10. Let T = NL, KT be the T ⇥ T sized kernel matrix and IL be the L ⇥

L sized idendity matrix. Then 1
2 log det (I + ��2KT) =

1
2

NP
n=1

log det (IL + ��2An�1),

where matrix An�1 = ccovn�1 (Xn, Xn) as Eq.(4.17).

149

Proof.

1

2
log det

�
IT + ��2KT

�
=

1

2
log det

�
�2IT +KT

�
� 1

2
log det

�
�2IT

�
(10.201)

Using the Schur’s determinant identity det

✓
A B
C D

◆
= det (A)·det (D � CA�1B)

in linear algebra, set A = �2I(N�1)L+K
�
XN�1, XN�1

�
, B = K

�
XN�1, XN

�
, C = BT

and D = �2IL + K (XN , XN), where XN�1 = {x1, ..., x(N�1)L} denote all previous

N � 1 batch of points, XN = {x(N�1)L+1, ..., xNL} denote the N th batch of points and

K(·, ·) denote the kernel matrix constructed by its input. Then, we can achieve that

1

2
log det

�
�2IT +KT

�
� 1

2
log det

�
�2IT

�
(10.202)

=
1

2
log det

�
�2I(N�1)L +K

�
XN�1, XN�1

��
+

1

2
log det

�
�2IL + AN�1

�
� 1

2
log det

�
�2IT

�

=
1

2
log det

�
�2I(N�1)L+K

�
XN�1, XN�1

��
+
1

2
log det

�
IL + ��2AN�1

�
� 1

2
log det

�
�2I(N�1)L

�

where AN�1 = covN�1 (XN , XN) is the covariance matrix between XN and XN con-

structed as Eq.(4.17).

By induction, we can achieve 1
2 log det (IT + ��2KT) =

1
2

NP
n=1

log det (IL + ��2An�1)

Finally, we are ready to attain Theorem 2.

Proof. Let covariance matrixAn�1 andBn�1 be constructed as Eq.(4.17) and Eq. (4.8),

150

respectively. Let �n�1 = kAn�1k2. Then, we can achieve that

RT =
TX

t=1

f(x⇤)� f(xt) (10.203)

 2kfk
Hk

NX

n=1

p
L tr (Bn�1) (10.204)

 2kfk
Hk

NX

n=1

p
L tr (An�1) (10.205)

 2kfk
Hk

vuutNL
NX

n=1

tr (An�1) (10.206)

 2kfk
Hk

vuutT
NX

n=1

�n�1

log (1 + �n�1��2)
log det (I + ��2An�1) (10.207)

 kfk
Hk

vuutTC2

NX

n=1

log det (I + ��2An�1) (10.208)

 kfk
Hk

p
TC2�T (10.209)

It follows that rT  RT
T

 kfk
Hk

q
C2�T

T

10.11 Proof of Theorem 8

Lemma 11. Suppose h = f + g 2 H�

k
associated with kernel k�(x, y) = k(x, y) +

�2�(x, y). Suppose f 2 Hk associated with k and g 2 H�2� associated with ker-

nel �2�. Then for x 6= xi, i 2 {1, ..., t}, we have |bmt(x)� f(x)|  khk
Hk�

b�t(x) +⇣
khk

Hk�
+ kgk

H�2�

⌘
�.

Proof. Let ↵ = (Kt + �2I)�1kt(x). Then we have

(bmt(x)� h(x))2 =

tX

i=1

↵ih (xi)� h(x)

!2

(10.210)

=

 *
tX

i=1

↵ik
� (xi, ·)� k�(x, ·), h

+!2

(10.211)

 khk2
Hk�

�����

tX

i=1

↵ik
� (xi, ·)� k�(x, ·)

�����

2

Hk�

(10.212)

151

In addition, we can achieve that
�����

tX

i=1

↵ik
� (xi, ·)� k�(x, ·)

�����

2

Hk�

= k�(x, x)� 2
tX

i=1

↵ik
� (xi, x)+

tX

i=1

tX

j=1

↵i↵jk
� (xi, xj)

= k(x, x) + �2 � 2↵Tkt(x) + ↵T (Kt + �2I)↵
(10.213)

= k(x, x) + �2 � kt(x)
T (Kt + �2I)

�1
kt(x) (10.214)

= b�2
t
(x) + �2 (10.215)

Plug (10.215) into (10.212), we can obtain (bmt(x)� h(x))2  khk2
Hk�

(b�2
t
(x)+�2).

Thus, we achieve that

|bmt(x)� f(x)|  |bmt(x)� h(x)|+ |g(x)| (10.216)

 khk
Hk�

q
b�2
t (x) + �2 + kgk

H�2�
� (10.217)

 khk
Hk�

b�t(x) +
⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.218)

Lemma 12. Under same condition as Lemma 11, we have f(x⇤)� f(xt)

 2 khk
Hk�

b�t�1(xt) + 2
⇣
khk

Hk�
+ kgk

H�2�

⌘
�.

Proof. From Lemma 11 and Algorithm ??, we can achieve that

f(x⇤)� f(xt)  bmt�1(x
⇤) + khk

Hk�
b�t�1(x

⇤) +
⇣
khk

Hk�
+ kgk

H�2�

⌘
� � f(xt)

(10.219)

 bmt�1(xt) + khk
Hk�

b�t�1(xt) +
⇣
khk

Hk�
+ kgk

H�2�

⌘
� � f(xt)

(10.220)

 2 khk
Hk�

b�t�1(xt) + 2
⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.221)

Finally, we are ready to prove Theorem 8.

Proof. First, we have

RT =
TX

i=1

f(x⇤)� f(xt) (10.222)

 2khk
Hk�

TX

i=1

b�t�1(xt) + 2T
⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.223)

 2khk
Hk�

vuutT
TX

i=1

b�2
t�1(xt) + 2T

⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.224)

152

Since s  B

log(1+B��2) log (1 + ��2s) for s 2 [0, B] and 0  b�2
t�1(xt)  k�(x, x)  B

for all t � 1, it follows that

TX

i=1

b�2
t�1(xt) 

B

log(1 +B��2)

TX

i=1

log(1 + ��2b�2
t�1(xt)) (10.225)

 2B�T
log(1 +B��2)

(10.226)

Together (10.224) and (10.226), we can attain that

RT  2khk
Hk�

s

T
2B�T

log(1 +B��2)
+ 2T

⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.227)

= khk
Hk�

p
TC3�T + 2T

⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.228)

It follows that rT  RT
T

 khk
Hk�

q
C3�T

T
+ 2

⇣
khk

Hk�
+ kgk

H�2�

⌘
�.

10.12 Proof of Theorem 9

Lemma 13. Suppose h = f + g 2 H�

k
associated with kernel k�(x, y) = k(x, y) +

�2�(x, y). Suppose f 2 Hk associated with k and g 2 H�2� associated with kernel �2�.

Suppose bxi 6= xj, i 2 {1, ..., L}, j 2 {1, ..., t}, then we have
���
XL

i=1
mt(x̂i)�

XL

i=1
f(x̂i)

���  khk
Hk�

p
1TA1+ L2�2 + L kgk

H�2�
� (10.229)

where A denotes the kernel covariance matrix with Aij = k(bxi, bxj) � kt(bxi)T (Kt +

�2I)�1kt(bxj)

Remark: Further require bxi 6= bxj, 8i, j 2 {1, ..., L} can lead to a tighter bound

as
���
XL

i=1
mt(x̂i)�

XL

i=1
f(x̂i)

���  khk
Hk�

p
1TA1+ L�2 + L kgk

H�2�
� (10.230)

Proof. Let ↵i = (Kt + �2I)�1kt(bxi). Then we have

LX

i=1

bmt(bxi)�
LX

i=1

h(bxi)

!2

=

LX

i=1

tX

l=1

↵i

l
h (xl)�

LX

i=1

h(bxi)

!2

(10.231)

=

 *
LX

i=1

tX

l=1

↵i

l
k� (xl, ·)�

LX

i=1

k�(bxi, ·), h
+!2

(10.232)

 khk2
Hk�

�����

LX

i=1

tX

l=1

↵i

l
k� (xl, ·)�

LX

i=1

k�(bxi, ·)

�����

2

Hk�

(10.233)

153

In addition, we have

�����

LX

i=1

tX

l=1

↵i

l
k� (xl, ·)�

LX

i=1

k�(bxi, ·)

�����

2

Hk�

=
LX

i=1

LX

j=1

k�(bxi, bxj)� 2
LX

i=1

LX

j=1

tX

l=1

↵i

l
k� (xl, bxj) +

LX

i=1

LX

j=1

tX

n=1

tX

l=1

↵i

l
↵j

n
k� (xl, xn)

(10.234)


LX

i=1

LX

j=1

k(bxi, bxj) + L2�2 � 2
LX

i=1

LX

j=1

kt(bxi)
T (Kt + �2I)�1kt(bxj)

+
LX

i=1

LX

j=1

kt(bxi)
T (Kt + �2I)�1kt(bxj) (10.235)

=
LX

i=1

LX

j=1

Aij + L2�2 = 1TA1+ L2�2 (10.236)

Thus, we obtain
⇣P

L

i=1mt(bxi)�
P

L

i=1 h(bxi)
⌘2

 khk2
Hk�

(1TA1 + L2�2). Then,

we can achieve that

���
XL

i=1
mt(x̂i)�

XL

i=1
f(x̂i)

��� 
���
XL

i=1
mt(x̂i)�

XL

i=1
h(x̂i)

���+
XL

i=1
|g(x̂i)|

(10.237)

 khk
Hk�

p
1TA1+ L2�2 + L kgk

H�2�
� (10.238)

Lemma 14. Suppose h = f + g 2 H�

k
associated with kernel k�(x, y) = k(x, y) +

�2�(x, y). Suppose f 2 Hk associated with k and g 2 H�2� associated with kernel �2�.

Suppose xi 6= xj, then we have

1

L

LX

i=1

�
f(x⇤)� f(x(n�1)L+i)

�
 2 khk

Hk�

r
tr (ccovn�1(Xn, Xn))

L
+ 2

⇣
khk

Hk�
+ kgk

H�2�

⌘
�

(10.239)

where covariance matrix ccovn�1(Xn, Xn) is constructed as Eq.(4.17) with

Xn = {x(n�1)L+1, ..., xnL}.

Proof. Let X⇤ = {x⇤, ..., x⇤} be L copies of x⇤. Then, we obtain that

154

1

L

LX

i=1

�
f(x⇤)� f(x(n�1)L+i)

�
= f(x⇤)� 1

L

LX

i=1

f(x(n�1)L+i) (10.240)

 bm(n�1)L(x
⇤) + khk

Hk�
b�(n�1)L(x

⇤) +
⇣
khk

Hk�
+ kgk

H�2�

⌘
� � 1

L

LX

i=1

f(x(n�1)L+i)

(10.241)

=
1

L

LX

i=1

bm(n�1)L(x
⇤) + khk

Hk�

2

r
tr (ccovn�1(X⇤, X⇤))

L
�
r

1T ccovn�1(X⇤, X⇤)1

L2

!

+
⇣
khk

Hk�
+ kgk

H�2�

⌘
� � 1

L

LX

i=1

f(x(n�1)L+i) (10.242)

 1

L

LX

i=1

bm(n�1)L(x(n�1)L+i) + khk
Hk�

2

r
tr (ccovn�1(Xn, Xn))

L
�
r

1T ccovn�1(Xn, Xn)1

L2

!

+
⇣
khk

Hk�
+ kgk

H�2�

⌘
� � 1

L

LX

i=1

f(x(n�1)L+i) (10.243)

 khk
Hk�

2

r
tr (ccovn�1(Xn, Xn))

L
�
r

1T ccovn�1(Xn, Xn)1

L2

!
+
⇣
khk

Hk�
+ kgk

H�2�

⌘
�

+ khk
Hk�

r
1T ccovn�1(Xn, Xn)1+ L2�2

L2
+ kgk

H�2�
� (10.244)

 2khk
Hk�

r
tr (ccovn�1(Xn, Xn))

L
+ 2

⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.245)

Finally, we are ready to attain Theorem 4.

Proof. Let An�1 = ccovn�1(Xn, Xn) be the covariance matrix constructed as Eq.(4.17)

155

with Xn = {x(n�1)L+1, ..., xnL}. Let �n�1 = kAn�1k2. Then, we can achieve that

RT =
TX

t=1

f(x⇤)� f(xt) (10.246)

 2khk
Hk�

NX

n=1

p
L tr (An�1) + 2T

⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.247)

 2khk
Hk�

vuutNL
NX

n=1

tr (An�1) + 2T
⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.248)

 2khk
Hk�

vuutT
NX

n=1

�n�1

log (1 + �n�1��2)
log det (I + ��2An�1)+2T

⇣
khk

Hk�
+kgk

H�2�

⌘
�

(10.249)

 khk
Hk�

vuutTC4

NX

n=1

log det (I + ��2An�1) + 2T
⇣
khk

Hk�
+kgk

H�2�

⌘
� (10.250)

 khk
Hk�

p
TC4�T + 2T

⇣
khk

Hk�
+ kgk

H�2�

⌘
� (10.251)

It follows that rT  RT
T

 khk
Hk�

q
C4�T

T
+ 2T

⇣
khk

Hk�
+ kgk

H�2�

⌘
�

10.13 Proof of Theorem 10

Proof.

erT = min
t2[T]

sup
ft2Bk,ft(xi)=fi(xi),8i2[t�1]

{ft(x⇤)� ft(xt)}

 sup
fT2Bk,fT (xi)=fi(xi),8i2[T�1]

{fT (x⇤)� fT (xT)}

 sup
fT2Bk,fT (xi)=fi(xi),8i2[T�1]

{mT�1(x
⇤) +B�T�1(x

⇤)� fT (xT)}

 sup
fT2Bk,fT (xi)=fi(xi),8i2[T�1]

{mT�1(xT) +B�T�1(xT)� fT (xT)}

 sup
fT2Bk,fT (xi)=fi(xi),8i2[T�1]

{B�T�1(xT) +B�T�1(xT)}

 2B�T�1(xT) (10.252)

Applying Theorem 5.4 in [87] with h⇢,X  hX , we can obtain that

�T�1(xT)  Chs�d/2
X

(10.253)

156

Together with (10.252) and (10.253), absorbing the constant into C, we can achieve

that erT  Chs�d/2
X

10.14 Proof of Theorem 11

Proof. From , we know erT  2B�T�1(xT). By applying Theorem 11.22 in [172], we

can obtain that

2B�T�1(xT)  2B exp(c log(hX)/(2
p
hX)) (10.254)

It follows that erT  2B exp(c log(hX)/(2
p
hX)).

10.15 Proof of Theorem 12

Proof.

erT = min
t2[T]

sup
ft2Bk

{ft(x⇤)� ft(xt)}

= min
t2[T]

sup
ft2Bk

{hk(x⇤, ·)� k(xt, ·), fti}

 min
t2[T]

B
p

hk(x⇤, ·)� k(xt, ·), k(x⇤, ·)� k(xt, ·)i

 min
t2[T]

B
p

(k(x⇤, x⇤) + k(xt, xt)� 2k(x⇤, xt))

 B
p
(2� 2�(hX)) (10.255)

10.16 Proof of Corollary 2

Proof. From Theorem 12, we can obtain that

erT = min
t2[T]

sup
ft2Bk

{ft(x⇤)� ft(xt)}

 B
p
(2� 2�(hX))

= B
q

(2� 2 exp(�Ch2
X
))

 B
q
2(Ch2

X
)

= B
p
2ChX = O(hX) (10.256)

157

10.17 Proof of Theorem 13

Theorem. Suppose n is a prime number and 2d|(n � 1). Let g be a primitive root

of n. Let z = [g0, g
n�1
2d , g

2(n�1)
2d , · · · , g

(d�1)(n�1)
2d] mod n. Construct a rank-1 lattice

X={x0, · · · ,xn�1} with xi =
iz mod n

n
, i 2 {0, ..., n� 1}. Then, there are n�1

2d distinct

pairwise toroidal distance values among X, and for each distance value, there are the

same number of pairs that obtain this value.

Proof. From the definition of the rank-1 lattice, we know that

kxi � xjkTp =

����
iz mod n

n
� jz mod n

n

����
Tp

=

����
(i� j)z mod n

n

����
Tp

(10.257)

=

����
kz mod n

n

����
Tp

= kxkkTp , (10.258)

where kxkTp denotes the lp-norm-based toroidal distance between x and 0, and k ⌘
i� j mod n.

For non-identical pair xi,xj 2 X={x0, · · · ,xn�1}, we know i 6= j. Thus, i� j ⌘
k 2 {1, · · · , n � 1}. Moreover, for each k, there are n pairs of i, j 2 {0, · · · , n � 1}
obtaining i� j ⌘ k mod n. Therefore, the non-identical pairwise toroidal distance is

determined by kxkkTp for k 2 {1, · · · , n� 1}. Moreover, each kxkkTp corresponds to

n pairwise distances.

From the definition of the lp-norm-based toroidal distance, we know that

kxkkTp =

����min

✓
kz mod n

n
,
n� kz mod n

n

◆����
p

=

����min

✓
kz mod n

n
,
(�kz) mod n

n

◆����
p

, (10.259)

where min(·, ·) denotes the element-wise min operation between two inputs.

Since n is a prime number, from the number theory, we know that for a primitive

root g, the residue of {g0, g1, · · · , gn�2} modulo n forms a cyclic group under multipli-

cation, and gn�1 ⌘ 1 mod n. Moreover, there is a one-to-one correspondence between

the residue of {g0, g1, · · · , gn�2} modulo n and the set {1, 2, · · · , n � 1}. Then, we

know that 9k0, gk
0 ⌘ k mod n. It follows that

kxkkTp =

����min

✓
gk

0
z mod n

n
,
(�gk

0
z) mod n

n

◆����
p

. (10.260)

Since (g
n�1
2)2 = gn�1 ⌘ 1 mod n and g is a primitive root, we know that

g
n�1
2 ⌘ �1 mod n. Denote {z,�z} := {z1, z2, · · · , zd,�z1, z2, · · · ,�zd}. Since

158

z = [g0, g
n�1
2d , g

2(n�1)
2d , · · · , g

(d�1)(n�1)
2d] mod n, we know that

{z,�z} (10.261)

⌘ {z, g
n�1
2 z} mod n (10.262)

⌘ {g0, g
n�1
2d , g

2(n�1)
2d , · · · , g

(d�1)(n�1)
2d , g

n�1
2 +0, g

n�1
2 +n�1

2d , · · · , g
n�1
2 + (d�1)(n�1)

2d } mod n
(10.263)

⌘ {g0, g
n�1
2d , g

2(n�1)
2d , · · · , g

(d�1)(n�1)
2d , g

d(n�1)
2d , g

(d+1)(n�1)
2d , · · · , g

(2d�1)(n�1)
2d } mod n.

(10.264)

It follows that H := {z1, z2, · · · , zd,�z1, z2, · · · ,�zd} mod n forms a subgroup of the

group {g0, g1, · · · , gn�2} mod n. From Lagrange’s theorem in group theory [53], we

know that the cosets of the subgroup H partition the entire group {g0, g1, · · · , gn�2}
into equal-size, non-overlapping sets, i.e., cosets g0H, g1H, · · · , g n�1�2d

2d H, and the

number of cosets of H is n�1
2d .

Together with Eq.(10.260), we know that distance kxkkTp for k0 2 {0, · · · , n� 2}
has n�1

2d di↵erent values simultaneously hold for all p 2 (0,1), i.e,���min
�
g
hz mod n

n
, (�g

hz) mod n

n

����
p

for h 2 {0, · · · , n�1
2d � 1} . And for each distance

value, there are the same number of terms kxkkTp that obtain this value. Since each

kxkkTp corresponds to n pairwise distance kxi �xjkTp , where k ⌘ i� j mod n, there

are n�1
2d distinct pairwise toroidal distance. Moreover, for each distance value, there

are the same number of pairs that obtain this value.

10.18 Proof of Theorem 14

Theorem. Suppose n is a prime number and n � 2d + 1. Let z = [z1, z2, · · · , zd]
with 1  zk  n � 1. Construct non-degenerate rank-1 lattice X = {x0, · · · ,xn�1}
with xi =

iz mod n

n
, i 2 {0, ..., n � 1}. Then, the minimum pairwise toroidal distance

can be bounded as

d(d+ 1)

2n
 min

i,j2{0,··· ,n�1},i 6=j

kxi � xjkT1 
(n+ 1)d

4n
(10.265)

p
6d(d+ 1)(2d+ 1)

6n
 min

i,j2{0,··· ,n�1},i 6=j

kxi � xjkT2 
r

(n+ 1)d

12n
, (10.266)

where k · kT1 and k · kT2 denotes the l1-norm-based toroidal distance and the l2-norm-

based toroidal distance, respectively.

159

Proof. From the definition of the rank-1 lattice, we know that

kxi � xjkTp =

����
iz mod n

n
� jz mod n

n

����
Tp

=

����
(i� j)z mod n

n

����
Tp

(10.267)

=

����
kz mod n

n

����
Tp

= kxkkTp , (10.268)

where kxkTp denotes the lp-norm-based toroidal distance, we know that between x

and 0, and k ⌘ i� j mod n.

Thus, the minimum pairwise toroidal distance is equivalent to Eq. (10.269)

min
i,j2{0,··· ,n�1},i 6=j

kxi � xjkTp = min
k2{1,··· ,n�1}

kxkkTp . (10.269)

Since the minimum value is smaller than the average value, it follows that

min
i,j2{0,··· ,n�1},i 6=j

kxi � xjkTp = min
k2{1,··· ,n�1}

kxkkTp 
P

n�1
k=1 kxkkTp

n� 1
. (10.270)

Since n is a prime number, from number theory, we know that for a primitive

root g, the residue of {g0, g1, · · · , gn�2} modulo n forms a cyclic group under mul-

tiplication, and gn�1 ⌘ 1 mod n. Moreover, there is a one-to-one correspondence

between the residue of {g0, g1, · · · , gn�2} modulo n and the set {1, 2, · · · , n � 1}.
Then, for each tth component of z = [z1, z2, · · · , zd], we know that 9mt such that

gmt ⌘ zt mod n. Therefore, the set
�
kzt mod n

��8k 2 {1, · · · , n� 1}

is a permuta-

tion of the set {1, · · · , n� 1}.
From the definition of the lp-norm-based toroidal distance, we know that each

tth component of kxkkTp is determined by min(kzt mod n, n � kzt mod n). Because

the set
�
kzt mod n

��8k 2 {1, · · · , n� 1}

is a permutation of set {1, · · · , n � 1}, we

know that the set
�
min(kzt mod n, n� kzt mod n)

��8k 2 {1, · · · , n� 1}

consists of

two copy of permutation of the set {1, · · · , n�1
2 }. It follows that

n�1X

k=1

kxkkT1 =

P
d

t=1

P
n�1
k=1 min(kzt mod n, n� kzt mod n)

n
=

2d
Pn�1

2
k=1 k

n
=

d(n+ 1)(n� 1)

4n
.

(10.271)

Similarly, for l2-norm-based toroidal distance, we have that

n�1X

k=1

kxkk2T2
=

P
d

t=1

P
n�1
k=1 min(kzt mod n, n� kzt mod n)2

n2
=

2d
Pn�1

2
k=1 k

2

n2
=

d(n� 1)(n+ 1)

12n
.

(10.272)

160

By Cauchy–Schwarz inequality, we know that

n�1X

k=1

kxkkT2 

vuut(n� 1)
n�1X

k=1

kxkk2T2
= (n� 1)

r
d(n+ 1)

12n
. (10.273)

Together with Eq.(10.270), it follows that

min
i,j2{0,··· ,n�1},i 6=j

kxi � xjkT1 = min
k2{1,··· ,n�1}

kxkkT1 
(n+ 1)d

4n
(10.274)

min
i,j2{0,··· ,n�1},i 6=j

kxi � xjkT2 = min
k2{1,··· ,n�1}

kxkkT2 
r

(n+ 1)d

12n
. (10.275)

Now, we are going to prove the lower bound. For a non-degenerate rank-1 lattice,

the components of generating vector z = [z1, · · · , zd] should be all di↵erent. Then,

we know the components of xk, 8k 2 {1, · · · , n�1} should be all di↵erent. Thus, the

min norm point is achieved at x⇤ = [1/n, 2/n, · · · , d/n]. Since n � 2d+ 1, it follows

that

min
i,j2{0,··· ,n�1},i 6=j

kxi � xjkT1 = min
k2{1,··· ,n�1}

kxkkT1 � kx⇤kT1 =
(d+ 1)d

2n
(10.276)

min
i,j2{0,··· ,n�1},i 6=j

kxi � xjkT2 = min
k2{1,··· ,n�1}

kxkkT2 � kx⇤kT2 =

p
6d(d+ 1)(2d+ 1)

6n
.

(10.277)

10.19 Proof of Corollary 1

Corollary 1. Suppose n = 2d + 1 is a prime number. Let g be a primitive root of

n. Let z = [g0, g
n�1
2d , g

2(n�1)
2d , · · · , g

(d�1)(n�1)
2d] mod n. Construct rank-1 lattice X =

{x0, · · · ,xn�1} with xi = iz mod n

n
, i 2 {0, ..., n � 1}. Then, the pairwise toroidal

distance of the lattice X attains the upper bound.

kxi � xjkT1 =
(n+ 1)d

4n
, 8i, j 2 {0, · · · , n� 1}, i 6= j, (10.278)

kxi � xjkT2 =

r
(n+ 1)d

12n
, 8i, j 2 {0, · · · , n� 1}, i 6= j. (10.279)

Proof. From the definition of the rank-1 lattice, we know that

kxi � xjkTp =

����
iz mod n

n
� jz mod n

n

����
Tp

=

����
(i� j)z mod n

n

����
Tp

(10.280)

=

����
kz mod n

n

����
Tp

= kxkkTp , (10.281)

161

where kxkTp denote the lp-norm-based toroidal distance, we know that between x and

0, and k ⌘ i� j mod n.

From Theorem 1, we know that kxi � xjkTp 8i, j 2 {0, · · · , n� 1}, i 6= j has n�1
2d

di↵erent values. Since n = 2d + 1, we know the pairwise toroidal distance has the

same value. Therefore, we know that

kxi � xjkTp = kxkkTp =

P
n�1
k=1 kxkkTp

n� 1
, 8i, j 2 {0, · · · , n� 1}, i 6= j. (10.282)

From the proof of Theorem 2, we know that

n�1X

k=1

kxkkT1 =

P
d

t=1

P
n�1
k=1 min(kzt mod n, n� kzt mod n)

n
=

2d
Pn�1

2
k=1 k

n
=

d(n+ 1)(n� 1)

4n
.

(10.283)

and

n�1X

k=1

kxkk2T2
=

P
d

t=1

P
n�1
k=1 min(kzt mod n, n� kzt mod n)2

n2
=

2d
Pn�1

2
k=1 k

2

n2
=

d(n� 1)(n+ 1)

12n
.

(10.284)

Together Eq.(10.283) with Eq.(10.282), we know that

kxi � xjkT1 =
(n+ 1)d

4n
, 8i, j 2 {0, · · · , n� 1}, i 6= j. (10.285)

Since kx1kTp = kx2kTp = · · · = kxn�1kTp , it follows that

n�1X

k=1

kxkkT2 =

vuut(n� 1)
n�1X

k=1

kxkk2T2
. (10.286)

Together with Eq.(10.284), we know that

n�1X

k=1

kxkkT2 =

vuut(n� 1)
n�1X

k=1

kxkk2T2
= (n� 1)

r
d(n+ 1)

12n
. (10.287)

Plug Eq.(10.287) into Eq.(10.282), if follows that

kxi � xjkT2 =

r
(n+ 1)d

12n
, 8i, j 2 {0, · · · , n� 1}, i 6= j. (10.288)

From Theorem 2, we know that the l1-norm-based and l2-norm-based pairwise

toroidal distance of the lattice X attains the upper bound.

162

10.20 Proof of Proposition 1

Kernel Property:

Proposition. For 8f 2 F (F = L2 or F = L2), define function k(x,y) =

Ew[f(w,x)f(w,y)] : X ⇥ X ! R, then k(x,y) is a bounded kernel, i.e., k(x,y) =

k(y,x) < 1 and k(x,y) is positive definite.

Proof. (i) Symmetric property is straightforward by definition.

(ii) From Cauchy–Schwarz inequality,

k(x,y) = Ew[f(w,x)f(w,y)] 
p

Ew[f(w,x)2]Ew[f(w,y)2] < 1 (10.289)

(iii) Positive definite property. For 8n 2 N, 8↵1 · · · ,↵n 2 R and 8x1, · · · ,xn 2 X ,

we have

X

i

X

j

↵i↵jk(xi,xj) = Ew

⇥�X

i

↵if(w,xi)
�2⇤ � 0

10.21 Proof of Theorem 22

Convex �-regularization:

min
f2F

1

2
kx� Ew[wf(w)]k22 + Ew[��(f(w))] (10.290)

where F = L2 or F = L2. And L2 denotes the Gaussian square integrable functional

space, i.e., L2 := {f
��Ew⇠N (0,Id)[f(w)2] < 1}, L2 denotes the sphere square integrable

functional space, i.e., L2 := {f
��Ew⇠Uni[

p

dSd�1][f(w)2] < 1} and ��(·) denotes a

convex function bounded from below.

Lemma 9. Ew⇠Uni[
p

dSd�1][ww
>] = Id.

163

Proof.

Id = Ex⇠N (0,Id)[xx
>]

=

Z
1

(2⇡)
d
2

e�
kxk22

2 xx
> dx

=

Z
1

0

Z

Sd�1

2⇡
d
2

�(d2)
rd�1 · e� r2

2 r2 · 1

(2⇡)
d
2

vv
> d�(v) dr (10.291)

=

Z
1

0

2⇡
d
2

�(d2)
rd�1e�

r2

2 r2 · 1

(2⇡)
d
2

dr

Z

Sd�1

vv
> d�(v) (10.292)

=

Z
1

0

rd�1e�
r2

2

2
d
2�1�(d2)

r2 dr

Z

Sd�1

vv
> d�(v) (10.293)

= Er⇠�(d)[r
2]

Z

Sd�1

vv
> d�(v) (10.294)

= d

Z

Sd�1

vv
> d�(v) (10.295)

= Ew⇠Uni[
p

dSd�1][ww
>] (10.296)

where �(·) denotes the normalized surface measure, �(d) denotes the Chi distribution

with degree d, �(·) denotes the gamma function.

Lemma 10. Let f 2 F with F = L2 or F = L2, then we have

Ew[f(w)2]� kEw[wf(w)]k22 = Ew[
�
f(w)�w

>Ew[wf(w)]
�2
] � 0 (10.297)

Proof. Let wi denote the ith component of w, from Cauchy–Schwarz inequality, we

know that

(Ew[wif(w)])2  Ew[w
2
i
]Ew[f(w)2] = Ew[f(w)2] < 1 (10.298)

Thus the expectation Ew[wf(w)] exits.

Since Ew[ww
>] = Id, we have

kEw[wf(w)]k22 = (Ew[wf(w)])>(Ew[wf(w)]) (10.299)

= (Ew[wf(w)])>Ew[ww
>](Ew[wf(w)]) (10.300)

= Ew[(w
>Ew[wf(w)])2] (10.301)

164

It follows that

Ew[f(w)2]� kEw[wf(w)]k22
= Ew[f(w)2]� 2kEw[wf(w)]k22 + kEw[wf(w)]k22 (10.302)

= Ew[f(w)2]� 2(Ew[wf(w)])>(Ew[wf(w)]) + Ew[(w
>Ew[wf(w)])2] (10.303)

= Ew[f(w)2]� 2Ew[f(w)w>Ew[wf(w)]] + Ew[(w
>Ew[wf(w)])2] (10.304)

= Ew[
�
f(w)�w

>Ew[wf(w)]
�2
] � 0 (10.305)

Lemma 11. Let f 2 F with F = L2 or F = L2, we have

kx� Ew[wf(w)]k22 = Ew[(w
>(x� Ew[wf(w)]))2] (10.306)

Proof. Since Ew[ww
>] = Id, we have

kx� Ew[wf(w)]k22 = (x� Ew[wf(w)])>(x� Ew[wf(w)]) (10.307)

= (x� Ew[wf(w)])>Ew[ww
>](x� Ew[wf(w)]) (10.308)

= Ew[(w
>(x� Ew[wf(w)]))2] (10.309)

Lemma 12. Denote L(f) := 1
2kx � Ew[wf(w)]k22. For 8f, g 2 F with F = L2

or F = L2, we have L(f) = L(g) + Ew[w>(Ew[wg(w)]� x)
�
f(w)� g(w)

�
] +

1
2kEw[w

�
f(w)� g(w)

�
]k22.

Proof.

1

2
kx� Ew[wf(w)]k22 =

1

2
kx� Ew[wg(w)] + Ew[wg(w)]� Ew[wf(w)]k22 (10.310)

=
1

2
kx� Ew[wg(w)]k22 +

1

2

��Ew[wg(w)]� Ew[wf(w)]
��2
2

+ hx� Ew[wg(w)],Ew[wg(w)]� Ew[wf(w)]i (10.311)

The inner product term can be rewritten as

hx� Ew[wg(w)],Ew[wg(w)]� Ew[wf(w)]i = (x� Ew[wg(w)])>Ew[w
�
g(w)� f(w)

�
]

(10.312)

= Ew[(x� Ew[wg(w)])>w
�
g(w)� f(w)

�
]

(10.313)

165

It follows that

1

2
kx� Ew[wf(w)]k22 =

1

2
kx� Ew[wg(w)]k22 +

1

2

��Ew[w
�
g(w)� f(w)

�
]
��2
2

+ Ew[w
>(Ew[wg(w)]� x)

�
f(w)� g(w)

�
] (10.314)

Lemma 13. For 8ft, ft+1, f ⇤ 2 F with F = L2 or F = L2, we have

L(ft+1)=L(f ⇤)+Ew[w
>(Ew[wft(w)]�x)

�
ft+1(w)�f ⇤(w)

�
]+
1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22

� 1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22 (10.315)

Proof. From Lemma 12, we know that

L(ft+1) = L(ft) + Ew[w
>(Ew[wft(w)]� x)

�
ft+1(w)� ft(w)

�
] +

1

2
kEw[w

�
ft+1(w)� ft(w)

�
]k22

(10.316)

L(f ⇤) = L(ft) + Ew[w
>(Ew[wft(w)]� x)

�
f ⇤(w)� ft(w)

�
] +

1

2
kEw[w

�
f ⇤(w)� ft(w)

�
]k22

(10.317)

Plug L(ft) into Eq.(10.316), we can obtain that

L(ft+1)=L(f ⇤)�Ew[w
>(Ew[wft(w)]�x)

�
f ⇤(w)�ft(w)

�
]� 1

2
kEw[w

�
f ⇤(w)�ft(w)

�
]k22

+Ew[w
>(Ew[wft(w)]�x)

�
ft+1(w)�ft(w)

�
]+

1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22

(10.318)

=L(f ⇤)+Ew[w
>(Ew[wft(w)]�x)

�
ft+1(w)�f ⇤(w)

�
]+
1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22

� 1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22 (10.319)

Lemma 14. For a convex function ��(·), denote h(·) as the proximal operator of

��(·), i.e., h(z) = argmin
x

1
2(x� z)2 + ��(x), let ft+1 = h � gt+1 2 F with F = L2 or

F = L2, then for 8f ⇤ 2 F , we have

Ew[��(ft+1(w))]  Ew[��(f
⇤(w))]� Ew[

�
gt+1(w)� ft+1(w)

��
f ⇤(w)� ft+1(w)

�
]

(10.320)

Proof. Since ��(·) is convex function and ft+1(w) = argmin
x
��(x)+

1
2kx�gt+1(w)k22,

we have

0 2 @��(ft+1(w)) + (ft+1(w)� gt+1(w)) =) (gt+1(w)� ft+1(w)) 2 @��(ft+1(w))
(10.321)

166

From the definition of subgradient and convex function ��(·), we have

��(ft+1(w))  ��(f
⇤(w))� (gt+1(w)� ft+1(w))(f ⇤(w)� ft+1(w)) (10.322)

It follows that

Ew[��(ft+1(w))]  Ew[��(f
⇤(w))]� Ew[

�
gt+1(w)� ft+1(w)

��
f ⇤(w)� ft+1(w)

�
]

(10.323)

Lemma 15. Denote h(·) as the proximal operator of ��(·). Suppose |h(x)|  c|x|
(or |h(x)|  c) , 0 < c < 1 . Given a bouned x 2 Rd, set function gt+1(w) =

w
>
x + ft(w) � w

>Ew[wft(w)] with ft 2 L2 and w ⇠ N (0, Id) (or ft 2 L2 and

w ⇠ Uni[
p
dSd�1]). Set ft+1 = h � gt+1, then, we know ft+1 2 F with F = L2 or

F = L2,respectively.

Proof. Case |h(x)|  c, 0 < c < 1: It is straightforward to know Ew[h(gt+1(w))2] 
c2 < 1, thus ft+1 2 F .

Case |h(x)|  c|x|, 0 < c < 1: Since |h(x)|  c|x|, we know that

h(gt+1(w))2  c2gt+1(w)2 = c2
�
w

>
x+ ft(w)�w

>Ew[wft(w)]
�2

(10.324)

 2c2(w>(x� Ew[wft(w)]))2 + 2c2ft(w)2 (10.325)

It follows that

Ew[h(gt+1(w))2]  c2Ew[
�
w

>
x+ ft(w)�w

>Ew[wft(w)]
�2
] (10.326)

 2c2Ew[(w
>(x� Ew[wft(w)]))2] + 2c2Ew[ft(w)2] (10.327)

= 2c2kx� Ew[wft(w)]k22 + 2c2Ew[ft(w)2] (10.328)

 4c2kxk22 + 4c2kEw[wft(w)]k22 + 2c2Ew[ft(w)2] (10.329)

From Lemma 10, we know kEw[wft(w)]k22  Ew[ft(w)2] is bounded, together with

kxk2 < 1,it follows that Ew[ft+1(w))2] = Ew[h(gt+1(w))2] < 1. Thus, ft+1 2 F .

Lemma 16. For a convex function ��(·), denote h(·) as the proximal operator of

��(·), i.e., h(z) = argmin
x

1
2(x� z)2 + ��(x). Suppose |h(x)|  c|x| (or |h(x)|  c),

0 < c < 1 (e.g., soft thresholding function). Given a bouned x 2 Rd, set function

gt+1(w) = w
>
x+ft(w)�w

>Ew[wft(w)] with ft 2 L2 and w ⇠ N (0, Id) (or ft 2 L2

167

and w ⇠ Uni[
p
dSd�1]). Set ft+1 = h � gt+1. Denote Q(f) = L(f) + Ew[��(f(w))]

with L(f) := 1
2kx� Ew[wf(w)]k22, for 8f ⇤ 2 F with F = L2 or F = L2, we have

Q(ft+1)  Q(f ⇤)+
1

2
Ew[(ft(w)�f ⇤(w))2]� 1

2
Ew[(ft+1(w)�f ⇤(w))2]

� 1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22 (10.330)

Proof. From Lemma 13, we know that

L(ft+1)=L(f ⇤)+Ew[w
>(Ew[wft(w)]�x)

�
ft+1(w)�f ⇤(w)

�
]+
1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22

� 1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22 (10.331)

Together with Lemma 14, it follows that

Q(ft+1) (10.332)

Q(f⇤)�Ew[
�
gt+1(w)�ft+1(w)

��
f ⇤(w)�ft+1(w)

�
]+Ew[w

>(Ew[wft(w)]�x)
�
ft+1(w)�f ⇤(w)

�
]

+
1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22 �

1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22 (10.333)

=Q(f ⇤)+Ew[
�
gt+1(w)�ft+1(w) +w

>(Ew[wft(w)]�x)
��
ft+1(w)�f ⇤(w)

�
]

+
1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22 �

1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22 (10.334)

=Q(f ⇤)+Ew[
�
ft(w)�ft+1(w)

��
ft+1(w)�f ⇤(w)

�
]

+
1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22 �

1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22 (10.335)

Note that

Ew[
�
ft(w)�ft+1(w)

��
ft+1(w)�f ⇤(w)

�
]

= Ew[
�
ft(w)�ft+1(w)

��
ft+1(w)�ft(w)+ft(w)�f ⇤(w)

�
] (10.336)

= Ew[
�
ft(w)�ft+1(w)

��
ft(w)�f ⇤(w)

�
]� Ew[

�
ft(w)�ft+1(w)

�2
] (10.337)

Also note that ab = a
2+b

2
�(a�b)2

2 , it follows that

�
ft(w)�ft+1(w)

��
ft(w)�f ⇤(w)

�
=

(ft(w)�ft+1(w))2 + (ft(w)�f ⇤(w))2�(ft+1(w)�f ⇤(w))2

2
(10.338)

It follows that

Ew[
�
ft(w)�ft+1(w)

��
ft+1(w)�f ⇤(w)

�
]

=
1

2
Ew[(ft(w)�f ⇤(w))2]� 1

2
Ew[(ft+1(w)�f ⇤(w))2]� 1

2
Ew[(ft+1(w)�ft(w))2]

(10.339)

168

Plug Eq.(10.339) into Eq.(10.335), we can obtain that

Q(ft+1)  Q(f ⇤) +
1

2
Ew[(ft(w)�f ⇤(w))2]� 1

2
Ew[(ft+1(w)�f ⇤(w))2]� 1

2
Ew[(ft+1(w)�ft(w))2]

+
1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22 �

1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22 (10.340)

From Lemma 10, we know kEw[w
�
ft+1(w)�ft(w)

�
]k22  Ew[(ft+1(w)�ft(w))2]. It

follows that

Q(ft+1)  Q(f ⇤)+
1

2
Ew[(ft(w)�f ⇤(w))2]� 1

2
Ew[(ft+1(w)�f ⇤(w))2] (10.341)

� 1

2
kEw[w

�
ft(w)�f ⇤(w)

�
]k22

Lemma 17. (Strictly Monotonic Descent (a.s.)) Following the same condition of

Lemma 16, we have

Q(ft+1)  Q(ft)�
1

2
Ew[(ft+1(w)�ft(w))2] (10.342)

Proof. It follows directly from Lemma 16 by setting f ⇤ = ft.

Theorem. For a convex function ��(·), denote h(·) as the proximal operator of ��(·),
i.e., h(z) = argmin

x

1
2(x� z)2 + ��(x). Suppose |h(x)|  c|x| (or |h(x)|  c),

0 < c < 1. Given a bouned x 2 Rd, set function gt+1(w) = w
>
x + ft(w) �

w
>Ew[wft(w)] with w ⇠ N (0, Id) (or w ⇠ Uni[

p
dSd�1]). Set ft+1 = h � gt+1 and

f0 2 F with F = L2 or F = L2 (e.g., f0 = 0). Denote Q(f) = L(f) + Ew[��(f(w))]

with L(f) := 1
2kx� Ew[wf(w)]k22. Denote f⇤ 2 F as an optimal of Q(·), we have

T
�
Q(fT)�Q(f⇤)

�
 1

2
Ew[(f0(w)�f⇤(w))2]� 1

2
Ew[(fT (w)�f⇤(w))2]

� 1

2

T�1X

t=0

kEw[w
�
ft(w)�f⇤(w)

�
]k22 �

1

2

T�1X

t=0

(t+ 1)Ew[(ft+1(w)�ft(w))2]

(10.343)

Proof. From Lemma 16, by setting f ⇤ = f⇤, we can obtain that

Q(ft+1)  Q(f⇤)+
1

2
Ew[(ft(w)�f⇤(w))2]� 1

2
Ew[(ft+1(w)�f⇤(w))2]

� 1

2
kEw[w

�
ft(w)�f⇤(w)

�
]k22 (10.344)

169

Telescope the inequality (10.344) from t = 0 to t = T � 1, we can obtain that

T�1X

t=0

Q(ft+1)� TQ(f⇤) 
1

2
Ew[(f0(w)�f⇤(w))2]� 1

2
Ew[(fT (w)�f⇤(w))2]

� 1

2

T�1X

t=0

kEw[w
�
ft(w)�f⇤(w)

�
]k22 (10.345)

In addition, from Lemma 17, we can obtain that

Q(fT)  Q(ft)�
1

2

T�1X

i=t

Ew[(fi+1(w)�fi(w))2] (10.346)

It follows that

TQ(fT)� TQ(f⇤) 
T�1X

t=0

Q(ft+1)� TQ(f⇤)�
1

2

T�1X

t=0

T�1X

i=t

Ew[(fi+1(w)�fi(w))2]

(10.347)

=
T�1X

t=0

Q(ft+1)� TQ(f⇤)�
1

2

T�1X

t=0

(t+ 1)Ew[(ft+1(w)�ft(w))2]

(10.348)

Plug inequality (10.345) into inequality (10.348), we can obtain that

TQ(fT)� TQ(f⇤) 
1

2
Ew[(f0(w)�f⇤(w))2]� 1

2
Ew[(fT (w)�f⇤(w))2]

� 1

2

T�1X

t=0

kEw[w
�
ft(w)�f⇤(w)

�
]k22 �

1

2

T�1X

t=0

(t+ 1)Ew[(ft+1(w)�ft(w))2]

(10.349)

10.22 Proof of Theorem 21

Non-convex �-regularization:

Theorem. For a (non-convex) regularization function ��(·), denote h(·) as the prox-

imal operator of ��(·), i.e., h(z) = argmin
x

1
2(x� z)2 + ��(x). Suppose |h(x)|  c|x|

(or |h(x)|  c), 0 < c < 1 (e.g., hard thresholding function). Given a bouned

x 2 Rd, set function gt+1(w) = w
>
x + ft(w) � w

>Ew[wft(w)] with ft 2 L2

and w ⇠ N (0, Id) (or ft 2 L2, w ⇠ Uni[
p
dSd�1]). Set ft+1 = h � gt+1. Denote

Q(f) = L(f) + Ew[��(f(w))] with L(f) := 1
2kx� Ew[wf(w)]k22, we have

Q(ft+1)Q(ft)�
1

2
Ew[(ft+1(w)�ft(w)�w

>Ew[w(ft+1(w)�ft(w))])2]  Q(ft)

(10.350)

170

Proof. From Lemma 12, we know that

L(ft+1)=L(ft) + Ew[w
>(Ew[wft(w)]�x)

�
ft+1(w)�ft(w)

�
] +

1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22

(10.351)

Let gt+1(w) = w
>
x + ft(w) � w

>Ew[wft(w)], together with Eq.(10.351), we can

obtain that

L(ft+1)=L(ft) + Ew[
�
ft(w)� gt+1(w)

��
ft+1(w)�ft(w)

�
] +

1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22

(10.352)

Note that ab = (a+b)2�a
2
�b

2

2 , it follows that

�
ft(w)�gt+1(w)

��
ft+1(w)�ft(w)

�
=

�
ft+1(w)�gt+1(w)

�2�
�
ft(w)�gt+1(w)

�2�
�
ft+1(w)�ft(w)

�2

2
(10.353)

Since ft+1 = h � gt+1 is the solution of the proximal problem,

i.e., ft+1(w) = argmin
x

(x�gt+1(w))2

2 + ��(x), we know that
�
ft+1(w)�gt+1(w)

�2

2
�
�
ft(w)�gt+1(w)

�2

2
 ��(ft(w))� ��(ft+1(w)) (10.354)

It follows that

Ew[
�
ft(w)� gt+1(w)

��
ft+1(w)�ft(w)

�
]

= Ew [

�
ft+1(w)�gt+1(w)

�2�
�
ft(w)�gt+1(w)

�2�
�
ft+1(w)�ft(w)

�2

2
] (10.355)

 Ew[��(ft(w))]� Ew[��(ft+1(w))]� 1

2
Ew[

�
ft+1(w)�ft(w)

�2
] (10.356)

Plug inequality (10.356) into Eq.(10.352), we can achieve that

L(ft+1) + Ew[��(ft+1(w))]L(ft) + Ew[��(ft(w))]� 1

2
Ew[

�
ft+1(w)�ft(w)

�2
]

+
1

2
kEw[w

�
ft+1(w)�ft(w)

�
]k22 (10.357)

From Lemma 10, we know that

Ew[
�
ft+1(w)�ft(w)

�2
]� kEw[w

�
ft+1(w)�ft(w)

�
]k22

= Ew[
�
ft+1(w)�ft(w)�w

>Ew[w(ft+1(w)�ft(w))]
�2
] (10.358)

It follows that

Q(ft+1)Q(ft)�
1

2
Ew[(ft+1(w)�ft(w)�w

>Ew[w(ft+1(w)�ft(w))])2]  Q(ft)

(10.359)

171

10.23 Proof of Theorem 23

To prove the Theorem 23, we first show some useful Lemmas.

Lemma 18. Suppose 1
N
WW

> = Id, for any bounded y 2 RN , we have 1
N
kyk22 �

k 1
N
Wyk22 = 1

N
ky � 1

N
W

>
Wyk22 � 0.

Proof.

1

N
kyk22 � k 1

N
Wyk22 = kyk22 � 2k 1

N
Wyk22 + k 1

N
Wyk22 (10.360)

=
1

N
kyk22 �

2

N2
y
>
W

>
Wy +

1

N2
y
>
W

>
Wy (10.361)

=
1

N
kyk22 �

2

N2
y
>
W

>
Wy +

1

N2
y
>
W

>
1

N
WW

>
Wy

(10.362)

=
1

N
ky � 1

N
W

>
Wyk22 � 0 (10.363)

Lemma 19. Denote L(y) := 1
2kx � 1

N
Wyk22. For 8y, z 2 RN , we have L(z) =

L(y) + < 1
N2W

>
Wy � 1

N
W

>
x, z � y > +1

2k
1
N
W (z � y)k22

Proof.

1

2
kx� 1

N
Wzk22 =

1

2
kx� 1

N
Wy +

1

N
Wy � 1

N
Wzk22 (10.364)

= L(y) + <
1

N
Wy � x,

1

N
W (z � y) > +

1

2
k 1

N
W (z � y)k22

(10.365)

= L(y) + <
1

N2
W

>
Wy � 1

N
W

>
x, z � y > +

1

2
k 1

N
W (z � y)k22

(10.366)

Theorem. (Monotonic Descent) For a function ��(·), denote h(·) as the proximal

operator of ��(·). Given a bouned x 2 Rd, set y
t+1 = h

�
W

>
x + (I � 1

N
W

>
W)y

t

�

with 1
N
WW

> = Id. Denote bQ(y) := 1
2kx� 1

N
Wyk22 + 1

N
��(y). For t � 0, we have

bQ(y
t+1) bQ(y

t
)� 1

2N
k(Id �

1

N
W

>
W)(y

t+1 � y
t
)k22  bQ(y

t
) (10.367)

Proof. Denote L(y) := 1
2kx� 1

N
Wyk22, from Lemma 19, we know that

L(y
t+1) = L(y

t
) + <

1

N2
W

>
Wy

t
� 1

N
W

>
x,y

t+1 � y
t
> +

1

2
k 1

N
W (y

t+1 � y
t
)k22

(10.368)

172

Let at+1 = W
>
x+(I� 1

N
W

>
W)y

t
. Together with Eq.(10.368), we can obtain that

L(y
t+1) = L(y

t
) + <

1

N2
W

>
Wy

t
� 1

N
W

>
x,y

t+1 � y
t
> +

1

2
k 1

N
W (y

t+1 � y
t
)k22

(10.369)

= L(y
t
) +

1

N
<y

t
� at+1,yt+1 � y

t
> +

1

2
k 1

N
W (y

t+1 � y
t
)k22 (10.370)

Note that a>
b = ka+bk22�kak22�kbk22

2 , it follows that

<y
t
� at+1,yt+1 � y

t
> =

ky
t+1 � at+1k22 � ky

t
� at+1k22 � ky

t+1 � y
t
k22

2
(10.371)

Since y
t+1 = h(at+1) is the solution of the proximal problem,

i.e., y
t+1 = argminy

1
2ky � at+1k22 + ��(y), we can achieve that

1

2
ky

t+1 � at+1k22 + ��(yt+1) 
1

2
ky

t
� at+1k22 + ��(yt

) (10.372)

It can be rewritten as

1

2
ky

t+1 � at+1k22 �
1

2
ky

t
� at+1k22  ��(yt

)� ��(yt+1) (10.373)

Together with Eq.(10.370), Eq.(10.371) and inequality (10.373), it follows that

L(y
t+1) +

1

N
��(yt+1)  L(y

t
) +

1

N
��(yt

)� 1

2N
ky

t+1 � y
t
k22 +

1

2
k 1

N
W (y

t+1 � y
t
)k22

(10.374)

Together with Lemma 18, we can achieve that

bQ(y
t+1) bQ(y

t
)� 1

2N
k(Id �

1

N
W

>
W)(y

t+1 � y
t
)k22  bQ(y

t
) (10.375)

10.24 Proof of Theorem 24

Before proving Theorem 24, we first show some useful Lemmas.

Lemma 20. Denote L(y) := 1
2kx� 1

N
Wyk22. For any bounded y

t
,y

t+1, z 2 RN , we

have

L(y
t+1) = L(z) +

⌧
1

N2
W

>
Wy

t
� 1

N
W

>
x,y

t+1 � z

�
+

1

2
k 1

N
W (y

t+1 � y
t
)k22

� 1

2
k 1

N
W (z � y

t
)k22 (10.376)

173

Proof. Denote L(y) := 1
2kx� 1

N
Wyk22. From Lemma 19, we can achieve that

L(z) = L(y
t
) + <

1

N2
W

>
Wy

t
� 1

N
W

>
x, z � y

t
> +

1

2
k 1

N
W (z � y

t
)k22 (10.377)

L(y
t+1) = L(y

t
) + <

1

N2
W

>
Wy

t
� 1

N
W

>
x,y

t+1 � y
t
> +

1

2
k 1

N
W (y

t+1 � y
t
)k22

(10.378)

It follows that

L(y
t+1)=L(z)�

⌧
1

N2
W

>
Wy

t
� 1

N
W

>
x, z�y

t

�
+

⌧
1

N2
W

>
Wy

t
� 1

N
W

>
x,y

t+1�y
t

�

+
1

2
k 1

N
W (y

t+1 � y
t
)k22 �

1

2
k 1

N
W (z � y

t
)k22 (10.379)

= L(z) +

⌧
1

N2
W

>
Wy

t
� 1

N
W

>
x,y

t+1 � z

�
+

1

2
k 1

N
W (y

t+1 � y
t
)k22

� 1

2
k 1

N
W (z � y

t
)k22 (10.380)

Lemma 21. For a convex function ��(·), let h(·) be the proximal operator w.r.t

��(·). Denote bQ(y) := 1
2kx � 1

N
Wyk22 + 1

N
��(y), for any bounded y

t
, z 2 RN , set

at+1 = W
>
x+ (I � 1

N
W

>
W)y

t
and y

t+1 = h(at+1), then we have

bQ(y
t+1)  bQ(z) +

1

2N

�
ky

t
� zk22 � ky

t+1 � zk22
�
� 1

2
k 1

N
W (z � y

t
)k22 (10.381)

Proof. Since y
t+1 = argminy ��(y) +

1
2ky � at+1k22, we have

0 2 @�(y
t+1) + (y

t+1 � at+1) =) (at+1 � y
t+1) 2 @�(y

t+1) (10.382)

For a convex function ��(y) and subgradient g 2 @��(y), we know ��(z) � ��(y) +

hg, z � yi, it follows that

��(z) � ��(yt+1) +
⌦
at+1 � y

t+1, z � y
t+1

↵
(10.383)

Together with Lemma 20, we can obtain that

L(y
t+1) +

1

N
��(yt+1)  L(z) +

1

N
��(z)�

1

N

⌦
at+1 � y

t+1, z � y
t+1

↵

+

⌧
1

N2
W

>
Wy

t
� 1

N
W

>
x,y

t+1 � z

�
+

1

2
k 1

N
W (y

t+1 � y
t
)k22

� 1

2
k 1

N
W (z � y

t
)k22 (10.384)

174

It follows that

bQ(y
t+1)  bQ(z) +

1

N

⌦
y
t
� y

t+1,yt+1 � z
↵
+

1

2
k 1

N
W (y

t+1 � y
t
)k22 �

1

2
k 1

N
W (z � y

t
)k22

(10.385)

Note that a>
b = ka+bk22�kak22�kbk22

2 , it follows that

⌦
y
t
� y

t+1,yt+1 � z
↵
=

1

2
ky

t
� zk22 �

1

2
ky

t+1 � zk22 �
1

2
ky

t
� y

t+1k22 (10.386)

Together with inequality (10.385), we can achieve that

bQ(y
t+1)  bQ(z) +

1

2N

�
ky

t
� zk22 � ky

t+1 � zk22 � ky
t
� y

t+1k22
�
+

1

2
k 1

N
W (y

t+1 � y
t
)k22

� 1

2
k 1

N
W (z � y

t
)k22 (10.387)

From Lemma 18, we know 1
N
ky

t
� y

t+1k22 � k 1
N
W (y

t+1 � y
t
)k22, it follows that

bQ(y
t+1)  bQ(z) +

1

2N

�
ky

t
� zk22 � ky

t+1 � zk22
�
� 1

2
k 1

N
W (z � y

t
)k22 (10.388)

Lemma 22. (Strictly Monotonic Descent) For a convex function ��(·), let h(·) be

the proximal operator w.r.t ��(·). Denote bQ(y) := 1
2kx� 1

N
Wyk22 + 1

N
��(y), for any

bounded y
t
2 RN , set at+1 = W

>
x+(I � 1

N
W

>
W)y

t
and y

t+1 = h(at+1), then we

have

bQ(y
t+1)  bQ(y

t
)� 1

2N
ky

t+1 � y
t
k22 (10.389)

Proof. From Lemma 21, setting z = y
t
, we can directly get the result.

Theorem. For a convex function ��(·), denote h(·) as the proximal operator of ��(·).
Given a bounded x 2 Rd, set y

t+1 = h
�
W

>
x+(I� 1

N
W

>
W)y

t

�
with 1

N
WW

> = Id.

Denote bQ(y) := 1
2kx � bA(y)k22 + 1

N
��(y) and y

⇤ as an optimal of bQ(·), for T � 1,

we have

T
� bQ(y

T
)� bQ(y⇤)

�
 1

2N
ky0 � y

⇤k22 �
1

2N
ky

T
� y

⇤k22 �
1

2

T�1X

t=0

k 1

N
W (y

t
� y

⇤)k22

� 1

2

T�1X

t=0

t+ 1

N
ky

t+1 � y
t
k22 (10.390)

175

Proof. From Lemma 21, setting z = y
⇤, we can achieve that

bQ(y
t+1)  bQ(y⇤) +

1

2N

�
ky

t
� y

⇤k22 � ky
t+1 � y

⇤k22
�
� 1

2
k 1

N
W (y⇤ � y

t
)k22
(10.391)

Telescope the inequality (10.391) from t = 0 to t = T � 1, we can obtain that

T�1X

t=0

bQ(y
t+1)� T bQ(y⇤)  1

2N
ky0 � y

⇤k22 �
1

2N
ky

T
� y

⇤k22 �
1

2

T�1X

t=0

k 1

N
W (y

t
� y

⇤)k22

(10.392)

From Lemma 22, we know that

bQ(y
t+1)  bQ(y

t
)� 1

2N
ky

t+1 � y
t
k22 (10.393)

It follows that

bQ(y
T
)  bQ(y

t
)� 1

2N

T�1X

i=t

ky
i+1 � y

i
k22 (10.394)

Then, we can achieve that

T bQ(y
T
)� T bQ(y⇤) 

T�1X

t=0

bQ(y
t+1)� T bQ(y⇤)� 1

2N

T�1X

t=0

T�1X

i=t

ky
i+1 � y

i
k22 (10.395)

=
T�1X

t=0

bQ(y
t+1)� T bQ(y⇤)� 1

2N

T�1X

t=0

(t+ 1)ky
t+1 � y

t
k22 (10.396)

Plug inequality (10.392) into inequality (10.396), we obtain that

T
� bQ(y

T
)� bQ(y⇤)

�
 1

2N
ky0 � y

⇤k22 �
1

2N
ky

T
� y

⇤k22 �
1

2

T�1X

t=0

k 1

N
W (y

t
� y

⇤)k22

� 1

2

T�1X

t=0

t+ 1

N
ky

t+1 � y
t
k22 (10.397)

10.25 Proof of Theorem 25

We first show the structured samples B constructed in [117, 119].

Without loss of generality, we assume that d = 2m,N = 2n. Let F 2 Cn⇥n be an

n⇥n discrete Fourier matrix. F k,j = e
2⇡ikj

n is the (k, j)thentry of F , where i =
p
�1.

Let ⇤ = {k1, k2, ..., km} ⇢ {1, ..., n� 1} be a subset of indexes.

176

The structured matrix B can be constructed as Eq.(10.398).

B =
p
n

p
m


ReF ⇤ �ImF ⇤

ImF ⇤ ReF ⇤

�
2 Rd⇥N (10.398)

where Re and Im denote the real and imaginary parts of a complex number, and F ⇤

in Eq. (10.399) is the matrix constructed by m rows of F

F ⇤=
1
p
n

2

64
e

2⇡ik11
n · · · e

2⇡ik1n
n

...
. . .

...

e
2⇡ikm1

n · · · e
2⇡ikmn

n

3

75 2 Cm⇥n. (10.399)

The index set can be constructed by a closed-form solution [119] or by a coordinate

descent method [117].

Specifically, for a prime number n such that m divides n�1, i.e., m|(n�1), we can

employ a closed-form construction as in [119]. Let g denote a primitive root modulo

n. We can construct the index ⇤ = {k1, k2, ..., km} as

⇤ = {g0, g
n�1
m , g

2(n�1)
m , · · · , g

(m�1)(n�1)
m } mod n. (10.400)

The resulted structured matrix B has a bounded mutual coherence, which is

shown in Theorem 32.

Theorem 32. [119] Suppose d = 2m,N = 2n, and n is a prime such that m|(n�1).

Construct matrix B as in Eq.(10.398) with index set ⇤ as Eq.(10.400). Let mutual

coherence µ(B) := maxi 6=j

|b>i bj |
kbik2kbjk2

. Then µ(B) 
p
n

m
.

Remark: The bound of mutual coherence in Theorem 32 is non-trivial when

n < m2. For the case n � m2, we can use the coordinate descent method in [117] to

minimize the mutual coherence.

We now show the orthogonal property of our data-dependent structured samples

D =
p

d
p
N
R

>
B

Proposition 2. Suppose d = 2m,N = 2n. Let D =
p

d
p
N
R

>
B with B constructed

as in Eq.(10.398). Then DD
> = Id and column vector has constant norm, i.e.,

kdjk2 =
p

m

n
, 8j 2 {1, · · · , N}.

Proof. Since DD
> = d

N
BB

> = m

n
BB

> = eB eB
>

, where eB =
p
m

p
n
B. It follows that

eB =


ReF ⇤ �ImF ⇤

ImF ⇤ ReF ⇤

�
2 Rd⇥N (10.401)

177

Let ci 2 C1⇥n be the ith row of matrix F ⇤ 2 Cm⇥n in Eq.(10.399). Let vi 2 R1⇥2n

be the ith row of matrix eB 2 R2m⇥2n in Eq.(10.401). For 1  i, j  m, i 6= j, we

know that

viv
>

i+m
= 0, (10.402)

vi+mv
>

j+m
= viv

>

j
= Re(cic

⇤

j
), (10.403)

vi+mv
>

j
= �viv

>

j+m
= Im(cic

⇤

j
), (10.404)

where ⇤ denotes the complex conjugate, Re(·) and Im(·) denote the real and imaginary

parts of the input complex number.

For a discrete Fourier matrix F , we know that

cic
⇤

j
=

1

n

n�1X

k=0

e
2⇡(i�j)ki

n =

(
1, if i = j

0, otherwise
(10.405)

When i 6= j, from Eq.(10.405), we know cic
⇤

j
= 0. Thus, we have

vi+mv
>

j+m
= viv

>

j
= Re(cic

⇤

j
) = 0, (10.406)

vi+mv
>

j
= �viv

>

j+m
= Im(cic

⇤

j
) = 0, (10.407)

When i = j, we know that vi+mv
>

i+m
= viv

>

i
= cic

⇤

i
= 1.

Put two cases together, also note that d = 2m, we have DD
> = eB eB

>

= Id.

The l2-norm of the column vector of eB is given as

kebjk22 =
1

n

mX

i=1

�
sin2 2⇡kij

n
+ cos2

2⇡kij

n

�
=

m

n
(10.408)

Thus, we have kdjk2 = kebjk22 =
p

m

n
for j 2 {1, · · · ,M}

Lemma 23. Let D =
p

d
p
N
R

>
B, where B is constructed as as in Eq.(10.398) with

index set ⇤ as Eq.(10.400) [119] with N = 2n, d = 2m. 8y 2 RN , kyk0  2k, we

have kDyk22 � kyk22  �n�(2k�1)
p
n�m

n
kyk22

Proof. Denote M = D
>
D. Since the column vector of D has constant norm, i.e.,

178

kdjk22 = m

n
, it follows that

kDyk22 = y
>
My = kdjk22

� NX

i=1

y2
i
+

NX

i=1

NX

j=1,j 6=i

yiyjMij

�
(10.409)

=
m

n
kyk22 +

m

n

NX

i=1

NX

j=1,j 6=i

yiyjMij (10.410)

 m

n
kyk22 +

m

n
µ(D)

� NX

i=1

NX

j=1,j 6=i

|yi||yj|
�

(10.411)

=
m

n
kyk22 +

m

n
µ(D)

� NX

i=1

|yi|
�2 �

NX

i=1

y2
i

!
(10.412)

Since kyk0  2k, we know there is at most 2k non-zero elements among y. Thus, we

know that

kDyk22 
m

n
kyk22 +

m

n
µ(D)

� NX

i=1

|yi|
�2 �

NX

i=1

y2
i

!
(10.413)

 m

n
kyk22 +

m

n
µ(D)

�
2k

NX

i=1

y2
i
�

NX

i=1

y2
i

�
(10.414)

=
m

n
kyk22 +

m

n
µ(D)(2k � 1)kyk22 (10.415)

Since µ(D) = B, from Theorem 32, we know µ(D) 
p
n

m
. It follows that

kDyk22 
m

n
kyk22 +

m

n
µ(D)(2k � 1)kyk22 (10.416)

 m

n
kyk22 +

m

n

(2k � 1)
p
n

m
kyk22 (10.417)

=
(2k � 1)

p
n+m

n
kyk22 (10.418)

It follows that kDyk22 � kyk22 
(2k�1)

p
n+m�n

n
kyk22.

Theorem. (Strictly Monotonic Descent of k-sparse problem) Let L(y) = 1
2kx �

Dyk22, s.t. kyk0  k with D =
p

d
p
N
R

>
B, where B is constructed as as in Eq.(10.398)

with index set ⇤ as Eq.(10.400) [119] with N = 2n, d = 2m. Set y
t+1 = h(at+1) with

sparity k and at+1 = D
>
x+ (I �D

>
D)y

t
, we have

L(y
t+1)  L(y

t
)+

1

2
ky

t+1�at+1k22�
1

2
ky

t
�at+1k22�

n� (2k � 1)
p
n�m

2n
ky

t+1�y
t
k22  L(y

t
)

(10.419)

where h(·) is defined as

h(zj) =

⇢
zj if |zj| is one of the k-highest values of |z| 2 RN

0 otherwise
. (10.420)

179

Proof. Denote L(y) := 1
2kx�Dyk22. It follows that

L(y
t+1) =

1

2
kx�Dy

t+1k22 =
1

2
kx�Dy

t
+Dy

t
�Dy

t+1k22 (10.421)

= L(y
t
) +

⌦
x�Dy

t
,D(y

t
� y

t+1)
↵
+ kD(y

t
� y

t+1)k22 (10.422)

= L(y
t
) +

⌦
D

>
x�D

>
Dy

t
,y

t
� y

t+1

↵
+ kD(y

t
� y

t+1)k22 (10.423)

= L(y
t
) +

⌦
D

>
Dy

t
�D

>
x,y

t+1 � y
t

↵
+ kD(y

t
� y

t+1)k22 (10.424)

Let at+1 = D
>
x+ (I �D

>
D)y

t
, together with Eq.(10.424), we can obtain that

L(y
t+1) = L(y

t
) +

⌦
y
t
� at+1,yt+1 � y

t

↵
+

1

2
kD(y

t+1 � y
t
)k22 (10.425)

= L(y
t
) +

ky
t+1 � at+1k22 � ky

t
� at+1k22 � ky

t+1 � y
t
k22

2
+

1

2
kD(y

t+1 � y
t
)k22

(10.426)

From Lemma 23, we know that

1

2
kD(y

t+1 � y
t
)k22 �

1

2
ky

t+1 � y
t
k22  �n� (2k � 1)

p
n�m

2n
ky

t+1 � y
t
k22 (10.427)

It follows that

L(y
t+1)  L(y

t
) +

1

2
ky

t+1 � at+1k22 �
1

2
ky

t
� at+1k22 �

n� (2k � 1)
p
n�m

2n
ky

t+1 � y
t
k22

(10.428)

Note that y
t+1 := argminy,kyk0k

ky � at+1k22, we know ky
t+1 � at+1k22  ky

t
�

at+1k22. It follows that L(y
t+1)  L(y

t
), in which the equality holds true when

ky
t+1 � at+1k22 = ky

t
� at+1k22 and ky

t+1 � y
t
k22 = 0

10.26 A Better Diagonal Random Rotation for SSF

In [117], a diagonal rotation matrixD is constructed by sampling its diagonal elements

uniformly from {�1,+1}. In this section, we propose a better diagonal random

rotation. Without loss of generality, we assume that d = 2m,N = 2n.

We first generate a diagonal complex matrix D 2 Cm⇥m, in which the diagonal

elements are constructed as

Djj = cos✓j + i sin✓j , 8j 2 {1, · · · ,m} (10.429)

where ✓j, 8j 2 {1, · · · ,m} are i.i.d. samples from the uniform distribution Uni[0, 2⇡),

and i =
p
�1.

180

We then generate a uniformly random permutation ⇧ : {1, · · · , d} ! {1, · · · , d}.
The SSF samples can be constructed as H = ⇧ � eB with eB:

eB =
p
n

p
m

"
ReeF ⇤ �ImeF ⇤

ImeF ⇤ ReeF ⇤

#
2 Rd⇥N (10.430)

where eF ⇤ = DF ⇤.

It is worth noting that H>
H = B

>
B, which means that the proposed the diag-

onal rotation scheme preserved the pairwise inner product of SSF [117]. Moreover,

the SSF with the proposed random rotation maintains O(d) space complexity and

O(n log n) (matrix-vector product) time complexity by FFT.

10.27 Rademacher Complexity

Neural Network Structure: For structured approximated NOK networks (SNOK),

the 1-T layers are given as

y
t+1 = h(D>

Rtx+ (I �D
>
D)y

t
) (10.431)

where Rt are free parameters such that R>

t
Rt = R

>

t
Rt = Id. And D is the scaled

structured spherical samples such that DD
> = Id, and y0 = 0.

The last layer ((T+1)th layer) is given by z = w
>
y
T+1. Consider a L-Lipschitz

continuous loss function `(z, y) : Z ⇥ Y ! [0, 1] with Lipschitz constant L w.r.t the

input z.

Rademacher Complexity: Rademacher complexity of a function class G is

defined as

RN(G) :=
1

N
E
"
sup
g2G

NX

i=1

✏ig(xi)

#
(10.432)

where ✏i, i 2 {1, · · · , N} are i.i.d. samples drawn uniformly from {+1,�1} with

probality P[✏i = +1] = P[✏i = �1] = 1/2. And xi, i 2 {1, · · · , N} are i.i.d. samples

from X .

Theorem. (Rademacher Complexity Bound) Consider a Lipschitz continuous loss

function `(z, y) : Z ⇥ Y ! [0, 1] with Lipschitz constant L w.r.t the input z. Let
è(z, y) := `(z, y) � `(0, y). Let bG be the function class of our (T+1)-layer SNOK

mapping from X to Z. Suppose the activation function |h(y)|  |y| (element-wise),

and the l2-norm of last layer weight is bounded, i.e., kwk2  Bw. Let (xi, yi)Ni=1 be

181

i.i.d. samples drawn from X ⇥Y. Let Y T+1 = [y(1)
T+1, · · · ,y

(N)
T+1] be the T th layer output

with input X. Denote the mutual coherence of Y T+1 as µ⇤, i.e., µ⇤ = µ(Y T+1) =

maxi 6=j

y
(i)>
T+1 y

(j)
T+1

ky
(i)
T+1k2ky

(j)
T+1k2

 1. Then, we have

RN(è� bG) =
1

N
E
"
sup
g2bG

NX

i=1

✏iè(g(xi), yi)

#


LBw

q�
(N � 1)µ⇤ + 1

�

N

vuut
T�1X

i=0

�ikXkF

(10.433)

where � = kI �D
>
Dk22  1, X = [x1, · · · ,xN]. k · k2 and k · kF denote the spectral

norm and the Frobenius norm of input matrix, respectively.

Remark: When the width of NN ND > d, we have � = 1, and
qP

T�1
i=0 �i =

p
T .

In this case, the Rademacher complexity bound has a complexity O(
p
T) w.r.t. the

depth of NN (SNOK).

Proof. Since è is L-Lipschitz continuous function, from the composition rule of

Rademacher complexity, we know that

RN(è� bG)  L RN(bG) (10.434)

182

It follows that

RN(bG) =
1

N
E
"
sup
g2bG

NX

i=1

✏if(xi)

#
(10.435)

=
1

N
E
"

sup
w,{Rt2SO(d)}Tt=1

NX

i=1

✏i
⌦
w,y(i)

T+1

↵
#

(10.436)

=
1

N
E
"

sup
w,{Rt2SO(d)}Tt=1

⌦
w,

NX

i=1

✏iy
(i)
T+1

↵
#

(10.437)

 1

N
E
"

sup
w,{Rt2SO(d)}Tt=1

kwk2
��

NX

i=1

✏iy
(i)
T+1

��
2

#
(Cauchy-Schwarz inequality)

(10.438)

 Bw

N
E
"

sup
{Rt2SO(d)}Tt=1

��
NX

i=1

✏iy
(i)
T+1

��
2

#
(10.439)

=
Bw

N
E

2

4 sup
{Rt2SO(d)}Tt=1

vuut
NX

i=1

��✏iy(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

3

5 (10.440)

=
Bw

N
E

2

4 sup
{Rt2SO(d)}Tt=1

vuut
NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

3

5 (10.441)

=
Bw

N
E

2

4

vuut sup
{Rt2SO(d)}Tt=1

NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

3

5 (10.442)

 Bw

N

vuutE
"

sup
{Rt2SO(d)}Tt=1

NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

#
(10.443)

Inequality (10.443) is because of the Jensen inequality and concavity of the square

root function.

Note that |✏i| = 1, 8i 2 {1, · · · , N}, and the mutual coherence of Y T+1 is µ⇤, i.e.,

183

µ⇤ = µ(Y T+1)  1, it follows that

RN(bF)  Bw

N

vuutE
"

sup
{Rt2SO(d)}Tt=1

NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

#
(10.444)

 Bw

N

vuut sup
{Rt2SO(d)}Tt=1

NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

��y(i)
T+1

��
2

��y(j)
T+1

��
2
µ⇤ (10.445)

=
Bw

N

vuut sup
{Rt2SO(d)}Tt=1

(1� µ⇤)
NX

i=1

��y(i)
T+1

��2
2
+ µ⇤

� NX

i=1

��y(i)
T+1

��
2

�2
(10.446)

 Bw

N

r
sup

{Rt2SO(d)}Tt=1

(1� µ⇤)kY T+1k2F +Nµ⇤kY T+1k2F Cauchy-Schwarz

(10.447)

 Bw

N

r
sup

{Rt2SO(d)}Tt=1

�
(N � 1)µ⇤ + 1

�
kY T+1k2F (10.448)

where Y T+1 = [y(1)
T+1, · · · ,y

(N)
T+1] and k · kF denotes the Frobenius norm.

Since |h(Y)|  |Y | (element-wise), (e.g., ReLU, max-pooling, soft-thresholding),

it follows that

kY T+1k2F = kh
�
D

>
RTX + (I �D

>
D)Y T

�
k2
F

(10.449)

 kD>
RTX + (I �D

>
D)Y Tk2F (10.450)

In addition, we have

kD>
RTX + (I �D

>
D)Y Tk2F = kD>

RTXk2
F
+ k(I �D

>
D)Y Tk2F

+ 2
⌦
D

>
RTX, (I�D

>
D)Y T

↵
(10.451)

Note that DD
> = Id and R

>

T
RT = RTR

>

T
= Id, we have

kD>
RTXk2

F
= kXk2

F
(10.452)

⌦
D

>
RTX, (I�D

>
D)Y T

↵
= tr

�
X

>
R

>

T
D(I�D

>
D)Y T

�
= 0 (10.453)

It follows that

kD>
RTX + (I �D

>
D)Y Tk2F = kD>

RTXk2
F
+ k(I �D

>
D)Y Tk2F

+ 2
⌦
D

>
RTX, (I�D

>
D)Y T

↵
(10.454)

= kXk2
F
+ k(I �D

>
D)Y Tk2F (10.455)

 kXk2
F
+ kI �D

>
Dk22kY Tk2F = kXk2

F
+ �ky

T
k2
F

(10.456)

184

Recursively apply the above procedure from t = T to t = 1, together with Y 0 = 0,

we can achieve that

kY T+1k2F  kXk2
F

� T�1X

i=0

�i
�

(10.457)

Together with inequality (10.448), it follows that

RN(bG)  Bw

N

r
sup

{Rt2SO(d)}Tt=1

�
(N � 1)µ⇤ + 1

�
kY T+1k2F (10.458)


Bw

q�
(N � 1)µ⇤ + 1

�

N

vuut
T�1X

i=0

�ikXkF (10.459)

Finally, we obtain that

RN(è� bG) =
1

N
E
"
sup
g2bG

NX

i=1

✏iè(g(xi), yi)

#


LBw

q�
(N � 1)µ⇤ + 1

�

N

vuut
T�1X

i=0

�ikXkF

(10.460)

Now, we show that � = kI �D
>
Dk22  1. From the definition of spectral norm, we

have that

� = kI �D
>
Dk22 = sup

kyk2=1
k(I �D

>
D)yk22 (10.461)

= sup
kyk2=1

y
>(I �D

>
D)>(I �D

>
D)y (10.462)

= sup
kyk2=1

y
>
�
I � 2D>

D +D
>
DD

>
D
�
y (10.463)

= sup
kyk2=1

y
>(I �D

>
D)y (10.464)

= 1� min
kyk2=1

kDyk22  1 (10.465)

10.28 Generalization Bound

Theorem. Consider a Lipschitz continuous loss function `(z, y) : Z ⇥ Y ! [0, 1]

with Lipschitz constant L w.r.t the input z. Let è(z, y) := `(z, y) � `(0, y). Let bG
be the function class of our (T+1)-layer SNOK mapping from X to Z. Suppose the

activation function |h(y)|  |y| (element-wise), and the l2-norm of last layer weight

is bounded, i.e., kwk2  Bw. Let (xi, yi)Ni=1 be i.i.d. samples drawn from X ⇥ Y. Let

185

Y T+1 be the T th layer output with input X. Denote the mutual coherence of Y T+1 as

µ⇤, i.e., µ⇤ = µ(Y T+1)  1. Then, for 8N and 8�, 0 < � < 1, with a probability at

least 1� �, 8g 2 bG, we have

E
⇥
`(g(X), Y)

⇤
 1

N

NX

i=1

`(g(xi), yi) +
LBw

q�
(N � 1)µ⇤ + 1

�

N

vuut
T�1X

i=0

�ikXkF +

r
8 ln(2/�)

N

(10.466)

where � = kI � D
>
Dk22  1, X = [x1, · · · ,xN], and k · kF denotes the Frobenius

norm.

Proof. Plug the Rademacher complexity bound of SNOK (our Theorem 26) into the

Theorem 8 in [21], we can obtain the bound.

10.29 Rademacher Complexity and Generaliza-
tion Bound for General Structured Neural
Network Family

Neural Network Structure: For a more general structured neural network family

that includes SNOK, the 1-T layers are given as

y
t+1 = h(D>

t
x+ (I �D

>

t
Dt)yt

) (10.467)

where Dt 2 RdD⇥d are free parameters such that DtD
>

t
= Id and dD > d, and

y0 = 0.

The last layer ((T+1)th layer) is given by z = w
>
y
T+1. Consider a L-Lipschitz

continuous loss function `(z, y) : Z ⇥ Y ! [0, 1] with Lipschitz constant L w.r.t the

input z.

Theorem 33. (Rademacher Complexity Bound) Consider a Lipschitz continuous loss

function `(z, y) : Z ⇥ Y ! [0, 1] with Lipschitz constant L w.r.t the input z. Let
è(z, y) := `(z, y) � `(0, y). Let bG be the function class of the above (T+1)-layer

structured NN mapping from X to Z. Suppose the activation function |h(y)|  |y|
(element-wise), and the l2-norm of last layer weight is bounded, i.e., kwk2  Bw.

Let (xi, yi)Ni=1 be i.i.d. samples drawn from X ⇥ Y. Let Y T+1 = [y(1)
T+1, · · · ,y

(N)
T+1] be

the T th layer output with input X. Denote the mutual coherence of Y T+1 as µ⇤, i.e.,

186

µ⇤ = µ(Y T+1) = maxi 6=j

y
(i)>
T+1 y

(j)
T+1

ky
(i)
T+1k2ky

(j)
T+1k2

 1. Then, we have

RN(è� bG) =
1

N
E
"
sup
g2bG

NX

i=1

✏iè(g(xi), yi)

#


LBw

q
T
�
(N � 1)µ⇤ + 1

�

N
kXkF

(10.468)

where X = [x1, · · · ,xN]. k · k2 and k · kF denote the spectral norm and the Frobenius

norm of input matrix, respectively.

Remark: The Rademacher complexity bound has a complexity O(
p
T) w.r.t. the

depth of NN.

Proof. Since è is L-Lipschitz continuous function, from the composition rule of

Rademacher complexity, we know that

RN(è� bG)  L RN(bG) (10.469)

187

It follows that

RN(bG) =
1

N
E
"
sup
g2bG

NX

i=1

✏ig(xi)

#
(10.470)

=
1

N
E
"

sup
w,{Dt2M}

T
t=1

NX

i=1

✏i
⌦
w,y(i)

T+1

↵
#

(10.471)

=
1

N
E
"

sup
w,{Dt2M}

T
t=1

⌦
w,

NX

i=1

✏iy
(i)
T+1

↵
#

(10.472)

 1

N
E
"

sup
w,{Dt2M}

T
t=1

kwk2
��

NX

i=1

✏iy
(i)
T+1

��
2

#
(Cauchy-Schwarz inequality)

(10.473)

 Bw

N
E
"

sup
{Dt2M}

T
t=1

��
NX

i=1

✏iy
(i)
T+1

��
2

#
(10.474)

=
Bw

N
E

2

4 sup
{Dt2M}

T
t=1

vuut
NX

i=1

��✏iy(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

3

5 (10.475)

=
Bw

N
E

2

4 sup
{Dt2M}

T
t=1

vuut
NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

3

5 (10.476)

=
Bw

N
E

2

4

vuut sup
{Dt2M}

T
t=1

NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

3

5 (10.477)

 Bw

N

vuutE
"

sup
{Dt2M}

T
t=1

NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

#
(10.478)

Inequality (10.478) is because of the Jensen inequality and concavity of the square

root function.

Note that |✏i| = 1, 8i 2 {1, · · · , N}, and the mutual coherence of Y T+1 is µ⇤, i.e.,

188

µ⇤ = µ(Y T+1)  1, it follows that

RN(bG)  Bw

N

vuutE
"

sup
{Dt2M}

T
t=1

NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

✏i✏jy
(i)>
T+1 y

(j)
T+1

#
(10.479)

 Bw

N

vuut sup
{Dt2M}

T
t=1

NX

i=1

��y(i)
T+1

��2
2
+

NX

i=1

NX

j=1,j 6=i

��y(i)
T+1

��
2

��y(j)
T+1

��
2
µ⇤ (10.480)

=
Bw

N

vuut sup
{Dt2M}

T
t=1

(1� µ⇤)
NX

i=1

��y(i)
T+1

��2
2
+ µ⇤

� NX

i=1

��y(i)
T+1

��
2

�2
(10.481)

 Bw

N

r
sup

{Dt2M}
T
t=1

(1� µ⇤)kY T+1k2F +Nµ⇤kY T+1k2F Cauchy-Schwarz

(10.482)

 Bw

N

r
sup

{Dt2M}
T
t=1

�
(N � 1)µ⇤ + 1

�
kY T+1k2F (10.483)

where Y T+1 = [y(1)
T+1, · · · ,y

(N)
T+1] and k · kF denotes the Frobenius norm.

Since |h(Y)|  |Y | (element-wise), (e.g., ReLU, max-pooling, soft-thresholding),

it follows that

kY T+1k2F = kh
�
D

>

T
X + (I �D

>

T
DT)Y T

�
k2
F

(10.484)

 kD>

T
X + (I �D

>

T
DT)Y Tk2F (10.485)

In addition, we have

kD>

T
X + (I �D

>

T
DT)Y Tk2F = kD>

T
Xk2

F
+ k(I �D

>

T
DT)Y Tk2F + 2

⌦
D

>

T
X, (I�D

>

T
DT)Y T

↵

(10.486)

Note that DTD
>

T
= Id, we have

kD>

T
Xk2

F
= kXk2

F
(10.487)

⌦
D

>

T
X, (I�D

>

T
DT)Y T

↵
= tr

�
X

>

T
DT (I�D

>

T
DT)Y T

�
= 0 (10.488)

It follows that

kD>

T
X + (I �D

>

T
DT)Y Tk2F = kD>

T
Xk2

F
+ k(I �D

>

T
DT)Y Tk2F + 2

⌦
D

>

T
X, (I�D

>

T
DT)Y T

↵

(10.489)

= kXk2
F
+ k(I �D

>

T
DT)Y Tk2F (10.490)

 kXk2
F
+ kI �D

>

T
DTk22kY Tk2F = kXk2

F
+ ky

T
k2
F

(10.491)

189

Recursively apply the above procedure from t = T to t = 1, together with Y 0 = 0,

we can achieve that

kY T+1k2F  TkXk2
F

(10.492)

Together with inequality (10.483), it follows that

RN(bG)  Bw

N

r
sup

{Dt2M}
T
t=1

�
(N � 1)µ⇤ + 1

�
kY T+1k2F (10.493)


Bw

q
T
�
(N � 1)µ⇤ + 1

�

N
kXkF (10.494)

Finally, we obtain that

RN(è� bG) =
1

N
E
"
sup
g2bG

NX

i=1

✏iè(g(xi), yi)

#


LBw

q
T
�
(N � 1)µ⇤ + 1

�

N
kXkF

(10.495)

Theorem 34. Consider a Lipschitz continuous loss function `(z, y) : Z ⇥ Y ! [0, 1]

with Lipschitz constant L w.r.t the input z. Let è(z, y) := `(z, y) � `(0, y). Let bG be

the function class of our general (T+1)-layer structured NN mapping from X to Z.

Suppose the activation function |h(y)|  |y| (element-wise), and the l2-norm of last

layer weight is bounded, i.e., kwk2  Bw. Let (xi, yi)Ni=1 be i.i.d. samples drawn from

X ⇥Y. Let Y T+1 be the T th layer output with input X. Denote the mutual coherence

of Y T+1 as µ⇤, i.e., µ⇤ = µ(Y T+1)  1. Then, for 8N and 8�, 0 < � < 1, with a

probability at least 1� �, 8g 2 bG, we have

E
⇥
`(g(X), Y)

⇤
 1

N

NX

i=1

`(g(xi), yi) +
LBw

q
T
�
(N � 1)µ⇤ + 1

�

N
kXkF +

r
8 ln(2/�)

N

(10.496)

where X = [x1, · · · ,xN], and k · kF denotes the Frobenius norm.

Proof. Plug the Rademacher complexity bound of general structured NN (our Theo-

rem 33) into the Theorem 8 in [21], we can obtain the bound.

190

10.30 Explanation of Theorem 28 for robust learn-
ing

Theorem. (Monotonic Relationship) ([77] Let p(x, y) and q(x, y) be the train-

ing and test density,respectively. Define r(x, y) = q(x, y)/p(x, y) and ri = r(xi, yi).

Let l(by, y) = 1
�
sign(by) 6= y

�
and l(by, y) = 1

�
argmaxk(byk) 6= y

�
be 0-1 loss for bi-

nary classification and multi-class classification, respectively. Let f(·) be convex with

f(1) = 0. Define risk R(✓), empirical risk bR(✓), adversarial risk Radv(✓) and empir-

ical adversarial risk bRadv(✓) as

R(✓) = Ep(x,y) [l(g✓(x), y)] (10.497)

bR(✓) =
1

n

Xn

i=1
l(g✓(xi), yi) (10.498)

Radv(✓) = sup
r2Uf

Ep(x,y) [r(x, y)l(g✓(x), y)] (10.499)

bRadv(✓) = sup
r2bUf

1

n

Xn

i=1
ril(g✓(xi), yi), (10.500)

where Uf =
�
r(x, y)

��Ep(x,y) [f (r(x, y))]  �,Ep(x,y) [r(x, y)] = 1, r(x, y) � 0, 8(x, y) 2 X ⇥ Y

and bUf =
�
r
�� 1

n

P
n

i=1 f(ri)  �, 1
n

P
n

i=1 ri = 1, r � 0

. Then we have that

If Radv(✓1) < 1, then R(✓1) < R(✓2) () Radv(✓1) < Radv(✓2). (10.501)

If Radv(✓1) = 1, then R(✓1)  R(✓2) () Radv(✓2) = 1. (10.502)

The same monotonic relationship holds between their empirical approximation: bR(✓)

and bRadv.

[77] show that minimizing (empirical) risk is equivalent to minimize the (empir-

ical) adversarial risk (worst-case risk) for 0-1 loss. Thus, we can directly optimize

the risk instead of the worst-case risk. Specifically, suppose we have an observable

training distribution p(x, y). The observable distribution p(x, y) may be corrupted

from an underlying clean distribution q(x, y). We train a model based on the training

distribution p(x, y), and we want our model to perform well on the clean distribu-

tion q(x, y). Since we do not know the clean distribution q(x, y), we want our model

to perform well for the worst-case estimate of the clean distribution, with the as-

sumption that the f -divergence between the corrupted distribution p and the clean

distribution q is bounded by �. Note that the underlying clean distribution is fixed

but unknown, given the corrupted training distribution, the smallest � that bounds

the divergence between the corrupted distribution and clean distribution measures

191

the intrinsic di�culty of the corruption, and it is also fixed and unknown. The corre-

sponding worst-case distribution w.r.t the smallest � is an estimate of the true clean

distribution, and this worst-case risk upper bounds the risk of the true clean distri-

bution. In addition, this bound is tighter than the other worst-case risks w.r.t larger

�. Formally, the upper bound w.r.t the smallest � is given as

G(✓) := sup
q2eUf

Eq(x,y) [l(g✓(x), y)] (10.503)

where eUf is an equivalent constrainted set w.r.t Uf for q(x, y). Then, we have

G(✓) := sup
q2eUf

Eq(x,y) [l(g✓(x), y)] = sup
r2Uf

Ep(x,y) [r(x, y)l(g✓(x), y)] (10.504)

When l(·) is 0-1 loss, from Theorem 1, we know that minimize G(✓) is equivalent to

minimize eG(✓). Thus, we can minimize eG(✓) instead of G(✓).

eG(✓) := Ep(x,y) [l(g✓(x), y)] (10.505)

Minimize the Eq.(10.505) enables us to minimize the Eq.(10.503) without knowing

the true divergence parameter � beforehand. Usually, minimizing the upper bound

can decrease the true risk under clean distribution. Particularly, when the clean

distribution coincides with the worst-case estimate w.r.t the smallest �, minimizing

the risk under the corrupted training distribution leads to the same minimizer as

minimizing the risk under the clean distribution.

Relationship between label corruption and general corruption

Label corruption is a special case of general corruption. Label corruption restricts

the corruption in the space Y instead of the space X ⇥Y . That is to say, the training

distribution p(x) is same as the clean distribution q(x) over X . Then, we have the

robust risk for label corruption as

Gy(✓) := sup
q2eUf\H

Eq(x,y) [l(g✓(x), y)] (10.506)

where H := {q(x, y) |q(x) = p(x), 8(x, y) 2 X ⇥ Y }. The supremum in Gy(✓) is taken

over eUf \ H, while the supremum in G(✓) is taken over eUf . Due to the additional

constrain q(x) = p(x), 8(x, y) 2 X ⇥ Y , we thus know that the robust risk Gy(✓) is

bounded by G(✓), i.e., Gy(✓)  G(✓). Moreover, it is more piratical and important

to be robust for both label corruption and feature corruption.

192

10.31 Proof of Theorem 29

Proof. Because 1
�
u < 0

�
 l(u), we have

P
n

i=1 l(ui) �
P

n

i=1 1
�
ui < 0

�
. Then

Q (u) = min
v2{0,1}n

max
�Xn

i=1
vil(ui), n�

Xn

i=1
vi +

Xn

i=1
1
�
ui < 0

��
(10.507)

 max
�Xn

i=1
l(ui), n�

Xn

i=1
1 +

Xn

i=1
1
�
ui < 0

��
(10.508)

= max
�Xn

i=1
l(ui),

Xn

i=1
1
�
ui < 0

��
(10.509)

=
Xn

i=1
l(ui) (10.510)

Since loss bJ(u) =
P

n

i=1 l(ui), we obtain Q (u)  bJ (u).

On the other hand, we have that

Q (u) = min
v2{0,1}n

max
�Xn

i=1
vil(ui), n�

Xn

i=1
vi +

Xn

i=1
1
�
ui < 0

��

� min
v2{0,1}n

n�
Xn

i=1
vi +

Xn

i=1
1
�
ui < 0

�
(10.511)

=
Xn

i=1
1
�
ui < 0

�
(10.512)

Since J(u) =
P

n

i=1 1
�
ui < 0

�
, we obtain Q (u) � J (u)

10.32 Proof of Corollary 4

Proof. Since n = mb, similar to the proof of Q (u)  bJ (u), we have

bQ (u) =
Xb

j=1
min

v2{0,1}m
max

�Xm

i=1
vijl(uij),m�

Xm

i=1
vij +

Xm

i=1
1
�
uij < 0

��


Xb

j=1
max

�Xm

i=1
l(uij),m�

Xm

i=1
1 +

Xm

i=1
1
�
uij < 0

��
(10.513)

=
Xb

j=1
max

�Xm

i=1
l(uij),

Xm

i=1
1
�
uij < 0

��
(10.514)

=
Xb

j=1

Xm

i=1
l(uij) = bJ (u) (10.515)

193

On the other hand, since the group (batch) separable sum structure, we have that

bQ (u) =
Xb

j=1
min

v2{0,1}m
max

�Xm

i=1
vijl(uij),m�

Xm

i=1
vij +

Xm

i=1
1
�
uij < 0

��

= min
v2{0,1}n

Xb

j=1
max

�Xm

i=1
vijl(uij),m�

Xm

i=1
vij +

Xm

i=1
1
�
uij < 0

��

(10.516)

� min
v2{0,1}n

max
� bX

j=1

mX

i=1

vijl(uij), n�
bX

j=1

mX

i=1

vij +
bX

j=1

mX

i=1

1
�
uij < 0

��

(10.517)

= Q (u) � J (u) (10.518)

10.33 Proof of Partial Optimization Theorem
(Theorem 31)

Proof. For simplicity, let li = l(ui), i 2 {1, ..., n}. Without loss of generality, assume

l1  l2 · · ·  ln. Let v⇤ be the solution obtained by Algorithm 13. Assume there exits

a v such that

max
� nP
i=1

vili, C �
nP

i=1
vi
�
< max

� nP
i=1

v⇤
i
li, C �

nP
i=1

v⇤
i

�
. (10.519)

Let T =
nP

i=1
vi and T ⇤ =

nP
i=1

v⇤
i
.

Case 1: If T = T ⇤, then there exists an vk = 1 and v⇤
k
= 0. From Algorithm

13, we know k > T ⇤ (v⇤
k
= 0) k > T ⇤) and lk � lj, j 2 {1, ..., T ⇤}. Then we know

nP
i=1

v⇤
i
li 

nP
i=1

vili. Thus, we can achieve that

max
� nX

i=1

v⇤
i
li, C �

nX

i=1

v⇤
i

�
= max(

nX

i=1

v⇤
i
li, C �

nX

i=1

vi) (10.520)

 max
� nX

i=1

vili, C �
nX

i=1

vi
�
. (10.521)

This contradicts the assumption in Eq.(10.519)

Case 2: If T > T ⇤, then there exists an vk = 1 and v⇤
k
= 0. Let LT ⇤ =

T
⇤P

i=1
li. Since

lk � 0, we have LT ⇤ + lk � LT ⇤ . From Algorithm 13, we know that LT⇤ + lk > C�T ⇤.

194

Thus we obtain that

max
� nX

i=1

vili, C �
nX

i=1

vi
�
� LT ⇤ + lk (10.522)

� max
�
LT ⇤ , C � T ⇤

�
(10.523)

= max
� nX

i=1

v⇤
i
li, C �

nX

i=1

v⇤
i

�
(10.524)

This contradicts the assumption in Eq.(10.519)

Case 3: If T < T ⇤, we obtain C � T � C � T ⇤ + 1. Then we can achieve that

max
� nX

i=1

v⇤
i
li, C �

nX

i=1

v⇤
i

�
= max

�
LT ⇤ , C � T ⇤

�
(10.525)

 C + 1� T ⇤ (10.526)

 C � T (10.527)

= C �
Xn

i=1
vi (10.528)

 max
� nX

i=1

vili, C �
nX

i=1

vi
�
. (10.529)

This contradicts the assumption in Eq.(10.519).

Finally, we conclude that v⇤ obtained by Algorithm 13 is the minimum of the

optimization problem given in (8.13).

10.34 Proof of Proposition 2

Proof. Note that T ⇤ =
nP

i=1
v⇤
i
, from the condition of v⇤

i
= 1 in Algorithm 13, we know

that LT ⇤  C + 1 � T ⇤. From the condition of v⇤
k
= 0 in Algorithm 13, we know

that LT ⇤+1 > C � T ⇤. Because l(ui) � 1
�
ui < 0

�
� 0 for i 2 {1, ..., n}, we have

LT ⇤+1 = LT ⇤ + l(uT ⇤+1) � LT ⇤ . Thus, we obtain LT ⇤+1 > max(LT ⇤ , C � T ⇤). By

substitute the optimum v⇤ into the optimization function, we obtain that

min
v2{0,1}n

max
�Xn

i=1
vil(ui), C �

Xn

i=1
vi
�

(10.530)

= max
�Xn

i=1
v⇤
i
l(ui), C �

Xn

i=1
v⇤
i

�
(10.531)

= max(LT ⇤ , C � T ⇤) (10.532)

195

10.35 Proof of Theorem 30

Proof. We first prove that objective (8.11) is tighter than the loss objective bJ(u) in
Eq.(8.8). After this, we prove that objective (8.11) is an upper bound of the 0/1 loss

defined in equation (8.7).

For simplicity, let li = l(ui), we obtain that

E (u) = min
v2{0,1}n

max(
nX

i=1

vil(ui), n�
nX

i=1

vi) (10.533)

 max(
nX

i=1

l(ui), (n�
nX

i=1

1)) (10.534)

=
nX

i=1

l(ui). (10.535)

Note that bJ (u) =
nP

i=1
l(ui), thus, we have E (u)  bJ (u).

Without loss of generality, assume l1  l2 · · ·  ln. Let Li =
iP

j=1
lj, T =

nP
i=1

v⇤
i
,

where v⇤=[v⇤1, v
⇤

2 · · · v⇤n]T is the optimum of v for fixed u. Let k =
nP

i=1
1(ui � 0). Then

we achieve that the 0/1 loss J(u) is as follows:

J(u) =
nX

i=1

1(ui < 0)=n� k. (10.536)

From Algorithm 1 with C = n, we achieve that LT  n�T +1 and LT+1 > n�T .

Case 1: If k � T , we can achieve that

2E (u)� J(u) = 2max(LT , n� T)� (n� k) (10.537)

� 2(n� T)� (n� k) (10.538)

= n+ k � 2T � 0.

Case 2: If k < T, n� T � LT , we can obtain that

2E (u)� J(u) = 2(n� T)� (n� k) = n+ k � 2T. (10.539)

Since k < T , if follows that

LT = Lk+
TX

j=k+1

lj � Lk+
TX

j=k+1

1 (10.540)

= Lk + T � k (10.541)

� T � k. (10.542)

196

Together with n� T � LT , we can obtain that

n� T � LT � T � k) n+ k � 2T � 0. (10.543)

Thus, we can achieve that

2E (u)� J(u) = n+ k � 2T � 0. (10.544)

Case 3: If k < T, n� T < LT , we can obtain that

2E (u)� J(u) = 2max(LT , n� T)� (n� k) (10.545)

= 2LT � (n� k) (10.546)

> (n� T) + LT � n+k. (10.547)

From (10.542), we have LT � T � k. Together with (10.547), it follows that

2E (u)� J(u) > (n� T) + (T � k)� n+k � 0. (10.548)

Finally, we can achieve that J(u)  2E (u)  2 bJ (u) .

10.36 Proof of Corollary 5

Proof. Since n = mb, similar to the proof of bQ (u)  bJ (u), we have

bE (u) =
Xb

j=1
min

v2{0,1}m
max

�Xm

i=1
vijl(uij),m�

Xm

i=1
vij
�


Xb

j=1
max

�Xm

i=1
l(uij),m�

Xm

i=1
1
�

(10.549)

=
Xb

j=1
max

�Xm

i=1
l(uij), 0

�
(10.550)

=
Xb

j=1

Xm

i=1
l(uij) = bJ (u) (10.551)

On the other hand, since the group (batch) separable sum structure, we have that

bE (u) =
Xb

j=1
min

v2{0,1}m
max

�Xm

i=1
vijl(uij),m�

Xm

i=1
vij
�

= min
v2{0,1}n

Xb

j=1
max

�Xm

i=1
vijl(uij),m�

Xm

i=1
vij
�

(10.552)

� min
v2{0,1}n

max
� bX

j=1

mX

i=1

vijl(uij), n�
bX

j=1

mX

i=1

vij
�

(10.553)

= E (u) (10.554)

Together with Theorem 30, we obtain that J(u)  2E (u)  2 bE (u)  2bJ (u)

197

10.37 Multi-Class Extension

For multi-class classification, denote the groudtruth label as y 2 {1, ..., K}. Denote

the classification prediction (the last layer output of networks before loss function) as

ti, i 2 {1, ..., K}. Then, the classification margin for multi-class classification can be

defined as follows

u = ty �max
i 6=y

ti. (10.555)

We can see that 1
�
u < 0

�
= 1

�
ty �max

i 6=y

ti < 0
�
is indeed the 0-1 loss for multi-class

classification.

With the classification margin u, we can compute the base loss l(u) � 1
�
u < 0

�
.

In this work, we employ the hinge loss. As we need the upper bound of 0-1 loss, the

multi-class hard hinge loss function [127] can be defined as

H(t, y) = max(1� u, 0) = max(1� ty +max
i 6=y

ti, 0). (10.556)

The multi-class hard hinge loss in Eq.(10.556) is not easy to optimize for deep

networks. We propose a novel soft multi-class hinge loss function as follows:

S(t, y) =

8
<

:

max(1� ty +max
i 6=y

ti, 0) , ty �max
i 6=y

ti � 0

max(1� ty + LogSumExp(t), 0) , ty �max
i 6=y

ti < 0.
(10.557)

The soft hinge loss employs the LogSumExp function to approximate the max function

when the classification margin is less than zero, i.e., misclassification case. Intuitively,

when the sample is misclassified, it is far away from being correctly separate by a

positive margin (e.g. margin u � 1). In this situation, a smooth loss function can

help speed up gradient update. Because LogSumExp(t) > maxi2{1,···K} ti we know

that the soft hinge loss is an upper bound of the hard hinge loss, i.e., S(t, y) � H(t, y) .

Moreover, we can obtain a new weighted loss F (t, y; �) = �S(t, y)+(1��)H(t, y), � 2
[0, 1] that is also an upper bound of 0-1 loss.

10.38 Evaluation of E�ciency of the Proposed
Soft-hinge Loss

We compare our soft multi-class hinge loss with hard multi-class hinge loss [127] on

CIFAR100 dataset training with Adam and SGD optimizer, respectively. We keep

both the network architecture and hyperparameters same. We employ the default

198

(a) Training with Adam optimizer (b) Training with SGD optimizer

Figure 10.1: Training/Test accuracy for soft and hard hinge loss with di↵erent
optimizer on CIFAR100

learning rate and momentums of Adam optimizer in PyTorch toolbox, i.e. lr =

10�3, �1 = 0.9, �2 = 0.999. For SGD optimizer, the learning rate (lr) and momentum

(⇢) are set to lr = 10�2 and ⇢ = 0.9 respectively.

The pictures of training/test accuracy v.s number of epochs are presented in Fig-

ure 10.1. We can observe that both the training accuracy and the test accuracy of our

soft hinge loss increase greatly fast as the number of epochs increase. In contrast, the

training and test accuracy of hard hinge loss grow very slowly. The training accuracy

of soft hinge loss can arrive 100% trained with both optimizers. Both training and

test accuracy of soft hinge loss are consistently better than hard hinge loss. In addi-

tion, training accuracy of hard hinge loss can also reach 100% when SGD optimizer

is used. However, its test accuracy is lowever than that of soft hinge loss.

199

References

[1] Dirk Nuyens Adrian Ebert, Hernan Leövey. Successive coordinate search and

component-by-component construction of rank-1 lattice rules. arXiv preprint

arXiv:1703.06334, 2018.

[2] Youhei Akimoto and Nikolaus Hansen. Diagonal acceleration for covariance

matrix adaptation evolution strategies. Evolutionary computation, pages 1–30,

2019.

[3] Youhei Akimoto, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi. Bidirec-

tional relation between cma evolution strategies and natural evolution strate-

gies. In International Conference on Parallel Problem Solving from Nature,

pages 154–163. Springer, 2010.

[4] Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn e�ciently, going

beyond kernels? arXiv preprint arXiv:1905.10337, 2019.

[5] Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep

learning performs deep learning. arXiv preprint arXiv:2001.04413, 2020.

[6] Shun-Ichi Amari. Natural gradient works e�ciently in learning. Neural compu-

tation, 10(2):251–276, 1998.

[7] Shun-ichi Amari. Information geometry and its applications, volume 194.

Springer, 2016.

[8] Senjian An, Farid Boussaid, and Mohammed Bennamoun. How can deep rec-

tifier networks achieve linear separability and preserve distances? In ICML,

pages 514–523, 2015.

[9] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and

Ruosong Wang. On exact computation with an infinitely wide neural net. arXiv

preprint arXiv:1904.11955, 2019.

200

[10] Bouhari Arouna. Adaptative monte carlo method, a variance reduction tech-

nique. Monte Carlo Methods and Applications, 10(1):1–24, 2004.

[11] Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Em-

manuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron

Courville, Yoshua Bengio, et al. A closer look at memorization in deep net-

works. In ICML, pages 233–242, 2017.

[12] Charles Audet and Warren Hare. Derivative-free and blackbox optimization.

Springer, 2017.

[13] Peter Auer. Using confidence bounds for exploitation-exploration trade-o↵s.

Journal of Machine Learning Research, 3(Nov):397–422, 2002.

[14] Haim Avron, Vikas Sindhwani, Jiyan Yang, and Michael W Mahoney. Quasi-

monte carlo feature maps for shift-invariant kernels. Journal of Machine Learn-

ing Research, 17(120):1–38, 2016.

[15] Haim Avron, Vikas Sindhwani, Jiyan Yang, and Michael W Mahoney. Quasi-

monte carlo feature maps for shift-invariant kernels. The Journal of Machine

Learning Research, 17(1):4096–4133, 2016.

[16] Katy S Azoury and Manfred K Warmuth. Relative loss bounds for on-line den-

sity estimation with the exponential family of distributions. Machine Learning,

43(3):211–246, 2001.

[17] Thomas Back, Frank Ho↵meister, and Hans-Paul Schwefel. A survey of evolu-

tion strategies. In Proceedings of the fourth international conference on genetic

algorithms, volume 2. Morgan Kaufmann Publishers San Mateo, CA, 1991.

[18] Ainesh Bakshi, Rajesh Jayaram, and David P Woodru↵. Learning two layer

rectified neural networks in polynomial time. In Conference on Learning Theory,

pages 195–268. PMLR, 2019.

[19] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-

convex stochastic optimization via conditional gradient and gradient updates.

In Advances in Neural Information Processing Systems, pages 3455–3464, 2018.

201

[20] Juan Cruz Barsce, Jorge A Palombarini, and Ernesto C Mart́ınez. Towards

autonomous reinforcement learning: Automatic setting of hyper-parameters us-

ing bayesian optimization. In Computer Conference (CLEI), 2017 XLIII Latin

American, pages 1–9. IEEE, 2017.

[21] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexi-

ties: Risk bounds and structural results. Journal of Machine Learning Research,

3(Nov):463–482, 2002.

[22] Matthew James Beal et al. Variational algorithms for approximate Bayesian

inference. university of London London, 2003.

[23] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-

riculum learning. In ICML, pages 41–48. ACM, 2009.

[24] Felix Berkenkamp, Angela P Schoellig, and Andreas Krause. No-regret bayesian

optimization with unknown hyperparameters. Journal of Machine Learning

Research, 20:50, 2019.

[25] Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, and Volkan Cevher. Ad-

versarially robust optimization with gaussian processes. In Advances in Neural

Information Processing Systems, pages 5765–5775, 2018.

[26] Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher. Trun-

cated variance reduction: A unified approach to bayesian optimization and

level-set estimation. In Advances in Neural Information Processing Systems,

pages 1507–1515, 2016.

[27] Digvijay Boob and Guanghui Lan. Theoretical properties of the global optimizer

of two layer neural network. arXiv preprint arXiv:1710.11241, 2017.

[28] J Brauchart, E Sa↵, I Sloan, and R Womersley. Qmc designs: optimal order

quasi monte carlo integration schemes on the sphere. Mathematics of computa-

tion, 83(290):2821–2851, 2014.

[29] Johann S Brauchart and Peter J Grabner. Distributing many points on spheres:

minimal energy and designs. Journal of Complexity, 31(3):293–326, 2015.

[30] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-

armed bandits problems. In International conference on Algorithmic learning

theory, pages 23–37. Springer, 2009.

202

[31] Alexander Buchholz, Florian Wenzel, and Stephan Mandt. Quasi-monte carlo

variational inference. arXiv preprint arXiv:1807.01604, 2018.

[32] Adam D Bull. Convergence rates of e�cient global optimization algorithms.

Journal of Machine Learning Research (JMLR), 12(Oct):2879–2904, 2011.

[33] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector

machines. ACM Transactions on Intelligent Systems and Technology (TIST),

2(3):27, 2011.

[34] Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In

Advances in neural information processing systems, pages 342–350, 2009.

[35] Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In

NIPS, 2009.

[36] Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, and Yunhao

Tang. From complexity to simplicity: Adaptive es-active subspaces for blackbox

optimization. arXiv:1903.04268, 2019.

[37] Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Yunhao Tang,

and Vikas Sindhwani. From complexity to simplicity: Adaptive es-active sub-

spaces for blackbox optimization, 2019.

[38] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard E Turner,

and Adrian Weller. Structured evolution with compact architectures for scalable

policy optimization. In ICML, pages 969–977, 2018.

[39] Krzysztof Choromanski and Vikas Sindhwani. Recycling randomness with struc-

ture for sublinear time kernel expansions. 2016.

[40] Emile Contal, David Bu↵oni, Alexandre Robicquet, and Nicolas Vayatis. Par-

allel gaussian process optimization with upper confidence bound and pure ex-

ploration. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 225–240. Springer, 2013.

[41] Kurt Cutajar, Edwin V Bonilla, Pietro Michiardi, and Maurizio Filippone.

Practical learning of deep gaussian processes via random fourier features. arXiv

preprint arXiv:1610.04386, 2016.

203

[42] Sabrina Dammertz and Alexander Keller. Image synthesis by rank-1 lattices. In

Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 217–236. Springer,

2008.

[43] Sabrina Dammertz and Alexander Keller. Image synthesis by rank-1 lattices.

In Monte Carlo and Quasi-Monte Carlo Methods 2006, 2008.

[44] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding

of neural networks: The power of initialization and a dual view on expressivity.

arXiv preprint arXiv:1602.05897, 2016.

[45] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing

exploration-exploitation tradeo↵s in gaussian process bandit optimization.

Journal of Machine Learning Research, 15(1):3873–3923, 2014.

[46] Josef Dick, Frances Y Kuo, and Ian H Sloan. High-dimensional integration: the

quasi-monte carlo way. Acta Numerica, 22:133–288, 2013.

[47] Josef Dick, Frances Y Kuo, and Ian H Sloan. High-dimensional integration: the

quasi-monte carlo way. Acta Numerica, 22:133–288, 2013.

[48] Carola Doerr and François-Michel De Rainville. Constructing low star discrep-

ancy point sets with genetic algorithms. In Proceedings of the 15th annual

conference on Genetic and evolutionary computation, pages 789–796, 2013.

[49] Justin Domke. Provable smoothness guarantees for black-box variational infer-

ence. arXiv preprint arXiv:1901.08431, 2019.

[50] David L Donoho, Iain M Johnstone, Je↵rey C Hoch, and Alan S Stern. Max-

imum entropy and the nearly black object. Journal of the Royal Statistical

Society: Series B (Methodological), 54(1):41–67, 1992.

[51] David L Donoho and Jain M Johnstone. Ideal spatial adaptation by wavelet

shrinkage. biometrika, 81(3):425–455, 1994.

[52] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient de-

scent provably optimizes over-parameterized neural networks. arXiv preprint

arXiv:1810.02054, 2018.

[53] David Steven Dummit and Richard M Foote. Abstract algebra, volume 3. Wiley

Hoboken, 2004.

204

[54] Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural

networks. In Conference on learning theory, pages 907–940. PMLR, 2016.

[55] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likeli-

hood and its oracle properties. Journal of the American statistical Association,

96(456):1348–1360, 2001.

[56] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen

Lin. Liblinear: A library for large linear classification. Journal of machine

learning research, 9(Aug):1871–1874, 2008.

[57] Chang Feng, Qinghua Hu, and Shizhong Liao. Random feature mapping with

signed circulant matrix projection. In IJCAI, pages 3490–3496, 2015.

[58] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari.

Linearized two-layers neural networks in high dimension. The Annals of Statis-

tics, 49(2):1029–1054, 2021.

[59] Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using

a noise adaptation layer. In ICLR, 2017.

[60] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iter-

ative quantization: A procrustean approach to learning binary codes for large-

scale image retrieval. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(12):2916–2929, 2013.

[61] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. Batch

bayesian optimization via local penalization. In Artificial intelligence and statis-

tics, pages 648–657, 2016.

[62] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. ICLR, 2015.

[63] Mario Götz. On the riesz energy of measures. Journal of Approximation Theory,

122(1):62–78, 2003.

[64] Leonhard Grünschloß, Johannes Hanika, Ronnie Schwede, and Alexander

Keller. (t, m, s)-nets and maximized minimum distance. In Monte Carlo and

Quasi-Monte Carlo Methods 2006, pages 397–412. Springer, 2008.

205

[65] John Hammersley. Monte carlo methods. Springer Science & Business Media,

2013.

[66] Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang,

and Masashi Sugiyama. Masking: A new perspective of noisy supervision. In

Advances in Neural Information Processing Systems, pages 5836–5846, 2018.

[67] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor

Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep neural

networks with extremely noisy labels. In Advances in Neural Information Pro-

cessing Systems, pages 8527–8537, 2018.

[68] Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural

tangent kernel. arXiv preprint arXiv:1909.05989, 2019.

[69] Nikolaus Hansen. The cma evolution strategy: a comparing review. In Towards

a new evolutionary computation, pages 75–102. Springer, 2006.

[70] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the

time complexity of the derandomized evolution strategy with covariance matrix

adaptation (cma-es). Evolutionary computation, 11(1):1–18, 2003.

[71] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[72] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural

networks with scaled cayley transform. In International Conference on Machine

Learning, pages 1969–1978. PMLR, 2018.

[73] Philipp Hennig and Christian J Schuler. Entropy search for information-e�cient

global optimization. Journal of Machine Learning Research, 13(Jun):1809–1837,

2012.

[74] José Miguel Hernández-Lobato, MatthewWHo↵man, and Zoubin Ghahramani.

Predictive entropy search for e�cient global optimization of black-box functions.

In NIPS, pages 918–926, 2014.

[75] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989.

206

[76] Mengqiu Hu, Yang Yang, Fumin Shen, Luming Zhang, Heng Tao Shen, and

Xuelong Li. Robust web image annotation via exploring multi-facet and struc-

tural knowledge. IEEE Transactions on Image Processing, 26(10):4871–4884,

2017.

[77] Weihua Hu, Gang Niu, Issei Sato, and Masashi Sugiyama. Does distributionally

robust supervised learning give robust classifiers? 2018.

[78] L-K Hua and Yuan Wang. Applications of number theory to numerical analysis.

Springer Science & Business Media, 2012.

[79] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pages 4700–4708, 2017.

[80] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent ker-

nel: Convergence and generalization in neural networks. arXiv preprint

arXiv:1806.07572, 2018.

[81] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for

nearest neighbor search. IEEE transactions on pattern analysis and machine

intelligence, 33(1):117–128, 2010.

[82] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and

Alexander Hauptmann. Self-paced learning with diversity. In Advances in

Neural Information Processing Systems, pages 2078–2086, 2014.

[83] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Haupt-

mann. Self-paced curriculum learning. In Twenty-Ninth AAAI Conference on

Artificial Intelligence, 2015.

[84] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Men-

tornet: Learning data-driven curriculum for very deep neural networks on cor-

rupted labels. 2018.

[85] Donald R Jones, Matthias Schonlau, and William J Welch. E�cient global

optimization of expensive black-box functions. Journal of Global optimization,

13(4):455–492, 1998.

207

[86] Donald R Jones, Matthias Schonlau, and William J Welch. E�cient global

optimization of expensive black-box functions. Journal of Global optimization,

13(4):455–492, 1998.

[87] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sripe-

rumbudur. Gaussian processes and kernel methods: A review on connections

and equivalences. arXiv preprint arXiv:1807.02582, 2018.

[88] Kenji Kawaguchi. Deep learning without poor local minima. Advances in Neural

Information Processing Systems, 2016.

[89] Alexander Keller, Stefan Heinrich, and Harald Niederreiter. Monte Carlo and

Quasi-Monte Carlo Methods 2006. Springer, 2007.

[90] Mohammad Emtiyaz Khan and Wu Lin. Conjugate-computation variational in-

ference: Converting variational inference in non-conjugate models to inferences

in conjugate models. arXiv preprint arXiv:1703.04265, 2017.

[91] Mohammad Emtiyaz Khan and Didrik Nielsen. Fast yet simple natural-gradient

descent for variational inference in complex models. In 2018 International

Symposium on Information Theory and Its Applications (ISITA), pages 31–35.

IEEE, 2018.

[92] Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin

Gal, and Akash Srivastava. Fast and scalable bayesian deep learning by weight-

perturbation in adam. In ICML, 2018.

[93] Ashish Khetan, Zachary C Lipton, and Anima Anandkumar. Learning from

noisy singly-labeled data. ICLR, 2018.

[94] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[95] AN Korobov. The approximate computation of multiple integrals. In Dokl.

Akad. Nauk SSSR, volume 124, pages 1207–1210, 1959.

[96] N. M. Korobov. Properties and calculation of optimal coe�cients. Dokl. Akad.

Nauk SSSR, 132:1009–1012, 1960.

[97] Nikolai Mikhailovich Korobov. Properties and calculation of optimal coe�-

cients. In Doklady Akademii Nauk, volume 132, pages 1009–1012. Russian

Academy of Sciences, 1960.

208

[98] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-

nical report, 2009.

[99] Alex Krizhevsky and Geo↵rey Hinton. Learning multiple layers of features from

tiny images. 2009.

[100] Alex Krizhevsky, Geo↵rey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

[101] M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for

latent variable models. In Advances in Neural Information Processing Systems,

pages 1189–1197, 2010.

[102] Harold J Kushner. A new method of locating the maximum point of an arbi-

trary multipeak curve in the presence of noise. Journal of Basic Engineering,

86(1):97–106, 1964.

[103] Helene Laimer. On combined component-by-component constructions of lattice

point sets. Journal of Complexity, 38:22–30, 2017.

[104] Je↵rey Larson, Matt Menickelly, and Stefan M. Wild. Derivative-free optimiza-

tion methods. arXiv:1904.11585, 2019.

[105] Quoc Le, Tamás Sarlós, and Alex Smola. Fastfood-approximating kernel ex-

pansions in loglinear time. In Proceedings of the international conference on

machine learning, 2013.

[106] Zichao Yang Alexander J Smola Le and Song Andrew Gordon Wilson. A la

carte—learning fast kernels. 38, 2015.

[107] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[108] Pierre L’ecuyer and David Munger. Algorithm 958: Lattice builder: A gen-

eral software tool for constructing rank-1 lattice rules. ACM Transactions on

Mathematical Software (TOMS), 42(2):1–30, 2016.

[109] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman No-

vak, Jascha Sohl-Dickstein, and Je↵rey Pennington. Wide neural networks of

any depth evolve as linear models under gradient descent. Neural Information

Processing Systems, 2019.

209

[110] Kimin Lee, Sukmin Yun, Kibok Lee, Honglak Lee, Bo Li, and Jinwoo Shin.

Robust inference via generative classifiers for handling noisy labels. In Interna-

tional Conference on Machine Learning, 2019.

[111] Gunther Leobacher and Friedrich Pillichshammer. Introduction to quasi-Monte

Carlo integration and applications. Springer, 2014.

[112] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multi-

layer feedforward networks with a nonpolynomial activation function can ap-

proximate any function. Neural networks, 6(6):861–867, 1993.

[113] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural net-

works via stochastic gradient descent on structured data. arXiv preprint

arXiv:1808.01204, 2018.

[114] Guoqing Liu, Li Zhao, Feidiao Yang, Jiang Bian, Tao Qin, Nenghai Yu, and

Tie-Yan Liu. Trust region evolution strategies. In AAAI, 2019.

[115] Daniel J Lizotte, Tao Wang, Michael H Bowling, and Dale Schuurmans. Auto-

matic gait optimization with gaussian process regression. In IJCAI, volume 7,

pages 944–949, 2007.

[116] James N Lyness. Notes on lattice rules. Journal of Complexity, 19(3):321–331,

2003.

[117] Yueming Lyu. Spherical structured feature maps for kernel approximation. In

Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 2256–2264. JMLR. org, 2017.

[118] Yueming Lyu, Yuan Yuan, and Ivor W Tsang. E�cient batch black-box opti-

mization with deterministic regret bounds. arXiv preprint arXiv:1905.10041,

2019.

[119] Yueming Lyu, Yuan Yuan, and Ivor W Tsang. Subgroup-based rank-1 lattice

quasi-monte carlo. In NeurIPS, 2020.

[120] Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou, Sarah M Erfani, Shu-

Tao Xia, Sudanthi Wijewickrema, and James Bailey. Dimensionality-driven

learning with noisy labels. In International Conference on Machine Learning,

2018.

210

[121] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Bren-

dan Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[122] Hamed Masnadi-Shirazi and Nuno Vasconcelos. On the design of loss functions

for classification: theory, robustness to outliers, and savageboost. In Advances

in neural information processing systems, pages 1049–1056, 2009.

[123] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Virtual adversarial train-

ing for semi-supervised text classification. In ICLR, 2016.

[124] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[125] Jonas Močkus. On bayesian methods for seeking the extremum. In Optimization

Techniques IFIP Technical Conference, pages 400–404. Springer, 1975.

[126] Jonas Močkus. On bayesian methods for seeking the extremum. In Optimization

Techniques IFIP Technical Conference, pages 400–404. Springer, 1975.

[127] Robert Moore and John DeNero. L1 and l2 regularization for multiclass hinge

loss models. In Symposium on Machine Learning in Speech and Language Pro-

cessing, 2011.

[128] Diana M Negoescu, Peter I Frazier, and Warren B Powell. The knowledge-

gradient algorithm for sequencing experiments in drug discovery. INFORMS

Journal on Computing, 23(3):346–363, 2011.

[129] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of

convex functions. Foundations of Computational Mathematics, 17(2):527–566,

2017.

[130] Harald Niederreiter. Random number generation and quasi-Monte Carlo meth-

ods, volume 63. Siam, 1992.

[131] Frank Nielsen and Vincent Garcia. Statistical exponential families: A digest

with flash cards. Arxiv, abs/0911.4863, 2009.

[132] Atsushi Nitanda and Taiji Suzuki. Optimal rates for averaged stochastic gradi-

ent descent under neural tangent kernel regime. ICLR, 2021.

211

[133] Dirk Nuyens and Ronald Cools. Fast algorithms for component-by-component

construction of rank-1 lattice rules in shift-invariant reproducing kernel hilbert

spaces. Mathematics of Computation, 75(254):903–920, 2006.

[134] Junier B Oliva, Avinava Dubey, Barnabas Poczos, Je↵ Schneider, and Eric P

Xing. Bayesian nonparametric kernel-learning. In Proceedings of the 19th Inter-

national Conference on Artificial Intelligence and Statistics, pages 1078–1086,

2016.

[135] Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-

geometric optimization algorithms: A unifying picture via invariance principles.

The Journal of Machine Learning Research (JMLR), 18(1):564–628, 2017.

[136] Carl Olsson, Marcus Carlsson, Fredrik Andersson, and Viktor Larsson. Non-

convex rank/sparsity regularization and local minima. In Proceedings of the

IEEE International Conference on Computer Vision, pages 332–340, 2017.

[137] Art B Owen. Monte carlo book: the quasi-monte carlo parts. 2019.

[138] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and

Lizhen Qu. Making deep neural networks robust to label noise: A loss correction

approach. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1944–1952, 2017.

[139] Farhad Pourkamali-Anaraki, Stephen Becker, and Michael B Wakin. Random-

ized clustered nystrom for large-scale kernel machines. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[140] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel ma-

chines. In Advances in neural information processing systems, 2007.

[141] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks:

Replacing minimization with randomization in learning. In Advances in neural

information processing systems, pages 1313–1320, 2009.

[142] Ali Rahimi, Benjamin Recht, et al. Random features for large-scale kernel

machines. In NIPS, volume 3, page 5, 2007.

[143] Garvesh Raskutti and Sayan Mukherjee. The information geometry of mirror

descent. IEEE Transactions on Information Theory, 61(3):1451–1457, 2015.

212

[144] Carl Edward Rasmussen. Gaussian processes for machine learning. 2006.

[145] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christo-

pher Ré. Data programming: Creating large training sets, quickly. In Advances

in neural information processing systems, pages 3567–3575, 2016.

[146] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic

backpropagation and approximate inference in deep generative models. In

ICML, 2014.

[147] Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a

review of algorithms and comparison of software implementations. Journal of

Global Optimization, 56(3):1247–1293, 2013.

[148] Walter Rudin. Fourier analysis on groups. John Wiley & Sons, 2011.

[149] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolu-

tion strategies as a scalable alternative to reinforcement learning. arXiv preprint

arXiv:1703.03864, 2017.

[150] Jonathan Scarlett. Tight regret bounds for bayesian optimization in one dimen-

sion. In Proceedings of the 35th International Conference on Machine Learning

(ICML), pages 4500–4508, 2018.

[151] Peter H Schönemann. A generalized solution of the orthogonal procrustes prob-

lem. Psychometrika, 31(1):1–10, 1966.

[152] Amar Shah and Zoubin Ghahramani. Parallel predictive entropy search for

batch global optimization of expensive objective functions. In NIPS, pages

3330–3338, 2015.

[153] Vaishaal Shankar, Alex Fang, Wenshuo Guo, Sara Fridovich-Keil, Jonathan

Ragan-Kelley, Ludwig Schmidt, and Benjamin Recht. Neural kernels without

tangents. In International Conference on Machine Learning, pages 8614–8623.

PMLR, 2020.

[154] I Sloan and A Reztsov. Component-by-component construction of good lattice

rules. Mathematics of Computation, 71(237):263–273, 2002.

[155] Ian H Sloan and Henryk Woźniakowski. Tractability of multivariate integration

for weighted korobov classes. Journal of Complexity, 17(4):697–721, 2001.

213

[156] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-

mization of machine learning algorithms. In NeurIPS, pages 2951–2959, 2012.

[157] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-

mization of machine learning algorithms. In Advances in neural information

processing systems, pages 2951–2959, 2012.

[158] Mandavilli Srinivas and Lalit M Patnaik. Genetic algorithms: A survey. com-

puter, 27(6):17–26, 1994.

[159] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger.

Gaussian process optimization in the bandit setting: No regret and experimental

design. arXiv preprint arXiv:0912.3995, 2009.

[160] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger.

Gaussian process optimization in the bandit setting: No regret and experimental

design. In ICML, 2010.

[161] Rupesh Kumar Srivastava, Klaus Gre↵, and Jürgen Schmidhuber. Training

very deep networks. NeurIPS, 2015.

[162] Hao Su, Jia Deng, and Li Fei-Fei. Crowdsourcing annotations for visual object

detection. In Workshops at the Twenty-Sixth AAAI Conference on Artificial

Intelligence, 2012.

[163] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and

Rob Fergus. Training convolutional networks with noisy labels. arXiv preprint

arXiv:1406.2080, 2014.

[164] Dougal J Sutherland and Je↵ Schneider. On the error of random fourier features.

arXiv preprint arXiv:1506.02785, 2015.

[165] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. Joint

optimization framework for learning with noisy labels. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 5552–

5560, 2018.

[166] Anthony Tompkins, Ransalu Senanayake, Philippe Morere, and Fabio Ramos.

Black box quantiles for kernel learning. In The 22nd International Conference

on Artificial Intelligence and Statistics, pages 1427–1437, 2019.

214

[167] Brendan Van Rooyen, Aditya Menon, and Robert C Williamson. Learning

with symmetric label noise: The importance of being unhinged. In Advances in

Neural Information Processing Systems, pages 10–18, 2015.

[168] G Gary Wang and Songqing Shan. Review of metamodeling techniques in

support of engineering design optimization. Journal of Mechanical design,

129(4):370–380, 2007.

[169] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched

large-scale bayesian optimization in high-dimensional spaces. In Artificial in-

telligence and statistics, 2018.

[170] Zi Wang and Stefanie Jegelka. Max-value entropy search for e�cient bayesian

optimization. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 3627–3635. JMLR. org, 2017.

[171] Zi Wang and Stefanie Jegelka. Max-value entropy search for e�cient bayesian

optimization. In International Conference on Machine Learning (ICML), page

3627–3635, 2017.

[172] Holger Wendland. Scattered data approximation, volume 17. Cambridge uni-

versity press, 2004.

[173] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and

Jürgen Schmidhuber. Natural evolution strategies. The Journal of Machine

Learning Research (JMLR), 15(1):949–980, 2014.

[174] Aaron Wilson, Alan Fern, and Prasad Tadepalli. Using trajectory data to im-

prove bayesian optimization for reinforcement learning. The Journal of Machine

Learning Research, 15(1):253–282, 2014.

[175] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-

langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,

et al. Huggingface’s transformers: State-of-the-art natural language processing.

arXiv preprint arXiv:1910.03771, 2019.

[176] Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch

bayesian optimization. In NIPS, pages 3126–3134, 2016.

215

[177] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming

He. Feature denoising for improving adversarial robustness. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

501–509, 2019.

[178] J. Yang, Sindhwani. V., H. Avron, and M. Mahoney. Quasi-monte carlo feature

maps for shift-invariant kernels. ICML, 32, 2014.

[179] Jiyan Yang, Vikas Sindhwani, Haim Avron, and Michael Mahoney. Quasi-monte

carlo feature maps for shift-invariant kernels. In International Conference on

Machine Learning, pages 485–493, 2014.

[180] Gilad Yehudai and Ohad Shamir. On the power and limitations of random

features for understanding neural networks. arXiv preprint arXiv:1904.00687,

2019.

[181] Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski,

Daniel N Holtmann-Rice, and Sanjiv Kumar. Orthogonal random features.

In Advances in Neural Information Processing Systems, pages 1975–1983, 2016.

[182] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi

Sugiyama. How does disagreement help generalization against label corrup-

tion? In International Conference on Machine Learning, pages 7164–7173,

2019.

[183] Yuan Yuan, Yueming Lyu, Xi Shen, Ivor W. Tsang, and Dit-Yan Yeung.

Marginalized average attentional network for weakly-supervised learning. In

ICLR, 2019.

[184] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv

preprint arXiv:1605.07146, 2016.

[185] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol

Vinyals. Understanding deep learning requires rethinking generalization. ICLR,

2017.

[186] Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave

penalty. The Annals of statistics, 38(2):894–942, 2010.

[187] Tong Zhang. Analysis of multi-stage convex relaxation for sparse regularization.

Journal of Machine Learning Research, 11(3), 2010.

216

[188] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep

neural networks with noisy labels. In Advances in neural information processing

systems, pages 8778–8788, 2018.

[189] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-

to-image translation using cycle-consistent adversarial networks. In Proceedings

of the IEEE international conference on computer vision, pages 2223–2232,

2017.

[190] Difan Zou and Quanquan Gu. An improved analysis of training over-

parameterized deep neural networks. Advances in Neural Information Pro-

cessing Systems, 2019.

217

	Title Page
	Certificate of Original Authorship
	Dedication
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Black-box optimization
	Sampling based Optimization
	Bayesian Optimization

	Black-box Integral Approximation
	Connection Between Black-box Integral Approximation and Black-box Optimization
	Integral Approximation for Kernel Methods and Deep Learning
	Integral Approximation for Kernel Approximation
	Structured Integral Approximation for Robust Neural Network Architecture
	Adaptive Loss As A Tighter Upper Bound Approximation of Expected 0-1 Risk

	Research Objectives
	Publications

	Related Works
	Black-box Optimization
	Bayesian Optimization
	Sampling-based Derivative-free Optimization

	Black-box Integral Approximation
	Integral Approximation for Kernel Methods and Deep Learning
	Kernel Approximation
	Deep Learning Theory from Optimization and Kernel Perspective
	Robust Deep Learning under Label Noise

	Implicit Natural Gradient Optimization
	Chapter Abstract
	Optimization with Exponential-family Sampling
	Implicit Natural Gradient
	Update Rule for Gaussian Sampling
	Stochastic Update
	Mean field approximation for acceleration
	Direct Update for bold0mu mumu and

	Optimization for Discrete Variable
	Convergence Rate
	Empirical Evaluation
	Evaluation on synthetic continuous test benchmarks
	Evaluation on RL test problems
	Evaluation on discrete test problems

	Summary

	Batch Bayesian Optimization
	Chapter Abstract
	Problem Setup
	BO in Noise-Free Setting
	Sequential Selection in Noise Free Setting
	Batch Selection in Noise-Free Setting

	BO in Perturbation Setting
	Sequential Selection in Perturbation Setting
	Batch Selection in Perturbation Setting

	 Robust Initialization for BO
	Fast Rank-1 Lattice Construction
	The rank-1 lattice construction given a base vector
	The separate distance of a rank-1 lattice
	Searching the rank-1 lattice with maximized separate distance
	Comparison of minimum distance generated by different methods
	Comparison between lattice points and random points

	Experiments
	Comparison with Bull's Non-adaptive Batch Method
	Empirical Evaluation on Synthetic Benchmark Problems
	Empirical Evaluation on Hyperparameter tuning of Neural Network
	Empirical Evaluation on Robot Pushing Task

	Summary

	Subgroup-based Rank-1 Lattice Quasi-Monte Carlo
	Chapter Abstract
	Background of Lattice
	The Lattice
	The separating distance of a lattice

	Subgroup-based Rank-1 Lattice
	Construction of the Generating Vector
	Regular Property of Rank-1 Lattice

	QMC for Kernel Approximation
	Experiments
	Evaluation of the minimum distance
	Integral approximation
	Kernel approximation
	Approximation on Graphical Model

	Subgroup-based QMC on Sphere Sd-1
	QMC for Generative models
	Generative Inference for CycleGAN
	Summary

	Spherical Structured Feature Maps for Kernel Approximation
	Chapter Abstract
	Background of Kernel Approximation
	Random Feature Maps
	Discrete Riesz s-energy

	Spherical Structured Feature Maps
	Feature Maps for Shift and Rotation Invariant Kernels
	Feature Maps for bth-order Arc-cosine Kernels

	Design of Matrix U
	Structure of Matrix U
	Minimize the Discrete Riesz s-energy

	Fast Feature Maps Construction
	Empirical Studies
	Convergence and Speedup
	Approximation Accuracy

	Summary

	 Neural Optimization Kernel: Towards Robust Deep Learning
	Chapter Abstract
	Neural Optimization Kernel
	Structured Approximation
	Convergence Rate for Finite Dimensional Approximation Problem
	Learning Parameter bold0mu mumu RRRRRR
	Kernel Approximation

	Functional Optimization
	Rademacher Complexity and Generalization Bound
	Experiments
	Empirical Evaluation on Classification under Gaussian Noise Perturbation
	Empirical Evaluation on Classification under Laplace Noise Perturbation
	Empirical Evaluation on Classification with Adversarial Perturbation

	Summary

	 Curriculum Loss for Robust Deep Learning
	Chapter Abstract
	Curriculum Loss
	Robustness of 0-1 loss against label corruption
	Tighter upper bounds of the 0-1 Loss
	Noise Pruned Curriculum Loss

	Empirical Study
	Evaluation of Robustness against Label Corruption
	More experiments with different network architectures
	Impact of Misspecified Estimation of Noise Rate

	Summary

	Conclusion
	Appendix
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Variance Reduction
	Proof of Updating Theorem
	Proof of Gradient and Hessian Theorem
	Discrete Update
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Corollary 2
	Proof of Theorem 13
	Proof of Theorem 14
	Proof of Corollary 1
	Proof of Proposition 1
	Proof of Theorem 22
	Proof of Theorem 21
	Proof of Theorem 23
	Proof of Theorem 24
	Proof of Theorem 25
	A Better Diagonal Random Rotation for SSF
	Rademacher Complexity
	Generalization Bound
	Rademacher Complexity and Generalization Bound for General Structured Neural Network Family
	Explanation of Theorem 28 for robust learning
	Proof of Theorem 29
	Proof of Corollary 4
	Proof of Partial Optimization Theorem (Theorem 31)
	Proof of Proposition 2
	Proof of Theorem 30
	Proof of Corollary 5
	Multi-Class Extension
	Evaluation of Efficiency of the Proposed Soft-hinge Loss

	References

