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ABSTRACT

This thesis proposes a novel label ranker network to learn the re-
lationship between labels for classification and ranking problems.
The Preference Neural Network (PNN) uses spearman correlation

gradient ascent and two new activation functions,namely positive smooth
staircase (PSS) and smooth staircase (SS) that accelerate the ranking by
creating deterministic preference values. PNN is proposed in two forms,
fully connected simple layers and Preference Net (PN), where the lat-
ter is the deep ranking form of PNN to learning feature selection using a
novel ranker kernel to solve images classification problem. PN uses a new
type of multiple size weighted ranker kernel to generate a feature map.
PNN outperforms five previously proposed methods for label ranking, ob-
taining state-of-the-art results on label ranking, and PN achieves promis-
ing results on CFAR-10 with high computational efficiency. The thesis in-
cludes different types of PN architecture to solve the problem of subgroup
label ranking. Subgroup label ranking, which aims to rank labels in indi-
vidual groups using a single ranking model, is a new problem in prefer-
ence learning. This thesis also introduces the subgroup preference neural
Network (SGPNN) that combines multiple networks that have different
activation functions, learning rate, and output layer into one to discover
the hidden relation between the subgroups’ multi-labels. The SGPNN is
a feedforward (FF), partially connected that has a single middle layer and
uses stairstep (SS) multi-valued activation function to optimize learning
and achieve better ranking performance. The novel structure of the pro-
posed SGPN consists of a multi-activation function neuron (MAFN) in
the middle layer to rank each subgroup independently. The SGPNN uses
gradient ascent to maximize the Spearman rank correlation between the
subgroups’ multi-labels. Each label is represented by an output neuron
that has a single SS function. Experiments were conducted that applied
the SGPNN to a new synthesized dataset with subgroup label ranking
achieving promising results in computational cost and performance. PN
has experimented on image recognition benchmarks datasets, and SG-
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PNN is applied on EEG motor imagery BCI competition IV dataset 2b to
solve the data ambiguity. Under these varying backgrounds and scenar-
ios, the thesis has shown that the proposed PNN provides a learning tool
for label ranking and class classification. PNN outperforms label rank-
ing state-of-the-art and gives promising results in image classification
via literature explanation and empirical results.
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INTRODUCTION

1.1 Problem Statement

The task of "learning to rank" has gained much attention in recent years

among many machine learning problem because it is used in many fields

of human life, these fields includes expert systems, internet information

retrieval by search engines, object ranking and document ordering. Label

ranking is one of the ranking problems of machine learning.

This thesis focuses on four novel approaches in label ranking, Learn-

ing new types of relations between labels, Deep label ranking, classifi-

cation by ranking reduction, and new image processing based on pixel

ranking. The thesis also solves the problem of data ambiguity in machine

learning and shows how to convert multi-class classification problems to

solve them as multi-label ranking using neural networks. Also, the the-

sis proposes a novel network architecture to solve a new type of label

preference relations. The proposed new architecture also solves ambigu-

ous data classification and non-ground truth problems where data has

class overlapping. The thesis shows how the ranker can serve the ma-
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CHAPTER 1. INTRODUCTION

chine learning classification problems and act as a classifier with better

performance using ranking reduction by using score function. In addition

to computational performance, the thesis introduces nonlinear functions

to accelerate the learning steps in a few epochs in order to reach a high-

performance neural network.

1.2 Research Scope

The research scope covers three main area in machine learning

• Label ranking (LR) in Preference learning (PL) and coupling the LR

with Artificial Neural network (ANN)

• Deep learning (DL) and LRand coupling the two domains by propos-

ing Preference Net (PN).

• Subgroup Discovery domain (SD) and LR and coupling the two do-

main by introducing Subgroup Preference Neural Network (SGPNN).

SGPNN learn multiple sub groups of labels from a conjoint data si-

multaneously in order to deliver a generalized model

The main scope’s research areas are illustrated in Fig 1.1.

1.3 Research Questions

The following questions initiate this research:

1) Does the ranker work as a classifier with better performance?

2) Does the ranker learn any new types of preference relations not used

before in machine learning, i.e., indifference and incomparable rela-

tions and labels in subgroups?

2



1.4. RESEARCH METHODS

Preference Learning (PL)
Artificial Neural Network (ANN)

Preference Neural Network (PNN)

Label Ranking (LR)

Subgroup Discovery
(SD) 

Subgroup Preference Neural Network (SGPNN)

Deep Learning 
(DL) 

Preference Net (PN)

Figure 1.1: Research Scope

3) Can the ranking solve the deep learning classification problems, i.e.,

image recognition

4) Can the ranking solve the overlapping problems, i.e., data ambigu-

ous where classes are overlapping?

5) Can we develop a high-performance neural network based on rank-

ing evaluation criteria to solve both ranking and classification prob-

lems?

1.4 Research Methods

This thesis proposes a new ANN as a semi-supervised learning where the

data has training part to train the model and testing part to validate the

model. The proposed ANN learn the different relations of label ranking

by learning the relation between data instances. Each data instance is

represented as input to the neural network, and the output represents

3



CHAPTER 1. INTRODUCTION

the labels. The research started from the fundamental of neural networks

and worked in each neural network component to be based on ranking.

The research started from the activation function in order to enhance the

ranking convergence performance and produce multiple output values

and objective function to be suitable for ranking evaluation. The first part

of the research produced fully connected neural network implemented

to rank multiple labels at less computational cost and better ranking

performance.

1.5 Aims and Objectives

There are four aims to this research:

1) Predicting new types of preference relations opens the road to solv-

ing new types of preference learning problems as a subgroup, indif-

ference, and incomparable relations that handle both restricted and

non-restricted ranking as illustrated in Fig. 1.2.

2) Enhance the classification accuracy of machine learning problems

by converting the multi-class classification to multi-label ranking

and apply ranking reduction to classification.

3) Implement new activation functions that accelerate the learning

process and enhance the prediction probability.

4) Build a new ranker neural network design for preference learning,

based on a native ranking structure in terms of new activation and

objective functions for ranking.
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1.6. RESEARCH CHALLENGES

Figure 1.2: Subgroup, incomparable⊥ and indifference ∼ are New types of labels rela-
tions

1.6 Research Challenges

The thesis has main challenges to proof which can be summarized as the

following

1.6.1 Combining the PL domain and ANN

The main challenge of the thesis is solving a new type of PL problem by

introducing a new type of ANN to learn the preference learning rules. the

PL and ANN coupling has sub-challenges that are mentioned below.

1) kendall τ error function is not differentiated or not continues for

use in gradient calculation. searching for new error function for the

ranking learning process.

2) Using spearman ranking correlation in conventional classification

and deep learning.

3) Switching betweenmulti-class classification problem andmulti-label

ranking problem.

4) Solving the problem of class overlapping, data ambiguity and sub-

group label ranking.

5) Reducing the computational cost for data classification.

5
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1.6.2 Combining the relation between LP domain and DL
domain

Finding a better kernel design and computing approach to solve the deep

classification problems using different sizes of the kernel and using spear-

man ranking correlation instead of convolution to propose a suitable al-

ternative network compared to Convolution neural network (CNN) based

on ranking.

1.6.3 Combining the relation between SD domain and LR

The challenge of Combining the descriptive and predictive data mining

in one of the research challenges as it has sub-challenges are mentioned

below

1) Integrate the steps of SD mining with a predictive machine learning

approach to have a generalized learning model for several subgroups

discovered by mining.

2) Combined the discovered group data in one data file and fed the

network as one data has two different models.

3) The difficulties in implementation of multiple activation function

neuron.

4) Dividing the network into a composite of more than one subnetwork,

each network has a different learning rate, output results, and one

middle layer.

1.7 Research Contributions

To address the above research issues, the research contributions in this

thesis are summarized

6



1.7. RESEARCH CONTRIBUTIONS

1) Proposing a new type of activation function SS to enhance the pre-

dictive probability over the convention activation functions i.e, Sig-

moid, Relu and Softmax due to the step shape that enhances the

predictive probability from a range from -1 to 1 in the sigmoid to al-

most discrete multi-values. The new proposed activation functions

accelerate the ranking convergence by reducing the number of iter-

ations.

2) The proposed PNN uses gradient ascent to maximize the spearman

ranking correlation coefficient. In contrast, other classification-based

methods such as MLP-LR use the absolute difference of root mean

square error (RMS) by calculating the differences between actual

and predicted ranking and other RMS optimization, which may not

give the best ranking results.

3) PNN network is implemented directly as a label ranker by using the

new multivalued activation functions to rank all the labels together

in one model. The SS or PSS functions provide multiple output val-

ues during the conversions; however, MLP-LR and Ranknet use sig-

moid and Relu activation functions. These activation functions have

a binary output. Thus, it ranks all the labels together in one model

instead of pairwise ranking by classification.

4) PN uses a novel approach for image classification by learning the

feature selection using pixels ranking with different sizes of weighted

kernels to scan the image and generate the features map.

5) Introducing a new ANN architecture to rank sub group of labels, the

Subgroup Preference Learning (SGPL), which is designed to rank

multi-label incomparable/indifference subgroups by using a novel

7



CHAPTER 1. INTRODUCTION

multi activation functions Neuron (MAFN) that uses SS activation

functions, including one function for each output layer.

6) Combining all the features of multi-label datasets with building a

unified ranking model for different datasets from different domains.

We find that the SGPNN has a remarkably better performance than

other approaches that rank each dataset using a separate model.

1.8 Thesis Structure

The thesis is structured as follows: Chapter two gives background knowl-

edge and related work on the main approaches that have been used in

preference learning using label ranking.

Chapter three answers the research questions 1,2, and 5 where ranker

can work as a classifier and solve deep learning problems. The chap-

ter shows how the new activation functions outperform the conventional

functions in ranking using the PNN architecture.

Chapter three introduces the preference neural network as a fully con-

nected multilayer perceptron MLP and introduces the initial experiment

of ranker network, which leads to the proposed network and how the

spearman error enhances the error and convergence and two types of

novel activation functions.

Chapter Four describes how we extended the PNN MLP to introduce

a deep ranking approach; we name it preference net based on the pro-

posed activation and error function of PNN and image preprocessing by

preference learning technique using pixel ranking and averaging and in-

troducing a new type of kernel to learn the feature. Chapter four solves

the deep learning problem using ranking and answers research questions

3 and 5.

8



1.8. THESIS STRUCTURE

Chapter five describes the new architecture of PNN to solve the prob-

lem of multi-label ranking in multi groups. Subgroup preference Neural

Network SGPNN has a new type of neuron multi activation function neu-

ron (MAFN). Chapter five answers research question 2.

Chapter six describes the application that uses SGPN in the Brain

Computer Interface (BCI) field. The chapter describes the Motor imagery

dataset 2B used from BCI competition IV. The challenges in this dataset

are complicated and have unbalanced and overlapping labels. Chapter

six introduce a new algorithm to unify the input data and use a ground

truth normalized to increase separability. SGPNN outperform most of

the other deep learning approaches on this dataset. Chapter six answers

research question 4.

Chapter seven concludes the thesis and outlines the scope for future

work. Fig. 1.3 shows the research profile of the thesis.

9
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2
PREFERENCE LEARNING AND NEURAL NETWORK

2.1 Introduction

PL is an extended paradigm in machine learning by inducing pre-

dictive preference models from experimental data (Frnkranz &

Hllermeier 2010, Brafman&Domshlak 2009, Adomavicius & Tuzhilin.

2005). PL has wide a scope includes data retrieval, machine learning,

decision theory as shown in Fig 2.1. PL has applications in a variety

of research areas such as knowledge discovery and recommender sys-

tems (Montaner & López 2003). PL has three main category fields of

research problems as shown in Fig 2.2:

• Label Ranking.

• Instance Ranking.

• Object Ranking.

Of those previous research areas, label ranking (LR) is a challenging

problem that has gained importance in information retrieval by search

11



CHAPTER 2. PREFERENCE LEARNING AND NEURAL NETWORK

engines (Aiolli 2005, Crammer & Singer 2002). Unlike the common prob-

lems of multi-class and multi-label classification, multi-label ranking in-

volves predicting the relationship between multiple labels’ orders.

Figure 2.1: Preference Learning Domain

In case of multi-class classification, for a given instance x from the in-

stance space x, there is a label y associated with x, where y ∈ L, where

L = { λ1,..,λn}, where n is the number of labels. LR is an extension of

multi-class and multi-label classification, where each instance x is as-

signed an ordering of all the class labels in the set L. This ordering gives

the ranking of the labels for the given x object. This ordering can be rep-

resented by a permutation of the set π= {1,2, · · · ,n}.

2.2 Label Ranking (LR)

Label ranking is a complex prediction task where the goal is to map in-

stances to a total order over a finite set of predefined labels. An excit-

ing aspect of this problem is that it contains several supervised learning

12



2.2. LABEL RANKING (LR)

Figure 2.2: Preference Learning (PL) Methods

problems, including multi-class prediction, multi-label classification, and

hierarchical classification. Unsurprisingly, there are many label ranking

algorithms in the literature due, in part, to this versatile nature of the

problem. In this chapter, we survey these algorithms.

Label preference takes one of two forms of restrictions.

• The strict label order (λa≻ λb ≻λc≻λd) can be represented as π =
(1,2,3,4).

• non-restricted total order π=(λa≻λb≃λc≻λd) can be represented as

π= (1,2,2,3), where a, b, c and d are the label indexes and λa, λb, λc

and λd are the ranking values of these labels respectively.

2.2.1 Restricted Label Ranking

The label ranking association rules for restrict ranking has the following

rules.

• Irreflexive where λa ⊁λa

• Transitive where (λa≻λb) ∧ (λb≻λc) =⇒ λa≻λc

13
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• Asymmetric λa≻λb then λb⊁λa.

• Connected : for any λa , λb in L , either λb≻λa or λa≻λb

2.2.2 Unrestricted Label Ranking

The label ranking association rules for unrestricted ranking has the fol-

lowing rules.

• Transitive where λa ⪰λb ∧λb ⪰λc =⇒ λaλc.

• reflexive where λa ⪰λa.

• AntiSymmetric λa ⪰λb then λb ⪰λa =⇒ λb =λa.

• Connected : for any L ∈ {λa , λb} , either λb ⪰ λa and λa ⪰ λb or

λa =λb

The meaning of association rules is mentioned in Fig. 2.3 For the

non-continuous permutation space, The order is represented by the re-

lations mentioned earlier and the ⊥ incomparability binary relation. For

example the partial order λa≻λb≻λd can be represented as π=(1,2,0,3)

where 0 represents an incomparable relation since λc is not comparable

to (λa,λb,λd).

Figure 2.3: Preference Relations

Various label ranking methods have been introduced in recent years

(Zhou et al. 2014), such as decomposition based methods, statistical meth-

14



2.2. LABEL RANKING (LR)

ods, similarity, and ensemble-based methods. decomposition methods in-

clude pairwise comparison (Furnkranz & Hüllermeier 2003, Fürnkranz

&Hüllermeier 2010), log-linear models and constraint classification (Har-

Peled et al. 2002). The pairwise approach introduced by hüllermeier E. Hüller-

meier (2008) divides the multi-label ranking problem into several binary

classification problems in order to predict the pairs of labels λi ≻ λ j or λ j

≺ λi for an input x. Statistical methods includes decision trees (Furnkranz

& Hüllermeier 2011), instance-based methods (Plackett-Luce) (Cheng &

Hüllermeier 2008) and Gaussian mixture model (Mihajlo et al. 2014)

based approaches.For example, Mihajlo et al. (2014) uses Gaussian Mix-

ture models to learn soft pairwise label preferences. Similarity methods

minimize the distance of the labels instead of maximizing the proba-

bility of label values. For example, Aiguzhinov et al. Aiguzhinov et al.

(2010) used an adapted version of the Naive Bayes algorithm, which

used similarity between label rankings instead of probability. Association

rules mining has also been adapted for label ranking (Jorge & J. P. da

2011). The multi-layer perceptron has also been adapted for label rank-

ing (Ribeiro et al. 2012). For example, Ribeiro et al. (2012) proposed

six approaches that use label ranking loss during backpropagation (BP).

Cheng, Hühn & Hüllermeier (2009) used instance-based decision tree

to rank the labels based on predictive probability models of a decision

tree Cheng et al. (2009). Hüllermeier combined both a decision tree and

supervised clustering in two approaches for label ranking by mapping

between instances and multi-labels ranking space Grbovic et al. (2013).

Zhou &Qiu (2018) provided a scalable decision tree structure by imple-

menting a random forest with a parallel computational architecture for

extreme label ranking (Zhou & Qiu 2018). (de Sá et al. 2017) introduced

label random forest (LRF) as an ensemble method of ranking (de Sá et al.
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2017). LRF was based on the best approach result of previous ranking de-

cision trees using entropy-based ranking. Jung and Tewari proposed an

approach for label ranking based on the voting of the best learners and

scoring the labels for ranking (Jung & Tewari 2018). Song and Huang

proposed a framework to solve the vulnerability of multi-label deep learn-

ing models (Song et al. 2018). Yan and Wang proposed a long short term

memory (LSTM) based multi-label ranking model for document classifi-

cation (Yan et al. 2017). This method uses a two-step process - the first

step learns the document representation while the second step ranks the

labels. Guo and Hou introduced low-rank multi-label classification with

missing labels (LRML), which recovered the missing labels via Laplacian

manifold regularization derived from the feature space by utilizing the

low-rank mapping(Guo et al. 2018). In our study, we shall use staircase

activation functions. In this context, it is worth noting that.

Preference mining (PM) is a new domain of preference learning (PL),

which aims to discover the local patterns and deviations of subsets of

data (Holland et al. 2003, de Sá & Duivesteijn 2018). PL aims to build

a predictive model that can predict a multi-label ranking problem based

on preference relations over a permutation space ω where each member

of a group of k labels has a preference λ value, L = {λ1,λ2, ...,λk}, where

the differences of λ value represents preference relations (≻,⪰,⊁,⪰̸,∼,≺
,⪯) (Frnkranz & Hllermeier 2010, Chankong & Haimes 2008). However,

real-world data can be ambiguous and often lack preference relations be-

tween two or more labels, and the missing relations can be mapped to

an indifference ∼, or incomparability ⊥, relation (Brinker & Hüllermeier

2007, Chiclana et al. 2009). These two relations create a partial order on

the ω space where λa⊥λb or λa ∼λb. The partial relations were solved in

terms of the relation between labels in one ω space in (Vembu & Gärtner
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2010, Henzgen & Hüllermeier 2014). For example, π= (λa ≻λb ∼λc ≻λd)

is mapped to π = (1,2,2,3) and π = (λa ≻ λb ≻ λc⊥λd) is mapped to π =
(1,2,3,0). However, sometimes the data collected from the likes of recom-

mender systems, elections, and surveys deviate from the population and

in such cases label ranking cannot be predicted using the same learning

model. Such a deviation is addressed by extracting patterns to identify

the subgroup of data for the interesting targets using subgroup discov-

ery (SD) approaches (Klösgen & Zytkow 2002). These interesting targets

could be combined with subgroups for all data to learn these targets us-

ing a predictive machine learning approach. However, The proposed sub-

group labeling is a preference learning approach (Belfodil et al. 2019, Lu-

cas et al. 2018, Liu et al. 2020). Subgroup discovery ranking is preference

mining was proposed by Rueping (2009) using a ranking support vector

machine (SVM) to rank subgroups of data according to users’ interests.

Many approaches were introduced for restricted and non-restricted label

ranking (Carranza-Alarcon et al. 2020). Cheng et al. (2009) proposed the

instance-based decision tree to rank the labels based on predictive prob-

ability models of a decision tree. Grbovic et al. (2013) combined both a

decision tree and supervised clustering in two approaches for label rank-

ing by mapping between instances and label ranking space.

2.3 Classification-Based Label Ranking

Ranking problems are first considered as a classification problem. Clas-

sification is a kind of supervised learning problem in which the target

variable that one is trying to predict is discrete
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2.3.1 Pairwise Label Ranking

Pairwise Label ranking is the basic deterministic approach for label rank-

ing. This approach is called all pairs, 1-vs-1, or round-robin learning.

Here, it is used as a special binarization technique, that is, to decom-

pose a polytomous classification problem into a set of pairwise problems,

thereby making multi-class problems amenable to binary classification

methods. Motivated by its successful use for classification as well as its

intuitive appeal from a preference and decision-making perspective, the

Label Pairwise Classification (LPC) approach has been extended to dif-

ferent types of preference learning and ranking problems in recent years.

The purpose of this chapter is to give an overview of existing work and

recent developments in this line of research. the idea is to transform K

class into involving classes y= y1, y2, · · · yk into k(k−1)/2 binary problems

The Fig 2.4 illustrates the entire process. First, the original training

set is transformed into three two-class training sets, one for each possible

pair of labels, containing only those training examples for which the rela-

tion between these two labels is known. Then three binary models, Mab,

Mbc, and Mac are trained. For example, the result could be simple rules

like the following:

(2.1) Mab : a> b i f A2 = 1

(2.2) Mbc : b> c i f A3 = 1

(2.3) Mac : a> c i f A1 = 1 and A3 = 1

where A1, A2, A3 are label values.

18
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Figure 2.4: LPC approach

2.3.2 Probability-Based label ranking

Probability approaches do not map the existence of a deterministic x−>ω

mapping. Instead, every instance is associated with a probability distri-

bution over ω. This means that, for each datapoint Xx, there exists a

probability distribution P(ů|x) such that, for every π ∈ω,ππ|x is the prob-

ability that π|x= π. (Note that if rankings are interpreted as qualitative

probabilities, then P(ů|x) is a probability over probability distributions,

i.e., a second-order probability.)

2.3.3 Label Ranking based on the Plackett-Luce Model

Mallows model (Mallows, 1957), a distance-based probability model be-

longing to the family of exponential distributions. The standard Mallows

model is determined by two parameters:
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(2.4) P(π|θ,π0) =
exp(−θD(π,π0))

ϕ(θ)

The ranking π is the location parameter (mode, center ranking) and θ

is a spread parameter. Moreover, D is a distance measure on rankings,

and the constant ϕ = ϕ(θ) is a normalization factor that depends on the

spread.

Some of the methods mentioned above and their variants have some

issues that can be broadly categorized into two types:

1) Drawbacks of classification-based models: When the ranking model

is constructed using binary classification models of an associated

higher dimensional label space, such a method cannot consider the

interaction between labels. In this case, such rankings based on min-

imizing pairwise classification errors are not necessarily equivalent

to maximizing the label ranking’s performance considering all labels.

Thus, The ranking methods do not learn the preference relation be-

tween all labels.

The ranking methods learn both unrestricted and restricted ranking

labels using the same learning approach.

2) Drawbacks of probability-basedmodels: Some suchmethods use prob-

abilistic scores for individual classes for ranking the labels. Such

methods cannot capture dependencies between labels and do not

take into account the distance between labels.

2.4 Classification by Ranking Reduction

Using ranking to minimize classification loss was introduced by (Kot-

lowski et al. 2011) by measuring the regret function of the classifier
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and the ranker where regret is the difference between the loss of learn-

ing compared to the best alternative method. Ailon & Mohri (2007) con-

firmed that it is hard to reach a faultless ranking of all preference la-

bels. Also (Balcan et al. 2008, Abdulrahman et al. 2019) proposed dif-

ferent robust approaches to reduce the ranking for better classification.

Brinker Brinker &Hüllermeier (2019) introduced (Label Ranking toMulti-

class Classification (LR2MC) using decomposition and aggregation. The

decomposition is achieved by dividing the ranking space into multiple

partial ranking sets L ∈L. Aggregation by minimizing the sum of partial

ranking sets’ loss values as shown in Eq. 2.5

(2.5) f (x)= argmax
π∈L∗

∑
L∈L

ℓ01(πL, fL(x))

where

(2.6) ℓ01
(
ρ,ρ

′)=
0, f or ρ = ρ′

1, f or ρ ̸= ρ′

where for ρ, ρ′ ∈ L denotes the 0/1-loss for two label rankings. fL is loss

function.

2.5 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is an interconnected group of artifi-

cial neurons that uses a mathematical model for information processing

based on a connection. ANN is an approach to computation and an adap-

tive system that changes its output based on external information that

flows through the network (Kwok & Yeung 1997, Skarding et al. 2021,

Chen et al. 2019, Liu et al. 2021).
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2.5.1 Feedforward (FF) ANN

Artificial neural network wherein connections between the nodes do not

form a cycle (Zell 1994) As such, it is different from its descendant: recur-

rent neural networks.

The feedforward neural network was the first and simplest type of

artificial neural network devised (Schmidhuber 2009). In this network,

the information moves in only one directionforwardfrom the input nodes,

through the hidden nodes, and to the output nodes where no cycles in the

network.

2.5.2 Back Propagation (BP)

Backpropagation (BP) is a simple training method that uses the eval-

uated gradients of a neural network to adjust the weights of the neural

network. This is a form of gradient descent, as we are descending the gra-

dients to lower values. As these weights are adjusted, the neural network

should produce a more desirable output. There are mainly two types of

BP:

• Online training implies modifying the weights after every training

set element. The gradient changes are applied to the weights. Train-

ing progresses to the next training set element and calculates an

update to the neural network. This training continues until every

training set element has been used. One iteration, or epoch, of train-

ing, has been completed.

• Batch training also makes use of every training set element. How-

ever, the weights are not updated for every training set element.

Rather, the gradients for each training set element are summed.

Once every training set element has been used, the neural network
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weights can be updated. At this point, the iteration is considered

complete (Paeedeh & Ghiasi-Shirazi 2021).

2.5.3 Activation functions

For decades convention ANN activation functions have been used for neu-

ral networks. A function that defines the output of a node in artificial

neuronal networks according to the given input. The functions are lin-

ear and non-linear and have the common feature as it is differentiated,

monotonic, and continues to produce the values in the gradient descent

process, Sigmoid, Tanh except for Relu that is used mainly in pooling.

A multi-valued activation function has been proposed by (Aizenberg

et al. 2000) using convex shape to support multi-values and complex num-

bers neural networks. In addition, Moraga & Heider (1999) introduced a

similar function to design networks for realizing any multivalued func-

tion; however, Moraga & Heider (1999) used exponential function deriva-

tive which did not give promising results in the PNN implementation us-

ing the ranking objective function in FF and backpropagation (BP) steps.

2.5.4 Dropout Regularization

Dropout introduces regularization within the network, which ultimately

improves generalization by randomly skipping some units or connections

with a certain probability. In NNs, multiple connections that learn a non-

linear relation are sometimes co-adapted, which causes overfitting. (Hin-

ton et al. 2012b). This random dropping of some connections or units

produces several thinned network architectures, and finally, one repre-

sentative network is selected with small weights. This selected architec-

ture is then considered as an approximation of all the proposed networks

(Srivastava et al. 2014).
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2.5.5 ANN for Ranking

ANN for ranking was first introduced as (RankNet) by Chris Burges

(2005) to solve the problem of object ranking for sorting web documents

by search engine. Rank-net uses gradient descent and probabilistic rank-

ing cost function for each object pair. Multi-layer perceptron (MLP-LR)

for label ranking (Ribeiro et al. 2012) employs NN architecture using a

sigmoid activation function to calculate the error between the actual and

expected values of the output labels. However, it uses a local approach to

minimize the individual error per each output neuron by subtracting ac-

tual - predicted value and using Kendall error as a global approach. Both

approaches do not use a ranking objective function in BP and learning

steps.

2.6 Deep Learning

Deep Learning (DL) is the learning to extract high-level and complex ab-

stractions of data through a hierarchical learning process. DL succeeded

in big data fields such as image recognition and natural language pro-

cessing (NLP) by learning the selection of the best features Sornam et al.

(2017), Vedantam (2021). While many studies have successfully used deep

learning for classification problems, the primary learning challenge is

choosing the network architecture and structure of nodes’ numbers and

hidden layers. There are various network architectures used as deep

learning models, as shown below.

• Autoencoder (Vahdat & Kautz 2020)

• Convolutional Deep Belief Network(CDBN) (Zhong & Fang 2020)

• Convolutional Neural Network (CNN)
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• Deep Belief Network (DBN) (Hinton 2009)

• Deep Boltzmann Machine (DBM) (Salakhutdinov & Hinton 2009)

• Long short-term Memory Network (LSTM) (Yan et al. 2017)

• Recurrent Neural Network (RNN) (Kumar et al. 2020)

• Restricted Boltzmann Machine (RBM) (Alphonse et al. 2021)

The thesis proposes Preference Net (PN) as a new ANN different from

CNN in terms of architecture, layers, and functionality to solve image

recognition problems.

2.6.1 Convolution Neural Network (CNN)

Nowadays, CNNs are considered as the most widely used algorithms in-

spired by Artificial Intelligence (AI) techniques. innovations in CNN ar-

chitectures into seven different categories. These seven categories are

based on spatial exploitation, depth, multi-path, width, feature-map ex-

ploitation, channel boosting, and attention. Additionally, the elementary

understanding of CNN components, current challenges, and applications

of CNN are also provided.

CNNs have been applied to visual tasks since the late 1980s. In 1989,

(Lecun et al. 1998) proposed the first multilayered CNN named ConvNet,

whose origin was rooted in (Fukushima et al. 1983, Fukushima 1988) .

Lecun et al. (1998) proposed a supervised training of ConvNet using the

backpropagation algorithm in comparison to the unsupervised reinforce-

ment learning scheme used by its predecessor Neocognitron (Linnainmaa

1970; Lecun et al. (1998). This ConvNet showed successful results for

handwritten digit and zip code recognition-related problems Zhang et al.

(2015). In 1998, Lecun et al. (1998) proposed an improved version of Con-

vNet, which was famously known as LeNet-5, and it started the use of
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CNN in classifying characters in document recognition related applica-

tions. The availability of extensive training data and hardware advance-

ments are the factors that contributed to the advancement in CNN re-

search. But the main driving forces that have accelerated the research

and give rise to the use of CNNs in image classification and recognition

was brought by AlexNet, which showed exemplary performance in 2012-

ILSVRC (reduced error rate from 25.8 to 16.4) as compared to conven-

tional CV techniques Krizhevsky et al. (2012a). The taxonomy of CNN ar-

chitectures details of the state-of-the-art CNN models, their parameters,

and performance on benchmark datasets are summarized in Table 2.1

For the convolution learning step, some hyperparameters are defined

in order to produce the feature map that include (Emmert-Streib et al.

2020):

• Kernel size: each kernel has a square window size. The kernel per-

forms the convolution process with region matching

• Moving step: the number of pixels that the kernel will move to the

next position

• Zero padding: The padding is the parameter used to specify the num-

ber of zeros to pad around the input border. This parameter is to

preserve the dimension of an input image.
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2.6.2 Pooling Layer

Pooling layers aim at reducing the dimension of the input with some

pre-specified pooling methods. There are many types of pooling methods,

e.g., averaging-pooling, min-pooling, and some advanced pooling methods,

such as fractional max-pooling and stochastic pooling. The most common

pooling method used is max-pooling, as it has been shown to be better in

dealing with images by capturing (Scherer et al. 2010).

2.7 Human Visualization and Frame Variation

Visual saliency detection using the Markov chain model is one of the ap-

proaches that simulates the human visual system by highlighting the

most important area in an image and calculating superpixels as absorb-

ing nodes. However, this approach needs a saliency optimization on the

results and have calculation cost (Jiang et al. 2020),(Gupta et al. 2020).

Particle Swarm Optimization (PSO) in movement detection is based

on the concept of variation and inter-frame difference for feature selec-

tion. PSO algorithms are mainly used in human motion detection in

sports, and it is used based on probabilistic optimization algorithm (Lei

et al. 2021) and CNN (Zhang 2022).

2.8 Subgroup Discovery (SD)

Subgroup Discovery (SD) is a descriptive induction data mining tech-

nique that discovers interesting associations among different variables

with respect to a property of interest. It was first introduced by Klösgen

(1996) and Wrobel (1997). Existing SD methods utilize different strate-

gies for searching, pruning, and ranking subgroups. Selecting features of

a SD algorithm is crucial for generating quality subgroups. SD aims to
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2.8. SUBGROUP DISCOVERY (SD)

extract relations among different variables with respect to the property of

interest. These relations are represented in the form of rules represented

as follows:

Condition −→ Target

2.8.1 SD Methodology

subgroup discovery algorithm consists of three major phases, candidate

subgroup generation, pruning, and post-processing as illustrated in Fig 2.5.

Generate Candidates Pruning
(Estimation, Constraint, Support)

Post-Processing
(Subgroup Ranking)

Figure 2.5: SD Methodology

2.8.1.1 Generating Candidates

Each SD algorithm uses a specific strategy to search for the candidate

subgroups. The search strategy is essential for extracting subgroups as

the volume of search space is exponential with respect to the number

of attributes and their values. The search space is traversed by start-

ing with simple descriptions and processing them in a more general to

the specific manner by adding up more attribute-value pairs. Different

search strategies have been employed so far for subgroup discovery; among

them, the most widely used strategies are exhaustive search, beam search,

and genetic algorithm (GA) based search.

2.8.1.2 Pruning

The pruning scheme selects only the significant candidates. Different

methods use a number of pruning strategies. The major types include
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minimum support or coverage pruning. Several popular methods imple-

ment this pruning technique (Gamberger & Lavrac 2002),(Kavsek et al.

2003).

2.8.1.3 Post-Processing

The final phase of the subgroup discovery algorithm implements a quality

measure for the purpose of ranking subgroups. These measures are very

vital for evaluating subgroups as the interest attained directly relies on

them.

Preference mining (PM) is an extended domain of PL and SD, which

aims to discover the local patterns and deviations of subsets of data (Hol-

land et al. 2003, de Sá & Duivesteijn 2018). Using a conjoint model based

on the fusion of a different group of data sensors has been introduced in

emotion recognition by Pandeya, Y. Pandeya et al. (2021). It uses deep

learning to classify emotions Pandeya et al. (2021) from audio and video

information. Rueping (2009) proposed subgroup ranking using the sup-

port vector machine (SVM) to rank subgroups concerning the user’s con-

cept of interestingness.

2.9 Potential Applications

The thesis proposes three neural network types for preference learning.

2.9.1 PNN Applications

PNN is proposed for label ranking, which can be part of decision making

and recommending systems.
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2.9. POTENTIAL APPLICATIONS

2.9.2 PN Applications

PN is proposed for image recognition applications, including face recog-

nition, object recognition, and remote sensing.

2.9.3 Subgroup Preference Neural NetworkSGPNN
Applications

SGPNN could be used in many potential applications, i.e., brain-computer

interface (BCI) applications where EEG data may have ambiguity, be

complicated, and unbalanced. Another medical application is where data

fusion is collected from different sensors, i.e., the study of human emo-

tions recognition. SGPNN could be part of an expert system to build an

accumulated learning model for judgment, elections, medical diagnosing

from different conjoint historical data.
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PREFERENCE NEURAL NETWORK

3.1 Introduction

The proposed Preference Neural Network (PNN) is based on an initial ex-

periment to implement a computationally efficient label ranker network

based on the Kendall τ error function and sigmoid activation function us-

ing simple structure as illustrated in section Fig. 3.1. The ranker network

is a fully connected, three-layer net. The input represents one instance

of data with three inputs, and there are six neurons in the hidden layer

and three output neurons representing the labels’ index. Each neuron

represents the ranking value. A small toy data set is used in this exper-

iment. The ranker uses RMS gradient descent as an error function to

measure the difference between the predicted and actual ranking values.

The ranker has Kendall τ as a stopping criterion. The same ANN struc-

ture, number of neurons and learning rate using SS activation function

, and spearman error function and gradient ascent of ρ will be discussed

in section IV. The ranking convergence reaches to τ≃ 1 after 160 epochs
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using the Sigmoid function Elgharabawy (2020c). The sigmoid and ReLU

shapes have a slightly high rate of change in y, and it produces a more

extensive output range of data. Therefore, we consider ranking perfor-

mance as one of the disadvantages of sigmoid function in the ranker net-

work.

Figure 3.1: Ranker NN Sample output image of video file demonstrates the evaluation
of NN using Sigmoid Activation for ranking.
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The ranker network has two main problems.

1) The ranker uses two different error functions, RMS for learning and

Kendall τ for stopping criteria. Kendall τ is not used for learning

because it is not continuous or differentiable. Both functions are not

consistent as stopping criteria measure the relative ranking, and

RMS does not, which may lead to incorrect stopping criteria. En-

hancing the RMS may not also increase the error performance, as

illustrated in Fig. 4.7 in a comparison between the ranker network.

evaluation using both τ and RMS and PNN ranking evaluation us-

ing ρ and RMS.

2) The convergence performance takes numbers of iterations to reach

the ranking τ ≃ 1 based on the shape of sigmoid or Relu functions

and learning rate as shown in the experiment video link (Elgharabawy

2020c) due to the slope shape between -1 or 0 and 1. The prediction

probability is almost equal to the values from -1 or 0 to 1.

3.2 Problem Formulation

For multi-class and multi-label problems, learning the data’s preference

relation predicts the classification and label ranking. i.e. data instance

D ∈ {x1,x2, . . . ,xn}. the output labels are predicted as ranked set labels

that have preference relations L = {λy1, . . . ,λyn}. PNN creates a model

that learns from an input set of ranked data to predict a set of new ranked

data. The following section presents the initial experiment to rank labels

using the usual network structure.
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3.3 PNN Components

3.3.1 Activation Functions

The usual ANN activation functions have a binary output or range of

values based on a threshold. However, these functions do not produce

multiple deterministic values on the y-axis. This chapter proposes new

functions to slow the differential rate around ranking values on the y-

axis to solve ranking instability. The proposed functions are designed to

be non-linear, monotonic, continuous, and differentiable using a polyno-

mial of the tanh function. The step width maintains the stability of the

ranking during the forward and backward processes. Moraga & Heider

(1999) introduced a similar multi-valued function. However, the proposed

exponential derivative was not applied to an ANN implementation. Mor-

aga’s exponential function is geometrically similar to the step function

in Bologna (2000). However, the newly proposed functions consist of tanh

polynomial instead of exponential due to the difficulty in implementation.

The new functions detect consecutive integer values, and the transition

from low to high rank (or vice versa) is fast and does not interfere with

threshold detection.

3.3.1.1 Positive Smooth Staircase (PSS)

As a non-linear and monotonic activation function, positive smooth stair-

case (PSS) is represented as a bounded smooth staircase function start

from x=0 to ∞. Thus, it is not geometrically symmetrical around the y-

axis as shown in Fig.3.2. PSS is a polynomial of multiple tanh functions

and is therefore differentiable and continuous. The function squashes the

output neurons values during the FF into finite multiple integer values.

These values represents the preference values from {0 to n} where 0 rep-

resent the incomparable relation ⊥ and values from 1 to n represent the
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label ranking. The activation function is given in Eq. 3.1. PSS is scaled

by increasing the step width w.

-4 -2 2 4

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3.2: PSS activation function where n= 3 and step width w= 1

y=
n∑
i=0

(
− 1
2
tanh(−100(x−wi))

)
+ n
2

(3.1)

where n is number of output labels, w is the step width.

3.3.1.2 Smooth Staircase (SS)

The proposed SS represents a staircase similar to (PSS). However, SS

has a variable boundary value used as a hyperparameter in the learning

process. The derivative of the activation function is discussed in section

III and the performance comparison between SS and PSS is mentioned

in section v.

The activation function is given in Eq. 3.2.

y=−1
2

( n∑
i=0

tanh(
−100
b

x+ c(1− 2i
n−1

))
)
+ n
2

(3.2)

where c= 100, n= number of ranked labels, b is the boundary value, and

(SS) lies between −b and b. The (SS) function has the shape of smooth

stair steps, where each step represents an integer number of label rank-

ing on the y-axis from 0 to ∞ as shown in Fig. 1, The SS step is not flat,
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Figure 3.3: SS activation function where n = 6 and 9 and boundary b = 1 and 10 in (a)
and (b) respectively.

but it has a differential slope. The function boundary value on x-axis is

from -b to b Therefore, input values must be scaled from -b to b. The

step width is 1 when n≃ 2b. The convergence rate is based on the step

width. However, it may take less time to converge based on network hy-

perparameters. Fig. 3.3 (a) and (b) shows the activation functions to rank

6 and 9 labels, respectively. The SS is scaled by increasing the boundary

value b

3.3.2 Ranking Loss Function

Twomain error functions have been used for label ranking, namely; Kendall

τKendall (1948) and spearman ρ Spearman (1961). However, the Kendall

τ function lacks continuity and differentiability. Therefore, the spearman

ρ correlation coefficient is used to measure the ranking between output

labels. spearman ρ error derivative is used as a gradient ascent process

for BP, and correlation is used as a ranking evaluation function for con-

vergence stopping criteria. τAvg is the average τ per label divided by the

number of instances m, as shown in line 8 of Algorithm 1. spearman ρ

measures the relative ranking correlation between actual and expected

values instead of using the absolute difference of root means square er-
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ror (RMS) because gradient descent of RMS may not reduce the ranking

error. For example, π1 = (1,2.1,2.2) and π2 = (1,2.2,2.1), have a low RMS

= 0.081 but a low ranking correlation ρ = 0.5 and τ= 0.3.

0 20 40 60 80

0.2

0.3

0.4

0.5

0.6

#iterations

spearman ρ

(a)

0 20 40 60 80
0.2

0.25

0.3

0.35

0.4

#iterations

RMS

ANN
PNN

(b)

Figure 3.4: Ranker network and PNN evaluation in terms of RMS and spearman corre-
lation error functions using iris DS in (a) and (b) respectively.

Fig 3.4 shows the comparison between the initial ranker network and

PNN; the ranker network uses Kendall τ in which has lower performance

as a stopping criterion compared to PNN spearman because the stopping

criteria are based on the RMS per iteration; however, PNN uses spear-

man for both ranking step and stopping criteria.

The spearman error function is represented by Eq.3.3

(3.3) ρ = 1− 6
∑m

i=1 (yi− yti)2

m(m2−1)

where yi, yt i, i and m represent rank output value, expected rank value,

label index and number of instances, respectively.
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Figure 3.5: The structure used in both ranker ANN and PNN where φn=3, f in = 3 and
λout = 3, per 〈x1,π1〉, L ∈ {λa,λb,λc} where π1 = {1,2,3}. and comparison of the conver-
gence for both NN’s. The demo video of convergence of two NN in the link Elgharabawy
(2020c).

3.3.3 PNN Structure

3.3.3.1 One middle layer

The ANN has multiple hidden layers. However, we propose PNN with a

single middle layer instead of multi-hidden layers because ranking per-

formance is not enhanced by increasing the number of hidden layers due

to fixed multi-valued neuron output, as shown in Fig. 3.6; SS function

is experimented using Seven benchmark data sets Cheng et al. (2009)

by changing the number of hidden layers with the following hyperparam-

eters; learning rate (l.r.)=0.05, and each layer has neuron i = 100 and

b = 10). We found that by increasing the number of hidden layers, the

ranking performance decreases, and more iteration is required to reach

ρ ≃ 1. The low performance because of the shape of SS produces multi-

ple deterministic values, which decrease the arbitrarily complex decision

regions and degrees of freedom per extra hidden layer.
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Figure 3.6: Multiple layer label ranking comparison of benchmark data sets Cheng et al.
(2009) results using the PNN and SS functions after 100 epochs and learning rate =
0.007.

Figure 3.7: The structure of preference neuron where φn=4.

3.3.3.2 Using Sigmoid/Relu with SS

Multiple hidden layer is experimented using Relu and Sigmoid functions

and the output layer has SS function, However, the results didnt outper-

form the middle layer approach with SS, and it increased the number of

iteration to reach the same result, Thus using SS with other activation

function does not add a value in terms of accuracy or performance.
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3.3.3.3 Preference Neuron

Preference Neuron is a multi-valued neuron use a PSS or SS as an acti-

vation function. Each function has a single output; however, PN output is

graphically drawn by n number of arrows links that represent the multi-

deterministic values. The PN in the middle layer connects to only n out-

put neurons stp = n+1; where stp is the number of SS steps. The PN

in output layer represents the preference value. The middle and output

PNs produce a preference value from 0 to ∞ as illustrated in Fig. 3.7.

The PNN is fully connected to multiple-valued neurons and a single-

hidden layer ANN. The input layer represents the number of features

per data instance. The hidden neurons are equal to or greater than the

number of output neurons, Hn ≥ Ln, to reach error convergence after a

finite number of iterations. The output layer represents the label indexes

as neurons, where the labels are displayed in a fixed order, as shown in

Fig. 3.8.

The ANN is scaled up by increasing the hidden layers and neurons;

however, increasing the hidden layers in PNN does not enhance the rank-

ing correlation because it does not arbitrarily increase complex decision

regions and degrees of freedom to solve more complex ranking problems.

This limitation is due to the multi-semi discrete-valued activation func-

tion, which limits the output data variation. Therefore, instead of increas-

ing the hidden layer, PNN is scaling up by increasing the number of neu-

rons in the middle layer and scaling input data boundary value and in-

creasing the PSS step width and SS boundaries which are equal to the

input data scaling value, which leads to increased data separability.

PNN outperform initial ranking ranker network by 24 epochs com-

paring to the initial ranker that achieve ρ ≃ 1 after 200 iterations, The

video link demonstrates the ranking convergence as shown in Fig. 3.5
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Figure 3.8: PNN where φn=16, f in = 16 and λout = 16, per 〈x1,π1〉, L ∈ {λa,λb,λc,λd}
where π1 = {1,2,3,4, . . . ,16}.

and video demo Elgharabawy (2020c), and a summary of the two net-

works are presented in Table 3.1.

The output labels represent the ranking values. The differential PSS

and SS functions to accelerate the convergence after a few iterations due

to the staircase shape, which achieves stability in learning. PNN simpli-

fies the calculation of FF and BP, and updates weights into two steps

due to single middle layer architecture. Therefore, the batch weight up-

dating technique is not used in PNN, and pattern update is used in one

step. The network bias is low due to the limited PN output variation, so

it is not calculated. Each neuron uses the activation function in FF step,

and calculates the preference number from 1 to n, where n is the num-

ber of label classes. During BP. The processes of FF and BP are executed

in two steps until ρAvg ≃ 1 or the number of iterations reaches (106) as
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mentioned in the algorithm section.

The SS step width decreases by increasing the number of labels; thus,

we increase function boundary b to increase the step width to ≃ 1 to make

the ranking convergence; In addition, a few complex data sets may need

more data separability to enhance the ranking. Therefore, we use the b

value as a hyperparameter to keep the stair width >= 1 and normalize in-

put data from −b to b. The boundaries are important for non-normalized

data and the function is configured by the boundaries values. and the

step width is the merit of PS function because the function is configured

by the step width.

Table 3.1 shows a brief comparison between Ranker ANN and PNN.

Table 3.1: ANN types used in initial experiment.

Type Ranker ANN PNN
activation fun. ReLU, Sigmoid PSS, SS

gradient descent ascent
objective fun. rms ρ

stopping criteria. τ ρ

3.3.4 Baseline Algorithm

Algorithm 1 represents the three functions of the network learning pro-

cess; feed-forward (FF), BP, and updating weights (UW). Algorithm 1

represents the learning flow of PN. Algorithm 2 represents the simplified

BP function in two steps.

3.4 Network Evaluation

This section evaluates the PNN against different activation functions

and architectures. All weights are initialized = 0 to compare activation

functions and A and B have the same initialized random weights to eval-

uate the structure.
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Algorithm 1: PNN learning flow
Data: D ∈ {x1,x2, . . . ,xd}
Result: π ∈ {λy1, . . . ,λyn}

1 Randomly initialize weights ωi, j ∈ {−0.05,0.05}
2 repeat
3 forall 〈xi,πi〉 ∈D do
4 ai|l−1 =∑m

i=1φ
(
ai ·ωi

)|n // FF
5 PNN BP()
6 ωinew =ωi old−η ·δi //UW

7 until ρAvg = 1 or #iterations≥ 106;

Algorithm 2: PNN BP
8 Step 1: for each pni in Output layer do
9 Erri = ρ =−6 · (2yti−yi)

m(m2−1) //spearman error
10 δi =Err ·φ′
11 Step 2: for each pni in middle layer do
12 Erri =∑m

k=0ωk ·δk

13 δi =Err ·φ′

3.4.1 Activation Functions Evaluation

PNN is tested on iris and stock data sets using four activation functions.

SS, PSS, ReLU, sigmoid, and tanh. PNN has one middle layer and the

number of hidden neuron (h.n.) is 50, while l.r.= 0.05. Fig. 3.9 shows the

convergence after 500 iterations using four activation functions (SS, PSS,

sigmoid, ReLU and tanh) respectively. We noticed that PSS and SS has

a stable rate of ranking convergence comparing to sigmoid, tanh, and

ReLU. This stability is due to the stairstep width, which leads each point

to reach the correct ranking during FF and BP in fewer epochs.

Also SS and sigmoid functions are experimented according to conver-

gence rate and number of epoch as shown in Fig 3.10
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Figure 3.9: PNN activation function comparison using complete labels and 60% missing
labels in (a) and (b), respectively.

3.4.1.1 PSS and SS Evaluation

As shown in Fig 3.9, PSS reaches convergence and remains stable for a

long number of iterations compared to SS. However, SS has better ρ than

PSS. This good performance of SS is due to the reason:

• The symmetry of SS function on the x axis. The SS shape handles

both positive and negative normalized data. It reduces the number

of iterations to reach the correct ranking values.

To have the same performance for SS and PSS, the input data should be

scaled from 0 to step width the number of steps and from -b to b for PSS

and SS respectively.

3.4.1.2 Missing Labels Evaluation

Activation functions are evaluated by removing a random number of la-

bels per instance. PNN marked the missing label as -1; PNN neglects er-
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Figure 3.10: The graphical comparison between convergence of Sigmoid and SS func-
tions to rank stock dataset, (a) Sigmoid has τ = 0.3597 and epoch = 200. (b) Sigmoid
has τ = 0.7876 and epoch = 1600. (c) SS has τ = 0.4975 and epoch = 30. (d) SS has
τ= 0.8147 and epoch = 700.

ror calculation during BP, δ= 0. Thus, the missing label weights remain

constants per learning iteration. The missing label approach is applied

to the data set by using 20% and 60% of the training data. The rank-

ing performance decreases when the number of missing labels increases.

However, SS and PSS have more stable convergence than other functions.

This evaluation is performed on the iris data set, as shown in Fig. 3.9.
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3.4.1.3 Statistical Test

The PNN results were evaluated using receiver operating characteristic

(ROC) curves. The true positive and negative for each rank are evaluated

per label as shown in Fig. 3.11. The confusion matrix on wine and glass

DS are shown in Fig. 3.12 where τ = 0.947, 0.84, Accuracy = 0.935 and

0.8 in (a) and (b) respectively.

Figure 3.11: ROC of three label ranking on the wine data set using PNN h.n=100 and
50 epochs

3.4.1.4 PNN Dropout

Dropout is applied as a regularization approach to enhance the PNN

ranking stability by reducing over-fitting. We drop out the weights that

have a probability of less than 0.5. these dropped weights are removed
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(a) (b)

Figure 3.12: The confusion matrix of testing data for wine, glass DS where τ = 0.947,
0.84, Accuracy = 0.935 and 0.8 in (a) and (b) respectively.

from FF, BP, and updating weight steps. The comparison between dropout

and non-dropout of PNN are shown in Fig. 3.13. The gap between the

training model and ten-fold cross-validation curves has been reduced us-

ing dropout regularization of type A using hyperparameters (l.r.=0.05,

h.n.=100) on the iris data set. The dropout technique is used with all the

data ranking results in the next section.

The following section is the evaluation of ranking experiments using

label benchmark data sets.

3.5 Experiments

This section describes the classification and label ranking benchmark

data sets, and the results using PNN and a comparison with existing

classification and ranking methods.
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Figure 3.13: Training and validation performance without and with dropout regulariza-
tion approach in (a) and (b) respectively.

3.5.1 Data sets

3.5.1.1 Label Ranking Data

PNN is experimented with using three different types of benchmark data

sets to evaluate the multi-label ranking performance. The first type of

data set focuses on exceptions preference mining (de Sá & Duivesteijn

2018), and the ‘algae’ data set is the first type that highlights the in-

difference preferences problem, where labels have repeated preference

value (Cláudio 2018). German elections 2005, 2009, and modified sushi

are considered new and restricted preference data sets. The second type

is real-world data related to biological science (E. Hüllermeier 2008). The

third type of data set is semi-synthetic (SS) taken from the KEBI Data

Repository at the Philipps University of Marburg (Cheng et al. 2009). All

data sets do not have ranking ground truth, and all labels have a continu-

ous permutation space of relations between labels. Table 3.3 summarizes

the main characteristics of the data sets.
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Table 3.2: Benchmark data sets for label ranking; preference mining Cláudio (2018),
real-world data sets Grbovic et al. (2013) and semi-synthetic (s-s) Cheng et al. (2009).

Type DS Cat. #Inst. #Attr. #lbl.

M
in
in
g algae chemical stat. 317 11 7

german.2005 user pref. 413 31 5
german.2009 user pref. 413 31 5

sushi user pref. 5000 13 7
top7movies user pref. 602 7 7

R
ea

l

cold biology 2,465 24 4
diau biology 2,465 24 7
dtt biology 2,465 24 4
heat biology 2,465 24 6
spo biology 2,465 24 11

Se
m
i-
Sy

nt
he

si
ze
d

authorship A 841 70 4
bodyfat B 252 7 7

calhousing B 20,640 4 4
cpu-small B 8192 6 5
elevators B 16,599 9 9

fried B 40,769 9 5
glass A 214 9 6

housing B 506 6 6
iris A 150 4 3

pendigits A 10,992 16 10
segment A 2310 18 7
stock B 950 5 5
vehicle A 846 18 4
vowel A 528 10 11
wine A 178 13 3

wisconsin B 194 16 16

Table 3.3: Benchmark data sets for label ranking; preference mining Cláudio (2018),
semi-synthetic (SS) Cheng et al. (2009) and real-world data sets

3.5.2 Results

3.5.2.1 Label Ranking Results

PNN is evaluated by restricted and non-restricted label ranking data

sets. The results are derived using spearman ρ and converted to Kendall

τ coefficient for comparison with other approaches. For data validation,
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we used 10-fold cross-validation. To avoid the over-fitting problem, We

varied these hyperparameters, i.e. l.r.= (0.005, 0.05, 0.1) hidden neuron

= no.inputs (5, 10, 50, 100, 200) neurons and scaling boundaries from 1

to 250) are chosen within each cross-validation fold by using the best l.r.

on each fold and calculating the average τ of ten folds. Grid searching is

used to obtain the best hyperparameter values. For type B, we use three

output groups with l.r.=0.001 and wb = 0.01.

3.5.2.2 Benchmark Results

Table 3.4 summarizes PNN ranking performance over 16 strict label

ranking data sets by using l.r. and m.n. The results are compared with

four methods for label ranking; supervised clustering (Grbovic et al. 2013),

supervised decision tree (Cheng et al. 2009), MLP label ranking (Ribeiro

et al. 2012), and label ranking tree forest (LRT) (de Sá et al. 2017). Each

method’s results are generated by ten-fold cross-validation. The compari-

son selects only the best approach for each method.

During the experiment, it was found that the ranking performance

increased by increasing the number of central neurons. All the results

are held using a single hidden layer with various hidden neurons (50

to 300) and SS activation function. The Kendall τ error converges and

reaches close to 1 after 2000 iterations, as shown in Fig. 3.14.

Table 3.4 compares PNN with the similar approaches used for label

ranking. These approaches include; Decision trees (Grbovic et al. 2013),

MLP-LR (Ribeiro et al. 2012) and label ranking trees forest LRT (de Sá

et al. 2017). In this comparison, we choose the method that has the best

results for each approach.
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Figure 3.14: Ranking performance comparison of PNN with other approaches.
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Table 3.4: PNN performance comparison with various approaches: supervised cluster-
ing (Grbovic et al. 2013), supervised decision tree (Cheng et al. 2009), MLP label rank-
ing (Ribeiro et al. 2012), Kernel Ridge Regression (K.R.R)(Korba et al. 2018) and label
ranking tree forest (LRT) (de Sá et al. 2017)

DS S.Clust. DT MLP-LR LRT K.R.R PNN
authorship 0.854 0.936(IBLR) 0.889(LA) 0.882 0.93 0.918
bodyfat 0.09 0.281(CC) 0.075(CA) 0.117 - 0.5591

calhousing 0.28 0.351(IBLR) 0.130(SSGA) 0.324 - 0.34
cpu-small 0.274 0.50(IBLR) 0.357(CA) 0.447 - 0.46
elevators 0.332 0.768(CC) 0.687(LA) 0.760 - 0.73

fried 0.176 0.99(CC) 0.660(CA) 0.890 - 0.91
glass 0.766 0.883(LRT) 0.818(LA) 0.883 0.83 0.8175

housing 0.246 0.797(LRT) 0.574(CA) 0.797 - 0.712
iris 0.814 0.966(IBLR) 0.911(LA) 0.947 0.97 0.917

pendigits 0.422 0.944(IBLR) 0.752(CA) 0.935 - 0.86
segment 0.572 0.959(IBLR) 0.842(CA) 0.949 - 0.916
stock 0.566 0.927(IBLR) 0.745(CA) 0.895 - 0.834
vehicle 0.738 0.862(IBLR) 0.801(LA) 0.827 0.89 0.754
vowel 0.49 0.90(IBLR) 0.545(CA) 0.794 0.88 0.85
wine 0.898 0.949(IBLR) 0.931(LA) 0.882 0.89 0.90

wisconsin 0.09 0.629(CC) 0.235(CA) 0.343 - 0.612
Average 0.475 0.79 0.621 0.730 N.A. 0.755

3.5.2.3 Preference Mining Results

The ranking performance of the new preference mining data set is rep-

resented in table 3.5. Two hundred fifty hidden neurons are used to en-

hance the ranking performance of the algae data set’s repeated label val-

ues. However, restricted labels ranking data sets of the same type, i.e.,

(German elections and sushi), did not require a high number of hidden

neurons and incurred less computational cost.

Experiments on the biological real-world data set were conducted us-

ing supervised clustering (SC) (Grbovic et al. 2013), Table 3.6 presents

the comparison between PNN and supervised clustering on biological

real-world data in terms of LossLR as given in Eq. 3.4.
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Table 3.5: Preference mining ranking performance in terms of the Kendall τ coefficient
and learning step and number of hidden neurons.

Preference Mining Data
DS Avg.τ l.step #m.n.

algae 0.751 0.005 100
german2005 0.89 0.005 20
german2009 0.78 0.005 20

sushi 0.69 0.005 300
top7 movies 0.602 0.005 20

(3.4) τ= 1−2 ·LossLR

where τ is Kendall τ ranking error and LossLR is the ranking loss func-

tion.

SS function with 16 steps is used to rank the Wisconsin data set with

16 labels. By increasing the number of steps in the interval and scaling

up the features between -100 and 100, The step width is small. In order to

enhance ranking performance, the data set has many labels. The number

of hidden neurons is increased in order to exceed τ= 0.5.

Table 3.6: Comparison between PNN and supervised clustered on biological real world
data in terms of LossLR

Biological real world data
DS S.Clustering PNN
cold 0.198 0.11
diau 0.304 0.255
dtt 0.124 0.01
heat 0.072 0.013
spo 0.118 0.014

Average 0.1632 0.0804
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3.5. EXPERIMENTS

3.5.3 Computational Platform

PNN and PN are implemented from scratch without using the Tensor-

flow API and developed using Numba API to speed its execution on the

GPU. It used Cuda 10.1 and Tensorflow-GPU 2.3 for GPU execution and

executed on the University of Technology Sydney High-Performance Com-

puting cluster based on Linux RedHat 7.7, which has an NVIDIA Quadro

GV100 and memory of 32 G.B. For non-GPU version of PNN is located at

Github Repository Elgharabawy (2022).

3.5.4 Discussion

It can be noticed from Table 3.7 that PNN outperforms on SS data sets

with τAvg = 0.8, whereas other methods such as, supervised clustering, de-

cision tree,MLP-ranker and LRT, have results τAvg = 0.79,0.73,0.62,0.475,

respectively. Also, the performance of PNN is almost 50% better than

supervised clustering in terms of ranking loss function LossLR on real-

world biological data set, as shown in table 3.6. The superiority of PNN

is used for classification and ranking problems. The ranking is used in

input data as a feature selection criteria is a novel approach for deep

learning.

The proposed PNN has multi-output neuron which gives multiple nu-

meric values and rank the output labels simultaneously in one model

is an advanced step over pairwise label ranking based on classification.

PNN could be used to solve new preference mining problems. One of these

problems is incomparability between labels, where Label ranking has in-

comparable relation ⊥, i.e., ranking space (λa ≻λb⊥λc) is encoded to (1, 2,

-1) and (λa ≻λb)⊥(λc ≻λd) is encoded to (1, 2, -1, -2). PNN could be used to

solve new problem of non-strict partial orders ranking, i.e., ranking space

(λa ≻λb ⪰λc) is encoded to (1, 2, 3) or (1, 2, 2). Future research may focus
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CHAPTER 3. PREFERENCE NEURAL NETWORK

on modifying PNN architecture by adding bias and solving problems of

extreme multi-label ranking.

3.6 Conclusion

This chapter proposes a novel method to rank a complete multi-label

space in output labels and features extraction in both simple and deep

learning. PNN are native ranker networks for image classification and

label ranking problems that uses SS or PSS to rank the multi-label per

instance. This neural network’s novelty is a new kernel mechanism, acti-

vation, and objective functions. This approach takes less computational

time with a single middle layer. It is indexing multi-labels as output neu-

rons with preference values. The neuron output structure can be mapped

to integer ranking value; thus, PNN accelerates the ranking learning by

assigning the rank value to more than one output layer to reinforce up-

dating the random weights. PNN is implemented using python program-

ming language 3.6, and activation functions are modeled using wolframe

Mathematica software (Inc. n.d.).
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REDUCTION

4.1 Introduction

Deep Learning (DL) is the learning to extract high-level and complex ab-

stractions of data through a hierarchical learning process. DL succeeded

in big data fields such as image recognition and natural language pro-

cessing (NLP) by learning the selection of the best features Sornam et al.

(2017), Vedantam (2021). While many studies have successfully used deep

learning for classification problems, the main learning challenge is choos-

ing the network architecture and structure in terms of nodes’ numbers

and hidden layers. (Autoencoder Vahdat & Kautz (2020), Convolutional

Deep Belief Network (CDBN) Zhong & Fang (2020), Convolutional Neu-

ral Network (CNN), Deep Belief Network (DBN) Hinton (2009), Deep

Boltzmann Machine (DBM) Salakhutdinov & Hinton (2009), Long short-

term Memory Network (LSTM) Yan et al. (2017), Zhao et al. (2017), Re-

current Neural Network (RNN) Kumar et al. (2020), and Restricted Boltz-
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mann Machine (RBM) Alphonse et al. (2021)) are the main deep learning

approaches used in deep learning.

In computer vision, the convolution architecture is dominant in DL by

using a variation of CNN-like architectures (Lecun et al. 1998, Krizhevsky

et al. 2012d, He et al. 2016b, Wang et al. 2017).Some architectures re-

placed the convolutions entirely Kumar et al. (2020), Yan et al. (2017),

Zhao et al. (2017). However, these models have succeeded in image clas-

sification; they have not yet been scaled effectively on large-size images

and use specialized attention patterns. Therefore, in large-scale image

recognition, classicResNet like architectures are still state-of-the -art Ma-

hajan2019CategoricalIC, Farooq2020COVIDResNetAD. Therefore, kernel

computation and scaling are still fixed and specialized to certain images

type.

Preference neural network (PNN) was introduced by (Elgharabawy

et al. 2021b) as the first ANN for ranking using spearman objective func-

tion and new smooth staircase (SS) activation function designed to ac-

celerate the ranking by producing multi preference values (Elgharabawy

et al. 2021b). The deep neural network (DNN) is introduced for object

ranking to solve document retrieval problemsWang et al. (2020). RankNet

Chris Burges (2005), RankBoost Freund et al. (2003), and LambdaMARTWu

et al. (2010), and deep pairwise label ranking models Jian et al. (2019),

are convolution neural Network (CNN) approaches for the vector repre-

sentation of the query and document. CNN is used for image retrieval

in Li et al. (2020) and label classification Ji et al. (2020).

The CNN mentioned above, and their variants exhibit several issues

that can be broadly summarized as:

1) Partial detection as CNN kernel detects small size features such

as edges with kernels that occupy only tens or hundreds of pixels.
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4.1. INTRODUCTION

Thus, it ignores the relationship between different parts of the whole

image in large images. For example, CNN detects the image edges

in the human face by combining features (the mouth, two eyes, the

face oval, and a nose) with a high probability to classify the subject

without learning the relationship between these features of CNN

with several layers

2) Slow in computational performance due to large number of CNN

several layers.

3) Challenges in detecting object under different angels, backgrounds,

lighting conditions.

The proposed PN has several advantages over existing CNN classifica-

tion approaches.

1) Simplifying the calculation based on the difference of pixel values of

greyscale images.

2) Enhancing the predictive probability and accelerate the ranking con-

vergence rate by using new PS activation function over existing sig-

moid, Relu and Softmax due to the step shape to produce almost

discrete multi-values from 0 to n where n is the number of ranked

labels.

3) Speeding the computational calculation of single epoch due to PN 5

layers.

4) Boosting the accuracy, sensitivity, and image classification results

by pixels’ ranking and reducing the ranking output to classification

using score function.

Section II explains the PN components, namely Activation functions, Ob-

jective function, and network structure.
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4.2 PN Components

4.2.1 Multiple PNN

PN components consists of multiple PNN network, each PNN learn one

kernel size.

The spearman error function is represented by Eq.4.1

(4.1) ρ = 1− 6
∑m

i=1 (yi− yt i)2

m(m2−1)

where yi, yti, i and m represent rank output value, expected rank value,

label index and number of instances, respectively.

4.2.2 Preference Neuron

thw PNN preference Neuron is used with PSS function

4.2.3 Preference Neural Network

The PNN is fully connected to multiple-valued neurons and a single-

hidden layer proposed by ELgharabawy Elgharabawy et al. (2021b,a).

The input layer represents the number of features per data instance. The

hidden neurons are equal to or greater than the number of output neu-

rons, Hn ≥ Ln, to reach error convergence after a finite number of itera-

tions. The output layer represents the label indexes as neurons, where

the labels are displayed in a fixed order.

Section 4.3 describes the data preprocessing steps, feature selections.

4.3 PN Structure and Processing

This approach converts the multi-class classification problem into a multi-

label ranking problem in two steps as shown in Fig 4.1.
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4.3. PN STRUCTURE AND PROCESSING

Figure 4.1: Classification by ranking reduction flow

1) Converting Label Classification into Label Ranking:

By converting the multi class vector to binary categorical class labels

i.e: for class 1,2,3,..,10 and 4 are presented as ranked labels (2, 1, 1,

.. , 1) for class label 1 and (1, 1, .. , 1, 2) for class label 10.

2) Converting Ranking Results into Binary Classification: using rank-

ing reduction into classification by scorer function s: L→R. For out-

put labels to choose the max value fs =Max(λ) for the binary classi-

fication that has c : X → {±1}. PN reranked the final results using

the score function by choosing the highest preference value as the

class label. The binary ranking is used to calculate the image classi-

fication accuracy, sensitivity and specificity. For example, The final

PN results of 10 labels are (2, 1.5, 1, 1.7, 1, 1, 0, 1, 0) which has

ρ =0.5, then the binary ranking is (2, 1, .. , 1) which increase the
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ρ = 1 correlated to class categorical output (1, 0, 0, 0, 0, 0, 0, 0, 0, 0).

4.3.1 Image Prepossessing

4.3.1.1 Greyscale Conversion

Data scaling as red, green and blue (RGB) colours is not considered for

ranking because PN measures the preference values between pixels. Thus,

the image is converted from RGB colour to Greyscale.

4.3.1.2 Pixels’ Ranking

The image pixels are ranked using Spearman correlation by flattening

the image into one numeric vector and ranking the vector which repre-

sents the pixels values from 0-255 to 1-156 as illustrated in Fig. 4.2. From

(a) to (b) in this step we rank subset of the data by ranking window part

of pixels’ image by ranking the image from π= {λ1, ..,λm} to π= {λ1, ..,λk}

where the maximum greyscale value λm = 255 and λk is the maximum

ranked pixel value as illustrated in Fig. 4.2 (c).

4.3.1.3 Pixel Averaging

Ranking image pixels have an almost low-ranking correlation due to

noise, scaling, light, and object movement; therefore, window averaging

is proposed by calculating the mean of pixel values of the small flattened

window size of 2x2 of 4 pixels as shown in Fig. 4.3. The overall image ρ

of pixels increased from 0.216 to 0.79 in (a) and (b), from 0.137 to 0.75

for noisy images in (c) and (d), and scaled images from -0.18 to 0.71 in (e)

and (f).

Pixel ranking and Averaging are two approaches have been tested on

two sample images of remote sensing and faces images to detect the sim-

ilarity. The experiment shows high ranking correlations using different
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Figure 4.2: Image pixel ranking for each flattened window.

window size as shown in Fig 4.4. It detects the high correlation by start-

ing from the large window size to be set as the image size. It reduces the

size and scan until it reaches the highest correlation.

4.3.2 Feature Extraction

This chapter proposes a new approach for feature selection based on data

preference values by ranking the pixels instead of CNN convolution. The

features are based on ranking computational space. Therefore, the kernel

window size is considered a factor for feature selection.

4.3.2.1 Window Pixels’ Ranking

For each scanned window in the image, the flatten ranked vector is ranked

before measuring the ρ with the ranker kernel. the Fig. 4.2 shows the

window size 3X3 range from λk1 = 23 to λk2 = 9.
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ρ = 0.216 ρ = 0.79

(a)

ρ = 0.137

(b)

ρ = 0.75

(c)

ρ =−0.18

(e)

(d)

ρ = 0.71

(f)

Figure 4.3: Sample of moving objects in (a) and (b) without and with averaging by win-
dow 2x2. The ranking of two flattened images are ρ = 0.216 and 0.79 in (a) and (b),
respectively. Sample of moving noisy object in (c) and (d) without and with image aver-
aging by a window of 2x2. The ranking of two flattened images are ρ = 0.137 and 0.75 in
(c) and (d) respectively. and ρ =−0.18 and 0.71 of scaled circle in (e) and (f), respectively.

Ranking the pixel reduces the data margin, so it reduces the computa-

tional complexity.
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4.3. PN STRUCTURE AND PROCESSING

ρ = 0.84ρ = 0.81ρ = 0.6

Figure 4.4: Detecting the similarity in remote sensing and face recognition by ranking
the image pixels after averaging the pixels using a 2x2 window.

4.3.2.2 Weighted Ranker Kernel

The kernel weights are randomly initialized from -0.05 to 0.05 learns the

features by BP the weights. The partial change in the kernel dKw is by

differentiating the spearman correlation as in Eq. 4.2

(4.2) dKw= 2 · Img−dρ · n
3−n
−6

Where Img is the original image matrix, and dρ is the differentiating

the spearman.

Different kernel sizes could be used. However, we propose multiple

kernels for big images’ size. We use three different kernels to capture the

relations between different features in the image.

4.3.2.3 Max Pooling

PN uses the max. pooling approach to reduce the features map’s size and

select the highest correlation values to feed to the PNN.

4.3.3 Network Structure

PN is the deep learning structure of PNN for image classification. It con-

sists of five layers; a ranking features map, a max. pooling and three PNN

layers. PN has one or multiple different sizes of PNNs connected by one
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output layer. Five layers are the minumum layers for the proposed deep

learning classification. Many different structures can be applied for the

future work. Each PNN has PSS where φn=2 for binary ranking to map

the classification. The number of output neurons is the number of classes.

PN have one or more ranker kernels with different sizes; Each kernel has

one corresponding PNN as shown in Fig 4.5. PN uses the weighted kernel

ranking to scan the image and extract the features map of spearman cor-

relation values of the kernel with the scanned ranked image window as

ρ(πk,πw) where πk is the kernel preference values and πw is the scanned

window image preference values. Each kernel scans the image by one

step and creates a spearman features list. Max. Pooling is used to mini-

mize the feature map used as input to PNN. Small size kernels are used

for an image that does not have observed similarity as CFAR-10, where

one object has different shapes. i.e., truck. The three kernels (8, 10, 20)

are used in classification of Mnist data set LeCun & Cortes (2010). Three

kernels with sizes (6, 7, 8) are used for CFAR-10 Krizhevsky (2009a). The

main advantage of PN is choosing the kernel size by eye observation as

it is based on the size of meaningful feature (letter, eye, etc) comparing

to convolution kernel. The calculation of correlation based on adding and

subtracting and doesn’t use multiplication as convolution. In Addition to,

miminum number of layers comparing to CNN. Table 4.1 represents a

brief comparison between CNN and PN in terms of components.

*conventional fun.: relu, logistic, sigmoid, tanh, gaussian, softmax, max-

out.
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Table 4.1: Comparison between CNN and PN.

Type CNN PN
Activation Fun. fun. * PSS

Kernel convolution spearman ρ

Pooling avg.,max. max
Layer multiple single

Gradient Descent Ascent
Objective Fun. rms ρ

Stopping Criteria. rms ρ

4.4 Algorithms

4.4.1 Kernel size

The ranker kernel window size is chosen according to the highest corre-

lation between two images of the same class. The kernel scans the two

images and calculates ρ, and the number of flattening windows correla-

tion exceeds 0.8 and 0.6. the number of kernels is from 3 to 5 kernels. The

Mnist dataset kernel size is chosen according to the table 4.2

4.4.2 Baseline Algorithm

Algorithm 1 represents the three functions of the network learning pro-

cess: feed-forward (FF), BP, and updating weights (UW). Algorithm 3 rep-

resents the learning flow of PN.Algorithm 4 represents the PN learning

cycle. Algorithm 5 represents the simplified BP function in two steps.

4.4.3 Complexity Analysis

4.4.3.1 Time Complexity

• FF time complexity corresponds to FF of middle and output layers,

and m and n are number of nodes in the middle and output layers.

Wm and Wo are weighted matrix and SSt is the activation function
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Algorithm 3: PNN learning flow
Data: D ∈ {x1,x2, . . . ,xd}
Result: π ∈ {λy1, . . . ,λyn}

14 Randomly initialize weights ωi, j ∈ {−0.05,0.05}
15 repeat
16 forall 〈xi,πi〉 ∈D do
17 ai|l−1 =∑m

i=1φ
(
ai ·ωi

)|n // FF
18 PNN BP()
19 ωinew =ωi old−η ·δi //UW

20 until ρAvg = 1 or #iterations≥ 106;

Algorithm 4: PN Learning flow
21 Converting image to greyscale
22 Flattening image
23 Image pixel ranking
24 2D Image
25 Pixel averaging by a 2X2 window
26 Flattening image
27 Select one/more kernel sizes.
28 Random init. Kernel Kωx,y ∈ {−0.05,0.05}
29 Random init. PNN ωi, j ∈ {−0.05,0.05}
30 repeat
31 2D Image
32 Scanned window pixel ranking Imgw
33 Compute ρ(Imgw,Kw) feature map
34 Max. Pooling.
35 Flattening image
36 PNN FF()
37 PNN BP()
38 PNN UW()
39 Max. Pooling BP()
40 Ranker kernel BP and UW()
41 until ρAvg = 1 or #iterations≥ 106;

of number of instances t. The time complexity in Eq. 4.3

(4.3) O (m · o · t)

• BB starts with calculating the error of output layer Eot = ρ′
o Deltao =
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Algorithm 5: PNN BP
42 Step 1: for each pni in Output layer do
43 Erri = ρ =−6 · (2yti−yi)

m(m2−1) //spearman error
44 δi =Err ·φ′
45 Step 2: for each pni in middle layer do
46 Erri =∑m

k=0ωk ·δk

47 δi =Err ·φ′

Table 4.2: The number of window correlated of two images in Fig. 4.6 (a) of class 3 of
Mnist dataset by using image averaging 2x2 and 4x4 window using different window
size from 3x3 to 28x28.
Win.Size 4 5 6 7 8 9 10 11 12 13 14 15 16

#
w
in
. ρ>0.95(2) 737 419 233 134 79 46 22 9 4 1 0 0 0

ρ>0.95(4) 2625 1997 1276 872 503 286 163 78 38 21 7 3 0
ρ>0.6(2) 20176 18982 16706 14003 11424 9388 7681 6100 4681 3538 2673 118 19

Eot ·SS′ and Deltam =Emt ·SS′ then UW

(4.4) Wm =Wm−Deltam

This time complexity is then multiplied by the number of epochs n

(4.5) O (n ·m ·o · t)

4.4.3.2 Input Neurons

The number of PN input neurons is represented by Eq. 4.6

(4.6) #Input= (ImgW −KW +1) · (ImgH−KH+1)

where KW is kernel width and KH is kernel height.

4.4.4 Choosing The Kernels

Choosing the size of kernels is based on the image size and the minimum

window size of meaningful observed feature. For example the for Mnist

dataset where the image has size 28X28, The meaningful features are

10x10, 15x15, 20x20 and 25x25. The number of kernels for 28 images

may not exceed the number of meaningful feature sizes of 4 kernels.
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4.4.5 Color Image Compensation

PN have alternative approach to classify RGB color by separate the im-

age into three R,G and B images and process the three images using

multiple ranking kernel.
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Figure 4.5: The PN structure has three kernels and three PNNs where φn=2, f1in =
16, f2in = 81, f3in = 169 and λout = 15, per 〈x1,π1〉,π ∈ {λ1,λ2,λ3 · · · ,λ15}.

4.5 Network Evaluation

This section evaluates the PNN against different activation functions

and architectures. All weights are initialized = 0 to compare activation

functions and A and B have the same initialized random weights to eval-

uate the structure.
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ρ = 0.5 ρ = 0.64 Avg. 2x2

(a)

ρ = 0.79

(b)

ρ = 0.89 Avg. 2x2

(c)

ρ = 0.71

(e)

(d)

ρ = 0.1 Avg. 2x2

(f)

Figure 4.6: Image averaging using image width window size applied in MNIST , MNIST-
Fashion and Cifar-10 datasets in (a),(c), and (e) and the images after averaging using
2X2 in (b), (d), (f) in order to choose the best kernel windows by searching for the best
correlation for all window sizes

4.5.1 Multiple Kernel Evaluation

Increasing the number of ranker kernel increase the rate of convergence

and reaches up to three kernels to a stable rate as shown in Fig. 4.7.

4.5.2 Dropout Regularization

Dropout is applied as a regularization approach to enhance the PNN

ranking stability by reducing over-fitting. We drop out the weights that

have a probability of less than 0.5. these dropped weights are removed

from FF, BP, and updating weight steps. The gap between the train-

ing model and ten-fold cross-validation curves has been reduced using

73



CHAPTER 4. PREFERENCE NET : CLASSIFICATION BY RANKING REDUCTION

dropout regularization using hyperparameters (l.r.=0.05, h.n.=100) on

the Mnist data set. The dropout technique is used with all the data rank-

ing results in the next section.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

iterations

spearman ρ

one kernel
two kernels
three kernels
four kernels
five kernels

Figure 4.7: Comparison between the number of ranker kernels used in PN; one kernel
(15X15) , two kernels (15X15 and 20X20), three kernels (15X15, 20X20 and 25X25),four
kernels (10X10, 15X15, 20X20 and 25X25), five kernels (5X5, 10X10, 15X15, 20X20 and
25X25) for training 10 images of Mnist dataset where image size is 28X28. as shown by
increasing number of kernels the performance is reached to a stable convergence rate
doesn’t reach faultless ranking ρ = 1.0 as mentioned by Ailon Ailon & Mohri (2007).

The following section is the evaluation of ranking experiments using

image recognition benchmark data sets.
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4.6 Experiments

This section describes the classification benchmark data sets, the results

using PN , and a comparison with existing classification methods.

4.6.1 Data sets

PN is evaluated using Mnist LeCun et al. (2010), Fashion-Mnist Xiao

et al. (2017a), and CIFAR-10 Krizhevsky (2009a) data sets.

4.6.1.1 MNIST

It consists of hand-written digits and is the most used dataset within the

deep learning community. The dataset is trivial to learn and simple to

reach good performance LeCun et al. (2010). It is included in the experi-

ment for algorithm completeness of benchmarks.

4.6.1.2 MNIST-Fashion

is a rather new dataset with different classes of clothing and is a drop-in

replacement for MNIST Xiao et al. (2017b). It is harder but has the same

size, input dimension, and number of classes as Mnist.

4.6.1.3 CIFAR-10

The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different

classes. (Krizhevsky 2009b). The 10 different classes represent airplanes,

cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. There are

6,000 images in each class.
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4.6.2 Results

4.6.2.1 Ensemble weighted models

The results are extracted using ensemble-weighted average models. This

approach is executed by dividing the training dataset (50,000) images

into a small chunk of data 1000 images and running a parallel process

for each chunk on PN and getting the model and validation results for

each mode as shown in Fig. 4.8. According to the validation result, the

weight is determined, then testing data of 20,000 images are executed on

fifty models, the average weight is taken of the 50 models to determine

the final result.

4.6.2.2 Output Ranking Results

In terms of ranking, the output of PN barely reaches ρ=0.85; however,

applying binary ranking on the final results increases the classification

accuracy and sensitivity before and after using cost function in (a) and

(b), respectively, in MNIST, MNIST-Fashion, and CIFAR-10 as shown in

table 4.3.

4.6.2.3 Image Classification Results

PN is tested on the CFAR-10 Krizhevsky (2009a), MNIST-Fashion data

set Xiao et al. (2017a) using 3 kernel sizes and MNIST as shown in Table

4.3. Table IV shows the results compared to other convolutions networks.

4.6.2.4 Statistical Test

The PN results were evaluated using receiver operating characteristic

(ROC) curves. The true positive and negative for each rank are evaluated

per label as shown in Fig. 4.9 which represents a comparison between
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Testing Data

PNPNPN

Model 1Model 2

Chunk 1Chunk 2Chunk n

Model n

Training Data

Result 2Result n Result 1Wn x W1 xW2 x

Figure 4.8: weighted ensemble average models flow of the image classification using
PNs parallel processing for each chunk of training data.

ranking and classification after reduction using ROC in Fig. 4.9 (a) and

(b) respectively.

Table 4.3: PN results on datasets(Mnist, Mnist-Fashion, and CIFAR-10) where The ac-
curacy and sensitivity before and after applying score function.

DS Mnist Mnist-Fashion CIFAR-10
window avg. 2x2 2x2 -

kernels 8,10,20 6,8,10 6,7,8
h.n. 100,100,100 100,100,100 150,150,150

Epochs 200 500 1000
Acc.-before-score 0.75 0.71 0.632
Acc.-after-score 0.974 0.9316 0.9083

Sens.-before-score 0.654 0.71 0.782
Sens.-after-score 0.954 0.912 0.906

The PN are implemented from scratch without the Tensorflow API

at the University of Technology Sydney High-Performance Computing

cluster based on Linux RedHat 7.7.
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(a)

(b)

Figure 4.9: ROC evaluation of 500 images of Mnist in the first 50 epochs using PN out-
put ranking in (a). The output ranking after ranking score applied for ranking reduction
in (b) where ranking 1 and 2 using the score and inverse of score function fs2 =Max(λ)
and fs1 = notMax(λ)
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Table 4.4: Comparison of classification on CIFAR-10 Krizhevsky (2009a) and Fashion-
Mnist data set Xiao et al. (2017a) Data sets using different convolution models

DS Model Baseline

M
N
IS

T

CapsNet Mazzia et al. (2021) 97.22
MCDNN Ciresan et al. (2012) 99.26
SpinalNet Kabir et al. (2020) 98.73

PrefNet 97.4

Fa
sh

io
n-
M
N
IS

T DARTS Tanveer et al. (2021) 0.96
SAM Foret et al. (2021) 0.951

Wide-ResNet Zagoruyko & Komodakis (2016b) 0.955
PrefNet 0.9316

C
IF

A
R
-1
0 ResNet He et al. (2016a) 92.22

WRN Zagoruyko & Komodakis (2016c) 96.26
Dense Huang et al. (2017) 93.73

PrefNet 92.41

C
IF

A
R
-1
00

ResNet He et al. (2016a) 72.22
WRN Zagoruyko & Komodakis (2016c) 78.26

Dense Huang et al. (2017) 81.73
EfficientNetV2-M Tan & Le (2021) 92.2

-
EffNet-L2 (SAM) Ridnik et al. (2021) 96.08

-
CvT Wu et al. (2021) 94.39

-
PrefNet 90.83

4.6.3 Discussion and Future Work

This chapter introduces a new classification approach by ranking reduc-

tion. This approacg is achieved by initial ranking step to reach a stable

results in validation and testing, then using cost function to boost the

accuracy to outperform some other approaches. It can be noticed from ta-

ble 4.3 that PN is performing better than CapsNet Mazzia et al. (2021)

and. Different types of architectures of PN could be used to enhance the

results to reach state-of-the-art in terms of image recognition.

The superiority of PN is using a new type of weighted kernel in pixels’

ranking correlation and creating spearman correlation features matrix
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as a new feature selection to be a novel approach for deep label ranking

for image recognition.

4.7 Conclusion

This chapter proposed a novel method to rank a complete multi-label

space in output labels and features extraction in both simple and deep

learning. PN are native ranker networks for image classification and la-

bel ranking problems that use PSS to rank the multi-label per instance.

This neural network’s novelty uses a new kernel mechanism based on

correlation instead of convolution. However, the ranking results hardly

reach 0.9, which requires the score function to increase the accuracy by

reducing the ranking to classification. This approach takes less compu-

tational time with a single middle layer. It is indexing multi-labels as

output neurons with preference values. The neuron output structure can

be mapped to an integer ranking value. PN is implemented using python

programming language, and activation functions are modeled using Wol-

frame Mathematica software Inc. (n.d.).
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SUBGROUP PREFERENCE NEURAL NETWORK

5.1 Introduction

Subgroup label ranking is proposed to rank multiple group of labels us-

ing a single learning model, which is a new problem faced in preference

learning. This chapter introduces the Subgroup Preference Neural Net-

work (SGPNN) that combines multiple networks have different activa-

tion function, learning rate, and output layer into one artificial neural

network (ANN) to discover the hidden relation between the subgroups’

multi-labels. The SGPNN is a FF, partially connected network that has a

single middle layer and uses stairstep (SS) multi-valued activation func-

tion to enhance the prediction’s probability and accelerate the ranking

convergence. The novel structure of the proposed SGPNN consists of a

multi-activation function neuron (MAFN) in the middle layer to rank

each subgroup independently. The SGPNN uses gradient ascent to max-

imize the Spearman ranking correlation between the groups of labels.

Each label is represented by an output neuron that has a single SS func-

tion. The proposed SGPNN using conjoint dataset outperforms the other
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label ranking methods which uses each dataset individually. The pro-

posed SGPNN achieves an average accuracy of 91.4% using the conjoint

dataset compared to supervised clustering, decision tree, multilayer per-

ceptron label ranking and label ranking forests that achieve an average

accuracy of 60%, 84.8%, 69.2% and 73%, respectively, using the individ-

ual dataset.

This chapter is providing the tool to support the third phase of SD to

rank the discovered subgroup. Also, the chapter proposes an approach to

convert unrestricted label ranking to restricted label ranking data. The

Subgroup Preference Networks (SGPNN) built upon preference neural

network (PNN) to rank multi-label subgroups data D ∈ {〈xn, (πn1⊥πn2...

⊥πnm)〉} where πn is a group of labels and m = number of subgroups.

The primary motivation of this work is to build a unified predictive rank-

ing data model to support multiple exception mining analysis instead of

having different models for different subgroup discovery problems. The

multi-label subgroup is employed in the following scenarios:

1. Real customer data often explicitly rate different categories of prod-

ucts and services as multi-label subgroups, e.g., restaurant rating

based on food quality and customer services (Vargas-Govea et al.

2011).

2. Multi-label ranking of related datasets collected in different time

periods, e.g, German elections in 2005 and 2009 (Rebelo 2018b,a).

3. Multi-label data that have unrestricted preference relations between

labels are converted into connected subgroups that have restricted

relations. This can be seen in the sushi dataset (de Sá 2018, Kamishima

2003) where λa ≻ (λb,λc) is solved by 2 subgroups using the indiffer-

ence ∼ or incomparable ⊥ relations as (λa ≻ λb ≻ λc)∼ (λa ≻ λc ≻ λb)
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or (λa ≻ λb ≻ λc)⊥(λa ≻ λc ≻ λb). Another example of no ground-

truth data where one data record has two labels πx = (λa ≻ λb) and

πx = (λb ≻λa) which are mapped to πx = (λa ≻λb)⊥(λb ≻λa).

The current challenge of the proposed SGPNN is synthesizing the data

to create a group of labels per each data instance from multiple datasets

or subgroup discovery processes.

To sum up, the key contributions in this chapter are:

• New ranker SGPNN has a novel design to rank multi-label incom-

parable/indifference subgroups, where no relation or no difference

between groups. SGPNN has a novel multi activation function Neu-

ron (MAFN) that uses SS activation function, including one function

for each output layer.

• The conjoint features of multi-label datasets build a unified NN

ranking model for different datasets from different domains. We find

that the SGPNN has a remarkably better performance than other

approaches that rank each dataset using a separate model.

• Discovering the hidden relation between different datasets by learn-

ing them together in one model is a novel approach to build an accu-

mulative learning approach.

• Solving the ambiguous data by labeling the class overlap data with

label groups.

5.2 Subgroup Preference Neural Network (SGPNN)

This chapter proposes an novel approach to convert the ambiguous and

unrestricted label ranking to restricted label ranking data and a new
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Figure 5.1: An example of two subgroups architecture of SGPNN to rank conjoint data
from two subgroups data, each group has 4 and 3 labels respectively, where φ1n=4, φ2n=1,
f in = 4. A video demo of 2-subgroup architecture is available in (Elgharabawy 2020c)

ranker ANN to rank a new type of data has group of label. The Sub-

group Preference Networks (SGPNN) built upon preference neural net-

work (PNN) to rankmulti-label subgroups dataD ∈ {〈xn, (πn1⊥πn2...⊥πnm)〉}
where πn is a group of labels and m= number of subgroups. The thesis in-

troduces SGPNN as a complementary machine learning predictive step

to SD methodology that follows the post-processing to classify and rank

the discovered subgroups. The primary motivation of SGPNN is to build

a unified predictive ranking data model to support multiple exception

mining analysis instead of having different models for different subgroup

discovery problems.

The next section describes the components and architecture of SG-
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PNN that is based on PNN architecture to rank label subgroups.

5.2.1 Multi Activation Function Neuron (MAFN)

The SGPNN introduces the multi activation function Neuron (MAFN) to

address the architecture limitation of the PNN to rank different lengths

of output layers. TheMAFN contains the same number of inputs because

they share the same wm weights with input neurons where wm is the

weight of middle layer, yin = ∑
a i ·wi. MAFN contains k number of φ

activation function and lr learning rate, k = n, where n is the number

of output layer. For example, Fig. 5.2 shows a MAFN which has two φ,

where each function has a single output; It is graphically represented by

multiple #n output links because PN connects only to n number of output

neurons where S = n+1 and s is φ step number.

Multiactivation Function Neuron (MAFN)

λ1n =φ4

(∑k
i=1 ai.wi

)
, λ2n =φ3

(∑k
i=1 ai.wi

)
Input

Weights

a1

w1.

.

ai
wmi

.

.

ak

wmk

λa

λb

λc

λd

λe

λ f

λg

a j1

a j2

∑k
i=1 ai .wi

φ1

φ2

-2 -1 1 2
x

0.5

1.0

1.5

2.0

2.5

Figure 5.2: The structure of the MAFN where φ1|n=4 and φ2|n=3.

As shown in Fig. 5.2, φ1|n=4 and φ2|n=3 of the MAFN is connected to 2

output groups of 4 and 3 neurons respectively.

In a conventional ANN, the sufficient number of hidden neurons to

achieve convergence is determined by the Cao and Mirchandani theorem

(Mirchandani & Cao 1989). In an n dimensional space, the maximum

number of regions that are linearly separable into M regions using h
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hidden nodes is

(5.1) M(h,n)=
n∑

k=0

h
k

 where

h
k

= 0 when h< k

However, the SGPNN has multiple Euclidean n-space for each output

layer. Therefore, m · n<kmaf n, where n is the n-dimensional Euclidean

space and m is the number of spaces per each output layer.

5.2.2 SGPNN Architecture

The SGPNN is designed to address the architectural shortcoming of PNNs

not being extendable by ranking label’s groups separately. The SGPNN

ranks different sizes of output layers while maintaining the single middle

layer design. It has two types of neurons, PN and MAFN, which are used

in the output and middle layers, respectively. The input layer represents

one instance of data features. The middle layer has multiple MAFNs

that use a separate learning rate and φ activation function for each out-

put layer. The SGPNN is geometrically fully connected; however, The FF,

the BP, and the UW are functionally separated for each wo output lay-

ers’ weights as illustrated in Fig. 6.4. The weights of the MAFN are up-

dated by the summation of all the δ errors learning rate,
∑k

i=1 (lr i ·δmi).

Each output layer is a group of PNs that represent the ranked labels.

The SGPNN scales up by increasing the number of MAFNs. Fig. 5.4

illustrates examples of three subgroups architecture used for ranking

emotions dataset where the first, second, and third group has 3, 1, and

4 labels respectively, to solve the problem π =(h≻p≻q)⊥(e)⊥(a≻b≻c≻d).
The second subgroup has one label e that has three ranking values (1, 2,

3), which represent the preference values (≻,⊥,≺) between the two sub-

groups. The learning of the ranking process is executed in three steps;

the FF, the BP, and the UW. The learning stops after 20,000 epochs or
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Figure 5.3: Two subgroups architecture of SGPNN, each group has 4 and 3 labels respec-
tively, where φ1n=4, φ2n=1, f in = 4. A video demo of 2-subgroup architecture is available
in (Elgharabawy 2020c)

Spearman’s ρ reaches 1. A video demo that shows the ranking learning

process using simple toy data is available at (Elgharabawy 2020c).

5.3 Data Preparation and Learning Algorithm

This section describes the ranking unification preprocessing and SGPNN

learning steps (FF, BP and UW).

5.3.1 Conjoint Data

The conjoint dataset that is used in SGPNN is synthesized by concate-

nating the features for each real subgroup per each data point as shown
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in Eq 5.2, 5.3

(5.2) Fisum =
ns∑
i=1

Fi i

(5.3) Disum =
ns∏
i=1

Di i

where Di is data instance, Fi is the number of feature Fisum is the sum

of of features of each SG data, ns is the number of dataset. and Disum is

the total number of data instance for each SG data.

5.3.2 Ranking Unification

We introduce a new method for creating label ranking ground truth by

converting the unrestricted ranking to restricted ranking by unifying the

data instances and adding subgroups to the labels. The percentage of a

unique ranking is measured using Eq.5.4

(5.4) Uπ = #distinct rankings
n

The number of subgroups is determined by the maximum number of re-

peated records using Eq.5.5

(5.5) #sg=Max(xr)

where #sg is the number of subgroups and xr is the number of duplicated

data records. This chapter applies algorithm 6 to convert the data from

non-restricted rankings with no ground truth to restricted label ranking

by removing duplicated data instances and accumulating the correspond-

ing labels in a subgroup. The algorithm removes the duplication and as-

signs the corresponding labels as a subgroup to one unique data record.

For non-repeated records, the additional subgroup has values of zero.
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Algorithm 6: Ranking Unification.
Data: D ∈ {〈xn,πn〉}

48 while xi do
49 if xi ∉D[i] then
50 Dist ← xi ;
51 else
52 while j ∈ D do
53 if xi in D[ j] then
54 m++ # of subgroups;
55 D ← ( j,πi) ;
56 end
57 end
58 end

Result: D ∈ {〈xn, (πn1⊥πn2⊥πn3...⊥πnm)〉}

5.3.3 SGPNN Learning Steps

This section shows the FF, BP and updating weights (UW) processes in

the middle and output layer of the SGPNN.

5.3.3.1 Middle layer FF

The output Y of single a MAFN per subgroup j is shown in Eq. 5.6

(5.6) Y j =φ j

d∑
k=1

xk ·wmk

∣∣∣∣∣
g

j=0

where g is the number of subgroups, d is the number of input features,

and φ j is the activation function per subgroup.

5.3.3.2 Output layer FF

The output of single neurons is shown in Eq. 5.7

(5.7) Y j =φ j

m∑
k=1

x jk ·wo jk

∣∣∣∣∣
g

j=0

where m is the number of MAFNs.
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Figure 5.4: Three subgroups architecture SGPNN used in ranking emotions dataset
where φ1n=4,φ2n=3,φ3n=3, and f in = 4. the second subgroup is represented by one node
that has 3 values (1, 2, and 3) mapped to preference relations λe =≻,∼,≺.

5.3.3.3 Output layer BP

Output δ j error of a single output neuron is given in Eq. 5.8, and 5.9 the

error per subgroup j is

(5.8) Err j = ρ j′ =
−6 ·∑o

k=1(2ytk− yk)
m(m2−1)

, δ j = ρ j′ ·φi′

(5.9) φ j =−1
2
·
( n∑
s=0

tanh(
−100
b

· yo+ c(1− 2s
n−1

))
)
+ n
2

The δ in Eq. 5.10 is obtained by differentiating of Eq. 5.9 and substituting

the result into Eq. 5.8

(5.10) δ j =
(−6 ·∑o

j=1(2yt j− yi)

m(m2−1)
) ·φ j′

∣∣∣∣∣
g

j=0
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φ j′ =
(− 1

2
·
( n∑
s=0

1− tanh(
−100
b

· yo+ c(1− 2s
n−1

))2 · −100
b

· yo

+ (
−100
b

· tanh(−100
b

· yo+ c(1− 2s
n−1

)))
))(5.11)

5.3.3.4 Middle layer BP

After updating δo, The output error is calculated by summing the δ of

the MAFN using Eq. 5.12.

(5.12) Err j =
o∑

i=0
wo i j ·δi j

∣∣∣∣∣
g

j=0
, δmf n =Err j ·φ j′

∣∣g
j=0

The δm MAFN’s error in Eq. 5.13.

δmf n =Err i j ·−1
2
·
( n∑
i=0

1− tanh(
−100
b

· x+ c(1− 2i
n−1

))2

· −100
b

· x+ (
−100
b

· tanh(−100
b

· x+ c(1− 2i
n−1

)))
)(5.13)

5.3.3.5 Output layer UW

The process for updating the weights using gradient ascent with sums of

PN δ is shown in Eq. 5.14

(5.14)
m∑
i=1

wo i j|new =wo i j|old+ (lr i ·δi j · yi j)
∣∣∣∣∣
g

j=0

5.3.3.6 Middle layer UW

Updating the weights of the middle layer by summing of the MAFN’s δ

values is shown in Eq. 5.15

(5.15)
d∑
i=1

(wmi j|new =wmi j|old+ lr i ·δi · yi j)
∣∣∣∣∣
g

j=0
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5.3.4 Dropout Regularization

We apply dropout as a regularization approach to enhance the SGPNN

validation performance to reduce over-fitting using 50% probability tech-

nique. The process assigns a random number from -0.9 to 0.9 and shuts

down the weights with less than 0.5 of the random value per iteration for

wo and wm.

5.4 Experiments

5.4.1 Datasets

The SGPNN is experimented on both real-world and semi-synthesized

(S-S) datasets. The real data have multi-label subgroups for one set of

features, e.g., restaurant-food-services. The S-S data are collected from

different domains. The features from the same domain have small varia-

tions, e.g., the German elections dataset has examples of a relevant sub-

group where features are collected from the same context. We examined

the data uncertainty by measuring the percentage of Uπ unique multi-

label ranking. Given that d is the amount of the data, The description is

presented in Table 5.1.
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CHAPTER 5. SUBGROUP PREFERENCE NEURAL NETWORK

5.4.1.1 Restaurants and Consumers Rating

The restaurant-food-services dataset is built using real restaurant and

consumer reviews from the recommender systems domain (Vargas-Govea

et al. 2011) and contains multi-label subgroups. The features of this dataset

are customer profiles and geographical location. The two subgroups are

food quality and restaurant service, and each subgroup has 130 multi-

label, which represents the number of restaurants. To simplify the calcu-

lation, we use part of the data containing 5, 10, and 20 restaurants for

the two groups in 3 small datasets and select the corresponding features

records of users’ profiles who rated these restaurants.

5.4.1.2 German Elections in 2005 and 2009

The german-2005/9 is an S-S dataset combined from two real datasets

based on German elections in 2005 and 2009 (Rebelo 2018a,b). The multi-

label of the two separate datasets is grouped into two subgroups for 2005

and 2009. We use only the 2009 dataset features to rank both 2005 and

2009 labels because 2009 features have historical data and user profiles

for the 2005 elections.

5.4.1.3 Emotions

The emotions dataset is used for subgroup preference relations(≻,∼,≺).
The original Emotion dataset is used to detect six types of emotions where

an emotion belongs to many to one or many emotion types. The original

dataset has six classes ( amazed/surprised, happy/pleased, relaxing/calm,

quiet/still, sad/lonely, angry/fearful ). The data are modified by creating

two subgroups. Positive feelings for (amazed-surprised, happy-pleased,

relaxing-calm, quiet-still) and the music reflects Negative feelings for

(sad-lonely, angry-fearful) (Trohidis & Tsoumakas 2011). Table 5.2 shows
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5.4. EXPERIMENTS

the heuristic rules applied for the preference relation between positive

and negative feeling subgroups based on the subgroup labels’ ranking.

The ranking of sub-labels starts from 1 to 3. * represents the ranked

value from 1 to 3.

Table 5.2: Positive and negative Emotional feelings subgroups relations according to the
ranking of the labels for each group. labels per each group are extracted from emotion
dataset (Trohidis & Tsoumakas 2011).

Sub1. Sub2. Sub3.

Positive feeling sub. Rel. Negative feeling sub.

amazed happy relaxing sad angry
surprised pleased calm lonely aggressive

1 * * ≻ * *
1 * * ∼ * 1

2 or 3 * * ≺ * 1
2 or 3 * * ∼ * *
2 or 3 1 * ≺ 1 *
2 or 3 2 or 3 * ≻ 1 1

5.4.1.4 Irrelevant Subgroups Data

We create a new hypothetical conjoint dataset from three different do-

mains (biology, chemistry, and stock exchange) for preference mining anal-

ysis to study data similarity andmeasure the SGPNN performance against

a state-of-the-art ranking approach. The conjoint data is collected from

the benchmark and well-known multi-label ranking datasets from dif-

ferent domains, specifically; Iris, Wine, and Stock (Cheng et al. 2009) to

compare the performance of these data as subgroups with previous ap-

proaches that experimented with those datasets as a single problem.

5.4.1.5 Label Ranking benchmark dataset

Most user rating data has no ground truth due to different user prefer-

ences. The sushi (de Sá 2018, Kamishima 2003) is one of the multi-label
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CHAPTER 5. SUBGROUP PREFERENCE NEURAL NETWORK

datasets that have an unrestricted multi-label ranking as some identical

data features have different multi-label rankings due to different user

ratings. The unrestricted ranking is converted into a restricted subgroup

of multi-label for each instance of data by removing the duplicated fea-

tures and assign the labels for each repeated instance as a subgroup to

a unique feature. Creating unique instances reduces the number f in-

stances from 5,000 to 4,825 instances. Therefore, the maximum number

of repeated instances is three, which means that the dataset has three

subgroups. The instances that have unique second or third subgroups

have zeros values.

5.5 SGPNN Results

All data are evaluated by dividing the data into 20% for testing set and

80% for training and validation. Ten-fold cross-validation is applied to

the remaining 80% of the data. We use the best hyperparameters, e.g.,

data normalization using a scale from −b to b, where b is the SS bound-

ary value, and the number of iterations is 20,000 epochs. This configura-

tion is used for evaluating both the PNN and the SGPNN. The results

are presented in Table 5.3. The results of the 2005 and 2009 German

elections data are illustrated in Fig. 5.5 (a). The figure shows the rank-

ing performance of combined data using SGPNN outperforms the rank-

ing of 2005 and 2009 datasets separately using PNN. The testing results

of the validated models are mentioned in Table 5.3. Fig. 5.5 shows the

training model by PNN and SGPNN; The figure shows that the subgroup

gives a better ranking performance compared to the single ranking per

dataset. The testing results of the models after 20,000 epochs is compared

the single ranking PNN, and SGPNN with other multi-label ranking ap-

proaches in terms of Kendall’s τ in Table 5.4. The SGPNN results are the
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Figure 5.5: Training convergence of german election and iris,wine and stock using PNN
and SGPNN in (a) and (b) respectively.

ranking of each dataset as a subgroup with the other two datasets.

5.5.1 Relevant Subgroup Data

The results of the 2005 and 2009 German elections are illustrated in

Fig. 5.5 by subgroup and separate datasets, where the training model

ranks convergence in terms of Spearman’s ρ and the number of iterations.

It is noticed that SGPNN outperforms both separate ranks of the 2005

and 2009 datasets using the PNN. The validated models’ testing results

after 20,000 epochs and the best epoch’s hyper-parameters are displayed

in Table 5.3.

5.5.2 Non-Relevant Subgroup Data

The results of the training data of conjoint iris, wine, and stock are il-

lustrated in Fig. 5.5 by SGPNN comparing to ranking them separately

using PNN, in additional to the state-of-the-art methods of testing data

as shown in Table 5.4. It is noticed that SGPNN outperforms the other

label ranking methods; supervised clustering (Grbovic et al. 2013), su-
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Table 5.3: SGPNN and PNN ranking testing data performance comparison of subgroup
datasets.

Dataset S.Group Scale #MAFN L.r. PNN SGPNN

rest-food-serv.
food quality

-1:1 100
0.06 0.814 0.912

customer service 0.07 0.898 0.902

german election
year 2005

-20:20 100
0.05 0.8125 0.897

year 2007 0.06 0.762 0.821

emotions
positive feeling

-10:10 100 0.05
0.616 0.87

negative feeling 0.56 0.82

sushi
unique user pref. 1

-20:20 100 0.741
0.851

unique user pref. 2 0.05 0.813
unique user pref. 3 0.92

iris-wine
biology (iris)

-10:10 200 0.0007
0.917 0.933

chemistry (wine) 0.901 0.804

iris-stock
biology (iris)

-10:10 200 0.0007
0.917 0.91

trades (stock) 0.834 0.75

wine-stock
chemistry (wine)

-10:10 200 0.0007
0.901 0.911

trades (stock) 0.834 0.732

iris-wine-stock
biology (iris)

-10:10 200
0.917 0.912

chemistry (wine) 0.0007 0.901 0.856
trades (stock) 0.834 0.956

Average 0.82 0.865

Table 5.4: SGPNN and PNN performance comparison with state-of-the-art approaches:
supervised clustering (Grbovic et al. 2013), supervised decision tree (Cheng et al. 2009),
multi-layer perceptron label ranking (Ribeiro et al. 2012), and label ranking tree forest
(LRT) (de Sá et al. 2017).

Multi Label Ranking Methods
Dataset S. Clust. DT MLP-LR LRT PNN SGPNN (iris-wine-stock)

iris 0.814 0.966 (IBLR) 0.925 (LA) 0.947 0.917 0.921
wine 0.898 0.949 (IBLR) 0.931 (LA) 0.882 0.901 0.865
stock 0.566 0.927 (IBLR) 0.745 (CA) 0.895 0.834 0.956

Average 0.6 0.848 0.692 0.730 0.884 0.914

pervised decision tree Cheng et al. (2009), multi-layer perceptron label

ranking (Ribeiro et al. 2012), and label ranking tree forest (LRT) (de Sá

et al. 2017).
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5.6 Discussion

The results show that learning the labels as a subgroup from a rele-

vant domain enhances each group’s ranking compared to ranking them

separately. This enhancement in ranking is almost due to sharing the

network weights of two or more problems. The sharing weights accel-

erate the convergence, similar to reinforcement learning. This chapter

proposes a novel learning method, The SGPNN, to rank multi-label sub-

groups to support the analysis of exception preference mining and SD.

This approach is a part of the broader sphere of reinforcement learning

to learn from multiple data sources and build a conjoint unified learn-

ing model. The computation time may increase by increasing the num-

ber of subgroups and higher rank accuracy; however, SGPNN reaches a

high convergence rate in fewer iterations. The challenging future work is

building a deep ranking SGPNN network to learn from big data. SGPNN

can integrate with SD to work on a fewer number of groups to find the

hidden relation between a group of data.

5.6.1 Convergence Fluctuation

The data set wine-stock and iris-stock take a longer time for convergence

due to data separability and complexity; thus, convergence for each group

of labels is not linear and have many fluctuations more than the ranking

of single label group, these fluctuations are not related to the gradient

error in ranking, but it is the average ranking between two subgroups

as each subgroup tend to increase the ranking it updates its weights

which reflect on the common weights which may reduce the convergence

of the second group. The fluctuation is shown in the video link of conver-

gence of two groups using toy dataset (Elgharabawy 2020c) and shown

in Fig 5.6. The convergence fluctuations are not noticed when we use
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three subgroups together as in the iris-wine-stock dataset using the same

hyper-parameters of two subgroups SGPNN.

5.7 Conclusions and Future Works

The SGPNN is a new step in preference learning to predict the subgroups

from conjoint data by proposing a simple three layers FF network that

has different outputs to build the conjoint model from a different group of

data. This chapter proposes a simple network with one middle layer and

a new activation function to speed up the learning to rank using the new

Spearman objective function. This chapter introduces the novelMAFN to

serve more than one group of labels. In addition, creating conjoint data

from multiple datasets reinforce the learning to rank and enhance accu-

racy. The proposed network with one middle layer simplifies the process

of FF, BB and UW in three steps for middle and output layer comparing

to the conventional ANN.

The future work of SGPNN is to coupling the relation with different

SDmethodologies to rank the subgroup. The data used in the experiment

are relatively tiny; thus SGPNN opens a road to develop a deep learn-

ing network based on MAFN, PNN, Spearman error function, and SS

function to accelerate the learning to build a more complicated conjoint

model. The SGPNN integrates with SD to study the relations, similarity,

and separability from different domains to have a shared learning model.
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Figure 5.6: video image of SGPNN convergence using toy dataset
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PREFERENCE NETWORKS IN BCI APPLICATION

6.1 Introduction

MOTOR Imagery brain-computer interface (MI-BCI) learns the

EEG brain signal imagery movement activities to control and

execute machine by commands (Ince et al. 2009). Imagery move-

ment signal task requests the patient to imagine certain mental tasks

and learn the response EEG signal by signal processing and machine

learning and convert it to commands. Many applications have been pro-

posed for self-based BCIs, such as P300 and motor imagery. Motor im-

agery (MI) is a mental image of a motor act of any human body periph-

erals without real movement. Many studies and approaches were intro-

duced for classification multi-class MI[]. Many features selections in the

time and frequency domain and classification methods have been intro-

duced for motor imagery signals such as SVM and decision tree (Polat &

Güne 2007). Most BCI MI methods depend on human knowledge in the

neuroscience field and personal experience. But, due to the variation of
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human EEG behavior and limited human knowledge. the best features

may not be extracted well for each subject. Recently, the conventional

EEG signal feature recognition has been used by different Machine learn-

ing classifiers. Most of the classifiers use time, frequency, or both domains

(Ince et al. 2005). Another MI approach uses wavelet packets then dy-

namic frequency feature selection (DFFS) to select the feature with the

highest classification accuracy for each experimental object for feature

extraction (Li et al. 2017)

Recently, deep learning DL gained much attention in computer vision,

speech recognition, and recommendation systems. DL has achieved great

success. Because the deep learning method is learning the input signal

features, it solves the problem of the manual design of features extrac-

tion (Xiao & Fang 2021),(Chu et al. 2018)., CNN which is one of DL algo-

rithms, has become the most the method used in the motor imagination

EEG classification algorithm because of its better feature extraction ca-

pabilities.Lawhern et al. (2018) proposed a CNN structure that can be ap-

plied to a variety of popular brain-computer interface paradigms (includ-

ing motor imagination, P300 (Lawhern et al. 2018). Class overlapping is

a common problem in MI-EEG data where data point has more than one

opposite class. which is called data ambiguity as shown in Fig. ??

From the previous approaches, MI classification has the following draw-

backs

1) Most of the classifiers does not solve the problem of data ambiguity

where the data has class overlapping.

1) CNN uses a fixed kernel window shape that is designed for 2D im-

age classification because the good image feature is determined by

the image edges and curves in x and y axes. However, the EEG Sig-
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6.1. INTRODUCTION

Figure 6.1: the MI-EEG has BCI competion IV 2B has two problems, class overlap, un-
balance data and both in (a), (b), (c) respectively.

nal feature is a spectrum part in 1-D data in time and in a certain

frequency range.

2) Most classification approaches does not consider the relation between

features per instance as ranked.

this chapter proposes a motor imagery EEG signal recognition approach

based on a SGPN network. The main contributions in this research are

as follows:

1) Proposing a new algorithm to convert non-ground truth and class

overlap to unique data by creating a group of labels for each ambigu-

ous instance.

2) SGPNN uses a ranking approach and the smooth staircase SS as

an activation function that enhances the predictive probability over

the sigmoid and Softmax due to the step shape that enhances the

predictive probability from a range from -1 to 1 in the sigmoid to

almost discrete multi-values.

3) Identify a threshold for data separability and ambiguity.
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6.2 Material and Methods

6.2.1 Converting Classification into Ranking

The proposed approach is based on converting the multi-class classifica-

tion problem into a multi-label ranking problem by two points:

1) Converting the class vector to binary class matrix and the binary

digits are the output neurons values i.e: for class 1,2,3 and 4 are

presented as ranked labels (2,1,1,1),(1,2,1,1),(1,1,2,1),(1,1,1,2) res-

pectively.

2) the input of the SGPN is all the feature vector of one data instance.

not feature row as in convention ANN.

6.3 Data Preparation

This section describes the ranking unification preprocessing and SGPN

learning steps (FF, BP and UW).

6.3.1 SGPN to solve the problem of class overlap

The idea of the proposed SGPN is based on solving the low classification

accuracy due to non-ground truth data because of class overlapping.

Si = { f i, l i} , S j = { f j, l j}(6.1)

(6.2) θover i ≤ abs
( m∑
x=0,1,..

fxi− fx j
)
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(6.3) θsepi ≥ abs
( m∑
x=0,1,..

fxi− fx j
)

The threshold of class overlap of any two data instances by θi is equal

or less than the sum of the absolute difference of two instances i, j of all

# features m. Therefore, for two duplicate instances θ = 0.

Figure 6.2: Matrix plot of the dataset 2b where data are unbalanced and separability is
low

6.3.1.1 Ranking Unification

We introduce a new method for creating label ranking ground truth by

converting the unrestricted ranking to restricted ranking by unifying the

data instances and adding subgroups to the labels. The percentage of a

unique ranking is measured using Eq.6.4

(6.4) Uπ = #distinct rankings
n
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The number of subgroups is determined by the maximum number of re-

peated records with different class labels using Eq.6.5

(6.5) #sg=Max(xr)

where #sg is the number of subgroups and xr is the number of duplicated

data records for different classes.

This chapter applies algorithm 7 to convert the data from non-restricted

rankings with no ground truth to restricted label ranking by removing du-

plicated data instances and accumulating the corresponding labels in a

subgroup. The algorithm removes the duplication and assigns the cor-

responding labels as a subgroup to one unique data record. For non-

repeated records, the additional subgroup has values of zero.Fig. 6.3 (a)

illustrate the duplicate records has opposite class and separate the label

in two subgroups. and using SGPNN and PNN for the overlapping data

in Fig. 6.3(b).

Algorithm 7: Class overlap Unification.
Data: D ∈ {〈xn,πn〉}

59 while xi do
60 if xi ∉D[i] then
61 Dist ← xi ;
62 else
63 while j ∈ D do
64 if xi in D[ j] then
65 m++ # of subgroups;
66 D ← ( j,πi) ;
67 end
68 end
69 end

Result: D ∈ {〈xn, (πn1⊥πn2⊥πn3...⊥πnm)〉}
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class overlap data

F1 F2 F3 F4 F5 F6 Class

0.01 0.02 0.04 0.1 0.09 0.02 1

0.01 0.03 0.05 0.1 0.08 0.03 2

0.04 0.07 0.08 0.123 0.02 0.03 2

0.05 0.06 0.08 0.124 0.02 0.04 1

Unique data

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 G1 G1

0.01 0.02 0.04 0.1 0.09 0.02 0.01 0.03 0.05 0.1 0.08 0.03 1 2

0.04 0.07 0.08 0.123 0.02 0.03 0.05 0.06 0.08 0.124 0.02 0.04 2 1

(a) (b)

Figure 6.3: Example of class overlapping unification in (a), Using SGPNN and PNN to
learn the classoverlap and separable data in (b)

6.3.2 SGPNN Learning Steps

This section shows the FF, BP and updating weights (UW) processes in

the middle and output layer of the SGPNN.

6.3.2.1 Middle layer FF

the output Y of single a MAFN per subgroup j is shown in Eq. 6.6

(6.6) Y j =φ j

d∑
k=1

xk ·wmk

∣∣∣∣∣
g

j=0

where g is the number of subgroups, d is the number of input features,

and φ j is the activation function per subgroup.

6.3.2.2 Output layer FF

The output of single neurons is shown in Eq. 6.7

(6.7) Y j =φ j

m∑
k=1

x jk ·wo jk

∣∣∣∣∣
g

j=0

where m is the number of MAFNs.
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Figure 6.4: SGPNN architecture used for classification BCI competition VI dataset 2B ,
each group has 2 labels represents the opposite class classification, where φ1n=2, φ2n=2,
f in = 6.

6.3.3 Architecture and Data Processing

We propose a new PN to classify EEG signals according to ranking the

data. The architecture of SGPNN is shown in Fig. 6.4. Where two sub-

groups. Each group is for one class as shown in the steps are shown in

Fig ??

1) Data Preprocessing: The EEG signal of 6 features is processed using

SDFT to generate power spectrum in 2D with width and height 129

X 33 for all frequency range per each data instance. The spectrum is

flattened to 4257 features.

6.4 MI-EEG Dataset

The dataset is used in this research is BCI Competition IV Dataset 2b for

motor imagery classification (Tangermann, Müller, Aertsen, Birbaumer,

Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz, Nolte, Pfurtscheller,
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6.5. EXPERIMENT FLOW

Preissl, Schalk, Schlögl, Vidaurre, Waldert & Blankertz 2012). The next

section describes the data.

6.4.1 Dataset 2B

The data has total six channels (0.5-100Hz; notch filtered) , 250Hz sam-

pling rate, two classes represent left and right-hand imagery, and nine

subjects. Five sessions were recorded from each subject. Three sessions

for training and two for testing. (Tangermann, Müller, Aertsen, Birbaumer,

Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz, Nolte, Pfurtscheller,

Preissl, Schalk, Schlögl, Vidaurre, Waldert & Blankertz 2012) The datasets

are collected from the Graz University of Technology repository (Tanger-

mann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller,

Mueller-Putz, Nolte, Pfurtscheller, Preissl, Schalk, Schlögl, Vidaurre, Waldert

& Blankertz 2012).

6.5 Experiment Flow

Dataset 2b has six-channel and three sessions. The three sessions are

accumulated in one file in order to build a generalized model as shown

in step 1 in Fig. ?? similarly, dataset 2b has three sessions for training

and two sessions for testing. Each session file has a 3X6X604803 data bin.

The data is flattened, which leads to an increase in the total number of

features for the data used by SGPNN as mentioned in step 3. The data

is divided into 80% for training the model and 20% for data validation.

Five-fold cross-validation to build the model due to large data size and

high variance between training and testing results. And for each fold,

we validate the model. as in step 5. after each tenfold, we change the

hyperparameters; the parameters are learning rate, number of hidden

neurons, the scaling value of input data, and SS boundaries. Steps 5, 6,
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and 7 are repeated sequentially for all the hyperparameters. Moreover,

generate the results. The best results of the model and hyperparameters

are used for testing the unseen testing data of the competition in step 8

in Fig. ??.

6.6 Classification Results

Dataset 2b is challenging in classification due to high biased and data

separability is low, then the classes are binaries for multi-label ranking.

In the experiment, we use 80% of the data for training and 20% for test-

ing; then we apply five-fold cross-validation on the training data to build

the network model. We use sequential search to use the best hyperpa-

rameters for the training, the hyperparameter are the θdub, θsep # hidden

neuron, scaling input data and SS function boundaries and learning rate.

This section describes the comparison between other recent approaches

on the same dataset as shown in Table 5.1. As shown in Fig., the training

is highly biased starting from the first epoch. However, validation is too

low due to the large data size, and MI-EEG is highly biased. Therefore we

increased the number of folds to 20. The accurecy is measured by ranking

reduction to classification using score function by converting the output

ranking to binary classification using scorer function s: L→R. For output

labels to choose the max value fs = Max(λ) for the binary classification

that has c : X → {±1}.
Table 6.1 shows the classification per each subject

6.7 Discussion

Table 6.1 it shows that one subgroup of labels gives positive results com-

pared to the second group. which means SGPNN discover two different
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Table 6.1: subjects correlation ρ and accuracy using PN EEG classification BCI Compe-
tition IV Dataset 2B

Subject Avr. three Sessions
FBCSP CNN. CNN-SAE CNN-VAE SGPN

G1 G2
1 0.546 0.488 0.517 0.522 -0.9 0.8928
2 0.208 0.289 0.324 0.346 -0.2 0.5235
3 0.244 0.427 0.494 0.436 -0.9 0.3421
4 0.888 0.888 0.905 0.908 -0.16 0.821
5 0.692 0.593 0.655 0.646 -0.61 0.7452
6 0.534 0.495 0.579 0.642 0.6 0.99
7 0.409 0.409 0.488 0.550 -0.3 0.642
8 0.413 0.443 0.494 0.506 -0.2 0.875
9 0.583 0.415 0.463 0.518 0.389 0.712

Avrg. 0.583 0.415 0.463 0.518 -0.25 0.7271

Table 6.2: subjects correlation ρ and accuracy using PN EEG classification BCI Compe-
tition IV Dataset 2B and data separability and duplication θ

Subject ρ Acc. dup.θ sep.θ
01 -0.9 0.8928 0.01 0.5
02 -0.2 0.7235 0.001 0.1
03 -0.9 0.3421 0.01 1
04 -0.16 0.821 0.001 0.7
05 -0.61 0.7452 0.01 0.2
06 0.6 0.99 0.001 0.1
07 -0.3 0.642 0.01 0.3
08 -0.2 0.875 0.001 0.2
09 0.389 0.712 0.01 0.5

models, one model is the correct classification of the ambiguous data in-

stances. Table 6.2 show the θ as a hyperparameter is chosen to get the

best accuracy. The hyperparameters are , θdup for overlapped data and

θsep for separability.

6.8 Conclusion

Class overlapping and unbalanced data are challenging problems in ma-

chine learning. The proposed algorithm of sub-grouping the labels shows
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a significant enhancement in the classification by converting binary class

labels into two groups. One of the two groups shows significant high rank-

ing results comparing to the other. This sub-grouping approach could be

using in different datasets has class overlapping and unbalance data.
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The superiority of PNN is solving both classification and ranking prob-

lems. The ranking is used in input data as a feature selection criterion is

a novel approach for deep learning.

Encoding the labels preference relation to numeric values and rank

the output labels simultaneously in one model is an advanced step over

pairwise label ranking based on classification. PNN could be used to solve

new preference mining problems. One of these problems is incomparabil-

ity between labels, where Label ranking has incomparable relation⊥, i.e.,

ranking space (λa ≻λb⊥λc) is encoded to (1, 2, -1) and (λa ≻λb)⊥(λc ≻λd)

is encoded to (1, 2, -1, -2). PNN could be used to solve new problem of

non-strict partial orders ranking, i.e., ranking space (λa ≻ λb ⪰ λc) is en-

coded to (1, 2, 3) or (1, 2, 2). Future research may focus on modifying PNN

architecture by adding bias and solving problems of extreme multi-label

ranking.

This thesis proposed a novel method to rank a complete multi-label

space in output labels and features extraction in both simple and deep

learning. PNN and PN are native ranker networks for image classifica-

115



CHAPTER 7. CONCLUSION AND FUTURE WORK

tion and label ranking problems that uses SS or PSS to rank the multi-

label per instance. This neural network’s novelty is a new kernel mech-

anism, activation, and objective functions. This approach takes less com-

putational time with a single middle layer. It is indexing multi-labels

as output neurons with preference values. The neuron output structure

can be mapped to integer ranking value; thus, PNN accelerates the rank-

ing learning by assigning the rank value to more than one output layer

to reinforce updating the random weights. PNN is implemented using

python programming language 3.6, and activation functions are modeled

using wolframMathematica software Inc. (n.d.). A video demo that shows

the ranking learning process using toy data is available to download El-

gharabawy (2020c). This thesis also proposes a new novel architecture of

the neural network to support sub-group label ranking by introducing a

new type of ranking problem and dataset. Also propose a novel solution

to solve the class overlap problem of complex classification datasets, i.e.,

EEG.

SGPNN is a new step in preference learning to predict the subgroups

from conjoint data by proposing a three layers FF network that has dif-

ferent outputs to build the conjoint model from a different group of data.

However, the data used in the experiment is relatively tiny; thus, SG-

PNN opens a road to develop a deep learning network based on MAFN,

PNN, spearman error function, and SS function to accelerate the learn-

ing for big data deep ranking to build a more complicated conjoint model.

The future work of SGPNN is coupling the relation with different SD

methodologies to rank the subgroup. The future work on the SGPNN

will be ranking an excessive number of labels and subgroups of labels,

which may be challenging in terms of computational time. SGPNN could

be used in many potential applications, i.e., brain-computer interface
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(BCI) applications where EEG data are ambiguous, complicated, and

have class overlap. Another medical application where data fusion is col-

lected from different sensors, i.e., the study of human emotions recog-

nition. SGPNN could be part of an expert system to build accumulated

models for judgment, elections, medical diagnosing from different con-

joint historical data. Also, the future work of the study of the data sim-

ilarity, separability of the data from different domains to have a shared

learning model, i.e., iris, wine, and stock datasets.
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A.1 PNN Proof of Convergence

The output of preference neuron a is obtained from the activation func-

tion φ given in Eq. (37)

(A.1) a j =φ(ωT .a i)

where a i and a j are neuron input and output, respectively. Therefore, the

neural output behavior is shown in Eq. (38)

(A.2) {a1, t1}, {a2, t2}, .., {a j, tq}

where each target output tq is the preference value equal to 1, 2, 3,.., n.

The total inputs to the preference neuron is calculated as the following

after neglecting the bias.

(A.3) a j =ωT .a i =ωT .z

The weighted vector is given by Eq. (40).

(A.4) ωnew =ωold+Eerr.z

where Eerr is the ranking error value from 0 to n.
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After k iterations for which the weight changes, the learning process

is shown in Eq. (41).

(A.5) ω(k)=ω(k−1)+ z′(k−1)

The solution weighted vector ωs ranks all the input Q correctly. z′(k−1)

is the appropriate member of the set as shown in Eq. (41)

(A.6) z1, z2, z3, .., zQ.

To get preference value for 1, 2 and 3, then tq=1, 2 and 3 as given in Eqs.

(43)-(45).

(A.7) ωT
s z1 > δ> 0

(A.8) ωT
s z2 > δ> 1

(A.9) ωT
s z3 > δ> 2

The objective of the proof of convergence is to find the upper and lower

bounds on the length of the weighted vector. After k iterations, it can be

represented as Eq. (46)

(A.10) ω(k)= z′(0)+ z′(1)+ ..+ z′(k−1)

By taking the inner product of the solution weighted vector ωs with the

weight vector of k iteration, we can obtain Eq. (47)

(A.11) ωT
s .x(k)=ωT

s .z
′(0)+ωT

s .z
′(1)+ ..+ωT

s .z
′(k−1)

Eqs. (42) and (43) are substitutes as in Eq. (48)

(A.12) ωT
s .z

′(i)> δ
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Therefore,

(A.13) ωT
s .ω(k)> kδ

From the Cauchy-Schwarts inequality Bergelson (2008)

(A.14) (ωT
s .ω(k))

2 ≤∥ωs ∥2∥ω(k) ∥2

where

(A.15) ∥ω ∥2=ωTω

From Eq. (49) we can put the lower bound on the squared length at iter-

ation k :

(A.16) ∥ω(k) ∥2≥ (ωT
s ω(k))

2

∥ωs ∥2
> (kδ)2

∥ωs ∥2
To find an upper bound for the length of weight vector, the change in

the length at iteration k is given in Eq. (53)

(A.17) ∥ω(k) ∥2=ωT(k).ω(k)

(A.18) ∥ω(k) ∥2= [ω(k−1)+ z′(k−1)]T[ω(k−1)+ z′(k−1)]

(A.19) ∥ω(k) ∥2=ωT(k−1)ω(k−1)+2ωT(k−1)z′(k−1)+ z′T(k−1)z′(k−1)

Eq. (A17) can be simplified as

∥ω(k) ∥2≤∥ω(k−1) ∥2 + ∥ z′(k−1) ∥2(A.20)

Eq. (A17) can be repeated for ∥ω(k−1) ∥2 , ∥ω(k−2) ∥2, to obtain

∥ω(k) ∥2≤∥ z′(0) ∥2 + ∥ z′(1) ∥2 +...+ ∥ z′(k−1) ∥2(A.21)

If Π=max{∥ z′(i) ∥}, this upper bound can be simplified to Eq. (A22).
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∥ω(k) ∥2≤KΠ(A.22)

The weights only change to a finite number of times because k has an

upper bound. Therefore, the NN learning converges after a finite number

of iterations.

A.2 Supplemental Material

A.3 Video Files

Ranker NN Convergence (Elgharabawy 2021a)

PNN Convergence (Elgharabawy 2021b)

SGPNN Convergence (Elgharabawy 2021d)

SGPNN log file (Elgharabawy 2021c)

A.4 Dataset Files

A.4.1 Synthesized data used for SGPNN

Restaurant food and services surveys (Elgharabawy 2020d)

German Election 2005 and 2009 (Elgharabawy 2020a)

Emotions (Elgharabawy 2020b)

Sushi (Elgharabawy 2020e)
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B.1 Symbols and Abbreviations

PNN preference neural network

PN preference net

SGPNN subgroup preference neural network

FF feed forward

BP back propagation

UW updating weights

D ∈
{x1,x2, . . . ,xd}

single data instance

X all instances space

π ∈
{λy1, . . . ,λyn}

labels permutation space

L ∈ {λa,λb,λc} all labels space

ρ spearman ranking correlation

τ Kendall ranking correlation

π permutation label space

φn activation Function for n label ranking
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λa preference value of label a

ps positive stair Activation Function

ss stair step activation function

w ss function step width

f in number of features

rms root mean square

n number of labels = number of stair steps-1

Kw,h ranker kernel has width and height

⊥ incomparable preference relation

≻ strict preference relation

⊁ weak preference relation

≃ indifference preference relation
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C.1 Video Snapshoot of PNN Ranking Convergence.

Figure C.1: PNN at epoch 34
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Figure C.2: PNN at epoch 37
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C.1. VIDEO SNAPSHOOT OF PNN RANKING CONVERGENCE.

Figure C.3: PNN at epoch 39
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Figure C.4: PNN at epoch 40

128



C.1. VIDEO SNAPSHOOT OF PNN RANKING CONVERGENCE.

Figure C.5: PNN at epoch 44
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Figure C.6: PNN at epoch 45
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C.1. VIDEO SNAPSHOOT OF PNN RANKING CONVERGENCE.

Figure C.7: PNN at epoch 48
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Figure C.8: PNN at epoch 62
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D.1 Snapshoots of SGPNN Ranking Convergence.

Figure D.1: SGPNN at epoch 1
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Figure D.2: SGPNN at epoch 2
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D.1. SNAPSHOOTS OF SGPNN RANKING CONVERGENCE.

Figure D.3: SGPNN at epoch 10
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Figure D.4: SGPNN at epoch 11
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D.1. SNAPSHOOTS OF SGPNN RANKING CONVERGENCE.

Figure D.5: SGPNN at epoch 20
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Figure D.6: SGPNN at epoch 30
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D.1. SNAPSHOOTS OF SGPNN RANKING CONVERGENCE.

Figure D.7: SGPNN at epoch 40

139



APPENDIX D.

Figure D.8: SGPNN at epoch 60
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D.1. SNAPSHOOTS OF SGPNN RANKING CONVERGENCE.

Figure D.9: SGPNN at epoch 70
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Figure D.10: SGPNN at epoch 90
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D.1. SNAPSHOOTS OF SGPNN RANKING CONVERGENCE.

Figure D.11: SGPNN at epoch 97
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Figure D.12: SGPNN at epoch 125
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