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Abstract

The exponential growth of robotics in human environments have led to an explosion of

human robot interactions. These interactions occur in proximity and have exposed the

constraints and limitations of traditional models for robotic response which rely on task-

centric measures. This has spurred on an area of research which focuses on understanding

the capabilities and limitations of the human user during these interactions.

Humans are complex, autonomous agents that are difficult to model, and provide dif-

ferent categories of feedback that derive from biological systems. The current sensory

paradigm requires an improved understanding of the limitations, the development of

blended-measure models that employ human-centric measures, and a contextually con-

nected biological human understanding into robotic frameworks.

This thesis presents a framework towards personalised robotic assessment and response

with considerations on understanding the human user during physical human robot in-

teractions. The framework approaches this by examining current limitations, enabling

personalised models from human-centric measures, and enhancing the understanding of

the human user through physiological and musculoskeletal models.

The implementation of a robotic system highlights the feasibility and limitations of using

task-centric models during Physical Human Robot Interaction (pHRI). Further work

https://www.linkedin.com/in/yujun-lai/
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investigates inertial effects of the user during interactions in the context of a prominent

predictive model, Fitts’ Law. Physical Human Robot Interaction Primitives (pHRIP)

extends upon Interaction Primitives (IPs) by incorporating physical interaction forces

between the human user and robot, enabling the inference of user intent when generating

a personalised robotic response.

Finally, the enhancement of the link between biological human understanding and robotic

frameworks is explored. A validation process for a popular musculoskeletal model is con-

ducted, comparing computational results with experimental readings. The limitations for

the complex model led to the generation of an empirical model correlating forearm muscle

activity and grip strength. This physiological model captured co-contractions for antag-

onistic muscle pairs and supplemented motion analysis for the musculoskeletal model,

enhancing the computational results.

The framework combines the topics which facilitate intuitive and adaptive human-robot

interactions. The advancement of such collaborative intelligence enhances complementary

strengths between human and robot, and work hand in end-effector towards a safer, more

interactive future.
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AAN Assistance as Needed

ADL Activites of Daily Living
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DLO Deformable Linear Object
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EMG Electromyogram

FFT Fast Fourier Transform

FLV Force-Length-Velocity
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GP-BCM Gaussian Process-Bayesian Committee Machine

GPLVM Gaussian Process Latent Variable Model

GSR Galvanic Skin Response
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HRI Human Robot Interactions
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IMU Inertial Measurement Unit

IPs Interaction Primitives

IVM Informative Vector Machine

LfD Learning from Demonstration
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PbD Programming by Demonstration

PCA Principal Component Analysis

PDF Probability Distribution Function

pHRI Physical Human Robot Interaction

pHRIP Physical Human Robot Interaction Primitives
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ProMPs Probabilistic Movement Primitives
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RBF Radial Basis Function
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Glossary of Terms

Autonomous Without human intervention.

Allocentric Attention centered on other objects or persons. Antonym of

egocentric.

Forward Kinematics The process of translating system joint states into the Carte-

sian endpoint pose.

Gamification The process of turning a task into a game.

Human-centric Derived from or associated with the human.

Human-robot Dyad A system consisting of one human and one robot.

In-silico Testing and analysis that occurs in computational models.

In-vivo Testing that occurs with living organisms (such as humans).

Inverse Kinematics The process of translating a Cartesian pose into joint states of

a system.

Multi-modal Consisting of multiple modes, or ways.

One-shot Using a single take or demonstration.

Osseointegration The process of inserting a prosthetic into the residual bone of

an amputee.

Proximate Cause The immediate apparent cause of a phenomenon.

Semi-autonomous With some human intervention.

Task-centric Derived from or associated with the task.

Ultimate Cause The primitive cause for a phenomenon. Usually proximate

causes are the symptom of the ultimate cause.

Unimodal Consisting of a single mode.
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