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ABSTRACT

his thesis proposes a novel label ranker network to learn the re-

I lationship between labels for classification and ranking problems.
The Preference Neural Network (PNN) uses spearman correlation
gradient ascent and two new activation functions,namely positive smooth
staircase (PSS) and smooth staircase (SS) that accelerate the ranking by
creating deterministic preference values. PNN is proposed in two forms,
fully connected simple layers and Preference Net (PN), where the lat-
ter is the deep ranking form of PNN to learning feature selection using a
novel ranker kernel to solve images classification problem. PN uses a new
type of multiple size weighted ranker kernel to generate a feature map.
PNN outperforms five previously proposed methods for label ranking, ob-
taining state-of-the-art results on label ranking, and PN achieves promis-
ing results on CFAR-10 with high computational efficiency. The thesis in-
cludes different types of PN architecture to solve the problem of subgroup
label ranking. Subgroup label ranking, which aims to rank labels in indi-
vidual groups using a single ranking model, is a new problem in prefer-
ence learning. This thesis also introduces the subgroup preference neural
Network (SGPNN) that combines multiple networks that have different
activation functions, learning rate, and output layer into one to discover
the hidden relation between the subgroups’ multi-labels. The SGPNN is
a feedforward (FFF), partially connected that has a single middle layer and
uses stairstep (SS) multi-valued activation function to optimize learning
and achieve better ranking performance. The novel structure of the pro-
posed SGPN consists of a multi-activation function neuron (MAFN) in
the middle layer to rank each subgroup independently. The SGPNN uses
gradient ascent to maximize the Spearman rank correlation between the
subgroups’ multi-labels. Each label is represented by an output neuron
that has a single SS function. Experiments were conducted that applied
the SGPNN to a new synthesized dataset with subgroup label ranking
achieving promising results in computational cost and performance. PN
has experimented on image recognition benchmarks datasets, and SG-
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PNN is applied on EEG motor imagery BCI competition IV dataset 2b to
solve the data ambiguity. Under these varying backgrounds and scenar-
ios, the thesis has shown that the proposed PNN provides a learning tool
for label ranking and class classification. PNN outperforms label rank-
ing state-of-the-art and gives promising results in image classification
via literature explanation and empirical results.
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