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Abstract

The exponential growth of robotics in human environments have led to an explosion of
human robot interactions. These interactions occur in proximity and have exposed the
constraints and limitations of traditional models for robotic response which rely on task-
centric measures. This has spurred on an area of research which focuses on understanding

the capabilities and limitations of the human user during these interactions.

Humans are complex, autonomous agents that are difficult to model, and provide dif-
ferent categories of feedback that derive from biological systems. The current sensory
paradigm requires an improved understanding of the limitations, the development of
blended-measure models that employ human-centric measures, and a contextually con-

nected biological human understanding into robotic frameworks.

This thesis presents a framework towards personalised robotic assessment and response
with considerations on understanding the human user during physical human robot in-
teractions. The framework approaches this by examining current limitations, enabling
personalised models from human-centric measures, and enhancing the understanding of

the human user through physiological and musculoskeletal models.

The implementation of a robotic system highlights the feasibility and limitations of using

task-centric models during Physical Human Robot Interaction (pHRI). Further work
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investigates inertial effects of the user during interactions in the context of a prominent
predictive model, Fitts’ Law. Physical Human Robot Interaction Primitives (pHRIP)
extends upon Interaction Primitives (IPs) by incorporating physical interaction forces
between the human user and robot, enabling the inference of user intent when generating

a personalised robotic response.

Finally, the enhancement of the link between biological human understanding and robotic
frameworks is explored. A validation process for a popular musculoskeletal model is con-
ducted, comparing computational results with experimental readings. The limitations for
the complex model led to the generation of an empirical model correlating forearm muscle
activity and grip strength. This physiological model captured co-contractions for antag-
onistic muscle pairs and supplemented motion analysis for the musculoskeletal model,

enhancing the computational results.

The framework combines the topics which facilitate intuitive and adaptive human-robot
interactions. The advancement of such collaborative intelligence enhances complementary
strengths between human and robot, and work hand in end-effector towards a safer, more

interactive future.
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Chapter 1

Introduction

1.1 Background and Motivation

The increasing prevalence of robots in every aspect of human life is indisputable. Human
behaviour has changed significantly through our interactions with these devices which are
embodied in different shapes and sizes and presented through various mediums. With an
industry estimated to be USD12.3 billion by 2025 [1], robots will continue to exist alongside

humans and accelerate the number of instances for Human Robot Interactions (HRI).

Traditionally designed to overcome limitations of human workers in assembly lines, robots
and robotic systems led the charge during the automotive industry boom in the 1970s.
These industrial robots require little to no environmental feedback to achieve their pre-

defined tasks and work in isolation to mitigate injuries and damage to their environment.

Since robots are replaceable, they are designed for applications which are predominantly
dirty, dull, or dangerous. This principle (colloquially known as “The Three Ds”) is still rel-
evant in current robot deployments, including semi-autonomous and autonomous systems.
The Canadarm?2 [2] and Ingenuity helicopter [3] follows this principle, using contemporary

technologies to enable complex tasks to be performed in a vacuum by robots.

Robots working in an isolated workspace are limited by the level of software redundancies
programmed during deployment. For dynamic tasks and environments, accounting for the
occurrence of all possible events creates bloated software, with ad-hoc software updates
generally avoided since they may be unreliable. Thus, there has been a shift towards

robotic systems that will work with humans to complete tasks since humans have superior
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cognition and perception capabilities. Currently, this collaboration remains a challenging

proposition for robots.

The state of affairs for HRI systems were scrutinised in the late 20" century and early 21
century [4, 5], identifying necessary improvements in various areas of research. Since then,
the burgeoning pace of progress for robot systems and HRI has lead to its prominence

in a variety of applications, including in the medical response to the recent pandemic [6],

cementing its significance in our future.

FIGURE 1.1: Current robots come in different shapes and sizes and operate in a variety of
environments. (a) The Roboteam robots; (8) the UR16e cobot; and (c¢) the Canadarm?2
on the International Space Station. (Wikimedia Commons for all figures)

With an increasing adoption rate for robots, there is a corresponding rise in interactions
between humans and robots, leading to novel applications which highlight the limitations
of HRI. In particular, tasks which rely upon human expertise are difficult for robots to
replicate as humans generate novel responses through our critical thinking skills. When
given a loosely defined task, humans are able to extrapolate meaning and infer the intended

outcomes - a feat unmatched by traditional robots.

The performance of a robot is evaluated by metrics which are chosen based on the intended
outcomes. Since early HRI applications are derived from traditional methodologies, suc-
cessful collaboration and cooperation are commonly prescribed through task-centric mea-
sures. Some examples of these metrics are outlined in Table 1.1, and are similar or identical
to those used in traditional robots, assessing the performance of the system in the context of
a pre-determined task. While this approach can work for some contemporary applications,
such as Assistive robotics, the limitations of this model become apparent as complexity

increases and the objectives become more ambiguous.

Modern robotics has enabled new paradigms where human safety can be ensured while in
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close proximity to a robot. The advent of Collaborative Robots (Cobots), robots with in-
trinsic safety features, is complemented by better control algorithms [7] and safety frame-
works [8]. These improvements have enabled more collaborative ways to interact with
robotic systems [9]. This has resulted in Physical Human Robot Interaction (pHRI) [10],
a field of HRI incorporating physical interactions between the user and robot. pHRI con-
siders additional aspects of robotics which are present when humans are in close proximity
to robots. This includes new approaches for robotic design, actuation, motion planning,
and reflexes [11], creating opportunities to transform traditional spaces, such as collabo-

rative work cells in manufacturing assembly processes [12].

Adding information from physical interactions is challenging since a coupled system has
different properties which may cause instabilities in conventional frameworks. For human-
robot dyads, understanding the physical characteristics of the human partner, along with

the task, can inform the system to improve pHRI and task outcomes [13].

The inherent variability exhibited by humans propel the need for personalised robot re-
sponses to enable productive and meaningful applications. Since traditional perspectives
rely on accuracy and reliability, characteristics that are difficult for humans to achieve,
task-centric measures are ill-equipped to facilitate pHRI. Thus, a different category of
metrics is needed to support the user without the context of any particular task, using

user-dependent characteristics and behaviour for personalisation.

Human-centric measures utilise human characteristics to shape the robot response, includ-
ing demographic artefacts and individual idiosyncrasies unique to the user. This form of
personalisation is currently present in the digital space, delivering personalised content on
the internet using demographic and individual data. Using a similar strategy, pHRI can
leverage distinct characteristics from individuals to provide a personalised response which

improves user experience and potentially improves task outcomes.

TABLE 1.1: Examples of measures and metrics used in robotics.

Metric Type Examples
Kinematics Position, Velocity
Task-centric | Dynamics Acceleration, Force, Torque

Task-dependent Trajectory Phase, Actions
Emotional State, Attention,
Non-verbal Communication
Ergonomics, Manipulability,
Fatigue, Strength Capability

Psychological
Human-centric
Physiological




4 Chapter 1. Introduction

Human autonomy and the unique processes in our Central Nervous System (CNS) gen-
erate inherent noise, resulting in variations in human motion and outcomes. This can be
seen in Activites of Daily Living (ADL) where simple objectives, such as object reaching,
can be completed in various ways and exhibit traits unique to each person. This variation
among the human population, and individualistic styles, can be captured using probabilis-
tic distributions, modelling the generation of noise in our actions, a key component of user

personalisation for robotics.

The simplicity, flexibility, and efficacy of probabilistic distributions makes it an attractive
method to model applications where there is uncertainty and noise. During pHRI, the
coupled system allows us to leverage the robot to capture human intentions and actions.
These probabilistic models can then be integrated into Learning from Demonstration (L{fD)

frameworks, capturing variations in the possible actions of the human user.

Other than robotic information from the interactions, an alternative approach to capture
the behaviour of humans is through the lens of the human physiological system. Muscu-
loskeletal models are analogues of the human musculoskeletal system, providing function-
ality to compare, contrast, and investigate physiological responses through representative

simulations.

This thesis presents an investigation into models which assess and assist the human user in
pHRI systems with a focus on personalised interactions. Contextualising musculoskeletal
models for robotics and finding methods for inferring user intent using physical interactions

can provide new perspectives for future methods personalising assessment and response
during pHRI.

1.2 Research Questions

Existing works for pHRI have relied on traditional metrics to arbitrate the robot response.
Most rely on external sensors, such as a camera, to observe and extract information on the
user. However, if the observations of the human user are unavailable, these frameworks

are heavily limited in their ability to assess and assist the user.

During pHRI, additional channels of information on the human user (human-centric mea-
sures) can be made available without an external observation of the user. This warrants
an investigation into models which use a mixture of task-centric and human-centric mea-

sures to assess the user and provide appropriate robot responses. Furthermore, there are
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promising indications which suggest cross-disciplinary techniques and models can be in-
tegrated for pHRI. These techniques and models are heavily used in biological sciences

since they provide insight into intrinsic characteristics of the user in a human-robot dyad.

To investigate the integration of task-centric and human-centric measures in coupled
human-robot dyads, there are two key aspects to explore: (1) how effective are task-centric
measures in personalised user assessment during pHRI, and (2) how can human-centric
measures, obtained during interactions, be used to supplement task-centric models when
providing personalised robotic responses? To leverage the understanding of intrinsic hu-
man characteristics in a coupled human-robot dyad, a further question is: (3) can models
built upon human-centric measures supplement musculoskeletal models for human motion

analysis in pHRI applications?

1.3 Scope

This research aims to explore a framework that integrates task-centric and human-centric
measures for personalised robotic assessment and response during pHRI. It will inves-
tigate different perspectives for personalising robotic assessment and response, yielding
insight into the differences between task-centric and human-centric models in pHRI. The
framework developed in this thesis aims to: (1) examine both the current methods for task-
centric personalisation and the available methods to overcome their limitations; (2) enable
personalised robot responses during pHRI by integrating human-centric measures; and (3)
enhance the understanding of the human user during pHRI, focusing on physiological and
musculoskeletal models. The scope of the thesis is constrained to the investigation of each
aspect in isolation. The thesis assumes the validity of existing models to be correct, relying
on the inherited high-level properties with limited consideration for their corresponding
importance across all perspectives. Furthermore, the feedback loop to integrate the differ-
ent aspects together in a multi-model and multi-modal pHRI application is outside of the

scope of this thesis.

For each aspect of the framework, there are assumptions and constraints made to enable
the technical scope of this thesis to be achievable. For capturing the personalised actions
of a user during pHRI, only probabilistic methods which follow Bayesian statistics are
employed despite the existence of a mature field of research on manifold-based and iterative
learning such as Deep Learning and Reinforcement Learning. This is mainly due to the

number of opportunities to obtain data sets in pHRI applications which are repeatable and
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consistent. Variations in human actions and human-centric measures can be modelled as
signal noise which are assumed to be Independent and Identically Distributed (IID) and

can be captured using probabilistic models.

While pHRI covers any HRI which includes physical contact (direct or indirect), this thesis
focuses on dense, continuous interactions in a coupled robot-human dyad where the user
interacts with the robot’s endpoint using a handle. Two categories of physical interactions
which are out of the scope of this thesis include indirect physical contacts and sparse
contacts, commonly seen during tele-operation and corrective actions respectively. While
these factors are outside the scope of this thesis, this research can provide the foundation

for future work addressing these challenging issues.

Finally, for physiological and musculoskeletal models, the scope of this thesis explores qual-
itative validation of the results provided by these models. The vision is to utilise these
models as an adjunct to quantitative models, thus tests are conducted on a single mus-
culoskeletal model commonly used in research for human motion analysis. Furthermore,
human motion analysis performed in this thesis is limited to commonly used processes
which are available in open source software. In particular, the scope of the thesis does
not include the active area of research on different optimisation methods to obtain muscle
activity. The works presented in this thesis utilise the most commonly used optimisation

process and objective function for musculoskeletal models.

1.4 Contributions

The main contributions of this thesis! are:

e A framework to investigate the integration of task-centric and human-centric mea-

sures for personalised robotic assessment and response.

e A derivative framework for an example of a real-world application, including an
exploration of methods to overcome limitations of GP models during task-centric

robotic assessment.

e A prominent information-theoretic model for user intent estimation is evaluated,
and an expansion on a probabilistic method to assess user intent is conducted to

contextualise pHRIs.

' A video presentation overview of the contributions can be found here.


https://youtu.be/tb7QxjaPX2w
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e A preliminary investigation into the integration of human-centric models with mus-

culoskeletal models for human motion analysis.

1.5 Publications

1.5.1 Directly Related Publications

e [14] Lai, Y.; Poon, J.; Paul, G.; Han, H.; Matsubara, T.; “Probabilistic Pose Es-
timation of Deformable Linear Objects”, 2018 IEEE 14th International Conference
on Automation Science and Engineering (CASE), 2018, 471-476,
doi:10.1109/COASE.2018.8560497

e [15] Lai, Y.; Sutjipto, S.; Clout, M.; Carmichael, M.; Paul, G.; “GAVRe? : To-
wards Data-Driven Upper-Limb Rehabilitation with Adaptive-Feedback Gamifica-
tion”, 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO),
2018, 164-169, doi:10.1109/ROBI0.2018.8665105

e [16] Lai, Y.; Sutjipto, S.; Carmichael, M.; Paul, G.; “Heuristic Detection of Re-
covery Progress using Robotic Data”, 2019 IEEE 9th International Conference on
Cybernetics and Intelligent Systems and Robotics, Automation and Mechatronics,
CIS and RAM 2019, 2019, 506-511, doi:10.1109/CIS-RAM47153.2019.9095835

e [17] Sutjipto, S.; Lai, Y.; Carmichael, M.; Paul, G.; “Fitts’ law in the presence of
interface inertia”, 2020 42nd Annual International Conference of the IEEE Engineer-
ing in Medicine & Biology Society (EMBC), 2020, 4749-4752,
doi:10.1109/EMBC44109.2020.9176195

e [18] Lai, Y.; Paul, G.; Cui, Y.; Matsubara, T.; “User Intent Estimation during robot
learning using Physical Human Robot Interaction Primitives”, Autonomous Robots
(AURO), 2022, Vol. 46, 421-436, doi:10.1007/s10514-021-10030-9
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(EMBC), 2021, 4509-4512, doi:10.1109/EMBC46164.2021.9629494
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1.5.2 Partially Related Publications

e [20] Le, D.; Sutjipto, S.; Lai, Y.; Paul, G.; “Intuitive Virtual Reality based Control
of a Real-world Mobile Manipulator”, 16th IEEE International Conference on Con-
trol, Automation, Robotics and Vision, ICARCV 2020, 2020, 767-772,
doi:10.1109/ICARCV50220.2020.9305517

e [21] Nguyen, D.; Lai, Y.; Sutjipto, S.; Paul, G.; “Hybrid Multi-Robot System for
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e [22] Aldini, S.; Lai, Y.; Carmichael, M.; Paul, G.; Liu, D.; “Real-time Estimation of
the Strength Capacity of the Upper Limb for Physical Human-Robot Collaboration”,
2021 43rd Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), 2021, 4533-4536, doi:10.1109/EMBC46164.2021.9630230

e [23] Chotisathiantham, P.; Lai, Y.; Paul, G.; “Design of a Wearable Robotic Glove
for Rehabilitation”, Australasian Conference on Robotics and Automation (ACRA)

2021

1.6 Thesis Outline

Chapter 2 contains a survey of related work in the field of the personalisation of pHRI.
This includes different metric types and their applications, probabilistic models, and con-

ventional models for user intent recognition.

Chapter 3 introduces the framework which ezxamines the limitations of current methods,
enables the integration of human-centric measures to personalise the robot response, and
enhances current insights into the human user during pHRI. An example of a real-world
application, contextualised for robotic rehabilitation, is then presented with initial works

on overcoming the limitations of current probabilistic methods outlined.

Chapter 4 evaluates the efficacy of Fitts’ law, an information-theoretic model for user
intent estimation, focusing on the inertial effects of the robot. Physical Human Robot
Interaction Primitives, an extension on a popular HRI framework, is then presented, inte-

grating interaction forces for personalised user intent inference and robot response.
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Chapter 5 contains an exploration into musculoskeletal models and human physiology
using a model regularly used in research. A supplementary model mapping between grip
strength and muscular activity is presented, evaluating its efficacy and its influence as an

adjunct to musculoskeletal models in pHRI tasks.

Chapter 6 presents a summary of the contributions, including a discussion on their sig-
nificance in future applications. Conclusions are drawn based on the presented work and

potential future works are identified.

Appendix A details the modified musculoskeletal models used for validation and appli-
cation of the grip strength model. Appendix 7?7 presents the user survey results from
the application of the framework in Chapter 3. Appendix B-C details the methodology
for Bayesian Committee Machine (BCM) and the Longest Warping Subsequence (LWSS)

score, along with their respective evaluative comparisons against conventional GP.






Chapter 2

Review of Related Work

Robotic assistance and assessment provide advantages which overcome limitations of sub-
jective measures. This is apparent in traditional settings where human expertise is re-
quired, creating inconsistencies during assessments and assistance, since anecdotal experi-

ences vary from one expert to the next [24].

Introducing robots for assessment and assistance can alleviate these challenges by utilis-
ing reliable and accurate measurements obtained from the robotic system. However, key
challenges include: (1) understanding the limitations of using raw data obtained from
robotic systems during HRI and pHRI; (2) exploring models which capture unique man-
nerisms during interactions, personalising the user’s assessment and robotic response; and
(3) investigating human-centric methods which provide insight into the human user when

performing robotic assessments.

An overview of current applications for pHRI is presented in Section 2.1, including a closer
look at the influence of human-centric measures in pHRI. The next section (Section 2.2)
explores models and concepts for representing data variance in the context of task-centric

measures obtained from robotic systems.

Robotic responses can be provided using both task-centric and human-centric measures.
Thus, Section 2.3 introduces traditional and contemporary models which integrate both
types of measures for estimating user intent and providing a robotic response. A common
method for exploring human-centric factors is through the use of musculoskeletal models.
Section 2.4 briefly introduces musculoskeletal models and their applications in human

motion analysis. Current trends in utilising musculoskeletal models for pHRI is then

11
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briefly outlined. Finally, related works are summarised in Section 2.5 with a discussion on

their limitations.

2.1 Physical Human Robot Interactions

Physical Human Robot Interaction (pHRI) extends upon HRI by capturing applications
where there is some form of physical interaction between the human and robot. These
interactions can be done while coupled physically or through another interface, as shown
in Figure 2.2, enabled by various algorithms and frameworks that utilise artefacts from

these interactions.

While there is a focus on the utilisation of the interaction artefacts, other factors have
contributed towards the adaptation of traditional HRI applications and the adoption of
pHRI systems. Safer robot design and the resultant frameworks overcome prior concerns

for humans and robots working in close proximity [25, 26].

2.1.1 Robot Design and Control

Early works for HRI relied on software features to incorporate safety when interacting with
a robot. However, improvements in robotic hardware design have accelerated the adoption
of pHRI, with robots working in proximity with humans. The introduction of Variable
Impedance Actuators (VIAs) [27] and Series Elastic Actuators (SEAs) [28] provided new
control methods and paradigms for safe pHRI.

These new types of actuators allow research to build upon traditional HRI control meth-
ods, enhancing the actuator’s usability [29, 30]. The two most recognised frameworks
are admittance control [31], which translates endpoint velocities into joint velocities, and
impedance control [32], which translates endpoint forces into joint torques. Subsequent

works have built upon these theoretical foundations to improve HRIs [33, 34].

Investigations into the advantages of pHRI led to frameworks which provide variable
robotic assistance to the user. The assistive frameworks utilise common metrics [35] to as-
certain the amount of assistance given, an approach termed Assistance as Needed (AAN).
AAN frameworks estimate user strengths and deficiencies, and provide targeted assistance
to improve task outcomes, with applications in manual labour [34], medical clinics [36],
and robotic rehabilitation [37-41].
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Traditional Gear
Motor Train — Load
Actuators
(Large)
Series Gear
Elastic Motor Train N\N\N— »ad
Actuators (Low)

Variable Gear 4\/\9&\/&—
Impedance Motor Train Load
—F—

Actuators (Low)

FI1GURE 2.1: A block diagram of the new actuators designed for safe pHRI. Note the
different gear ratios when comparing between traditional actuators, SEAs, and VIAs.

The ability for robots to work in close proximity to humans also opens up opportunities
to consider anthropomorphic designs which improve the interactions. This bio-inspired
perspective has produced the design of shoulder joints mirroring the dexterity of the human
shoulder [42], and a full upper-limb exoskeleton design for robotic assistance [43]. This
extends to control frameworks exploiting kinematic redundancy in robot arms to mirror the
human arm during interactions [44]. Visual and sensorimotor feedback from interactions
shape the resultant behaviour of the robot arm, using a range of measures such as estimated
endpoint stiffness [45], endpoint velocities [46], visual and oral feedback [47], and kinematic

configuration [48, 49].

More recently, there is an increasing body of research flipping the narrative for robotic
assistance and assessment, and dropping the assumption that the human user is an expert.
This perspective asserts new beliefs on the arbiter of truth during interactions, creating
interesting models based on confidence and trust [50]. Confidence and trust frameworks
offer a fresh perspective into human-centric assistance and assessment [51], by drawing

insights from the user into the effective use of physiological responses.

2.1.2 Learning from Demonstration (LfD)

The objective of HRI and pHRI is to encourage the integration of human expertise with
benefits derived from robotic systems. As such, a representative set of frameworks would
primarily leverage expertise shown by humans to learn the task. Learning from Demon-

stration (LfD), also referred to as Programming by Demonstration (PbD) [52], builds a



14 Chapter 2. Review of Related Work

model for robot trajectories based on an observed demonstration from the human user,
forming the most popular approaches towards pHRI in the context of pre-determined tasks
[53-56].

Notably, generalising from multiple observed demonstrations is challenging, with many
works using probabilistic models to capture the variance. This body of work is expanded

upon in Section 2.3.4 after a review of probabilistic models.

Traditional LfD frameworks focus on the task at hand, with contemporary works adapting
the learned states based on a shift in the task outcomes. Thus, they provide personalised

responses through adaptation in the task-space which rely on task-centric measures [57].

Task-centric adaptations also exist when the human is removed from direct physical inter-
actions with the robotic system. In these circumstances, leveraging human expertise relies

on an interface to communicate relevant feedback between the user and the robot.

A common method to facilitate this indirect interaction is through a phantom device pro-
viding feedback to the human user, a process termed tele-operation [58]. To provide the
physical sense of the robot, haptic feedback is usually provided through the phantom de-
vice. This indirect feedback creates challenges for robot control to translate the user’s
interaction profiles during tele-operation [59, 60]. It is noted that contemporary litera-
ture using VR and Mixed Reality (MR) attempts to address this issue by augmenting
communication and feedback (visual, aural, and haptic) during tele-operation between the

robot, phantom device, and user [20, 61, 62]. A small sample of these types of interaction

interface can be seen in Figure 2.2.

FIGURE 2.2: Physical interactions with a robotic system using various interfaces such
as: (a) a physical hand (Mark Longair, Creative Commons); () tele-operation (Tecnalia,
Creative Commons); and (c) Virtual Reality environment.
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Control frameworks for LfD tackle this issue by modulating the apparent inertial prop-
erty of the robot endpoint. This results in control algorithms which perform kinematic
reconfiguration and/or torque control to modulate the endpoint stiffness [63], compliance
[64, 65], and impedance [66, 67]. These control frameworks rely on data observed directly
from the points of contact, using the raw task-centric measurements to adapt the endpoint
behaviour. However, this reliance on task-centric measurements at the points of contact

creates some drawbacks during pHRI.

Since humans are adept at creating compensatory behaviours to complete a task, the be-
haviour at the points of contact may remain similar despite vastly different circumstances.
For example, if the interaction forces were measured when lifting a heavy object, the force
profile can be identical regardless of the posture used when performing the task. Thus,
there could be a degradation in the interaction experience which is not captured through

task-centric measures.

2.1.3 Human-centric Measures during pHRI

Human-centric measures draw insight from the confluence of kinematic data and physio-
logical measures to generate information on the user during interactions, providing new
perspectives for pHRI. Rather than replacing task-centric measures, the consensus in the
literature is to use human-centric measures to supplement conventional frameworks. This
integration is inspired by investigations into our understanding of motor learning during
interactions [68-71], corroborating our biological understanding of how humans learn and
the implications for pHRI [72-74].

The main set of metrics which are most associated with human-centric measures are phys-
iological responses from the human user. Since they are autonomic in nature, and ex-
tensively explored in the medical sciences, the use of physiological measures in robotic

applications have been widely accepted, providing intuitive frameworks for pHRI.

Three common physiological measures used in pHRI include Electromyogram (EMG) [75],
Electroencephalogram (EEG) [76], and Galvanic Skin Response (GSR) [77]. Their pop-
ularity derives from their accessibility, without the need for intrusive procedures, which

facilitates their integration into robotic assistance and assessment frameworks.

Estimating the workload experienced by the user during pHRI is a difficult task since
every person has a different limit. Thus, there is a significant field of research exploring

the estimation of workload, both physical and cognitive, using physiological measures [78].
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Cognitive workloads are generally explored in applications without a physical component,

such as HRI, using GSR [79] and EEG [80].

While there are some pHRI applications which utilise EEG [81, 82], the physical interaction
lends itself to using Surface Electromyogram (sEMG), indicating muscle activity, to assess
user effort and provide appropriate assistance. Early works have used sEMG readings
to explore the relationship between stress and limb stiffness as defined by muscle co-
contractions [83]. For augmentative applications, such as in exo-skeletons, sSEMG has been
used to complement task-centric measures to control the exo-skeleton system and provide
assistance to the user [84]. A similar framework is also applied to an EMG-controlled
hand for robotic rehabilitation [85], and in the learning of a user’s assistance profile using
Machine Learning (ML) [86].

Supplementing interaction artefacts with physiological measures can also improve upon
conventional frameworks, such as LfD, by producing stiffness and impedance profiles which
match the environment and the task [67]. One other human-centric measure which affects
human performance during pHRI is muscle fatigue, the acute degradation of force genera-
tion in muscle fibres, manifested in the SEMG readings. This has been leveraged to assess
the user, inputting data from sEMG readings into a muscle fatigue model, to generate
targeted response at the endpoint during pHRI [87] and adapt the robot response over
time [88].

Shifting the focus of interactions to the human user, there are measures which have been
adopted from their traditional roots in robotics such as the kinematic manipulability [89].
The endpoint accelerations of humans were used to generate the human muscular manipu-
lability [90], while the force profiles of the human hand were used to assess user capability
via their muscular manipulability [91]. Both examples, shown in Figure 2.3, assess the user
using the manipulability measure, and adapt the robotic response provided to augment

user capability at the endpoint.

Human-centric measures can also result from indirect measurements which extrapolate
meaningful understanding of the human status during pHRI. Human ergonomic design
consider multiple modes of data collection to obtain a holistic measure of the user’s physical
state when complete a task. These are usually based on human-focused injury risk factors
which can occur when the task is being performed incorrectly. In coupled pHRI, human
ergonomics are used to re-position the points of contact, mitigating injury risks for the
user during physical interactions. Using this approach, researchers have explored the

assessment of human ergonomics in robotics, resulting in methods that allow the user to
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FIGURE 2.3: The adoption of traditional robotic measures into pHRI, such as from: (a)
robotic kinematic manipulability, into (8) human arm manipulability.

re-position their arm during coupled pHRI tasks [92]. This assessment was performed
by integrating a muscle fatigue model and derivative information from a musculoskeletal

model in its calculation.

Indirect measurements of the human posture, obtained from camera observations or motion
capture systems, have also been performed to calculate the risk of joint overloading during
a collaborative task, re-positioning the pose of the object to allow the user to return to
an ergonomic pose [93]. More recently in [94], the total interaction force experienced by
the user, when transporting a large object with a robot, was lowered by re-configuring
the orientation of the object and the pose of the robot endpoint based on an ergonomic

assessment using human pose and the interaction force profiles during the task.

While human-centric tasks have been successfully integrated into pHRI applications, ex-
amples of personalising the model for individual users are rare. To capture the noise
and variance exhibited by each individual, human-centric robotics researchers have looked

towards the integration of conventional methods to address these uncertainties.

2.2 Probabilistic Models

For humans, signal noise is tied into our abstract understanding of everything surrounding

us. However, for robotic systems, noise is observed at all times, whether it is due to the
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sensitivity of the sensor, temporary disturbances, or even signal transfer across communi-
cation cables. Signal noise and uncertainties are even more pronounced in humans where it
presents in both physical and neurological systems. As you read this sentence, the signals
sent to your optic nerves inherit noise from your cornea. This signal generates noise as it
travels to the powerful CNS which then processes these signals, resulting in the abstract

concepts of vision and comprehension.

Probabilistic models are a simple method to capture this noise, building a distribution
which describes the characteristics of the noise. This is evident in recent analysis by
[95] suggesting that the noise profile exhibited by humans during physical movements are

bio-indicators for motor skill level.

Underlying the methods to capture the characteristics of the observed noise is the as-
sumption that the observed system conforms to the Central Limit Theorem (CLT). This
theorem suggests that when observations of IID random variables are recorded, the even-
tual normalised sum of the mean value approaches towards a normal distribution. This

enables the characterisation of the observed noise, and can be factored into subsequent

analysis.
o X Gen. Data
% X ;; x S5 X Generated Distribution
% X — A
X % & X *: Captured Distribution

L

3

FIGURE 2.4: An example probabilistic distribution capturing inherent noise. Data points
were generated using a chosen distribution (in blue), and these are captured by the other
distribution in black. Note the slight distribution difference due to the noise.

With the omnipresence of noise in robotic applications, it is natural that researchers have
looked to using probabilistic approaches for robotics [96]. For pHRI, a similar principle
was used to characterise the noise observed for each individual user. Early works recog-
nised the variability exhibited from one person to another, developing models based on

information theory [97] to elucidate the underlying internal models for various tasks. To
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overcome idiosyncrasies for each individual, early works recruited hundreds of participants

to “average out” these variances.

2.2.1 Fitts’ Law

One of the earliest models developed was Fitts’ law [98], a predictive model characterising

target-directed human movements. The model is defined as:

2D

MT =a+b-log, (W)’ (2.1)

where MT is the movement time taken to reach a given target, D is the distance from
the target, and W is the width of the target. a and b are coeflicients that are obtained
heuristically through linear regression for each person. Fitts’ law suggests that there is a

relationship in human movement that depends on D and W.

From this model, an Index of Difficulty (I;), measured in bits, was able to be obtained,

indicating the amount of information associated with a task:

I, = log, <2w€> (2.2)

Further research for Fitts’ law have resulted in some consensus on the usability and efficacy
of the model when predicting human behaviour. Empirical evidence reinforces the model’s
applicability, demonstrating that humans can use visual information (with Fitts’ law pa-
rameters) to predict the observed behaviour [99], to exhibit kinematic patterns based on
the parameters of the model [100], and to produce comparable motions when compared

against simulated responses from a motor control filter [101].

While the applicability of Fitts’ law seems to be generally accepted, in-depth analyses
from those experiments suggest that the model is a symptom of the underlying visuomotor
system. This dispute is evident in more recent works, highlighting the constraints of the

model in allocentric interactions [102] and physical interactions [103].

As our understanding of the CNS increases, the knowledge on the human motor system
has followed suit, deprecating the use of information theory. A similar phenomenon ex-
ists in robotics, where the increasing capability for information transfer between systems

necessitated a macroscopic approach towards the environment surrounding the robot [104].
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FIGURE 2.5: A visual representation of Bayes’ rule using an example of determining
whether it is sunny or raining given an observation that someone has an umbrella.

Rather than treating observations as information transfer, researchers shifted focus towards
memory-efficient methods to capture information surrounding the agent. These approaches
rely on an assumed internal model, which is then updated when new information is added.
Termed Bayesian Statistics, these methods express a level of belief for each event, which

is then updated when new observations are obtained.

2.2.2 Bayesian Statistics

Bayesian Statistics is a field of research which represents probabilities as the level of belief
for an event to occur. By obtaining new information, the belief is then updated based
on the confidence and usefulness of the new information, providing a quantifiable method
to work with probabilistic distributions. Bayesian statistics underpins commonly used
algorithms such as the Kalman Filter and Extended Kalman Filter (EKF), with complex
problems leveraging these methods such as in Simultaneous Localisation and Mapping
(SLAM) [105] and motion tracking [106].

The basis of Bayesian statistics is Bayes’ rule which defines, for two independent events x

and y, the probability of event y occurring, given event x occurs, is:

p(x | y)p(y) (2.3)

plylz) = o)
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where p(.) is the probability distribution of an event. A simple example of Bayes’ rule is to
determine whether it is raining if we observe someone with an umbrella. This is visually

represented in Figure 2.5.

Initially, our belief is that it rains 40% of the time (our prior). The likelihood of a person
bringing an umbrella will be different depending on the current weather. If it is raining,
there is a 60% chance of bringing an umbrella. Conversely, if it is not raining, there is a
45% chance of bringing an umbrella. We then apply Bayes’ rule to determine that, given
an observation of someone with an umbrella, there is a 47.1% chance that it is currently

raining, reiterating that Bayes’ rule assumes the two events are independent of each other.

Rather than discrete probability values, a probability distribution displays the spread of
probabilities which best represent a phenomenon. The most renowned family of proba-
bilities is the Gaussian distribution, due to its symmetry and low number of parameters,
p and Y. Furthermore, the symmetry provides many other properties which can be ex-
ploited in probabilistic operations. The probability of an event, x, occurring in a Gaussian

(normal) distribution is defined as:

_ 1 _(@—p)?
N(w)—mexp< o > (2.4)

For K samples/observations, the prior distribution is defined by the mean and variance

of the input:

p(x) = N (2|pa, Xa), (2.5)
EDYEEY
pa = S (2.6)

Zfil(wz - ,Ux)T(xi - ,U:Jc)'

Sy =
K
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Adding additional variables in a Gaussian distribution extends the distribution. For ex-

ample, adding another variable, y, creates the distribution N (X|ux, ¥ x):

X = 96] (2.8)
Y

fix = “x] , (2.9)
L My
(S0

Sy = | ] (2.10)
_Eyl’ Eyy

where Y, is the covariance between x and y. We note that the symmetry in a Gaussian
distribution results in the covariance matrices between = and y to be transposes of each

other: Y, = ZyxT.

Thus, using Bayes’ rule, we can update the probabilistic belief of an event, y, occurring
when given an observation of z. Leveraging additional properties of the Gaussian distri-

bution, the conditional distribution can be obtained using Gaussian conditioning:

Hyla = Hy + Bay Sy (T — 1), (2.11)
Syiz = Sy — SaySre Sya- (2.12)

The full derivation can be found in [107].

Apart from probabilistic operators, there are also information-theoretic measures to com-
pare between different distributions. One prominent measure is the Kullback-Liebler Di-
vergence [108], Dk, which compares the relative entropy, or the amount of information
gained, when comparing one distribution to a reference distribution. Properties from the
specific distributions, such as Gaussian, Poisson, or Binomial, can then be leveraged to

perform more empirical methods such as moment matching.

2.2.3 Machine Learning

Machine Learning (ML) applies probabilistic models to capture the relationship between
variables and states, whether from external sensors or internal controllers. During pHRI,
there is a plethora of information available to ascertain the current state of the system.

However, utilising all available data might not be conducive to effective analysis and
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application. Thus, ML provides an approach to systematically process and extract meaning

from the data presented.

Spurred on by early human learning theories, ML leveraged early works in rough set theory
to find generalised approaches to capture the relationship of inputs as a function of the

outputs [109]. There are two distinct forms of output predictions in ML frameworks:

e Classification: the outputs are discrete class labels which correlate to the input
sample. Classification is commonly used to label objects in a given scene making it

useful for surveillance and identification tasks.
e Regression: the output is continuous in nature, predicting the expected value at the

next step. Regression is commonly used to predict trends in economic fields.

Furthermore, the algorithms and methods can be sorted into four broad categories based

on the nature of the training data:

e Supervised Learning: When all training data is labelled, providing explicit one-to-

one data correlation for the generated model.
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FIGURE 2.6: A general flow overview of a Machine Learning framework.
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e Semi-supervised Learning: When some training data is labelled, requiring some

method to correlate unlabelled data with the current model.

e Unsupervised Learning: When all training data is unlabelled, relying on topological
and application constraints to find correlation between the training data for model

generation and discrimination.

e Reinforcement Learning: When given no training data, an agent builds a model
by exploring its environment unsupervised. The defined reward and value function

provides a metric of its progress thus coupling the actions to the outcomes.

The wide-ranging capability for ML has seen its application in most, if not all, areas of
our everyday lives, ranging from basic models like Naive Bayes [110] to reinforcement
learning for autonomous robotic control [111]. Due to the capability for ML to capture
inherent differences from one user to the next, there is a large demand in researching
methods to utilise probabilistic models for personalisation. This is particularly apparent in
physiotherapy, where the prescribed exercise regimen will differ based on the circumstances

of the patient, as well as the diagnosis which may vary from one expert to the next.

For rehabilitation, the confluence of ML and robotics has lead to the current trend for
robotic assistance during therapy, with successful Randomised Control Trials (RCTs) con-
ducted to validate its efficacy [112]. This has lead to a surge in research focusing on
rehabilitation robotics, with applications such as optimising the design of exo-skeletons
[113], personalising the motor learning task [114], and adapting the targeted assistance

provided as the patient improves over time [115].

The integration of ML in robotics is longstanding with applications in interaction robots
[116] and assistive robots [86]. Furthermore, the need to understand the human user during
HRI and pHRI has lead to the use of ML to understand human intent and detect actions
which convey the state of the system to the robot [117]. These applications are detailed
in Section 2.3.1.

As the amount of available data increases exponentially, new research has searched for ways
to optimise the complexity of ML techniques, thus widening the scope of ML applications.
Reinforcement Learning aims to mimic the learning process humans use when given an
unprecedented task [118] by adapting the control policy in each “epoch” and calculating
the value of that particular set of parameters. Reinforcement learning has been heavily
used in recent works. The advantage is that it mitigates subconscious bias induced from

assumptions made when choosing a model (in traditional ML).
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Deep Learning is a subset of ML which uses hierarchical extraction methods to encap-
sulate higher-dimensional data in a non-tractable model [119]. The bio-mimetic network
is inspired by the neural structure of human brains which allow complex visual under-
standing, leading to the analogy that the development of deep learning models is akin to
humans building a mental model of an object. By taking snapshots from different angles,
we co-ordinate the spatial information based on the different viewpoints. Deep learning
aims to build the “perceptual manifold”, leading to the development of frameworks that

tackle high dimensional data with high levels of accuracy [120].

The contribution of deep learning for robotics cannot be underestimated with significant
successes presented in computer vision. Notable frameworks include LeNet-05 [121], YOLO
[122], and DeepPose [123]. The reach of deep learning is also quite broad with recent works
focusing on applying these techniques for the health care industry [124], and expanding
upon reinforcement learning [125] for complex robotic control [126] and pHRI [127].

2.2.4 Gaussian Process

Gaussian Process (GP) is a non-parametric family of distributions which can be used to
represent priors for a target function [128]. Based on the normal Probability Distribution
Function (PDF), they generalise the target function, taking into account an infinite set
of hypotheses, with a stochastic process defining the properties of the function. This is
similar to how Hidden Markov Model (HMM) exploits the lack of model assumptions to

identify the state transition function.

The reliance on the properties of the Gaussian distribution means that it is analytically
tractable and is flexible. This makes it one of the most common methods to build a
probabilistic model. The flexibility of GP has lead to their use in various fields such as
deformable object tracking [129], robot control [130], and human motion tracking [131].

The conversion of single GP models to ensemble models is straightforward with the
Gaussian Mixture Model (GMM) [132] and other ensemble variants, known as product
of experts. During inference, the output accuracy is determined by the fusion method
from multiple experts. Given that each member GP provides a mean and uncertainty, the
exact analytical solution for uncertainty propagation in GP-based product of experts is
attainable [133]. Applying the concept of hierarchy and scalability into GP has also been

successful in literature [134, 135].
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One aspect of GP which is extensively explored is its computational complexity. With
a computational complexity of A(O3), GP models are not scalable with respect to the
number of training samples. Furthermore, the complexity of the training samples can
decelerate the optimisation of kernel hyper-parameters, leading researchers to improve

computational costs of GP-based algorithms.

Apart from the number of training samples, the computational complexity also makes GPs
ill-conditioned for high-dimensional data. Thus, variants of GP were created to lower the
dimensionality of the processed data. These are manifested in algorithms such as Sparse
GP [136], which lowers the dimensionality in a greedy fashion using brute force; Informative
Vector Machine (IVM) [137], utilising information theoretic criterion to optimise the com-
putational complexity; and Gaussian Process Latent Variable Model (GPLVM) [138],
which leverages Principal Component Analysis (PCA) to embed latent variables repre-

senting features of the high-dimensional data.

2.2.4.1 GP Regression

Overall, a non-linear target function f is assumed as:
Y ={(X) + ¢, (2.13)

where Y is the training targets, X is the training inputs, and € ~ N(0,X,) is the obser-

vation noise distributed normally with ¥, = diag {0?,03, ... ,og,y}.

For more than 1 dimension of data, learning the inductive relationships from training data

is done by fitting a GP with the prior for each dimension of y as follows:
Ya ~ GP(0, Ko), (2.14)

for a =1,2,3,...,d,. The observation noise is €, ~ N (0, 02) and K, is the covariance for

dimension a.

2.2.4.2 Covariance Kernel

Part of the assumptions made in GP relate to how the boundaries of the target function
are defined. The covariance kernel, defined by the covariance function, provides a mathe-

matical model to calculate how close each data sample is to another. Different covariance
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TABLE 2.1: A table of common covariance functions used for GP model generation. The
hyper-parameters change based on the function’s variables.

Covariance Function Expression
Constant ol
Linear ZdD=1 o §de' d
Polynomial (z -2’ + ad)P
Squared Exponential (SE) exp (—||x — x| |?/2(?)
Matérn [139] Q,J%F(V) <‘/l27”7">y K, (@7’)
Exponential exp (—7)

functions will have different properties, lending each function well to certain applications.
This choice can affect the results of the trained GP model, thus, user expertise is necessary

here to choose a suitable covariance function.

The covariance kernel determines the level of similarity based on its definition of distance.
Using this measure, two data samples close to each other are said to be similar, since
intuitively a training sample right next to another would provide some information about

the predictions around those two samples.

While there are infinite possible covariance functions to be used, the only stipulation for a
valid covariance function is that it is positive semi-definite. The most common covariance
functions are based on information theory and a list of common covariance functions is

listed in Table 2.1.

Using the most commonly used kernel function, the SE covariance function, the covariance

element k, for each dimension’s covariance, K, (Equation 2.14), is as follows:

1
ol 2') = azexp<2lgr|ww'|12), (2.15)

where o2 is the variance of f,, and I, is the scaling factor to normalise the distance between

z and 2’

2.2.4.3 Hyper-parameter Optimisation

While arbitrary hyper-parameter values can produce a GP model, the training data set

provides examples that are used to optimise the hyper-parameter values to provide a model
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which best approximates the target function. The choice of optimisation method and their
relevant parameters will affect the resultant hyper-parameter values and its effect on the
GP model. In particular, over-fitting or under-fitting the model to the training samples

can degrade the performance of the built GP model.

Each optimisation method has unique properties and their parameters should be con-
sidered carefully when optimising the covariance function hyper-parameters. Common
optimisation methods include Bayesian Optimisation [140], Conjugate Gradient Descent
[141], Nelder-Mead Simplex [142], and Differential Evolution [143].

For the continuing example of the SE covariance function, the Maximum A-Posteriori
(MAP) estimate of the kernel function hyper-parameter set, 6, occurs where p(Y,|X, 0,)

is greatest. Thus, 6, is optimised as:

1 1 N
log p(Y,|X,0,) = —QD - §log|Ka| - 510g27‘(, (2.16)

where D = Y,TK ~1Y,, and N is the number of training data samples.

For regression inference of Gaussian Process, the joint probability P(Ya,y;T), inferring

Yy at ¥, is modelled as a multi-variate Gaussian distribution, similar to Equation 2.8:

Y, K, K,

P( > :/\/'<0, “ > (2.17)
Y, Kox  Kaws

where Kg = [ko(x*, X1), ko(x*, X2), ..., ko(x*, XN)] and Ky = kqo(x*, ), respectively.

The conditional distribution, p(y}|Y,) = N (KK 'Y, Kaex — K. K~1KL,) is then de-

rived from this multivariate Gaussian.

2.2.4.4 GP Classification

The joint probability distribution from the GP model for regression provides individual
posteriors for each label. However, the posterior results are analytically intractable since
the joint distribution, p(Y’, X), is non-Gaussian (due to the MAP estimate), making it

impossible to be used for GP classification.

A way to re-instate tractability is through approximations or Monte Carlo sampling meth-
ods. While there are a plethora of approximation methods available, a popular method

for binary GP classification is the Laplace Approximation [144].
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Laplace Approximation takes a second-order Taylor Series expansion around the MAP,

providing the following approximation:

a(f1X,y) = N(fIf. A7), (2.18)

where f = argmax 7 P(f|X,y), and A is the Hessian of the negative log posterior at that

point (—VVlogp(f|X,y)|;_)-

For multi-class classification, the Laplace Approximation needs to be extended. A simple
method is to obtain the softmax output 7 from training samples (Equation 2.19). The
class probabilities are calculated in a one-vs.-rest fashion:

7
nt = —Ple (2.19)

S expyl,’
for i =1,2,...,n given n training samples, and ¢ =1,2,...,C for C classes.

Similar to the regression inference of GP, calculating the approximated joint posterior

distribution will yield the predictive mean for class ¢ as follows:
Eqlf*(2:)| X, y, 2] = k()T K f, (2.20)

where k.(z,) is the covariances between the test point and each training point of the cth

covariance function, and f¢ is the subvector of f in class c.

Unlike binary classification, a simple mean threshold does not take variability between
classes into account. The most common way to overcome this is through Monte Carlo
sampling of the Gaussian Laplace Approximation ¢(f.|y), performing the softmax, and

averaging the probabilities.

2.3 Learning from Demonstration for HRI

Originally, Learning from Demonstration (LfD) frameworks were developed to mitigate the
amount of bespoke programming required when the task allocated to the robot changes.
By observing an expert demonstration, through kinesthetic teaching or from external
sensors, LfD frameworks enabled robots to repeat the same motion, providing a relatively
quick method for robots to re-learn different motions without the financial or time costs
involved. However, as humans start to encroach on the robot’s workspace, there is a need

to detect, understand, and respond to the user’s intent and actions [145].
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Implementing LfD for HRI and pHRI applications requires the system to detect user
actions, contextualise those actions to the task at hand, and generate an appropriate
robot response to assist the user. While each of these steps can be tackled individually,

probabilistic methods have been used to couple all three steps together for HRI and pHRI.

2.3.1 Action Detection and Contextualisation

In a human-robot system, the robot needs to detect and understand the user’s intent for
any given task. For assembly tasks, this involves understanding the current state of the
assembly as well as the possible next steps. Thus, probabilistic graph-based models are
popular since they provide an awareness of both the different stages along the assembly,

as well as all combinations for the next steps [146-148].

The confluence of ML for human action detection during HRI and pHRI is not unexpected
since ML is able to capture individual mannerisms, with probabilistic operators which can
couple multiple dimensions together. This effect can be seen in the Partially Observable
Markov Decision Process (POMDP), where the contextual state of the task is linked to
the observed actions from the user, facilitating HRI [149], wheelchair assistance [150, 151],
and goal and trajectory adaptation during pHRI [13].

A similar framework is HMM [152] which attempts to “learn” a hidden model that explains
the relationship between the observed actions and the state of the system. Its effectiveness
in capturing the dynamical system for HRI applications has lead to its popularity in action

detection [153] and intent estimation [154].

Efforts to improve its performance succeeded by applying techniques used in ML for the
Hierarchical HMM which was used for detecting human actions from movement trajectories
[155]. Other methods for detecting user actions include Dynamic Bayesian Network (DBN)
[156], deep learning [157], GP Dynamical Models [131, 158], and stochastic parsing [159].

2.3.2 Movement Primitives

Generating a robotic trajectory is a complex task, especially when coordinating multiple
Degrees of Freedoms (DoFs). This is further exacerbated when the robotic trajectory
needs to interact with a human in a meaningful manner during HRI. The non-linear
response, when a human interacts with the robot, has long been explored for LfD in both

one-shot learning [160] and probabilistic approaches [161]. The resultant non-linearity in
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the dynamical systems create complexities which complicate the interactions between the
agents during HRI. Therefore, a more holistic approach is needed to simplify the trajectory

generation process.

Movement Primitives (MPs) are a family of elementary operations to represent robotic
trajectories for motion planning. Inspired by human locomotion [162], MPs are compact
representations of complex locomotion in multi-DoF systems, forming the basis for various
robotic capabilities such as learning, imitation, and trajectory generalisation. Since MPs
are adapted based on their applications, they come in various forms, each alleviating
certain limitations or constraints in their respective applications. Some prominent MPs

and their applications include:

e Coupling Movement Primitives [163] for achieving equal interaction forces;

Compliant Movement Primitives [164] for embedding torque profiles;

Interaction DMP [165] for reaching equilibrium trajectories using interaction forces;

Kernelized Movement Primitives [166] for higher compression of trajectories; and

Periodic Movement Primitives [167] for periodic motions.

Despite the variety of available MPs, the most popular MPs used in the robotics community
is Dynamic Movement Primitives (DMP) due to its versatility and track record. There
is also evidence to suggest that human motions can be represented by DMP [168, 169],
reinforcing its use in HRI and pHRI applications.

2.3.3 Dynamic Movement Primitives

Dynamic Movement Primitives (DMP) generate globally stable trajectories by treating the
trajectory as a spring-damper system with an attractor system to encode non-linear dy-
namics [170]. The attractor landscape is represented by a linear system of basis functions
across time or phase. This allows DMP to model the motions of expert demonstrations us-
ing only a few parameters and favourable properties such as trajectory dilation, rotational

invariance, and temporal scaling [171].

While the original DMP formulation produced stable trajectories, a modified formulation

overcame several undesired artefacts during edge case reproductions such as trajectory
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“mirroring” and accelerations that are beyond the capabilities of the robot [172]. Each
DoF in the system is modelled as:
T =K(g—1x)— Dv—5sK(g—x9)+sKf,
(g ) (g - 20) .

T =0,

where ¢ is the goal, x is the position, zq is the starting position, v is the velocity, and K

and D are the stiffness and damping of the system respectively.

The phase of the trajectory, s, is modelled as a first-order system with parameter « for
temporal scaling, 7é = —as. The attractor landscape, represented by the forcing function,
f, is encoded using the weighted sum of Gaussian basis functions with centres, ¢, and is

spread evenly across the phase of the trajectory:

SM iis
S i(s) oy (2.22)
¥i(s) = exp(—(s — ¢;)*/h),

f(s) =

producing a M x 1 vector of weights, w, for the trajectory. While the Gaussian kernel has

been used here, any smooth functions or mollifiers could be used as an alternative [173].

Representing the forcing function (from 7" observations) as a linear system allows the DMP

weights, w, to be obtained using linear least squares regression:

f(s1) p1(s1) - om(s1)| | w
P f('Sz) _ ¢1(.82) ¢MF52) W.Z | (2.23)

f(s7) ¢1(s7) ... om(sT)| |wnm

w=(¢"$) " f. (2.24)

Since the formulation of DMP only encodes a single trajectory, their use is limited in
applications with dynamic environments such as during HRI. Thus, variations of DMP
were developed to tackle various aspects of these limitations. A popular goal to overcome
for DMP is avoiding obstacles in the path of the trajectory. The general approach is to

append another attractor landscape as follows:

70 =K(g9g—x)— Dv—sK(g—x0) + sKf+ h(s,z), (2.25)
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where h(s, z) is a phase-aligned function describing the relationship between the trajectory
and obstacle. This method has seen successful obstacle avoidance when planning [174, 175]

and performing [176] the trajectories.

A similar approach to amend the non-linear function, f(s), has been used to accomplish
various aspects of the robot response in DMP. This includes weighting the Gaussian basis
functions to embed the “style” of the demonstration [177, 178|, appending a function,
I(s,0), to correlate the impedance profiles for an exoskeleton [179], deriving the attractor
landscape function based on muscle synergies [180], and appending a variable to distinguish

from one task to another [181].

Given that MPs were originally used as a method to encode a single trajectory, it is natural
that hierarchical frameworks have been designed to complement this intention. Building
a library using DMP provides flexibility, trading-off against complexity, for higher-level
actions such as mobile robot motion planning [182]. An identical approach was employed

by [183] to contextualise the sequence of motions required for object grasping.

There are also other schools of thought on the use of DMP (and MPs in general) li-
braries. Integrating probabilistic modelling into an observed trajectory has allowed [184]
to perform both trajectory segmentation and DMP library building simultaneously. The
ability to generate a library on-line enables robust generalisation for future demonstrations
and promotes flexibility when generating novel trajectories. Similarly, [185] segments an
interaction force-based object flipping task to create a library of MPs embedded with

interaction-force profiles.

2.3.4 Movement Primitives for HRI

Initially, Movement Primitives were designed for a single expert demonstration, with the
objective of imitating or repeating the same trajectory. However, in HRI, utilising a
single user-directed demonstration can unintentionally introduce noise which degrades the
performance of the system in its application. Thus, there was a need to work towards
the analysis of multiple expert demonstrations to obtain a single set, or distribution, of
parameters which best generalises the intended trajectory. A visual overview of this process

is demonstrated in Figure 2.7.

Probabilistic operators are the most attractive methods to both generalise and capture

noise due to their well-studied properties in the ML field. Many algorithms leveraging off
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probabilistic operators provide tractable models, allowing simple techniques to embed the

application’s context into the model.

For MPs, this is most commonly used to couple multiple DoF together in a multi-DoF
system, whether they are observations of the robot or the human. A prominent exemplar
of this for HRI is Interaction Primitives (IPs) which has been shown in [186] to couples all
dimensions of data from both the robot and human user when performing a high-five task.
Extensions of IPs have embedded environmental context when performing a collaborative
object covering task [187]. Similar methods to embed contextual information, employing
probabilistic operators against parameters from MPs, include using a modified EKF to
estimate the DMP endpoint (g) and time scale parameter («) [188, 189], an Expectation
Maximisation (EM)-GMM to perform an object handover task [190], and an EKF to embed

contextual data from multi-modal sensors in Bayesian Interaction Primitives (BIPs) [191].

For collaborative pHRI, aligning the interaction forces with the objectives is a difficult task.
Since DMP are acceleration-based dynamical systems, applying them to other data types
is uncommon. Despite this, there have been some notable works that looked to imitate the
impedance profile for the robot response. A naive approach is to use a separate, amended
DMP to encode the stiffness [192], although there have been other ways that varied the
goal, trajectory, and speed of the robot response [193]. Alternative literature highlight
ML frameworks such as HMM to couple trajectories with their respective stiffness profiles
[194], and extending BIPs to integrate contact forces for phase estimate contextualisation

during trajectory generation [195].

While most DMP-based frameworks build probabilistic distributions of DMP parameters,

Probabilistic Movement Primitives (ProMPs) frameworks inherently encode positions and
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velocities in their distribution [196]. This enables straightforward coupling of multiple
DoF and the inclusion of contextual data when generating trajectories [197], e.g., inferring

the user’s intended instruction step during an assembly task [198].

Since DMP encodes the forcing function, f(s), across the phase of the trajectory, this
imposes a phase estimation requirement when attempting to infer the appropriate robot
response during HRI. Traditionally, this is done using phase-alignment methods such as

Dynamic Time Warping (DTW) [199], as used in IPs and its extensions.

However, probabilistic operators can also address this limitation by coupling the phase
to the rest of the distribution, enabling phase estimation alongside parameter generation
for robotic trajectory generation [200]. Similar approaches are used for BIPs where the
phase is embedded in the EKF for parameter estimation [201]. Furthermore, probabilistic
methods such as EM can also be used to phase-align observed trajectories asynchronously

during tele-operation [58].

Unimodal Distribution Model Multimodal Distribution Model

0.18
> 0.15
0.12
0.09
0.06
0.03

Probabilit

FIGURE 2.8: A visual representation of a: (a) unimodal (single peak) and (8) multi-
modal distribution (multiple peaks) using identical data generated from two different
normal distributions.

One challenging aspect for MPs in LfD and HRI applications is the possibility of multi-
modal applications. As mentioned above, MPs were originally designed for a single demon-
stration, creating a unimodal application since the primary objective is to imitate or repli-
cate the demonstration. Multi-modal tasks, such as reaching for an object or choosing
between multiple objects, can also benefit from the use of probabilistic methods, espe-

cially those which are designed for multi-modal applications. One of the most common
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multi-modal models is the GMM [202], building a single distribution composed of multiple

sub-populations, each corresponding to their respective modes of the data.

For MPs, this has been achieved using GMM to regress against the parameters of MPs,
within a HMM framework, to imitate domestic feeding using robots [203]. Similar uses of
GMM can be seen for task segmentation and trajectory generation for industrial object
assembly during pHRI [56]. Similar techniques, such as Mixture Density Network (MDN),
have been utilised to generate parameters of Via-points MPs, which are viable trajectories

for multi-modal obstacle avoidance [204].

2.4 Musculoskeletal Models

Musculoskeletal models are a representative system of models which simulate the under-
lying mechanisms surrounding the musculoskeletal system of different organisms. Simple
models can be easily designed with two bones linked with a pin joint, and controlled with

a pair of antagonistic muscles.

Alternatively, sophisticated models can present the whole body structure with constrained
joints, Muscle Tendon Units (MTUs) with representative intrinsic properties, and even
interaction models such as the Hunt-Crossley contact model [205]. Despite the spectrum
of models available, all musculoskeletal models aim to provide insight into the underlying

mechanisms of the human neuro-musculoskeletal system [206, 207].

Musculoskeletal models enable physics-based simulations for various states of the model
(such as position, velocity, and force/torque), using systems of differential equations. Each
sub-system in a model can also utilise its own set of model equations to represent various
contributing factors. By running simulations and human motion analysis, musculoskeletal
models can be used to investigate human responses to various stimuli such as perturbations

[208] or interaction constraints [209].

The rising popularity of musculoskeletal models in the study of human biomechanics and
physiology have led to the creation of various software, facilitating the use of musculoskele-
tal models by other researchers in the community. Notable software includes OpenSim®
[210] (based off the SIMM simulation engine [211]), AnyBody? [212], and Human Body

Model? [213]. OpenSim is the most popular since the software is open-source.

Thttps://simtk.org/projects/opensim
Zhttps:/ /www.anybodytech.com/
3https://www.motekmedical.com /software/hbm/
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FIGURE 2.9: Musculoskeletal models can be: (a) simple; or (B-c) sophisticated depending
on the application.
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Across the body of literature, there have been many different musculoskeletal models which
have been created, ranging from simplistic models to explore muscular control [214, 215]
to more recent, complex whole-body models [216, 217]. Models of animals have also been
created for researchers in those respective fields [218]. The application of OpenSim to
musculoskeletal models was reviewed recently [219] with innovative applications for these

models such as in motion analysis for osseointegrated amputees [220].

With the various software available, the comparison of results obtained from the differ-
ent software is necessary. This creates a benchmark for researchers to understand the
suitability of each software to their application. The benchmarking process includes the
exploration of different software [221, 222]|, comparisons of various implementations of
muscular optimisation and controllers [223-225], and verifying the obtained results using
best practices [226, 227].

One significant challenge for musculoskeletal models is the personalisation of each model
to individuals, using their respective model parameters. Changes in each model parameter
affect the results from at least one stage along the motion analysis pipeline. For example,
demographic data is regularly used to amend the bone measurements [228], which affects
the results of Inverse Kinematics. Similarly, changing model parameters of MTUs [229],
such as maximum isometric force and optimal tendon length, will affect the analysis derived
from Static Optimisation, while inertial properties [230] will affect the resultant force and

torque profiles obtained from Inverse Dynamics.
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While models are generally validated using kinematic metrics such as generated moment
arms and the range of motion, there are burdensome parameters that are difficult to
obtain. Most available data for internal sub-systems, such as model parameters of MTUs,
are obtained from preserved cadavers which does not reflect the “real-life” value. Other
approaches build a correlation between extrinsic measurements and the internal parameters

such as sSEMG vs. Force [231], and sEMG onset vs. muscle activity [232].

Despite this, generic models built off demographic data [233] are still widely accepted since
it is challenging to ethically obtain invasive, in-vivo measurements of model parameters.
Similar problems are encountered when validating models using physiological signals such
as sSEMG that are influenced by various environmental factors when compared against
invasive EMG measurements. As such, there are some reservations in the research com-
munity on the validity and consistency of simulation results for musculoskeletal models

since there are large variances in the implementation and validation process [234].

Recent technological advances have enabled new, non-invasive methods to estimate some of
the model parameters with promising results in estimating muscle volume using Magnetic
Resonance Imaging (MRI) [235], muscle fibre composition using histological analysis [236],

and muscle fibre orientation using deep learning on ultrasound images [237].

2.4.1 Human Motion Analysis

The primary intention for musculoskeletal models is to provide an in-silico solution to sup-
plement and improve upon current methods for human motion analysis. In Section 2.3.1,
the analysis of human motion is performed using task-centric measures without much

insight from a neuro-scientific or physiological perspective.

Human-centric approaches towards human motion analysis are closely linked to a large
body of literature focusing on human motor control [238]. Similar to the use of cutting
edge technology for musculoskeletal models, advances in technologies to collect, aggre-
gate, and analyse human motion data have promoted research in this field. Innovative
methods include the use of marker-less motion capture systems [239, 240], calibration-less
joint motion estimation algorithms [241], marker-less pose estimation algorithms [242],
and the integration of Inertial Measurement Unit (IMU) data [243] for motion tracking.
These techniques supplement or supersede prior methods that utilise marker-based motion

capture frameworks [244, 245], as seen in Figure 2.10.
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FIGURE 2.10: A representative setup for the use of a marker-based motion capture system
to track the human upper limb.

Despite the lack of high-fidelity hardware available, seminal works in human motion anal-
ysis have relied on in-depth understanding of the CNS to develop an understanding of
human motion. Following on from early works which developed models for prozimate
causes, the exploration of the underlying reason, or the ultimate cause, has led to a better
understanding of human brain function. An example would be Fitts’ law which employs
information theory to explain and predict a human’s capability. Further research has
indicated that the model is a by-product of the way the human brain develops motor con-
trol skills, with [246] suggesting that the CNS utilises an intrinsic model of internal and

external stimuli when planning and performing a motion.

One well regarded concept for human motor control is the role of MPs detected in the
kinematic profile of human motion, suggesting that the human brain employs elementary
operations to generate complex trajectories [162, 214, 247, 248]. This has inspired similar
approaches for robot trajectory generation using MPs as discussed earlier in Section 2.3.2.
Similar behaviour is observed using functional PCA to segment elementary non-linear

time-dependent functions used for complex trajectory generation [73].

This has also led to more recent works inspecting the relationship between motion noise
and motor learning [249], extending to exploring how humans regulate our limbs to sup-
port the motions [250, 251]. Further work was conducted to integrate insights from a
physiological perspective into the understanding of motor learning and control, harking
back to seminal works to identify the underlying principles which dictate human force and

motion generation [252].

A significant portion of understanding the musculoskeletal system stems from work which

explore the MTU and its influence on human motor control. These range from early



40 Chapter 2. Review of Related Work

models for EMG-force relationships [253] to comprehending the core mechanics for muscle
force generation [254]. Other perspectives include the elucidation on muscle force output
based on optimality principles [255]. However, there is continued debate on its validity
[256] with conflicting evidence for [257] and against [258, 259] its existence despite a lack

of prominent alternative theories.

2.4.2 Applications

Overall, musculoskeletal models have pioneered new methods and avenues for neurological
and bio-mechanical investigations into the human body (and other organic matters). The
availability of open-source software, which has continued to be maintained, facilitates the
adoption of these models in future research. Regardless of their limitations, the functional
utility of musculoskeletal models has been proven in recent years with applications for

understanding muscular dysfunction [260] and muscular impairment [261].

Musculoskeletal models have yielded insights that have developed end-user applications
for strength estimation [262], impairment estimation [263], and even performing a whip-
ping action [264]. Furthermore, they have inspired the development of more sophisticated
processes which fit within the motion analysis pipeline, such as Computed Muscle Con-
trol [265] and Residual Reduction Algorithm [266], and other model-based estimations of
muscle forces [267, 268].

Musculoskeletal models have also been used as a vehicle for discussion in the community for
disputed topics, such as the functional existence of muscle synergies. Advocates for muscle
synergies [269] suggest that the concept, where groups of muscles activate in particular
pre-determined sequences, improves the efficiency of information transfer for the CNS. On
the other hand, dissidents [270] argue that the available evidence is insufficient to establish
a causal relationship. Recently, a synergy-based musculoskeletal model [271] has provided
computational evidence for the integration of muscle synergies to generate target-reaching

movements.
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2.5 Summary

The ever-increasing presence of robotic systems in every facet of human life has been shown
in this review of related works. The exponential growth in recent years is empowered by
new hardware and frameworks to enable safe HRI. Despite significant improvements in
autonomous frameworks, there are still many circumstances where human intervention is
required. In these circumstances, semi-autonomous systems need to have a contextual

understanding of the human user.

Current research trends treat the human user as a set of constrained systems, making as-
sumptions for human behaviour during HRI. These assumptions are easily violated during
pHRI, due to human autonomy, leading to instability or erroneous performance. Further-
more, many frameworks approach this challenge by only focusing on the robotic system
while neglecting human-centric factors. This oversight adversely affects the performance

of these frameworks for pHRI.

While there is a significant body of work studying human-centric factors, they are gen-
erally performed in isolation, with little to no cross-disciplinary applications. This thesis
therefore presents a framework for the integration of cross-disciplinary tools investigating

human-centric factors into pHRI for personalising robotic assessment and response.

To work towards the goal of human-centric semi-autonomous systems, there are three
aspects to scrutinise: (1) examine the assessment of human performance using task-centric
measures, (2) explore enabling methods to identify user intent and integrate human-centric
measures in the robot responses, and (3) enhance the understanding and assessment of

human physiology using cross-disciplinary tools.

A greater understanding of these three perspectives contribute towards human-centric
approaches for personalised robotic assessment and response during pHRI. FEnhancing
the understanding of human influences during pHRI applications will contribute towards
improving the cohesion of human-robot dyads and will present opportunities to integrate

physiological understanding into traditional robotic frameworks in the future.






Chapter 3

A Framework Towards
Personalised Robotic Assessment

and Response

The confluence of vision, arbitration, and actuation in robotics create a complex set of
parameters to navigate. This challenge is exacerbated by the integration of human-centric
perspectives to enable Physical Human Robot Interaction (pHRI). The human body
consists of sophisticated subsystems which interact with each other extensively, leading
to causal relationships which are difficult to untangle and decode. Furthermore, there is

inherent variability shown from one human to the next, further complicating this process.

For non-physical HRI applications, this level of uncertainty is traditionally mitigated by
reducing or removing the external influences that do not affect the robot’s operation to
complete a predetermined task. As a result, most techniques rely on task-centric measures
to assess human performance and adapt the robot response to complete the task. The
disregard for human-centric factors can sow discord between human and robot since the
robot response may lead to sub-optimal circumstances for the human. A common example
would be taking the shortest distance rather than one which factors in human ergonomics,

leading to increased risks of discomfort or injury.

The ideal paradigm combines task-centric and human-centric factors to assess the human
user, and modify the robot response such that the user’s capabilities can be leveraged

while supporting shortfalls during interactions. The first step towards this vision is to
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FIGURE 3.1: An overview of the framework towards personalised robotic assessment and
response. The framework ezamines current task-centric measures and integrates human-
centric measures in probabilistic models to enable learning. Musculoskeletal models and
physiological models then enhance the robotic assessment process and potentially person-

alise the response provided.

identify the necessary perspectives to consider. To this end, a framework was developed

to outline the various perspectives to investigate.

3.1

Description of Proposed Framework

At its core, the framework focuses on collecting human user data to generate predictive

models which reflect an individual’s inherent characteristics and idiosyncrasies. Consider

the ideal paradigm for personalised robotic assessment and response using Physical Human

Robot Interaction (pHRI). The physical interactions between the human user and the

robotic system generate three key aspects that affect the performance and outcomes of

the human robot system:

1. Eramining the choice of model or method to learn from observed data,

2. Enabling the integration of human-centric influences and measurements in conven-

tional assessment and response frameworks, and
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3. Enhancing the assessment and response by looking at complex human-centric models

and their capability to facilitate improved pHRI.

To unveil the effects of these three aspects for personalised robotic assessment and response,
the framework presented in this thesis, shown in Figure 3.1, approaches each direction
individually with a holistic viewpoint on the ideal paradigm. This facilitates a deeper
understanding on current methods which are commonly used to bridge the gap between
human and robot, yielding context-driven insights into pHRI and personalised robotic

assessment and response.

3.2 Real-World Example: Robotic Rehabilitation

As mentioned at the start of the chapter, a disregard of human-centric factors may degrade
the interaction experience. This is particularly relevant for pHRI since cognitive dissonance
between the expected and actual response from the robot can negatively impact the quality

of the interactions.

To explore this, a pilot real-world application of the framework was implemented, focus-
ing on the applicability of the framework during upper limb robotic rehabilitation using
only task-centric measures. The derivative implementation (Figure 3.2) forms the foun-
dation to integrate various agnostic modules with customisation to facilitate personalised
experiences. The vision for the application is to utilise the Data Center to collect and
analyse data from each user, in order to inform the adaptive response generated to provide

targeted response to the user during rehabilitation.

Robotic Control

. . > [
Physiotherapist/ |} ¢ sing Capability —{  Data Center User
Practitioner PSR L
‘ 7 Ly Virtual Environment

FIGURE 3.2: An overview of the implemented system for the gamification of personalised
rehabilitation and assessment.

A fully-immersive game scenario is facilitated by the Virtual Environment during reha-
bilitation, while data is collected using the Sensing Capability of the system. Physical
and haptic feedback is provided to the user through the Robotic Control module, and ad-

ditional components can be easily integrated, providing additional modular channels for
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data collection. The implementation of this pilot real-world application was realised using

an integrated robotic system consisting a Cobot arm, a VR headset, and a depth camera.

FIGURE 3.3: A visual overview of the implemented system used for the gamification of
robotic rehabilitation.

3.2.1 Virtual Reality and Gamification

The implemented system was developed to explore the potential of an integrated approach
towards robotic rehabilitation gamification, drawing inspiration from psychological per-
spectives for rehabilitation and assessment. There is evidence to suggest that gamification
promotes cognitive responses [272] and user engagement [273], while the fully-immersive

VR provides an “embodied recognition” for actions during rehabilitation [274].

To date, there is little work on rehabilitation gamification which utilises fully-immersive
VR environments. Most works exploit semi-immersive VR environments by using exter-
nal sensors, such as cameras or Inertial Measurement Units, to insert patients into the

environment.

The VR environment was designed using the Unity game development platform, and com-
municates with other modules using the open-source ROS (Robot Operating System)
package ROSBridgeLib. The package creates a web-socket that provides agnostic commu-

nication protocol connections, allowing cross-platform communications.
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Development of a fully-immersive scenario with a VR headset requires considerations of
portability, robustness, and application. The Oculus Rift headset was chosen due to its
portability, compatibility with SteamVR, and it requires only a sole portable sensor to

track head movements.

Gamification of the rehabilitation process was completed using 4 different game modes
that can be selected by the therapist. The games provide targets for the patient to shoot
using a virtual laser beam projected from the endpoint of the robotic arm. This requires
the use of several different muscle groups in the limb to hit the targets. Hence, by carefully
positioning the targets, a way of promoting the use of specific muscles can be achieved.
User side effects such as nausea and disorientation [275] were mitigated through the syn-

chronisation of the real UR3 with the virtual UR3.

Game Difficulty:
Easy Nomal Had  Cusiom

Custom Game Settings:
Heallh  en()— 100

Speed el m— 0.1
Target No. e — 100
Game Time e e— 30

(A) (B) ()

FIGURE 3.4: Snapshots of the VR environment: (a) the user interface for therapists to
customise and choose game modes for the patient; (8) the targets spawning for Free-run
Mode; (c) the target for Tracking Mode.

3.2.1.1 Free-run Mode

This game mode spawns a set number of targets where the patient attempts to destroy as
many as possible within 30 seconds, as shown in Figure 3.4(s). The settings for the mode
are set by the therapist through 3 default difficulties. Personalised configurations can also

be set by the therapist, changing target health, speed, number of targets, and game time.

3.2.1.2 Timed Challenge Mode

For more directed muscle movements, this mode spawns single targets in series. When the

target is destroyed, another target is spawned, requiring the patient to collect as many
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points as possible within 30 seconds. This game mode allows therapists to design particular

target placements to induce desired limb motions of the patient.

3.2.1.3 Tracking Mode

To increase patient-therapist engagement, a tracking mode was devised to allow for mir-
roring exercises. To facilitate patients outside of healthcare facilities, this mode allows
therapists to create a target using a depth camera to track their right hand. Points are
given based on which part of the target the virtual laser beam is hitting, emphasising ac-
curacy with increasing point scores near the bullseye. This game mode is timed, allowing
for consistent progress tracking for each patient. This game mode has the potential to
allow real-time interactions by adding a video conferencing plug-in to enable real-time and

remote feedback from therapists.

3.2.1.4 Pre-planned Path Mode

Patients and therapists have limited face-to-face consultation time during rehabilitation
sessions. To maximise the benefits of robotic rehabilitation, the completion of repeated
exercises is necessary. The pre-planned mode allows the therapist to record a pre-planned
path for the patient to follow in their own time, changing configurations such as target
speed and health. This game mode is suited to repeat exercises that patients can perform
in their own time between each therapy session. In all of these game modes, each patient’s
scores are tracked and recorded in the data center, allowing for post-session analysis by

the therapist.

3.2.2 Visual Feedback

Remote allocation of targets for the Tracking Mode and Pre-planned Path Mode are
obtained through depth information from a PrimeSense Carmine RD1.08 camera. The
open-source middle-ware library PrimeSense Natural Interaction Middle ware (NiTE) has
been adapted to track the right hand of the user and communicate with Unity. The
coordinates of the hand are transformed into the VR simulated environment frame of
reference and recorded, forming the path users follow using the UR3. The path formation
can be autonomous (subject to temporal constraints) or conducted manually. Both modes

provide a single path for the target in the game.
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3.2.3 Robotic Control

Robotic control was achieved using a UR3 robotic arm (Universal Robots, Odense, Den-
mark) to provide physical support and haptic feedback for the patient’s upper limb. A
bespoke 3D printed cast was manufactured to comfortably support and seat the patient’s
limb, and the controller for the robot arm was modified to enable assisted gravity com-
pensation. To measure the interaction forces between the manipulator and the patient’s
upper limb, a 6-axis Axia80 force-torque sensor (ATI Industrial Automation, Apex, USA)
was fitted between the limb cast and the robot endpoint.

To enable meaningful interactions between the robotic manipulator and the patient, an
admittance control scheme is employed utilising the force-torque sensor readings to gener-
ate an appropriate motion trajectory for the robotic arm [276]. The desired velocity of the
end effector (&) is calculated using a wrench (Fgg) obtained from the force-torque sensor
measuring the interaction between the patient and robot. An admittance gain matrix

(K,) is used to obtain a suitable task-space velocity command.

i=K, Fgg (3.1)

Typically, the desired endpoint velocity is transformed into corresponding joint velocities
using the inverse of the kinematic Jacobian of the manipulator. However in the presence
of kinematic singularities the inverse of the Jacobian matrix becomes degenerate, result-
ing in erratic and dangerous motions of the robot. This poses a significant problem in
applications such as robotic rehabilitation where human safety is of paramount impor-
tance [34]. To address kinematic singularities, damped least squares is implemented and
a damped Jacobian inverse (J*) is used to obtain the appropriate joint velocity for the

desired task-space motion.

¢=J%q)- &
(3.2)

J=JN I+ X7
For cooperative robotic responses during admittance control, appropriate values for ad-
mittance gain and damping coefficients (A) need to be ascertained. This mitigates any

discord between user intent and the robotic response, leading to congruent interactions
during pHRI.
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3.3 Pilot Study and Results

To determine an empirical set of parameters for admittance control which best suits the
user’s preferences, a blind pilot study was conducted to find the relationship between the

admittance gain matrix (K, ), user prior experience, user ability, and user preference.

Ten healthy adults participated in the study which required them to track a drawn path
with a laser point projecting from the endpoint of the UR3. A candidate set of admittance

gain matrices were chosen to avoid the robot triggering software safety e-stops.

Participants were not provided time to familiarise themselves with the control scheme on
the robotic arm. During the study, each participant was only told, in a neutral manner,
to follow the drawn path. A damping coefficient of A = 0.1 was used for all experiments

based on heuristic testing of the damping effect on exertion to manipulate the robotic arm.

Each participant completed 3 track-following tasks, one for each admittance gain matrix
chosen at random, and were given a short survey shortly after to track their preference
and contextualise their prior experience with Cobots. User ability was computed from the

mean perpendicular error between the tracked path and the participant’s actual path.

During testing, 2 out of the 10 participants’ results were invalidated. This was due to
human and technical errors such as discrepancies in instructions, the erroneous calibration
of robotic arm prior to testing, and corrupted data sets discovered during post-hoc analysis.

Table 3.1 outlines the results of the study.

TABLE 3.1: The best admittance gain matrix coefficient from eligible users in a blind
test. (Number of eligible users = 8)

Admittance Best setting Time Taken (s)
Gain User Least Min | Median | Max
chosen error
0.020 3 2 19.04 | 24.32 | 39.44
0.025 4 2 15.92 | 22.16 | 47.28
0.030 1 4 16.24 | 25.80 | 47.04

All participants took similar times to achieve the same task despite the responsiveness

difference of the control scheme.
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3.3.1 Discussion

The admittance gain matrix dictates the responsiveness of the endpoint motion and we
postulate a higher K, would result in a better experience of the control scheme. However,
the disparity between what users experience and their objective results (Table 3.1) indicate
that participants perceived the best configuration based on some subjective criteria rather

than the results from the study objective.

This supports the observation that while the task was implicitly a planar task (2-Dimensional
due to laser projection), all participants manipulated the robotic arm using all 3 axes to
achieve the task with limited translation of their arm. This highlights the need for human-
centric measures to be integrated in any pHRI frameworks since task-centric measures
potentially lack enough information to capture human user responses which may originate
from subjective criteria. While subjective human responses are difficult to map relative
to their task-centric response, there is an opportunity for physiological measures to bridge
the gap and provide insight into the human user during pHRI. For the pilot real-world
application, this could potentially be realised using adaptive parameter tuning based on

interaction forces and even neurological signals [22].

3.3.2 Limitations for Personalised Assessment

In the pilot application, the Data Center is responsible for relaying relevant information
on the assessment of the user during rehabilitation. Given the abundance of robotic data
available, the significant effort to interpret it may hinder the utility of these robotic systems
[277]. As aresult, there is a need for systematic methods to extract relevant information for
the practitioner. Gaussian Process (GP) is a popular technique used in robotics due to their

flexibility and simplicity. Details for GP models are outlined previously in Section 2.2.4.

One roadblock for the use of GP models are their computational complexity which is not
scalable as more data is available. This constraint is exacerbated for robotic systems since
most data are multi-dimensional. The Bayesian Committee Machine (BCM) [278] is an
ensemble method which relieves the computational pressure by splitting the data set into
several smaller data sets. The formulation of BCM and the experiment to validate its

performance has been published in [14] and is briefly outlined in Appendix B.
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Another challenge for relaying relevant information to the practitioner is the contextuali-
sation of these results. For probabilistic models, such as GPs, the flexibility creates chal-
lenges when interpreting the resultant probabilities. The contextualisation of the model
for robotic rehabilitation highlights the double-edged nature of GPs, as seen in a path-
following task where the model is required to distinguish between an outlier path or some

systematic shift in the user’s capability.

Consider the outputs of a GP classifier where the recorded path is inputted into the
model. A probability between 0 and 1, a representation of a “fitness” score, is produced
when observing a path. This posterior probability relies on the training data used to
build the model. As a result, the single probability score alone does not relay enough
information to enable the practitioner to make appropriate decisions. A complementary
measure, the Longest Warping Subsequence (LWSS) score, was developed to facilitate this
distinction between a path that is correct, modified, or completely novel. The formulation

and validation experiment for the LWSS score is outlined and presented in Appendix C.

3.4 Summary

This chapter has introduced a framework which focuses on new challenges faced when
integrating human factors into personalised robotic assessment and response. The frame-
work tackles three aspects of personalised robotic assessment and response by examining
current task-centric models, enabling the integration of human-centric measures, and in-
vestigating ways to enhance the personalisation through physiological and musculoskeletal
models. The details of each aspect are covered in the following two chapters, including a

preliminary study in each chapter to accompany the main work presented.

A pilot real-world application for the framework was demonstrated by developing a robotic
system for robotic rehabilitation. The application exploits sensor-modified gamification
and haptic feedback using a VR environment and a robotic arm. The implementation
highlights the applicability of the framework in various fields where the integration of
human-centric influences may benefit the human user and improve outcomes for person-
alised robotic assessment and response. Additional investigations into examining road-

blocks for Gaussian Process models can be found in Appendix B-C.



Chapter 4

Intent Estimation during Physical

Human Robot Interaction

In the framework presented in Chapter 3, it was shown that enabling a personalised robotic
assessment and response requires an understanding of the human user. The results from
the pilot real-world application highlighted the need to align robotic response generation
with the user’s idea of the task during shared interactions. During these interactions, the

integration of human-centric measures can help determine the user’s intent.

One potential area where noise may be introduced, for a coupled human-robot dyad where
the user is physically connected to the robot, is at the point of contact where the dynamics
can be fluid. While the intent is for the robot to reflect the user’s intended actions, inertial
influences exerted upon the user may negatively affect the interaction. As a result, the
effects from the inertial influences exerted by the robot to the user are studied on a

prominent model, Fitts’ law.

In Appendices B and C, the limitations of task-centric probabilistic models was highlighted
when there is an absence of contextual information on the human user during pHRI.
Following on the findings from the preliminary study, the focus for enabling personalised
robotic responses aims to overcome this limitation by integrating relevant human-centric

measures during coupled interactions.

This chapter presents a preliminary study on the inertial influence of robots for Fitts’ law
during pHRI, and then introduces an extension to a HRI framework, Interaction Primi-

tives. Physical Human Robot Interaction Primitives (pHRIP) integrates interaction forces

53
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between the human and robot during continuous interactions to perform probabilistic

inference of user intent and to generate the appropriate robot response.

4.1 Preliminary Study: Inertial Influence on Fitts’ Law for

Intent Estimation

As emphasised in the results from the previous chapter, there were some observed influence
of the Cobot’s inertia during pHRI. To investigate this effect induced by the human-device
interface, a preliminary study was conducted to determine whether coupled interactions
are affected by this phenomenon. If there is indeed a significant effect induced from the
human-device interface, the integration of human-centric measures during personalised
robotic assessment and response would be further complicated as this confounding effect

will need to be isolated from the human-centric measures.

In a human-human dyad, understanding and conveying information between the two agents
are achieved through explicit and implicit interactions, such as verbal speech, body lan-
guage, and haptic feedback. However, in human-robot dyads, a protocol is needed to be
programmed for the robot to understand and discern human action and intent. While
explicit programming of expected human actions and intent is possible, the intractable set
of feasible actions that a human can perform makes this process functionally impossible.
Thus, researchers have utilised elementary or commonly used movements as a benchmark

when investigating functional relationships in the human body.

Fitts’ law [98] is a seminal information-theoretic model which was developed to predict
human movement accuracy and speed based on a free-movement target-directed reaching
task. Its simplicity has lead to its use such as constraining EMG classifications [279]
and developing task difficulty measures [280]. The constraints for target-directed reaching
tasks, as well as the model’s simplicity, makes it a prime candidate to explore the effects

of the Cobot’s inertial influence during physically coupled interactions.

Furthermore, the use of target-directed reaching tasks has been empirically shown to

present similar characteristics from the human user [281], with spatio-temporal analysis
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indicating humans “generate roughly straight hand trajectories with single-peaked, bell-

shaped speed profiles” [248]. The model is defined as:

2D
MT =a+b-log, <W> ,where (4.1)

I, = log, <2m€) (4.2)

The model suggests that for each human, there is a set of coefficients, a and b, which
would accurately predict a user’s movement time based on the difficulty of the target as
defined by the Index of Difficulty (I;). Readers are encouraged to review Section 2.2.1 for

an overview of Fitts’ law and its applications.

While there have been many applications of Fitts’ law, most rely on mass-less interac-
tions, such as a small stylus or the mouse pointer. A comparison of different interfaces
suggest that familiarity with the interaction device influences the fit of Fitts’ law [282].
Despite a similar investigation into Fitts’ law for a hammering task [103], the inclusion of
a metronome induces auditory stimulus which influences the results. This confluence of

stimuli is outside the scope of this thesis and is not explored further.

4.1.1 Methodology

Following Fitts’ law, the effect of the human-device interface is investigated by observ-
ing the fit of a human participant’s movement times for a variety of targets with various
index of difficulties. Statistical analysis is conducted on the fit of the coefficients (a and
b in Eqn. 4.1) when correlating a target index of difficulty (I;) to the respective move-
ment time (MT'). The setup for the study involves the participant performing upper limb
target-directed movements whilst coupled to a robotic manipulator. This coupled arrange-
ment can be seen in robotic devices for rehabilitation [283, 284] and Assistance-As-Needed

systems for industrial applications [285].

Participants interacted with a 7-DoF robotic manipulator (HAHN Rethink Robotics,
Rheinboéllen, Germany) as shown in Figure 4.1. A 6-axis force-torque sensor (ATI In-
dustrial Automation, Apex, NC) was affixed between a bespoke handle and the robot
endpoint. The robot arm was programmed to be in a Cartesian impedance control mode
native to Rethink Robotics’ Intera SDK. This constrained movements to the X-Y plane

parallel to the robot base at a height which was comfortable for seated participants.
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Screen interface

Human-robot interface handle

Sawyer 7DoF robot
Seated participant
Fixed base

FIGURE 4.1: The setup for the experiments investigating inertial influences on Fitts’ law
for target-directed reaching movements.

Three different target widths (18.75mm, 37.5mm, and 56.25mm) and distances (120mm,
180mm, and 240mm) from the starting location of the endpoint were chosen for this exper-
iment. The targets used for the experiments were arranged around the starting position
of the participant’s hand. Additionally, impossible-to-reach locations were excluded, thus
removing targets that are occupied by the participants’ body as shown in Figure 4.2. The
participants did not have any prior knowledge of the possible target locations, and these

locations were never visually displayed to participants until the experiment trials.

4.1.2 Human Participation Study

Ten healthy adults (9 males and 1 female) provided informed consent to participate in a
target-reaching experiment approved by an ethics committee (UTS, Australia, approval
number ETH18-3029). All participants were right-handed, and presented no known neu-

romuscular or sensory disorders.

Participants were seated and instructed to keep their back against the chair so the affixed

handle in its starting location is 0.55m away from their torso. Visual feedback for the
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Active target
Inactive target
Endpoint position
Starting position

FIGURE 4.2: The array of targets that participants were required to reach using the

handle affixed to the endpoint. The two planes, grey and black, represent what the

participants are shown during the experiments, and the array of targets that is never

revealed. The current position of the endpoint is indicated by a filled white circle, while
the centre of the visual display is represented by the outline of the red circle.

experiment was communicated via a monitor screen in front of the participant, which

displayed visual cues during the experiment.

Participants were instructed to move an on-screen marker, indicating the position of their
hand, to the centre of a target as accurately and as quickly as possible. The participants
were also instructed to move the handle towards the target while maintaining trunk posture
to minimise torso movement. Specifically, they were asked to move to the target in a single
motion, and to refrain from performing postural corrective movements to improve their

endpoint accuracy.

Prior to the experiment, a trial run was conducted so participants could familiarise them-
selves with the setup and experimental procedure. This is to help remove bias due to
unfamiliarity with the experiment conditions. Each participant was asked to perform 28
trials in the experiment according to a predetermined sequence, which was only displayed

one-step-ahead and never displayed to the participant in its entirety.
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TABLE 4.1: The participants’ Fitts’ law coefficients from the experiment.

Participant #
FLC 1 2 3 4 5 6 7 8 9 10
a 0.75 096 141 026 092 092 1.09 1.09 0.79 0.75
b 0.17 0.02 019 055 0.15 0.18 0.07 0.07r 0.09 0.06

4.1.3 Results

Each target directed movement performed by the subjects was analysed to obtain the
coefficients of Fitts’ law. Table 4.1 shows the participants’ Fitts’ law coefficients (FLC)

(Equation 2.1), calculated using linear least squares.

Although the Fitts’ law model is personalised, an aggregation of the measured mean
movement time and the associated I; for all participants are shown in Figure 4.3. The
95% confidence interval for each participant’s movement time, and the predicted movement
times illustrate the relationship between task difficulty and movement time with a R? value
of 0.853. Furthermore, the p-values in Table 4.2 demonstrate that the presence of inertia

during interactions are statistically insignificant in this setup.

95% Confidence Interval: Movement Time vs. Index of Difficulty

1.8 -
16 ?
1.4 - e %

12+ ¢

Movement Time (s)

2.09 2.68 3.093.26 3.68 4.26 4.68
Index of Difficulty (bits)

FIGURE 4.3: The 95% confidence interval produced from the aggregation of mean move-

ment times from each participant. The circle markers, error bars, and red asterisks

indicate the sample mean movement time, bounds for the 95% confidence interval, and
movement times, respectively, as predicted by Fitts’ law.
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TABLE 4.2: The p-values for each index of difficulty calculated from the aggregation of
mean movement times from each participant and the predicted movement time given by
Fitts’ law.

p-values

I; 2.09 2.68 3.09 3.26 3.68 4.26 4.68
p-value 0.50 0.72 0.44 0.48 0.29 0.72 0.46

The targets for the trials were placed at one of three distances away from the starting
position, as indicated by the 3 colours present in Figure 4.4. The shaded regions indicate
the variation of velocity profiles between participants, supporting the notion of personalised
parameters for Fitts’ law. An aggregated endpoint velocity performed by participants was
used to demonstrate the similarities that exist during the initial stage of the trajectories,
as well as to highlight the increase in peak velocity when the targets were located further

away from the starting point.
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FIGURE 4.4: The average velocity profile mapping between the three target distances
of the endpoint from the starting point. The standard deviation are represented by the
shaded region.

The average velocity profile for the samples shown in Figure 4.5 demonstrates the single
peak, bell-curved velocity profile nature of target-directed reaching movements. The two
figures possess the same [;, where target 1 is the first trial that uses that specified Iy,

and target 25 is the last trial to use the I;. For the first target, the endpoint velocities
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are slower to peak and converge to the 0.1m/s threshold suggesting task unfamiliarity.
Comparing against the velocity profile for the 25" target, there is an indication that there

is a learning component exhibited by participants although the effect is minimal.

Velocity Profile: Target 1 and Target 25

Endpoint Velocity (m/s)

0 0.5 1 1.5 2 2.5
Movement Time (s)

FIGURE 4.5: A comparison of the average velocity profile between an earlier trial and a
later trial. The standard deviation are represented by the shaded region.

To analyse the trajectories performed during the reaching motion, a subset of the targets
was chosen. The targets selected were those located directly in front of, and behind the
designated starting position of the trial. Although the most direct path to the target
was a straight line trajectory, all participants exhibited curved paths toward the target.
Furthermore, the curved paths were not bound to either side of the x axis as shown in
Figure 4.6. The curved Cartesian trajectories are potentially an effect of the mechanical

configuration of the manipulator predisposing its motion to either side of the plane.

4.1.4 Discussion

One effect of the interface can be characterised by the noisy velocity profile. This feature
can be attributed to the SEAs in the robotic manipulator. The elasticity from the springs
within each joint can create potential parasitic dynamics when participants interact with
the device. This contrasts to traditional Fitts’ law tests which have extensively explored
human computer interactions which rely on interaction interfaces without significant iner-

tia and internal dynamics.
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Figure 4.6 shows that the configuration of the manipulator produces varying inertia at the
endpoint, thus affecting its susceptibility to move to either side of the x-axis. However, it
can be seen that participants correct this motion in an attempt to finish the motion within
the specified target; this correction adds another aspect that participants must consider

during their movements.

Another aspect which is not explored is the visual feedback type provided to the par-
ticipants. In contrast to the original Fitts’ law study, the experiment conducted utilised
remote visual feedback, requiring participants to rely on their hand-eye coordination to re-
motely estimate the location of the endpoint and target in Cartesian space. Furthermore,
it is worthwhile noting that the original design of experiments for Fitts’ law subjected par-
ticipants to “rapid and uniform responses that have been highly overlearned” [98] which

does not match the pHRI paradigm.

This preliminary study indicates that the inertial influence from the coupled interactions
with a Cobot is not statistically significant when applying human-centric measures into
predictive frameworks for human movement. This suggests that, for a coupled human-

robot dyad, the integration of human-centric measures can be performed without any

Trajectories: Target 4 and Target 28
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FIGURE 4.6: Variations in participant trajectories as they reach two different targets.

Both targets are a pure translation along the y-axis, in front (left) of and behind (right)

the starting position of [0,0]. The cyan square represents the size of the target for each
respective trial.
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apparent confounding influence. However, we note that although this study applies to

Fitts’ law, it may not directly translate to more complex models.

4.2 Leveraging Probabilistic Distributions for pHRI

Given that the preliminary study has shown the negligible effect of inertial influence on
conventional predictive frameworks, the focus now shifts towards the integration of human-

centric measures in conventional probabilistic frameworks.

Enabling personalised robot responses require the robot partner to learn, generalise, and
adapt to different tasks while taking into account the eccentricities of the human partner.
This is particularly important in pHRI applications with coupled human-robot dyads since
the robot is commonly used to augment the capability of human operators with parametric
frameworks. Utilising probabilistic operators in conventional frameworks can generalise
each user’s idiosyncrasies as well as adapt to different tasks as opposed to individual models

for each task.

Intuitively, humans exert forces to indicate their intention during physical interactions in
everyday situations such as pushing an object along a table or carrying an object. Thus,
employing these forces can enable an estimate of the user’s intent. For a coupled human-
robot dyad, data from the points of contacts and interaction forces may contribute towards

the understanding of the user’s intent and improve the efficacy of the robot response.

Prior works for HRI, such as Interaction Primitives [186], have utilised observations of
the human hand’s pose to infer intent and generate an appropriate robotic trajectory
in response. However, in coupled human-robot dyads, the position of the hand and the
robot endpoint are identical, precluding the use of these methods which are based on task-
centric measures. Thus, integrating the forces associated with the pHRI is a necessity to
improve these conventional frameworks. Additionally, in applications where the robotic
trajectories are very similar, the inclusion of interaction forces enables better inferences of
the user’s intent. It can also be hypothesised that the absence of robotic trajectories in

these situations can lower the uncertainty during user intent inference.
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4.3 Interaction Primitives for HRI

For HRI tasks with non-physical interactions, Interaction Primitives [186] use observa-
tions of demonstrations to: (1) build a parameter distribution, p(€); and (2) use partial
observations of phase-aligned trajectories to obtain the predictive distribution over the

parameters for Dynamic Movement Primitives.

IPs model a distribution, p(@), over the parameters of a DMP, w, along with the goal
of the trajectory, g. Given multiple demonstrations, an estimated Gaussian distribution
over the parameters, 0, is generated. The predictive distribution is then obtained by using
partial observations, 7, of a trajectory to obtain the conditional distribution, p(8|7,), by

applying Bayes’ rule.

The likelihood, p(7,|0), is obtained by computing the forcing function of the observed tra-
jectory, 7., and the weighting matrix, {2. The conditional distribution is then obtained by
applying Gaussian conditioning on the joint distribution, p(7,, @), and the IPs parameters

generate the robot response using DMP.

IPs couple multi-DoF systems by extending the parameter set, @, to incorporate the
weights and goals for each DoF, enabling multi-agent interactions. It is noted that IPs
require the observations of the partial trajectories of either agent to predict the most likely

set of parameters.

For de-coupled HRI systems, this spatial and temporal correlation allows for seamless
interactions. However, in a coupled human-robot system, the endpoint of the robot and
human are identical since they are located at the point of contact. A naive approach to

integrate the interaction forces in IPs is to apply DMP to the observed forces.

However, since DMPs are acceleration-based dynamical systems, the resultant parameters
from interaction forces would be very noisy. Furthermore, the need for a goal in IPs makes
the use of interaction forces unintuitive. Thus, this limits the application of IPs to physical

interactions during pHRI.

4.4 Physical Human Robot Interaction Primitives

Physical Human Robot Interaction Primitives (pHRIP) aims to predict user intent by us-
ing the interaction forces available in coupled human-robot dyads during pHRI. pHRIP
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extends upon IPs to: (1) integrate observed interaction forces during demonstrations into
the parameter distribution, p(@); and (2) use partial observations of phase-aligned interac-
tions, x, to obtain the predictive distribution over the pHRIP parameter set, p(8|x), and

generate a robot response matching the user’s intent.

4.4.1 Building the pHRIP Parameter Distribution

As reviewed in Section 2.3.3, a DMP encodes a single trajectory using a set of weights,
w, represented by M Gaussian basis functions equally spaced across the phase of the
trajectory. In each trajectory, the observed interaction forces (T samples) are re-sampled
into z samples, giving a (z x 1) vector, F. This phase-aligns the interaction forces to the

trajectory.

Thus, for a n-DoF robotic system with d-DoF of observed interaction forces, the pHRIP

parameters for a single trajectory is a ((nM + dz) x 1) vector:

=T, . E ot w0 (4.3)

Given K demonstrated trajectories, the distribution over the pHRIP parameters, p(0),

follows as:

K .
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4.4.2 Phase Estimation for Partial Observations

Once the pHRIP distribution is built, partial observations are then used to predict the
user’s intent. The observed interaction forces, F™*, are re-sampled to the same frequency

as the robotic system through cubic spline interpolation.

To understand the context of the partial observations, the current phase of the interaction
is needed. This is performed using a multi-dimensional DTW algorithm [286], comparing

a (r x n) reference trajectory, R, against the (v x n) observed sequence, v.
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During the DTW process, the matrix used to compare R and v provides a (v X r) warping
map, W, indicating the distance from one observation from R to another in v. Using this
warping map, a (v x 1) index vector, p, is obtained, which outlines the phase alignment
for each observation in the observed sub-sequence, v:

col(min(vq, R)) col(min(vy, R)) 1%

= 4.7
1Y r ) ) r ) ( )

where col(.) is a function to obtain the column number of the vector/matrix.

4.4.3 pHRIP Parameter Set Inference

To infer a set of pHRIP parameters which represents the user’s intent, the predictive
distribution is obtained using partial observations, x, between the user and the robot

during pHRI. Applying Bayes’ rule, we obtain: p(8|x) « p(x|@)p(0).

The pHRIP distribution consists of the interaction forces and robotic trajectory encoded
using a (dz x 1) vector representing the phase alignment of the interaction forces, and the
(nM x 1) Gaussian basis function weights from DMPs. Thus, the likelihood distribution,

p(x|0), is modelled using a Gaussian distribution:
p(x|6) ~ N (x|Q0, 15?), (4.8)

where o2 is the observation variance, and 2 is a (v(d +n) x (dz +nM)) weight matrix for

the observations:

o
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The weight matrix for each DoF of the phase-aligned interaction forces, A, is a (v X z)
matrix, starting as a zero matrix and filled based on the index vector p. For each row of

A, corresponding with each sample v of v, the value of the column numbered closest to
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the integer-rounded zp, is filled:

1 fory=zp,

Aoy = ,where
0 for z
fory # zps (4.10)
z e (1,2,...,v),
ye(1,2,...,2).

Given the likelihood, p(x|0), is modelled with the robotic trajectory, the unavailable tra-

jectories are set to 0, giving x = [F;7,... ,FjT,O(lxm)}T where F* are the interaction
forces observed. The joint distribution is then defined as:

p(x 0) z/\/([:] ' lzo ) (4.11)
(7]

where A = 021 + Q30T and the mean and variance of conditional distribution, p(8|x)

A 507
0% Yo

)

is derived as

Koy = Heé + EGQTA_I(X — ng), (4 12)
29|X =9 — EQQTAflﬁzg.

A new set of pHRIP parameters, 6, is then sampled from this conditional distribution.

The robot then generates a new trajectory using the subset of DMP parameters and the

estimated phase of the final observation, p,, continuing on from its last position.

4.5 Methodology

A coupled human-robot dyad is used to validate pHRIP’s ability to generate the correct,
personalised robotic response. The robotic system in the coupled dyad, shown in Fig-
ure 4.7, consists of a 7-DoF robotic manipulator (HAHN Rethink Robotics, Rheinbéllen,
Germany) with a 6-axis force-torque sensor (ATI Industrial Automation, Apex, USA) af-
fixed between the endpoint and a bespoke handle. The robot state is recorded at 100Hz,

while wrench data from the force-torque sensor is recorded at 125Hz.

The manipulator utilises Rethink Robotics’ proprietary software, Intera SDK, and an end-

point velocity threshold of 2.5¢ms ™! is used to determine the start and end of a trajectory.
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Target 3
Surfaces

FIGURE 4.7: The experimental setup with a Sawyer robot arm, an ATI Axia80 force-
torque (F/T) sensor, and a bespoke handle.

In all trials, generated trajectories were sent to the robot’s native motion controller inter-
face to be performed in an open-loop fashion. While it is possible to integrate low-level
robotic feedback controllers with pHRIP, the focus is on the integration of human-centric

measures for high-level trajectory generation reflecting the user’s intention.

For the user-directed reaching and the Cartesian experiments, the process for collecting

training, reference, and testing data are outlined in Figure 4.8.

Training
Trajectories Done?
TRrZi‘;‘?:; Yes = Build pHRIP
Trai Distribution
rajectory N
¢ © Record
Reference
No Trajectory
Yes Infer pHRIP .I?ee;[?r:d
Parameters Trajectc?ry

Experiment Done?

FIGURE 4.8: A flowchart of the experimental procedure to obtain the different data sets.
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4.6 User-Directed Reaching Experiment

An experiment based on user-directed reaching movements was conducted to validate
pHRIP across different users. Four participants (3 male and 1 female) took part in the
experiment. During user interactions, the robotic arm was set up, using the native SDK,

to enter an orientation-locked zero-g mode.

Participants were instructed to move the handle from a defined starting position to one of
two target surfaces (Figure 4.7) in a “natural manner”. Since DTW is used to phase-align
the observed interaction forces, a reference trajectory is recorded for each trial to facilitate
this and obtain the end pose. No other part of the reference trajectory is utilised once the
phase estimate of the interaction forces is obtained. Each trial consists of a reference and

a test trajectory, with participants instructed to perform both trajectories “consistently”.

A total of 90 training demonstrations were recorded (45 for each target surface) using
kinesthetic teaching via the bespoke handle for participants. During the test trajectory,
participants were instructed to release the handle after 0.5-1.0 seconds while the new

trajectory is generated and performed by the robot arm.

Partial observations for IPs consist of Cartesian trajectory, while pHRIP utilise Cartesian
interaction forces only. Partial observations of both interaction forces and trajectory were
used to perform further comparisons. Prior to the start of the experiment, participants
were given a 5-minute window to interact with the robotic manipulator to familiarise

themselves with the setup.

Reference Trajectories iP Trajectories
’fReference Traj.‘ —IP Traj.
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FIGURE 4.9: (a) The reference trajectories from participants in the user-directed reaching
experiment. () Trajectories generated from IPs using partial observations of trajectory.
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4.6.1 Results

A total of 28 trials were conducted in the experiment. For each trial, participants demon-
strated a reference trajectory as shown in Figure 4.9(a). Partial observations from the test
trajectory were then used to generate new trajectories for the robot. Trajectories were
generated post-hoc using IPs and pHRIP. Partial observations of trajectories were used for
IPs and the resultant outputs are shown in Figure 4.9(s). For pHRIP, partial observations

of interaction forces were used with the resultant outputs shown in Figure 4.10(4).
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FIGURE 4.10: Based on observing partial interaction forces, the resultant trajectories
generated from: (a) pHRIP; and (8) pHRIP-q, a variant using joint states.

Visual inspection of the trajectories between IPs and pHRIP indicates the advantage of
pHRIP over IPs despite no information on the robot trajectory. Using only interaction
forces, the trajectories generated from pHRIP followed the shape of those in the reference
trajectories. The performance of pHRIP is evident in the DTW scores in Table 4.3, indi-
cating that the shape of the generated trajectories are very close to those of the reference

trajectories.

The trajectories generated by IPs are quite ill-formed, with completely erroneous trajectory
shapes generated, despite empirical evidence of its efficacy [186]. We posit the variance

in the training demonstrations towards the end of the trajectory contributed towards the

TABLE 4.3: A comparison of the mean RMSE and DTW distance between the reference
trajectory and trajectories generated from IP and pHRIP.

P pHRIP
(Trajectory Only) (Force Only) (Force & Trajectory)
" o2 0 o2 u o2
RMSE(m) 0.2657 0.0031 0.1597 0.0030 0.1737 0.0024
DTW 4.2664 0.9732 1.6874 0.3056 1.8682 0.3800
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_Training Weights Variance

RBF Index

FIGURE 4.11: The variance in the training weights across the three Cartesian axis. Note
the large variances towards the end of the trajectory contributing to conflicting IP con-
ditional weights.

sensitivity of the distribution. Figure 4.11 highlights the large variances of the Gaussian

basis function weights in all three axis at different sections along the trajectory.

The effect of this variance can be seen in the generated conditional distribution shown in
Figure 4.12, noting that weights which are completely erroneous occur during the sections
of trajectories with high variance. In contrast, the interaction forces overcome this sen-

sitivity, generating a better conditional distribution as highlighted in Figure 4.13 despite

IP Conditional Weights
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—IP Cond. Weights

300

200 ¢

—_
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o
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RBF Index

F1GURE 4.12: The conditional weights obtained given partial observations of the robot
trajectory (which is identical to the hand pose).
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FIGURE 4.13: The conditional weights obtained given partial observations of the inter-
action forces at the endpoint of the robot.

the high variance. Therefore, looking at the results for pHRIP in Table 4.3, the use of

force and trajectory observations account for the degradation in performance.

4.6.2 Cartesian vs. Joint Trajectories

While pHRIP has been shown to generate trajectories that reflect the user’s intention in
Cartesian space, for most robotic arm control systems, action policies generally operate in
joint space. Further analysis was conducted using the data from the user-directed reaching
experiment to investigate the application of pHRIP in joint state space (pHRIP-q). The
joint states of the robot and the Cartesian interaction forces at the endpoint were used to

build the weight distribution.

When assessing the performance of the pHRIP-q variant, the robot response (joint states)
are re-mapped to Cartesian space (endpoint) using forward kinematics. Comparisons and

analysis of the pHRIP-q are all based off the robot endpoint rather than the joint states.
TABLE 4.4: A comparison of the mean RMSE and DTW distance between the reference
trajectory and trajectories generated from pHRIP-q.

(Force Only) (Force & Trajectory)

" o2 " o2
RMSE (m) 0.119123 0.004877 0.119118 0.004874
DTW 1.627105 0.572789 1.627127 0.572535
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For both the original human target reaching experiment and this analysis, identical param-
eters were used with 20 basis functions, K = 80N/m, D = 20Ns/m, 7 = 0.35, h = 0.0008,
and o = 1. Forward kinematics was performed for the pHRIP-q trajectories to obtain
their Cartesian trajectories, which showed similar trajectory shapes to the reference tra-
jectories (see Figure 4.10(s)). This similarity is supported by the mean Root Mean Square
Error (RMSE) and DTW distances as tabulated in Table 4.4.

Initial observations of the RMSE and DTW results suggest that pHRIP-q is the better
variant. However, mapping the vectors showing the difference between the reference and
resultant endpoints tell a different story. Figure 4.14 demonstrates the resultant ellipses
using a fitting algorithm [287] which suggest that the appropriate pHRIP variant will
depend on the priority of the task. For example, pick and place operations of heavy objects
will prioritise the precise endpoint of the trajectory, making pHRIP more appropriate.
Conversely, if the task is to conform to the shape of a trajectory performed by an expert,
as is commonly seen during physical rehabilitation, it may be more suitable to use the

joint variant pHRIP-q.

Endpoint Error
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0.1 - + pHRlP-q
— IP Fit +
E | PHRIPFit ¢ .
2 pHRIP-q Fit y e
® B P . i
N 01 . -

-0.2 v A

++
0.6 =
-0.4-0 2\;‘\\\\ /4'7//,,,_<—/
%y, o B o4
X axis (m) Y axis (m)

FIGURE 4.14: A visualisation of the discrepancy between the endpoint in the reference
trajectories and those generated from IP, pHRIP, and pHRIP-q.

One other factor to consider when analysing the results is the range of the joint trajectories
when performing the task in the experiment. In Cartesian space, the endpoint trajectory
is already relatively small relative to the total workspace of the robotic arm. This is
exacerbated in joint state space since the endpoint orientation was constrained, leading to
an over actuated system (3-DoF endpoint movement with 7 joints). Since the range of the
movement affects the pHRIP weights, the use of joint state space creates homogeneous

weight parameters. This homogeneity results in a high similarity score for the RMSE and
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Phase vs. DTW Distance
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FI1GURE 4.15: The relationship between observation lengths and DTW distances when
generating trajectories using IPs, pHRIP, and pHRIP-q.

DTW distances when obtaining the conditional set of pHRIP parameters. If the robot
was a lower DoF system, the decrease in redundant joints when moving in Cartesian space

may mitigate this effect.

While the results for pHRIP show that appropriate consideration is required when choos-
ing which variant to use, they show promising indications for the integration of haptic
information during motor skill learning in pHRI applications. One potential application
is in training and development systems, where expert demonstrations may be collected
remotely via a haptic interface, providing intuitive motor skill learning remotely. Learning
from the interaction forces on the haptic interface is transferable across various platforms

provided kinesthetic teaching of the robot response is performed.

4.6.3 Influence of Observation Length

The influence of the observation length between trajectories generated using IPs and
pHRIP can be seen in Figure 4.15, indicating the DTW distances for trajectories gen-
erated using pHRIP are much lower than those of IPs. As observation lengths increase,
errors from the generated trajectories would approach zero, giving diminishing returns
for pHRIP and IPs. While a longer observation can improve the performance of HRI
applications using movement primitives, this is undesirable in pHRI applications since

the goal of the robot is to contribute meaningfully as soon as possible. Trajectories from
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pHRIP consistently produce better trajectories when compared against IPs, reinforcing

our hypothesis that using interaction forces during pHRI can help reduce uncertainty.

It is noted that the exponential fit used to model the DTW distance and the observation
length phase produces a profile for pHRIP-q which is vastly different to pHRIP. As
mentioned previously, it may be possible that this particular task is well-suited for the
joint state variant for pHRIP. One other possible explanation is that the model is over-
fitted, with not enough samples to accurately determine the correct profile for pHRIP-q.
However, the results from pHRIP-q still improve upon IPs, supporting the motivation for
pHRIP.

FIGURE 4.16: A top-down view of the planar validation setup.

4.7 Planar Target-Reaching Task

A planar target-reaching task was conducted to validate pHRIP, comparing against IPs,
with the setup shown in Figure 4.16. An object was placed in between the start and the
end of the trajectory, creating two distinct paths for the robot to reach the end position.
A total of 30 training trajectories and 20 testing trajectories were recorded with an even
split for each path, while the robotic arm is set up to enter an orientation-locked zero-g

mode constrained to the XY plane.
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RMSE vs. Observation Length
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FIGURE 4.17: A modified box plot for each observation length highlights the RMSE

spread between IPs and pHRIP for the 20 testing trajectories across various observation

lengths. Comparing between two methods, the advantage of pHRIP over IP stands out

when there are less observations since the interaction forces provide additional information
on user intent.

The analysis and trajectory generation for the planar obstacle avoidance experiment were
conducted post-hoc. Thus, all recorded trajectories and interaction forces were re-sampled
to 400 and 500 samples respectively (matching the 100Hz and 125Hz data collection fre-
quency). A comparison between IPs and pHRIP is performed using partial observations

of: (a) trajectory only (IPs); and (b) interaction force only (pHRIP).

4.7.1 Results

For the 20 test trials conducted in the planar validation, the RMSE between the generated
trajectories and their respective reference trajectories was calculated. The pHRIP and IPs
tests were conducted post-hoc against observation lengths (as a % of the total trajectory)
varying from 10% to 50%. Results shown in Figure 4.17 highlight the ability for pHRIP
to address ambiguities in the trajectories, utilising only interaction forces to generate the
intended path. The critical advantage of pHRIP over IPs is shown when there are fewer

observations, such as those when only 10% of the trajectory is observed.

While the results may indicate that the advantage of pHRIP diminishes as more observa-
tions are obtained, the generated trajectories highlight an aspect of motor skill learning
which is not inherited through IPs. The task to avoid the static obstacle is redundant,
meaning there are multiple ways to complete the task. During the recording of training

trajectories, Figure 4.18(a) shows that two distinct paths were taught kinesthetically by
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FIGURE 4.18: The trajectories from the planar target-reaching task. (a) displays the
training trajectories; and (8) shows the trajectories generated by pHRIP and IP when
30% of the trajectory is observed.

the demonstrator. From Figure 4.18(s), trajectories generated by IPs (in red) all collide
with the obstacle severely, while the same only occur to 25% of trajectories generated by
pHRIP. Observations of the pHRIP trajectories also show decreased collision severity,
with only 2 trajectories out of 20 going through the core of the obstacle.

This result highlights the limitation of IPs in multi-modal tasks which is overcome by using
interaction forces for pHRIP. Building the IPs distribution on only trajectories create
an “averaging” effect when generating the robot response. By adding additional DoF
from interaction forces, pHRIP requires less observations to achieve the correct trajectory,
reinforcing our belief that integrating interaction artefacts into conventional frameworks

improve motor skill learning for pHRI systems.

4.8 Cartesian Target-Reaching Application

Further experiments were conducted to reinforce the applicability of pHRIP to estimate
user intention during pHRI. The user is tasked with moving the endpoint from the same
starting position to various end regions. In total, 4 configurations were set up, seen
in Figure 4.19, using a number of blocks which simulate changing task parameters and
environments, as is common in pHRI applications. For each configuration, 10 training
trajectories were recorded and are shown in Figure 4.20. The pHRIP parameters from all

40 trajectories are built into a single distribution, p(6).
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(c) Setup 3 (d) Setup 4

FIGURE 4.19: The four workspace configurations for the target-reaching application.

To validate pHRIP in this Cartesian target-reaching task, a total of 12 trials were con-
ducted in Cartesian space. Similar to the user-directed target reaching task, the user
releases the handle after 0.5-1.0s, allowing the robot to perform the trajectory generated
by pHRIP. Successful trials are defined as generated trajectories that reach their intended
end zone and follow the shape of the reference trajectory. For all trials, identical sets of
parameters were used with 30 basis functions, K = 80N/m, D = 20Ns/m, h = 0.0008,
and a = 0.8.

One issue that arises in DMP-based frameworks, when the number of samples for each
trajectory is different, is the area of effect for the Radial Basis Function (RBF) activation.
A static value of 7 will affect the quality of the reproduced trajectory based on the sample
length. An exponential model is used to determine the relationship between the trajectory
length (number of samples ) and a 7 value. Assuming that the other DMP parameters are
constant, this ensures that the weighted sum of activation across all samples is above 0.5.

For all trials in the Cartesian obstacle avoidance experiment, the model and its coefficients
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FIGURE 4.20: The training trajectories for the Cartesian target-reaching task.

used are
T=a-exp(b*x7y)+c-exp(dx*~)

a =222 b= —0.01292 (4.13)
c = 0.4684 d = —0.001595

For each of the 12 trials, an estimate of 7 parameter is performed using the reference
trajectory length.
TABLE 4.5: Measures of similarity between the reference trajectory and the trajectory

generated by pHRIP. A low score indicates that the generated trajectory matches the
user’s intention.

DTW Distance (unitless) RMSE (m)
u o” M
Successful 2.3482 0.2704 0.1697
Unsuccessful 3.3793 0.8941 0.2202

4.8.1 Results

Of the 12 trials, there were 5 unsuccessful trajectories, which all veered away from the
intended end zone towards the end of the trajectory, as seen in Figure 4.21, despite the
similar DTW scores (indicating similar trajectory shapes) seen in Table 4.5. Visual obser-
vations of the trajectories show that unsuccessful trajectories were caused by inaccurate
estimates of the 7 parameter. This phenomenon is evident in Figure 4.22 where the forc-

ing function value for the unsuccessful trajectories drops to 0, causing the trajectories to
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FIGURE 4.21: The test trajectories generated by pHRIP from the experiment. Successful
trajectories are in blue while unsuccessful paths are shown in red.
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FIGURE 4.22: The forcing function values for the test trajectories generated by pHRIP
during the experiment. Successful trajectories are in blue. Unsuccessful paths are shown
in red.

deviate significantly. For the successful trials, pHRIP was able to correctly infer the user’s

intent when generating trajectories to avoid the obstacles.
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4.9 Discussion and Limitations

The motivation of pHRIP is to build upon IPs by integrating physical interaction forces in
a coupled system during pHRI. As IPs utilise observed trajectories, the identical location
of the user endpoint and the robot endpoint precludes its use in pHRI applications. Both

methods encode trajectories using DMP parameters.

A similar method for encoding trajectories is Probabilistic Movement Primitives (ProMPs)
[196]. Rather than encoding the attractor landscape (also known as the “forcing function”)
and generating accelerations in DMP, ProMPs encodes the raw position and velocity sepa-
rately using Gaussian basis functions equally spaced across the trajectory. The motivation
for ProMPs is to overcome low-level robot control issues, such as acceleration profiles out-
side of the robot’s capability, by using direct information from the position and velocities

of the system.

Despite this difference, ProMPs use the same method as IPs (and pHRIP) to couple
multi-DoF data together. Since the motivation for pHRIP is to extend upon IPs, the
comparisons between the two (IPs and pHRIP) can be representative of the utilisation
of probabilistic operators to integrate interaction forces, as performed in prior works for
ProMPs [288]. Furthermore, IPs and pHRIP focus on high-level robot response rather

than low-level robot control, making the comparisons more appropriate.

Other DMP-based probabilistic methods for capturing user intent include stylistic DMPs
[177] and Associative Skill Memories (ASM) [289]. While both use similar probabilistic
operators to capture variances across multiple demonstrations, their integration of user

intent and input differ significantly from pHRIP.

Stylistic DMPs embeds a weighting factor in the Gaussian kernels when encoding the
attractor landscape to provide parametric distinction of different intent. The discrete
nature of the parameters precludes their use in coupled human-robot systems since there
are many factors which influence the observed interaction forces. While the interaction
forces could be parameterised, such as using the maximum or Root Mean Square (RMS)
value, these metrics are time-dependent and are influenced by the observation window,

making stylistic DMPs unsuitable.

ASM constrains user intent by attaching a Dynamic Bayesian Network to probabilistically

infer the next state of the human-robot system. Integrating observed interaction forces in
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this DBN can infer user intent; however, a similar issue exist for parameterising the inter-
action forces. Furthermore, the DBN would be more akin to hierarchical frameworks which
utilise individual DMP systems where an arbitration occurs to determine the appropriate
DMP to employ [182].

One limitation on pHRIP is the inheritance of DMP parameters. While they provide
various functionalities, such as temporal invariance and amplitude control, the parameters
(K, D, 7, and «) are still empirically obtained, with varying factors that influence which
set of parameters is best suited for any particular application. As DMPs were designed for
one-shot LfD, generalising multiple trajectories remains a challenge when the trajectories
vary in length. This is especially pertinent when inferring intent and generating new

trajectories based on partial observations, manifesting in limitations noted in Section 4.8.1.

Another constraint for pHRIP is the reliance on DTW to phase align the partial obser-
vations, requiring a reference trajectory. For a multi-modal task, it is possible to bypass
this constraint by using a single reference trajectory for each trajectory mode. However,
the performance of DTW degrades if there are any adaptations to the task at hand. A
common approach is to use Bayesian statistics to embed the phase of the trajectory into
the built distribution, such that observations can perform phase estimation and user intent

simultaneously. This has been realised using Interactive ProMPs [200] and BIPs [201].
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FIGURE 4.23: The behaviour of pHRIP for known setups. * indicates an unsuccessful
trial with the red ellipse showing the collisions. All collisions occurred at the end of their
trajectory due to inaccurate estimates of the 7 parameter as discussed in Section 4.8.1.
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4.10 Summary

A preliminary study on the influence of inertia for a seminal predictive model, Fitts’
law, has been presented. The results indicate that inertial influences do not affect the
predictive model, suggesting that inertial influences are not significant effects which needs
to be normalised during the integration of human-centric measures for personalised robotic

assessment and response.

Following on this finding, an extension of a prominent HRI framework, Interaction Primi-
tives, was presented to integrate human-centric measures into personalised robot responses.
Physical Human Robot Interaction Primitives was shown to be effective in generating ap-
propriate robot response based on the interaction forces between the human and robot.
The framework overcomes limitations of Interaction Primitives for circumstances where
the human hand pose is identical to the robotic endpoint. There is a caveat on pHRIP’s
reliance on the DMP framework; however, this is an application-dependent roadblock and

is outside the scope of the thesis.

As discussed in Section 1.2, another approach towards personalised robotic assessment
and response is a focus on physiological and in-silico models for analysing human motion
and intent. This is in line with the framework which aims to connect biological human
understanding to enhance the assessment pipeline. The next chapter presents this work
with a study on the role of physiological models as an adjunct for musculoskeletal model-

based motion analysis during pHRI.






Chapter 5

Musculoskeletal Models for
Motion Analysis during pHRI

Enabling and enhancing the personalised robotic assessment and response requires an un-
derstanding of the human user during HRI. The previous chapter presented the integration
of human-centric measures into conventional robotic frameworks to enable the appropriate

personalised robot response.

While the inclusion of human-centric measures is a step forward for personalised robotic
assessment and response, the information on the human user is still limited by the availabil-
ity of human-centric data during physical contact. Thus, additional sources of information
which inform the robotic system about the user’s circumstances will enhance the human-

robot system. One such tool to facilitate this enhancement is musculoskeletal models.

Musculoskeletal models provide an analogue to simulate the kinematics and dynamics
borne from the interactions of a series of complex systems in the human body. Histor-
ical literature has been used to create most anatomically accurate models for humans.
Model parameters are then refined using a variety of anthropomorphic studies [228] and

investigations from cadaveric [290] and live human data [233].

An overview of the various software available and challenges for musculoskeletal models is
presented in Section 2.4. One challenge for musculoskeletal models is the lack of validation
for each model. Since kinematic measures are prioritised when developing a model, such
as range of motion and moment arms, it is uncommon to validate the dynamics of the

models based on the locations of the MTUs.

85
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To include musculoskeletal models during a robotic response requires their validation to
ensure the computed motion analysis results align with the human user’s motion. If the
results computed from musculoskeletal models do not match those of the human user
during pHRI, the integration of these models during the generation of robotic responses
would be counterproductive. Furthermore, any improvements to the computed results from
motion analysis performed using musculoskeletal models also improves the understanding

of the user, and can be employed to adapt the robotic response provided during pHRI.

Thus, this chapter first presents a study to validate the motion analysis pipeline for mus-
culoskeletal models. Findings from the preliminary study then inform any enhancements
required towards the integration of musculoskeletal models in the framework established
in Chapter 3. This results in an experiment towards a grip strength model which can
supplement the motion analysis pipeline, overcoming some roadblocks in the adoption of

musculoskeletal models.

5.1 Preliminary Study: Upper Extremity Model

A preliminary study is conducted to validate the motion analysis pipeline for a popular
musculoskeletal model as outlined in Figure 5.1. The validation compares the computed
muscle activity trends against surface EMG readings that were obtained experimentally

during a set of instructed movements.

Muscle
) ) Activity
N Joint N Joint
Kinematics Forces/Torques .
Inverse Inverse Static
Kinematics Dynamics Optimisation
4 4
Marker External
Motion Forces

FIGURE 5.1: The motion analysis pipeline and each process’ respective inputs and out-
puts. Inverse Kinematics and Inverse Dynamics are performed using the OpenSim API,
while Static Optimisation is performed in MATLAB.

The upper extremity model used for the preliminary study is modified from an original
model with 15 degrees of freedom actuated by 50 Hill-type MTUs [291]. The original

model was initially validated based on the range of motion and moment arms. Most
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parameters for the model were set using empirical data from magnetic resonance imaging

of live healthy adults [292]. Additional modifications made to the model include:

1. Body mass and inertial properties for the humerus, radius, and capitate were changed

based on literature [262], while these properties for other bodies were set as 1075.

2. The MTU models in the musculoskeletal model were updated to the more recent
Millard equilibrium model [293]. Parameters for muscle activation dynamics were

kept to the default values. (Activation 7 = 0.01, De-activation 7 = 0.04, fiber

damping = 0.05)

(a) (B)

FIGURE 5.2: (a) The musculoskeletal model used in OpenSim for this study. (8) A typical
Hill-type MTU model with force relationships between muscles and tendons.

5.1.1 Muscular Architecture

The Hill-type MTU [294] (Figure 5.2()) consists of an active contractile element in parallel
with a passive element. An elastic element is placed in series with the force generation
mechanism representing the tendons attaching the muscle to the insertion point. The five
intrinsic parameters define and normalise the muscle behaviour:

o " - Muscle maximum isometric force

e Lg' - Muscle optimal length coinciding with Fj"*

e V)" - Muscle maximum contractile velocity
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e «( - Muscle pennation at optimal length

e L! - Tendon slack length.

The active contractile element force is defined as:
f3 =gy B R a (5.1)

where fff() represents the non-linear curve between normalised muscle fibre length and
active force, f{/”() represents the curve for normalised muscle fibre velocity against nor-
malised active force, and a is the muscle activation, ranging from 0 to 1 indicating a

completely passive muscle through to a muscle with its maximum force output.

The force generated by the passive element is:
=t -y, (5.2)

where f}}?() represents the curve for normalised muscle fibre length against normalised

passive force.

The total force output of the MTU is then defined by:

= (f7 + £ cosa. (5.3)

Given the m number of MTU forces in the upper limb model, f = [fM, fM ... fMT]

the muscular torque around the k joints, defined as ™ = [7M 7M1 ... ,Té\/l ]7, can be
calculated as:

M = [-JL(0)]" 1, (5.4)

where J(.) is the Jacobian between the MTU lengths with respect to joint position.

5.1.2 Preliminary Validation Study Setup

One healthy adult male participated in the validation trial. The participant was fitted
with six 10mm electrodes (99.9% silver, Delsys, Natick, MA) on muscle groups specified in
Table 5.1. SEMG data was recorded (~1000Hz) using a data acquisition system (LabJack,
Lakewood, CO). The sEMG signals were rectified before applying a zero-phase low-pass
filter with 3Hz pass and 5Hz stop-band frequencies. Based on SENIAM and ISEK recom-

mendations [295], a notch filter to remove power source signal noise was not used.
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TABLE 5.1: Sensor placements of the surface EMG electrodes for participants.

Channel Muscle Group
1 Biceps Brachii Short & Long Head
; Triceps Brachii LI;E’QilHﬁZ:d
4 Medius
5 Deltoideus Posterior
6 Anterior

To capture the participants’ kinematics, four unique motion tracking rigid body assets
(each consisting of three retro-reflective markers) were affixed, each correlating to the cap-
itate, radius, humerus, and thorax. Three-dimensional marker coordinates were recorded
at 125Hz using a 12-camera motion capture system (NaturalPoint, Corvallis, USA). The
dynamics of the movements were captured at 125Hz using the reaction forces from a 6-axis
force-torque sensor (ATI Industrial Automation, Apex, USA). The participant held the

force-torque sensor, allowing for external loads to be inserted at the lunate.

Static optimisation to obtain muscular activity was performed using the minimum sum
of squared activation as the cost function and, for the sake of efficiency, only every third
frame was optimised. We assume this has negligible effect on muscle activation dynam-
ics since voluntary muscle recruitment has been found to be heterogeneous, with torque
transmission delays significantly over 25ms [232]. Furthermore, from the inverse dynamic
results, coordinates that experience a negligible force (< 0.1Nm or 0.1N) were ignored as a
preliminary observation indicate that most are path points for the muscles which are under
equilibrium for static optimisation. Two sets of analyses were conducted using the same
data - one using ideal force generators and the other with Force-Length-Velocity (FLV)

constraints [254].

For the validation trial, a series of movements were conducted with the force-torque sensor
acting as a small mass. Each movement was repeated three times in series, including
shoulder flexion and extension, shoulder abduction and adduction, horizontal abduction
and adduction with internal and external rotations. An additional complex movement was

completed, simulating a water drinking motion.

5.1.3 Results and Discussion

The resultant muscle activation trends obtained from static optimisation were compared

against the six-channel sSEMG readings collected during the validation trials. Figure 5.3
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FIGURE 5.3: Results from the preliminary validation trial for shoulder flexion and exten-
sion. Static optimisation results are based on FLV constrained MTUs and EMG readings
are heuristically normalised.

shows the results from the static optimisation using the FLV constrained muscle forces for
the shoulder flexion and extension motion. The model treats muscle groups as homoge-
neous entities, despite the heterogeneity of muscle groups in real-world muscle dynamics.
Combined with the equilibriation of the generalised forces, this results in the spiking na-
ture of the muscle activation. Taking this into account, the resultant muscle activation
across the six different muscle groups show that the whole musculoskeletal model matches
with real-world trends. The remaining motions exhibit similar trends. Additional figures

can be accessed in this repository.

Secondary results for comparisons between ideal force generators, which assume a linear
force relationship, and FLV-constrained muscles can be observed in Figure 5.4. We observe
that ideal muscles tend to require less activation since the dynamic properties of the MTUs

typically generate forces lower than the maximum isometric force.

There are a few factors that may affect the generalisation of our findings, especially for
different participants. Since we are treating real-world SEMG data as the ground truth, the
evaluations might be affected by external influences such as the setup protocol, electrode
placement, and inherent variability shown during the movements. One common method
to overcome this is to normalise muscle activation by obtaining the Maximum Voluntary

Contractions (MVC). However, this would require the participants to perform activities


https://tinyurl.com/ulmodelprelim
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FIGURE 5.4: Results comparing between muscle activation from ideal and FLV con-
strained force generators.

to identify their unique MVC values. It is noted that during this process, the external

influences induced by the setup protocols and electrode locations still exist.

Another factor that affects our results come from the lack of model parameters. Since
accurate mass and inertial properties for particular bone segments are difficult to obtain,
most models leave these parameters as zero, and the resultant muscle activation does
not account for this. Furthermore, static optimisation assumes the system state is in
equilibrium, meaning it does not consider other dynamic forces in continuous states such

as Coriolis effects and muscle-tendon dynamics.

One limitation of performing numerical analyses with a redundant model is the inability
to account for co-contracting muscle pairs, which perform other functions during human
motion such as the regulation of body segment impedance [296], accuracy [297], and task
variability [95]. To highlight this effect, the participant voluntarily co-contracted their arm
during the same water drinking motion. The resultant difference between the optimised
muscle activation and the sEMG data can be seen in Figure 5.5, highlighting the limitations

of these solutions when using the musculoskeletal model.

While the use of a minimisation-based objective function creates this limitation, the re-

dundancies between the number of MTUs and coordinates in the model makes it difficult
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FIGURE 5.5: Results from a water drinking motion in voluntary relaxed and co-contracted
states.

to develop sensible objective functions which are able to capture all variances in muscle ac-
tivity. In particular, co-contractions in antagonistic muscle pairs has long been thought to
be critical in controlling human body impedance. As a result, translating this phenomenon

into the optimisation process requires additional sources of information.

5.2 Supplementary Models for Musculoskeletal Models

With multiple confounding factors affecting human motor control [238], learning [246, 249],
and planning [74, 208, 298, 299], musculoskeletal models have been invaluable for re-
searchers to isolate and investigate their influence in humans. However, the preliminary
study presented above identified the need for additional sources of information to inform
the optimisation process when performing human motion analysis using musculoskeletal
models. With no closed form solutions available to obtain muscular activity for a partic-
ular state, the common approach utilises optimisation-based solutions. However, there is
ongoing debate on the appropriate cost function to be used during this optimisation, with

arguments for [255, 257] and against [256] using principles of optimal control.

The most widely accepted cost function to determine muscle activation relies on the prin-

ciple of minimum energy expenditure [300], deriving the minimisation of the sum squared
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muscle activation. However, there is evidence to suggest that this is not as relevant even for
elite athletes whose successes rely on the optimisation of their actions [259]. An approach
based on minimum energy expenditure also does not compensate for muscular deficiencies
as seen in the elderly [301] and a deafferented subject [302]. Furthermore, muscular co-
contraction, a critical characteristic for human motor learning [303, 304], is not considered

when using minimum energy expenditure principles.

One approach to address this constraint is the use of supplemental models which bridge the
gap for the muscle activation of particular muscle groups. These models are spurred on by
technological advances in data collection, resulting in correlation models between muscle
fibre volume and maximum isometric force generation [305, 306], muscle deformation and
force output [307], and between SEMG and muscle force onset [232, 308]. However, the
dynamics of the muscular architecture is still complex with many confounding factors,

which affect the relationship between muscle activity and force generation [309-312].

In coupled human-robot dyads during pHRI, the physical interaction between the robot
and user generates data on human grip strength, which can provide valuable information
on the physiological state of the human. Human grip strength has been well studied with
excellent inter-rater and test-retest reliability [313], pressure distribution dynamics [314],
and significant studies to obtain demographic grip strength data in various parts of the
world [315, 316]. Furthermore, there are seminal studies that have highlighted how the
somatosensory contributes to grip strength control [302, 317], and other factors influencing

the resultant grip strength [318].

In pHRI applications, the grip strength has been used as an indicator of human physiolog-
ical response to perturbations [319]. The use of grip strength provides the opportunity for
a model which maps the relationship between grip strength and muscle activation for the
relevant muscle groups. Finger flexion and extension is attributed to the flezor digitorum
profundis (FDP) and extensor digitorum communis (EDC) muscle groups [318], with the

FDP muscle group being the primary contributor to human grip force.

As a result, a model is developed to correlate the relationship between grip strength
and the muscular activity of the contributing muscle groups. While sEMG data are not
true reflections on muscle activity with various factors confounding their reading, such
as electrode application procedure, environmental humidity, and dermal impedance at
electrode locations, the model will rely on its activation trend to correlate grip force as an
analogue of grip strength. This model is then integrated into the motion analysis pipeline

to partially overcome the over-actuation of the musculoskeletal model. An analysis of the
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influence of the grip strength model is then presented through a popular musculoskeletal

model with some modifications.

5.3 Experiment Methods

An experiment was set up to develop a grip strength model which maps the correlation
between surface EMG muscle activity and grip force. Ten male adults, presenting no
neuro-muscular disorders, participated in a series of double blind randomised trials to
obtain their grip force at three distinct levels: 33%, 66%, and 100% of maximal voluntary
grip. The experiment protocols were explained to the participants before obtaining their
informed consent. This research has been carried out according to the ethical guidelines of
the Human Research Ethics Committee in University of Technology Sydney (UTS HREC
approval no.: ETH18-3029).

A set of standardised verbal instructions were provided to participants, with participants
instructed to maintain 90° elbow flexion, no radial/ulnar deviation of the wrist, and a
natural grasp on the handheld dynamometer. Across all participants, the estimated wrist

extension was within £15° with no significant changes throughout the experiment.

The experiment consisted of one reference trial, 12 isometric trials, and 6 exercise trials.
The grip force exerted by each participant was measured by a digital dynamometer (+11V).
The measurements from the digital dynamometer were captured using video footage and
extracted manually post-hoc. Administrators advised participants against reading their
grip force results after each trial, although no physical restrictions were employed to enforce
this. For all trials, the maximum grip force measurement was collected. This aligns with

the SEMG data processing pipeline (Section 5.3.4) to extract the maximum RMS values.

In the reference trial, participants were instructed to “squeeze as hard as possible for 5
seconds while maintaining your trunk and arm posture”. They were further instructed
to “use this [reference trial] to relate to the 33% and 66% grip strength level for the rest
of the experiment”. No further feedback was provided to the participants for the rest of
the experiment, and participants approximated the 33% and 66% grip strength level to
the best of their ability. Since no feedback was provided to participants throughout the
experiment, initial analysis of the reference trials show that the majority of participants
exert supra-maximal grip force during the isometric trials. Thus, the results from the

reference trial were not used in post-hoc analysis.
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TABLE 5.2: The targeted muscle groups for the placement of the sEMG electrodes.

Electrode Muscle Muscle
Number Group Acronym
1 Extensor Digitorum Communis EDC
2 Flexor Digitorum Profundus FDP
3 Biceps Brachii BIC
4 Triceps Brachii TRI
) Deltoideus Posterior DELT1
6 Deltoideus Medius DELT?2
7 Deltoideus Anterior DELT3

5.3.1 Participant Measurements and Sensor Placement

The length of each participant’s ulna and humerus were measured using identical protocols
as those from the CDC (US) [320] and the NHS (UK) [321]. Muscular bio-potentials
are collected through silver-silver electrodes using the Delsys Bagnoli 8-Channel system
(Delsys, Natick, USA). Electrodes are positioned based on SENIAM guidelines', targeting

muscle groups listed in Table 5.2.

Motion capture software was utilised to track the kinematics of each participant’s upper
limb. A total of 12 Optitrack Prime cameras, in conjunction with the Motive software
(NaturalPoint, Corvallis, USA), tracked four user-defined rigid body assets as shown in
Figure 5.6. Each asset consists of 3 passive reflective markers with known locations to
provide unique poses. The rigid body assets are placed to coincide with the four major
body segments of the model: chest (thorax), upper arm (humerus), forearm (ulna), and

hand (lunate).

5.3.2 Isometric Trials

For isometric trials, participants were requested to maintain the arm and trunk posture
as shown in Figure 5.6. In each trial, participants were provided with a 5 second visual
countdown, after which participants were instructed visually to squeeze the dynamometer
for 5 seconds at 3 distinct strength levels: 33%, 66%, and 100%. Between each trial,

participants were given a one minute break to mitigate muscular fatigue.

In total, each participant performed 4 trials per grip strength level, with the order of the

12 trials randomised using Latin squares. The requested grip strength level for each trial

"http://www.seniam.org/


http://www.seniam.org/
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FIGURE 5.6: The posture that participants were requested to maintain during isometric
trials.

was occluded from the administrator by using a participant-facing screen not visible to
the administrator. For each isometric trial, sEMG data collection commenced 2 seconds

into the countdown, resulting in 8 seconds worth of data each trial.

5.3.3 Exercise Trials

At the start of the exercise trials, participants were instructed to watch a video which

shows a reaching exercise?

. The exercise trials were performed in a darkened room to
reduce reflections from the passive reflective markers. Thus, LED light strips were diffused
and attached around the LCD display of the digital dynamometer to facilitate the reading

of the grip force measurements on the video footage (see Figure 5.7(a)).

Similar to isometric trials, visual instructions for the grip strength levels were given to par-
ticipants, and they were verbally instructed to “squeeze at the indicated grip strength level
and start your [sic] movements while maintaining your [sic| trunk posture”. No further

requirements, such as task completion speed or accuracy, were imposed on participants.

Kinematic data for participants are collected from the exercise trials using the rigid body
assets, starting when the countdown commences. Since there were no task completion
speed requirements imposed, participants were instructed to indicate to the administrator

verbally when they “feel like you [sic] have completed the exercise from the video”. Similar

2The exercise video shown to participants is available here


https://youtu.be/G5vyfGu6c84
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FIGURE 5.7: The front and back views of the digital dynamometer fitted with a 3D
printed part to house (a) the diffused LED light strip, and (8) the attitude and heading
reference system (myAHRS+).

to the isometric trials, SEMG data collection commences 2 seconds into the countdown.
Both sEMG and kinematic data collection is stopped manually by the administrator when

they receive each participant’s verbal indication.

Both kinematic and sSEMG data from the exercise trials are used for post-hoc analysis with
the musculoskeletal model. External forces exerted on the participant’s hand are calcu-
lated from linear acceleration readings given by an attitude and heading reference system
(WITHROBOT, Seoul, Korea), along with the mass of the sensor-equipped dynamometer
(m = 0.516kg). Forces induced from gravity are also included in the dynamic analysis of

the musculoskeletal model (Section 5.3.6).

5.3.4 sEMG and Kinematic Data Processing

The collected SEMG signals are rectified, before applying a 4th order Butterworth lowpass
filter with a cutoff frequency of 4Hz. The first and last 0.5 seconds of the processed sEMG

signals are ignored to remove artefacts arising from observations of partial phases.

The grip strength model aims to build a mapping between muscular activity and the
grip force exerted by each participant. The sEMG signals are normalised to allow for
quantitative analysis between participants. A common method to normalise sSEMG signals
is to conduct Maximum Voluntary Contractions (MVC) trials, exercises which aim to

maximise the muscle activation of specific muscle groups. Different exercises are prescribed
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Rectified X Processed

F1GURE 5.8: An illustration of the SEMG processing pipeline.

for different muscle groups despite ongoing work to determine the optimal set of exercises

for inter-rater reliability and MVC values [322].

Using default MVC values to normalise the sSEMG data, 6 out of the 10 participants
demonstrated supra-maximal sEMG readings during the experiment. Thus, a different
normalisation method based on the SEMG intensity range is used. Since participants were
instructed to hold onto the handheld dynamometer (0.516kg) in a relaxed manner, the

sEMG intensity for muscle activity during this time is assumed to be the minimum value.

The sEMG intensity is obtained by partitioning the signal into rolling windows which
are 0.25s long (0.05s apart) and calculating the RMS value for each window. Since the
experiment includes an exercise which is suitable for MVC (e.g. 100% grip strength), each
participant’s normalisation range is formed by the minimum RMS value between 0.5-3.0s

and the maximum RMS value across all trials.

For all other targeted muscle groups, the sEMG signals are not processed since they will
be used for qualitative analysis with the static optimisation results. An overview of the

sEMG processing pipeline can be seen in Figure 5.8.

5.3.5 Grip Strength Model

To build the grip strength model mapping the relationship between grip strength output
and muscular activity, we use isometric trial data from all participants to generate the
model and validate it with the exercise trials. To build a model which is valid across all
participants, the sEMG intensity and the grip force are range-normalised. While muscle

force generation is constrained by their Force-Length-Velocity curves [254], which affect
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muscle moment arms, participants were instructed to maintain a static posture during the

isometric trials (Section 5.3.2), making the relative effect of the FLV curves negligible.

For the exercise trials, the grip strength model does not take FLV curves into account which
may skew the results. An exploration of the effects from the FLV curves was conducted
to ascertain the scale of this effect across different poses and velocities as extracted from

participant kinematic data. Results for this analysis are shown in Section 5.5.

One popular model hypothesised for the relationship between muscular activity (% nor-
malised EMG) and force generation (% MVC) is the two-element model by Woods and
Bigland-Ritchie [253]. Figure 5.9 shows the relationship that suggests that there are in-
trinsically two types of muscle fibres during muscle activation. This model is supported
empirically [308], while [75] identified that the parameters of the curve are unique to each
muscle group. Assuming that the slow Type 1 fibres generate force asymptotically at 30%
of MVC, the Woods and Bigland-Ritchie model can be parameterised using piece-wise

equations to isolate the two fibre types.

EMG Force Relationship Model
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FI1GURE 5.9: The two-element EMG-Force model proposed by Woods and Bigland-Ritchie
used for the grip strength model (reproduced from Woods et al. (1983)).



100 Chapter 5. Musculoskeletal Models for Motion Analysis during pHRI

5.3.6 Musculoskeletal Model

The upper limb musculoskeletal model used for the experiments is derived from the Stan-
ford VA Upper Limb model [291] with updated model parameters from live human data
[292]. The model consists of 15 degrees of freedom and 50 Hill-type MTUs [294]. Modifica-
tions were made to the model to simplify the model while maintaining bodies, coordinates,

and actuators relevant to the experiment. Updates to the model® include:

e Inertial properties of the humerus, radius, and capitate were set using anthropo-
morphic estimation for the average male height and weight [206, 228]. Principal

moments of inertia for the body segments are taken from [230].

e The original MTU model from [323] is replaced by the more recent Millard equilib-
rium [293] model. Available MTU model parameters are transcribed across to the
new MTU model (maximum isometric force, optimal muscle tendon length, penna-
tion angle at optimal length, tendon slack length). Other MTU parameters (Force-

Length-Velocity curves) are set to the default values in OpenSim.

e Model complexity is reduced by restricting motion to 5 DoFs. These DoF's arise from
the shoulder flexion/extension, abduction/adduction, internal /external rotation (3),
elbow flexion/extension (1), and wrist flexion/extension (1). The remaining joints
are locked to match the experiment posture (e.g., closed digits, neutral pronation/-
supination, and 0° wrist abduction/adduction). MTUs which do not contribute to
the 5 DoF's are disabled by ignoring them during calculations. These are determined
following the process for [324]. MTUs contributing to grip strength are exempted
from the modification (EDC and FDP muscle groups).

For each participant, the measurements of their humerus and ulna are used to manually
scale the geometry of the model. The length of the humerus and ulna matches their
respective measurements, while the length of the radius is proportionally scaled based on

the ulna measurement.

For each exercise trial, upper limb motion analysis is conducted by performing inverse
kinematics, inverse dynamics, and kinematic analyses. All three operations utilise the
functionalities in OpenSim. The generalised forces obtained from inverse dynamics are
used for static optimisation in MATLAB (using the fmincon function) to obtain an esti-

mate of the muscular activity, ;1, during the exercise trials. A minimum sum of squared

3The updated model is available here.


https://github.com/y-lai/modifiedUpperLimbModel
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activation cost function is used:

M
: 2
min a;i,
a
i=1

st. M(q)A=F,

(5.5)

where M(q) is the moment arm matrix, which depends on the current joint state, F' is
the net generalised forces on the model joints, and A= [a1,a2,a3,a4,...]T is the activation
level (0 — 1) for the M MTUs in the model.

TABLE 5.3: The replacement of the MTU activation in the musculoskeletal model with
the model estimate.

Muscle Group Model MTUs
EDC EDCI, EDCL, EDCR, EDCM
FDP FDPI, FDCL, FDPR, FDPM

For the purpose of demonstrating the feasibility for integrating extrinsic information chan-
nels with musculoskeletal models, the muscle activation for FDP and EDC are assumed
to be identical (assuming isometric co-contraction since they do not contribute towards
the movement of the upper arm). The muscular activity estimate is obtained using the
normalised EMG readings for the FDP muscle group. Both values replace multiple MTUs
in the musculoskeletal model as shown in Table 5.3. The generalised forces caused by the
EDC and FDP activation are taken into account when performing optimisation for the

remaining MTUs in the model.

5.4 Results

5.4.1 Contribution of Muscle Groups

The generation of human grip strength is attributed to the muscle groups which control
finger flexion and extension: FDP and EDC. To ascertain the influence of each muscle
group on the user-generated grip force, a series of one-way Analysis of Variance (ANOVA)

was conducted between each muscle group and the measured grip force.

Only the subset of isometric trials, where participants were instructed to exert at 100%
grip strength, were used in this particular analysis. Isometric trials for 33% and 66%
grip strength are assumed to influence muscle activity as participants try to control and

maintain the requested grip strength level. The need to maintain the requested grip
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strength level is posited to result in a larger spread of muscle activation despite a small
spread of grip force. Observations of the experimental results in Figure 5.10(c-p) confirms
this finding.

The normalised EMG activation of FDP and EDC are shown to be statistically the same
(F(1,54) = 1.0570,p = 0.3085), with no significant difference during the 100% grip
strength trials. This is reinforced by the Pearson and Spearman’s Rank Order corre-
lation score, presented in Table 5.4, which show a similar correlation between each muscle
group and the measured grip force. With a similar correlation between measured grip force
and FDP or EDC, a single-variable model is chosen. Since the sEMG signals are range
normalised, the choice to use the FDP muscle group was based on a higher sEMG range

during contractions. Using a higher range mitigates the effects of signal noise, alleviates
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FIGURE 5.10: The relationship between the grip force measurements and muscle activa-

tion for all participants in the experiment. The EMG-force model is given as a reference.

It is noted in (c-p) that there is a small normalised grip force spread (y-axis) despite a
large normalised activation spread (x-axis).
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the chances of supra-maximal and negative EMG activation, and can cater to different
participants with a variety of muscular strength.
TABLE 5.4: Correlation scores between EDC, FDP, and grip force. Pearson’s correlation

scores are in the top right triangle, while the lower left triangle shows the Spearman’s
Rank Order correlation score.

EDC FDP Grip
Muscle Muscle Force
Pearson’s r
EDC
Q
Muscle “2 0.5961 0.7280
FDP 1 51 5644 0.7675
Muscle 5
3 D)
Grip | &1 07203 | 0.6776
Force

5.4.2 Grip Strength Model Validation

During the experiment, a subset of data was not used due to technical issues. For some
trials, the video footage of the experiment was underexposed, leading to an inability to
read the measured grip force (~ 14%) from the video footage. The SEMG readings for two
participants were observed to have no visible artefacts from muscle activity present across
all trials and were not used in further analyses. The lack of visible artefacts derive from
a flat-line response from the SEMG readings. This indicates an erroneous application of
the electrodes during the setup process. Additionally, an assumption is made that the re-
lationship between EMG activation and muscle force output is monotonic. Based on this,
further visual inspection of the data from isometric trials (Figure 5.11(a)) highlighted po-
tential outliers which may suggest deficiencies in the experiment setup. An initial analysis

was conducted to determine the impact of the outlier data identified.

Visual observation of grip force vs. FDP activation indicate that an additional two par-
ticipant’s data are outliers (Figure 5.11(a)). Building a step-wise linear regression model
(stepwiselm function in MATLAB) from the remaining data, the RMSE between the iso-
metric trial data and the model was calculated. The error was more than 3 times the
standard deviation of the mean RMSE. Building the grip strength model with the re-
maining participants resulted in a mean RMSE of p = 0.1512 with a standard deviation
of o = 0.1207.
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FIGURE 5.11: Scatter plots of: (a) the sample points used for building the model and the
outliers identified visually; and (8) the sample points from valid exercise trials to compare
the fit of the grip strength model.

Visual observation in Figure 5.11(s) suggest that the data from participants’ exercise trials
would fit the model. The validation of the grip strength model was performed using the
results from the exercise trials, showing a mean RMSE of u = 0.2035 with a standard
deviation ¢ = 0.1207. While there is evidence to suggest a power curve would fit a similar
relationship [314], this was not investigated in this work. A comparison between the
instructed grip strength level and the measured grip force suggests a similar relationship.
However, there are multiple confounding factors which can be attributed to the observed

trend in Figure 5.12, which is outside the scope of this thesis.
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FI1GURE 5.12: A modified box plot of the instructed grip strength level and the measured
grip force for all participants. The mean is indicated by the red line, the standard deviation
is shaded in red, and the 95% confidence interval is shaded in blue.
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5.5 Discussion

From the experiment’s sample size, the generated grip strength model is a feasible alter-
native for obtaining an estimate of the EMG activation based on a measured grip force.
While the FLV constraint effects for MTUs are well understood [254], empirical evidence
suggest that the Woodland and Bigland-Ritchie model can be used to correlate EMG

activation and grip force.

Validation of the model is performed using the exercise trials which involve movements.
To investigate FLV constraints, a comparison of the generated moment arms is conducted
in three different phases of a reaching movement: the starting pose, the end pose, and a
pose in-transit. Across the three poses, the mean absolute difference of moment arms (41
muscles on 94 coordinates including the FDP and EDC muscle groups) between the starting
pose and the other two are pe,q = 1.6913 (3.76% of total) and pigransit = 1.2963 (2.82% of
total).

5.5.1 Effects of Muscle Fatigue

In the experiment, participants were provided with a minute break between each trial.
However, the amount of time provided to participants in prior works have varied widely
from 90 seconds [322] up to 180 seconds [253]. Thus, an investigation was conducted
post-hoc into the possible effects of muscle fatigue in the results of the experiment. While
there are multiple ways to extract muscle fatigue [325], the most common method is using
Power Spectrum Density (PSD) plots and investigating whether there has been a shift in

the peak power frequency.

The raw EMG signals from the experiment were analysed in MATLAB using the fft and
pwelch functions for Fast Fourier Transform (FFT) and an estimate of the Welch PSD.
Gaussian smoothing with a window size of 40 was performed on the Welch PSD to obtain
clear peaks of the PSD curve. For each trial, the EMG signals were segmented into
three temporal sections, with the first section starting 0.5s after the visual instruction was

provided to the participants.

The PSD plots across the three temporal sections for all participants in Figure 5.13 indicate
that acute effects of muscle fatigue are present within each trial. As participants are

instructed to exert grip force for at least 5 seconds each trial, this phenomenon is expected.
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FIGURE 5.13: The Power Spectral Density plots across (a) the first third, (8) second

third, and (c) final third of a trial. The values in each plot indicate the mean frequency

for FF'T and Welch PSD. The trend from these plots are representative across most of
the isometric and exercise trials.

Thus, to assess longer-term effects of muscle fatigue, only the first temporal section of each

trial was used for analysis.

For each participant, the first and last two 100% strength level trials (across both isometric
and exercise trials) were used to perform a one-way ANOVA. For both FEFT-derived
and Welch PSD estimates, there was no significant shift in the peak frequency (FFT:
F(1,38) = 0.9943,p = 0.3250, Welch: F(1,38) < 0.001,p = 0.9823), indicating that
the effects of muscle fatigue are negligible in the experiment. It is interesting to note
that the middle third of the trials represent the highest amplitude. This correlates with
observations of the sSEMG readings that indicate muscle activation ramps up towards the
peak intensity, rather than a quasi-instantaneous response. The ramping response suggest

that participants may have been regulating their muscle activity until they feel like they
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have achieved the desired grip strength level. Alternatively, this artefact may be due to
muscle activation dynamics since they are commonly modelled as having first order delay
after excitation. However, this finding doesn’t skew the objective of the grip strength

model which relies on peak measurements.

5.5.2 Supplementary Information Sources for Musculoskeletal Models

The validation of the grip strength model demonstrates the feasibility of supplementary
information sources during physiological-based assessments of the human in pHRI. Oppor-
tunities to personalise the model exist, which is an enticing proposition in rehabilitation
and assessment [15, 40]. The grip strength model aims to contribute towards the current
trend in generating supplementary information channels that are adjunct to musculoskele-
tal models. This will encourage their adoption in emerging fields such as rehabilitation
[277], assessment [326], and pHRI [93].

While the grip strength model provides additional information sources, it may introduce
bias in the muscular activity analysis. Realistic musculoskeletal models are particularly
sensitive to this possibility as the upper limb complex has complicated muscle tendon
paths. A series of static optimisation (using MATLAB’s fmincon function) was conducted
to investigate the influence of the grip strength model’s estimates in the resultant muscle

activity.

The chosen objective function for the optimisation follows the default function used in
OpenSim, the minimum sum squared value of the muscle activation (Equation 5.5). Due
to the use of minimisation during the optimisation process, the resultant muscle activity
is generally underestimated when compared to empirical data. The discrepancies seen in
Figure 5.14 for the FDP and EDC muscle groups can be attributed to the range normali-
sation process for the sEMG readings and implicit errors in the process of data collection.
Furthermore, the estimated external loads from the dynamometer are simplified for this
analysis and do not account for possible compensatory behaviour from the participant.
This effect can be mitigated if the dynamometer is replaced with a lightweight force trans-

ducer.

From Figure 5.14, the results indicate that the inclusion of the grip strength model has
not affected the functionality of the motion analysis pipeline for the musculoskeletal model
for the muscles in the proximal sections of the upper limb. This supports the concept of

employing a suite of discrete models that provide extrinsic channels of information to
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FIGURE 5.14: A comparison of the effect of the grip strength model estimate on the
EMG activation of the biceps, triceps, and deltoideus muscle groups.

supplement musculoskeletal models during motion analysis. A notable phenomenon is
that muscle activation from FDP and EDC may alleviate the activation necessary from
biceps brachii to enable the recorded motion. This reinforces our initial observation on the
bias which may be introduced into musculoskeletal models with supplementary information

sources.

Overall, the grip strength model reinforces the framework presented in Chapter 3, with
the feasibility of physiological models, built on task-centric and human-centric measures,
to supplement musculoskeletal models during the personalisation of robotic assessment
and response. Intuitively, more physiological models can be employed to complement each
other and act as an adjunct to musculoskeletal models during human motion analysis and
robotic assessment, alleviating bottlenecks and current limitations of using a musculoskele-

tal model during pHRI.



Chapter 6

Conclusion

This thesis has presented a framework towards personalised robotic assessment and assis-
tance. The framework is informed by the various perspectives involved during Physical
Human Robot Interaction. The focus is on investigations and studies to examine limita-
tions in current methods, explores how to develop models to enable personalisation, and

enhance the understanding of the human user during pHRI.

A real-world example application for the framework was presented, contextualised for the
gamification of personalised robotic rehabilitation. As probabilistic models are the most
straightforward method to capture each user’s inherent variability, a popular probabilistic
technique, Gaussian Process, is utilised. To investigate the limitations of GPs, explorations
to alleviate computational complexity and contextualise GP outputs are conducted, with

detailed formulations and experiments made available in the appendices.

An investigation into the influence of inertia during pHRI for a predictive model was pre-
sented. After this, a method to integrate interaction forces using probabilistic techniques
during pHRI has been developed to provide the appropriate robot response for a coupled
human-robot dyad.

A qualitative analysis of results derived from a popular musculoskeletal model was pre-
sented to investigate the motion analysis pipeline for the model. A grip strength model
was then developed to complement the musculoskeletal model. The new model was ex-
perimentally validated and discussed in the context of its influence on the results derived

from the musculoskeletal model.

109



110 Chapter 6. Conclusion

6.1 Summary of Contributions

6.1.1 A Framework Towards Personalised Robotic Assessment and As-

sistance during pHRI

A framework has been developed that works towards the incorporation of the various
important perspectives needed to unify personalised robot assessment and assistance dur-
ing Physical Human Robot Interaction. The framework focuses on examining current
task-centric models and how they are used for personalisation, enabling the integration of
human-centric measures into conventional task-centric personalisation for pHRI, and en-
hancing the understanding of the human user through physiological and musculoskeletal

models.

An exploration into a real-world example application for the framework was conducted.
The implemented system showcases a potential pHRI application for the framework, con-
textualised for personalised robotic rehabilitation. of the framework was conducted, devel-
oping a derivative framework which highlights the feasibility of the framework for robotic
assessment and assistance. This work was published in the IEEE International Conference
on Robotics and Biomimetics (ROBIO 2018) [15].

Following on from the real-world example application, two sets of works were undertaken
to study methods to overcome limitations for conventional Gaussian Process models for
regression and classification. These are presented in Appendix B-C and have both been
published in the IEEE International Conference on Automation Science and Engineering
(CASE 2018) [14] and the IEEE International Conference on Cybernetics and Intelligent
Systems and Robotics, Automation and Mechatronics (CIS-RAM 2019) [16], respectively.

6.1.2 Exploring Inertial Influence on Predictive Models

A study was performed to explore the effects of inertia when a human handles a robotic
endpoint. The effects were tested based on Fitts’ law where participants were instructed
to move the robot endpoint to various target locations in the human upper limb planar
workspace while the endpoint is compensated from gravity forces. An analysis on the fit
of Fitts’ law coefficients was conducted, showing the influence of inertia during coupled
pHRI is statistically insignificant. This study of inertial influences has been presented and
published in the International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC 2020) [17].
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6.1.3 Integrating Interaction Forces during Robotic Assistance

A novel extension of a prominent HRI framework was developed, integrating interaction
forces to infer user intent and generate the appropriate robot response in a pick-and-place
task. The development of Physical Human Robot Interaction Primitives extend upon In-
teraction Primitives by embedding interaction forces in the joint distribution and inferring
user intent without observations of the robot endpoint. This overcomes limitations of IPs

and enables coupled human-robot dyad workspaces.

Multiple experiments were conducted to validate the efficacy of pHRIP. Results from the
user-reaching, planar, and Cartesian applications demonstrate its efficacy and advantage
over IPs and its ability to facilitate a human-centric approach towards personalising the
robot response based on user intent. The development of pHRIP is published in Au-
tonomous Robots (AURO) during 2022 [18].

6.1.4 Preliminary Validation of a Musculoskeletal Model

A preliminary qualitative validation was performed on a popular upper limb musculoskele-
tal model. An experiment, based on several exercising motions, was conducted to compare
the SEMG readings against the calculated muscle activity from the human motion analysis
pipeline for several muscle groups on the upper limb. Two calculation models were tested
for muscle force generation in the MTU model. The results demonstrated consistency in
the muscle activity trends during the observed exercises. An analysis of the results high-
lighted some limitations of the current pipeline indicating potential future work to improve
the results obtained from the model. This preliminary validation has been accepted to be
published in the International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC 2021) [19].

6.1.5 Supplementary Grip Strength Model for Musculoskeletal Models

A physiological model was developed to correlate human user grip strength and muscle acti-
vation. Participants were instructed to exert isometric grip force to a digital dynamometer
that recorded their grip force at 3 distinct levels of strength. Then, were instructed to per-
form an exercise while exerting grip force at the same 3 levels of strength. The experiment
highlighted the feasibility of the model and its fit to observed data for both grip force and
sEMG readings. Additional analysis was conducted to determine the suitability of the grip
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strength model to supplement the motion analysis pipeline using a musculoskeletal model.
Integrating real-world sSEMG readings into the analysis pipeline showed no significant ef-
fect on the calculated muscle activity, demonstrating the grip strength model’s ability to

supplement a portion of the calculations for musculoskeletal models.

6.2 Discussion and Limitations

The framework presents a unified approach towards robotic assessment and assistance,
which is an attractive proposition for applications such as robotic rehabilitation, AAN
robotics, or intuitive tele-operation. However, there are some limitations which need to

be overcome before the framework can be fully realised in non-laboratory environments.

6.2.1 Reliance on Model-based Paradigm

This thesis has presented experiments, studies, and investigations that build on current
conventional models for personalised pHRI. A clear limitation is the reliance on the
model-based paradigm since the limitation of implementing the framework will be heavily
influenced by the models chosen. Across the thesis, the level of complexity for various

models have highlighted roadblocks and challenges to overcome.

For the simple models explored in this thesis, such as Fitts’ law [98], the inertial influence
was found to be insignificant during pHRI. The simple movements associated with the
predictive model were simulated using a different interface, which has external factors
influencing the participant’s performance. The simplicity of the Fitts’ law model means
that it is more sensitive to external factors, especially if the associated task deviates from
the original study. A common way to overcome this sensitivity is by increasing the number
of participants to improve the confidence of the methodology as well as the observed results.
In this thesis, the preliminary investigation relied on a small number of participants which
may reduce the confidence on the conclusions reached. It is noted that there is evidence
to suggest Fitts’ law is an artefact of human motor control [101]. Thus, studies in human

arm movement control [238] may be better suited for future developments for this model.

Similarly, in Chapter 4, pHRIP is an extension on a DMP-based framework. While the em-
ployment of DMP has resulted in compact representations of trajectories, the reliance on
the framework, originally designed for one-shot imitation learning, has created complica-

tions when performing online implementations. As discussed in Section 4.8, the generation
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of the robot response with different trajectory lengths is difficult to attain. More work
needs to be done to improve its reliability to generate robust trajectories that fit the task.
While there are other MPs that increase flexibility by removing the reliance on DMP,
notably ProMPs [197], this flexibility creates a need to place additional constraints to fit
the application. Furthermore, MPs operate under a pick-and-place paradigm where the

robot response is defined based on discrete demonstrations.

In this thesis, all experiments and validation studies with a robotic arm were performed
using its native controller, Rethink Robotics Intera SDK. The ability to use the gravity
compensation mode allows free manipulation of the endpoint, providing human user ma-
nipulation with ease. However, the robot responses generated were limited by the reliance
on Intera SDK’s control system. While the native controller achieves the trajectories gen-
erated by pHRIP, the pick-and-place paradigm restricts the implementation of continuous
assistance in coupled human-robot dyads. Approaching personalised robotic assessment
and assistance during pHRI from the control perspective may improve the performance.
Responsive control frameworks such as impedance control or hybrid control frameworks

can potentially incorporate optimisation to vary the support given to the human user [91].

6.2.2 Limitations of Musculoskeletal Models

The use of a musculoskeletal model in the thesis presents some limitations on the accuracy
and reliability of the results derived in the motion analysis pipeline. The primary limitation
for a musculoskeletal model is the complex anatomical, physiological, and neurological
systems in humans which are difficult to replicate. While the musculoskeletal model used
in this thesis was shown to be adequately accurate in its joint strength [291], moment arm
generation [327], and limb stiffness [328], there are still other influential factors which have
not been taken into account. For example, sophisticated models require a large number
of parameters to represent the intrinsic differences between the different muscle groups,
joints, and bones. The musculoskeletal model used in this thesis has 50 MTUs, which
consist of 5 parameters and 3 non-linear functions (for the FLV constraints) to describe
each MTU.

Personalising the musculoskeletal models require knowledge on each of these parameters to
best represent the human user, accounting for inherent variation in the population. Cur-
rently the process to obtain these parameters in-vivo is unclear or challenging. However,
recent technological advances and methods may help overcome these limitations. Exam-

ples include employing ultrasound imaging to validate fibre orientation for MTUs [237]
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and muscle fibre histology to clarify the composition of various muscle fibre types [236].
Due to these limitations, in this thesis, the employment of a musculoskeletal model is to
perform qualitative trend analysis rather than directly using the raw results since they

will not be a reflection of the real world.

In this thesis, the human motion analysis pipeline includes a static optimisation process.
It assumes that the forces and torques generated by the MTUs are in equilibrium given
the kinematics and dynamics of the model as calculated by Inverse Kinematics and Inverse
Dynamics. This assumption of equilibrium ignores the non-linear dynamics imposed by
changing muscle fibre lengths when the arm is not stationary [329]. While this effect is
mitigated in the methodology for Section 5.3.2, where participants exerted isometric grip
force, the non-linear dynamics still exist and influence the accuracy of the results. For non-
isometric movements analysed in this thesis, the Millard equilibrium MTU model is used;
however, there is another variant of the MTU model, associated with acceleration dynamics
[293], which may have mitigated this assumption during motion analysis. Additionally,
the validation of the results obtained from the musculoskeletal models are achieved by
comparing against real-world sEMG readings. Despite best practices with sEMG data
collection, there is variability during the procedure. These introduce bias into the readings
such as non-linear noise during contraction, with a lower signal to noise ratio during low

contraction intensity [330].

As previously discussed in Section 1.3, the scope of this thesis excludes an investigation into
the active field of research focusing on different objective functions during muscle activity
optimisation. The limitations on using the minimum sum of squared activation objective
function is evident in the “spiking” muscle activation since each frame of the motion is
optimised in isolation while under equilibrium. This calculation ignores the dynamic forces
induced during motions. However, this method continues to be the most commonly used
objective function during analysis. One straightforward constraint to incorporate would
be to limit the change in muscle activation from one time frame to the next since muscle
groups are heterogeneous with individual motor action potential for each muscle fibre. An
alternative method to validate the muscle activation may be the utilisation of indirect
calorimetry [331] to investigate inconsistencies between the equivalent energy expenditure

and the measured real-world energy consumption.
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6.3 Future Research

6.3.1 A Validation Task for the Multi-Model Implementation

The framework presented in this thesis has explored various perspectives for robotic assess-
ment and assistance during pHRI, with experiments and studies conducted in isolation.
However, the complexities involved when integrating the multiple models and various
perspectives needs to be considered in future work. This is particularly pertinent for
computational complexity and the communication framework between the various models
during pHRI.

For near real-time implementations, which include human motion analysis using mus-
culoskeletal models, the computational complexity of the analysis pipeline needs to be
examined to enable near real-time calculations. Alternatively, the application should be
reconfigured such that the slower computation time does not adversely affect the perfor-
mance. The reduction of computational time can be seen in [324] by simplifying optimi-
sation constraints for estimating endpoint strength during bimanual operations, while [88]

built an offline GP model that correlates the endpoint impedance to the joint kinematics.

With such a variety of models, each with its individual motivations, the integration of
multiple models can be challenging. As a result, a communication framework outlining
how collected data would interact and communicate with each internal model will facil-
itate the validation task based on a multi-model implementation. This is particularly
pertinent when integrating physiological results and human-centric measures into robotic
frameworks. Examples of this pipeline include DMPSynergies [180], which leverage muscle
synergies to build the joint probabilistic distribution for the DMP parameters, and the
use of reinforcement learning to learn the appropriate assistance based on sEMG readings
[86].

As pointed out in Section 6.2.1, the lack of low-level robotic control limits the ability
for shared control towards personalised robotic assistance. Thus, the multi-model imple-
mentation will also validate the integration of the musculoskeletal model, including the
supplemental grip strength model, during robotic arbitration for pHRI. A low-level con-
trol framework can enable adaptive robotic responses, which would improve the quality of
the pHRI and enable robot control. In turn, this control can more effectively utilise the

computed results, such as for strength estimation [22] and in AAN applications [285].
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6.3.2 Trials to Validate Personalisation

The motivation for the framework presented in this thesis relies on probabilistic models,
under the foundation of Bayesian statistics, to facilitate personalisation. The employment
of probabilistic models in Chapter 4 for pHRIP is appropriate since they provide a flexi-
ble method to directly couple observed interaction forces with the robotic trajectory. The
implicit personalisation of the pHRIP parameter sets for each user is promising for person-
alised robotic assessment and assistance during pHRI. However, explicit personalisation of
probabilistic distributions should be explored in future work. This explicit personalisation
can be applied to the physiological models supplementing musculoskeletal models during

human motion analysis.

Using the grip strength model presented in Chapter 5 as an example, a parametric prior
distribution can be built using demographic data, which is then personalised by obtaining
individual data during a “calibration” process to update the posterior predictive distribu-
tion. The main challenge to overcome for this approach is the right set of parameters to
best represent the model, and the number of participants to: (1) build the demographic

prior distribution, and (2) validate the personalisation process.

One factor to consider when using this approach is the assumption of IID observations
when building and updating the parametric distributions. While there might be a strong
correlation that can be observed, the performance of the model can falter if it does not
inherently capture the ultimate causal relationship. Thus, the choice of model complexity
and its causal relationship with the observations will influence the predictive power and

reliability of the posterior distribution.

6.3.3 Sensitivity Analysis into Model Complexity

This thesis has presented multiple perspectives for personalisation during pHRI for robotic
assessment and assistance. A common challenge borne from the reliance on model-based
paradigms (Section 6.2.1) is the contextual functionality of the model. While simple
human-centric models, such as Fitts’ law, do not yield enough insight into human motor
learning or locomotion, the other spectrum of representative models, such as sophisticated
musculoskeletal models, present challenges in obtaining the correct parameter set and
validating their accuracy for real-world applications. As a result, future work in this topic
will require a systematic method to investigate and perform a sensitivity analysis on the

balance between model complexity and its functional outcomes for pHRI.
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For complex musculoskeletal models, simplifications are usually performed by either dis-
cretising the continuous workspace [22, 88] or ignoring a portion of the model [242, 262].
However, the difficulty remains in finding the correct set of intrinsic parameters to ensure
the accuracy of the results. Thus, an examination of models with varying complexities is
needed to find the balance between (1) representative modelling of human anatomy and
physiology, and (2) functional outcomes for multi-model implementations for personalised

robotic assessment and assistance during pHRI.

A similar investigation into model complexity is also needed from the perspective of prob-
abilistic techniques. While probabilistic distributions offer a variety of options for per-
sonalisation, the difficulty in contextualising the posterior predictive distribution indicates
that a hybrid approach, like that of pHRIP, is appropriate. The sensitivity analysis would
be on the underlying framework to simplify robotic trajectories/control and provide ro-
bust robotic assistance during pHRI. Furthermore, there is a need to examine how to
best utilise the data collected during interactions. This includes a look at assessing the
user from multiple models with the same data, such as using interaction forces and limb

kinematics to assess endpoint impedance, grip strength, and user intent.

Future work exploring this balance will be difficult since the level of flexibility for person-
alisation required will be dependent on the application. Giving too little flexibility during
personalisation will lead to less ability to capture unique variations for the human user,
while too much flexibility will require some form of contextualisation for the captured dis-
tribution. One other aspect to consider for personalised robotic assessment and assistance

during pHRI is the user experience and their opinions during interactions.






Appendix A

Musculoskeletal Model

Parameters and Modifications

The original upper limb musculoskeletal model for the studies and experiments presented
in Chapter 5 consists of 15 DoF with 50 MTU models [291], with the model representing

the upper limb including the extremities.

A.1 DModifications for Preliminary Validation

For the preliminary validation, a reduction in complexity of the model is performed by
removing or ignoring MTUs and joints which controlled and represented the extremities.
MTUs which did not produce torque around the shoulder and elbow joints were ignored
in the calculations. Further reductions of complexities were conducted and are detailed in
Section 5.1.2. These simplifications were performed to reduce computation time for the
static optimisation considering the number of frames to be calculated during the validation

study.
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TABLE A.1: The list of generalised coordinates in the upper limb musculoskeletal model
used and ignored for the preliminary validation (Section 5.1).

Coordinate Name | Utilised in Model?
elv_angle Yes
shoulder_elv Yes
shoulder_rot Yes
elbow _flexion Yes
pro_sup Yes
deviation Yes
flexion Yes
cme_flexion No
cmc_abduction No
mp_flexion No
ip_flexion No
2mcep_flexion No
2mcp_abduction No
2pm_flexion No
2md_flexion No

TABLE A.2: The list of muscle tendon units in the upper limb musculoskeletal model
ignored for the preliminary validation (Section 5.1).

MTU Acronym | Name

PQ Pronator Quadratus
FDSM Flexor Digitorum Superficialis (Median)
FDSL Flexor Digitorum Superficialis (Left)
FDPL Flexor Digitorum Profundus (Left)
FDPM Flexor Digitorum Profundus (Median)
FDPR Flexor Digitorum Profundus (Right)
FDPI Flexor Digitorum Profundus (Interphalangeal)

EIP Extensor Indicis Proprius

EPL Extensor Pollicis Longus

EPB Extensor Pollicis Brevis

FPL Flexor Pollicis Longus

APL Abductor Pollicis Longus
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TABLE A.3: The list of muscle tendon units in the upper limb musculoskeletal model

utilised for the preliminary validation (Section 5.1).

MTU Acronym

Name

DELT1
DELT?2
DELT3
SUPSP
INFSP
SUBSC
TMIN
TMAJ
PECM1
PECM2
PECMS3
LAT1
LAT?2
LAT3
CORB
TRIlong
TRIlat
TRImed
ANC
BIClong
BICshort
BRA
BRD
ECRL
ECRB
ECU
FCR
FCU
PL
PT
FDSL
FDSR
EDCL
EDCR
EDCM
EDCI
EDM

Anterior Deltoid

Acromial Deltoid

Posterior Deltoid

Supraspinatus

Infraspinatus

Subscapularis

Teres Minor

Teres Major

Pectoralis Major (Clavicle)

Pectoralis Major (Sternum)

Pectoralis Major (Ribs)

Latissimus Dorsi Tvert

Latissimus Dorsi Lvert

Latissimus Dorsi Iliac
Coracobrachialis

Triceps Brachii Long

Triceps Brachii Lateral

Triceps Brachii Medial

Anconeus

Biceps Brachii Long

Biceps Brachii Short

Brachialis

Brachioradialis

Extensor Carpi Radialis Longus
Extensor Carpi Radialis Brevis
Extensor Carpi Ulnaris

Flexor Carpi Radialis

Flexor Carpi Ulnaris

Palmaris Longus

Pronator Teres

Flexor Digitorum Superficialis (Left)
Flexor Digitorum Superficialis (Right)
Extensor Digitorum Communis (Left)
Extensor Digitorum Communis (Right)
Extensor Digitorum Communis (Medial)
Extensor Digitorum Communis (Interphalangeal)
Extensor Digiti Minimi
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A.2 Modifications for Grip Strength Model

For the comparisons using the grip strength model, the complexity of the model is re-
duced by ignoring the MTUs and joints which controlled and represent the extremities.
Torques produced in the wrist joint are taken into account during calculations and further
reductions in the computations during static optimisation are detailed in Section 5.3.6. In
particular, compared to the modifications performed for the preliminary validation, the
MTUs that contribute to grip force generation are included.

TABLE A.4: The list of generalised coordinates in the upper limb musculoskeletal model
used and ignored for the grip strength model validation (Section 5.2).

Coordinate Name | Used in Model?
elv_angle Yes
shoulder_elv Yes
shoulder_rot Yes
elbow _flexion Yes
pro_sup No
deviation No
flexion No
cme_flexion No
cmc_abduction No
mp_flexion No
ip_flexion No
2mcp_flexion No
2mcp_abduction No
2pm_flexion No
2md_flexion No

TABLE A.5: The list of muscle tendon units in the upper limb musculoskeletal model
ignored for the grip strength model validation (Section 5.2).

MTU Acronym | Name
PL Palmaris Longus
PT Pronator Teres
PQ Pronator Quadratus
EPL Extensor Pollicis Longus
EPB Extensor Pollicis Brevis
FPL Flexor Pollicis Longus
APL Abductor Pollicis Longus
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TABLE A.6: The list of muscle tendon units in the upper limb musculoskeletal model

utilised for the grip strength model validation (Section 5.2).

MTU Acronym

Name

DELT1
DELT?2
DELT3
SUPSP
INFSP
SUBSC
TMIN
TMAJ
PECM1
PECM2
PECM3
LAT1
LAT2
LAT3
CORB
TRIlong
TRIlat
TRImed
ANC
BIClong
BICshort
BRA
BRD
ECRL
ECRB
ECU
FCR
FCU
FDSL
FDSM
FDSR
FDPL
FDPM
FDPR
FDPI
EIP
EDCL
EDCR
EDCM
EDCI
EDM

Anterior Deltoid

Acromial Deltoid

Posterior Deltoid

Supraspinatus

Infraspinatus

Subscapularis

Teres Minor

Teres Major

Pectoralis Major (Clavicle)

Pectoralis Major (Sternum)

Pectoralis Major (Ribs)

Latissimus Dorsi Tvert

Latissimus Dorsi Lvert

Latissimus Dorsi Iliac

Coracobrachialis

Triceps Brachii Long

Triceps Brachii Lateral

Triceps Brachii Medial

Anconeus

Biceps Brachii Long

Biceps Brachii Short

Brachialis

Brachioradialis

Extensor Carpi Radialis Longus

Extensor Carpi Radialis Brevis

Extensor Carpi Ulnaris

Flexor Carpi Radialis

Flexor Carpi Ulnaris

Flexor Digitorum Superficialis (Left)

Flexor Digitorum Superficialis (Medial)
Flexor Digitorum Superficialis (Right)

Flexor Digitorum Profundus (Left)

Flexor Digitorum Profundus (Median)

Flexor Digitorum Profundus (Right)

Flexor Digitorum Profundus (Interphalangeal)
Extensor Indicis Proprius
Extensor Digitorum Communis
Extensor Digitorum Communis
Extensor Digitorum Communis
Extensor Digitorum Communis
Extensor Digiti Minimi

Left)

Right)

Medial)
Interphalangeal)

N N N







Appendix B

Bayesian Committee Machine
(BCM)

Addressing the roadblocks for implementing GP will improve its ability to provide concise
and contextualised results to personalise the assessment of the end user. One such problem
for GPs is the computational cost of inference, O(N?3) for N training samples, which scales

poorly as the number of training samples increase.

The Bayesian Committee Machine (BCM) [278] is an ensemble extension for Gaussian
Process to alleviate computational bottlenecks when performing inference. For N training
samples, the computational complexity for GP is O(N?), which scales poorly as the number

of training samples increase.

BCM tackles this issue by breaking down the training data set into M equally sized data
sets, DY+M building models for each D?, where the number of data, n < N, and then

combining their estimates. Note that a BCM is built for each dimension of y. Given
P(y*|D'™", D) o P(y")P(D"!|y*) P(D'|D'™ 1, "), (B.1)

and the approximation,
P(D'|D™ !, y*) ~ P(D', y"), (B-2)

Bayes’ rule then yields,

P(y*|D'" 1) P(y*| DY)
P(y*)

P(y*|D"*,D") = Q x : (B.3)
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where @ is a constant. The resultant predictive distribution is then approximated by:

I PriD)

p(y*|D1’7M) = Q P(y*)M_l

(B.4)

From M GP inferences, N(u;,07) at z*, a prediction for the overall §* = N (i*,52%) can
be obtained:

M
pf=C"1x 20;2“1" (B.5)
=1

B.1 Experiment

Experiments were conducted to evaluate the performance of Gaussian Process-Bayesian
Committee Machine (GP-BCM) through two variants, offline-trained and online learning,
and are compared against standalone GP models. For both variants, the data subset size
is explored to evaluate its effects on both computation time and estimation error. This
experiment was contextualised for inferring the node locations of a Deformable Linear

Object (DLO) during occlusions.

The complexity of describing a DLO in Cartesian space makes it prohibitive for conven-
tional GP modelling. Rather than mapping the incoming points in a latent space [332] to

reduce the dimensionality, the geometric properties of DLOs are utilised instead.

FIGURE B.1: A Deformable Linear Object (DLO) handled by two robotic manipulators.
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Here the DLO is assumed to be hanging freely and subject to no other external forces
besides gravity. Additionally, the DLO is taken as a series of nodes equally spaced along
its length. As the DLO is inherently planar in this scenario, Figure B.2 shows how the

structure can be defined as a series of angular offsets, «, between adjacent nodes.

Since the input for the GP models are based on angular representation, the possibility
of multiple training targets around a specific input is high. A major effect is the under-
fitting of inferences resulting in both erroneous and irrelevant estimates. Furthermore,
training times would be expected to increase due to the complexity of the hyper-parameter
optimisation, undermining the benefits of lower computation complexity. To address this,
training data was binned to yield a target mean and uncertainty for each discretised
query. For all models, hyper-parameter optimisation was performed using Differential
Evolution (DE) [143].

F1GURE B.2: Representation of the angular offsets between adjacent nodes along the
DLO.

The inference objective is defined as o = {a1, g, ...,a,_1}" for n physical nodes. Two
GP-BCMs are built, accumulating data over time to model « as a function of its neigh-

bours, incorporating the ascending and descending uncertainty from both GP-BCMs; i.e.

a; = g(ai—1, tit1).

For clarity, here the index, ¢ is dropped. From either of the BCM’s estimates (Eqn. B.5)
of the first a in a sequence of several consecutive missing « values, the mean py and its
associated standard deviation, oy is obtained. This procedure is repeated on the other

BCM to obtain y4 and o4. An estimate of the next a’s mean is simply jiy = f(uy). Then,



128 Appendiz B. Bayesian Committee Machine (BCM)

from

(v, o) = flpg — o), (B.6)
(bubs o) = fpg + 0y), (B.7)

we approximate a bound for its ascending and descending uncertainties, 045 and ogesc as,

Oase = (fub + oup) — (tup — o), (B.8)
Odese = (b + o) — (fub — Oup), (B.9)
. 1
of~ 3 x max(|oasc|, |Tdese]|)- (B.10)

fiy and 0y are then propagated in the same manner for the remaining « in the missing
sequence. Although faster than the exact analytical solution [133], this approximation
assumes that 6/, remains reasonably constrained and that the latent BCM functions
are not saddle points at fi;/,. As the two GP-BCMs infer inwards towards the center
of the hanging DLO from opposite ends, propagated uncertainties are softened through
weights based on each GP-BCM'’s variance. Low variance estimates are prioritised and
favoured, providing improved confidence in the weighted estimates. These estimates are
not included in the BCM’s GP model generation, satisfying the assumption that variances

are reasonably constrained.

From this, the estimated angle, &, can be obtained from predictions, (/if, 6;), (frg, 6’3) and

2

weights, wy = 6;2, wy =0, ° as,

(1 (1 1
a:/\/<wf“f+w9“9, > (B.11)
W§ + Wy W§ + Wy

B.1.1 Setup

One end of the DLO was manipulated, while the other end was affixed to a robot endpoint.
A representative image of this scenario is shown in Figure B.1. When collecting data for
experiments, all nodes are visible to serve as an occlusion-free ground truth for error
calculations. Occlusions are simulated by intentional omission of o measurements along
a middle portion of the DLO, varying from no occlusions to 3 node occlusions. Such
occlusions account for 25% of all data collected and simulate the natural occurrence of
occlusions as illustrated by the sequence in Figure B.3. The number of training samples

for each GP was varied to evaluate the estimate accuracy.
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The experiments were conducted based on 4 collected data sets. The data sets vary in

length from 401 to 743 unique frames, each with 5 a measurements. The size of the data

subset was explored ranging from 200 to 600 samples per GP model. Experiments were
conducted on a machine with an Intel Core i7-7700@3.60GHzx8 CPU, 16GB RAM, and
a Nvidia GeForce GTX 970 GPU.

(A) (B) ()

F1GURE B.3: The omission of & measurements simulate this sequence of occurrence where
the data set has: (a) no occlusions, (B) one node occlusion, and (c) three node occlusions.

B.1.2 Offline-trained GP-BCM
The offline-trained GP-BCM approach yields a BCM with M GPs of n training samples:

Qim = gm (-1, ¥it1), (B.12)
aij = gjai-1, i), (B.13)

where m,j < M. The multiple underlying GPs in the BCM can mitigate the effects of
noisy training data due to the weight-based estimations. However, we expect the noise
filtering effect to eliminate any features present in the test data. The expected total

training cost of this variant of GP-BCM reduces to M x n3 < N3 where n < N.

B.1.3 Online GP-BCM

The online GP-BCM starts with no data samples and accumulates each subset over time.
Once the accumulated data samples exceeds a maximum subset size, a GP model is trained
utilising the latest set of data. After more than one model has been trained, the framework
will commence estimation of occluded « as they occur. Visible data is then used to build

the subsequent GP models within the BCM, providing continuous estimation and training.

Noisy input data can be expected to be filtered out as more underlying GP models are

built, lowering the sensitivity of the estimates to noise. Similar to the offline GP-BCM
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variant, as more underlying models are built over time, local features will be dissipated

unless explicitly recovered.

B.2 Results

The efficacy of BCM is assessed based on the predictive accuracy of the DLOs, using the
RMSE between the inferred nodes and the ground truth, and computation complexity,
using training and running time. Further analysis looks at the training and runtime
efficiency of the BCM using the s/GP measure. As the data is binned prior to GP model
creation, the training time is capped to the number of bins. This processing step is required
as demonstrated by Table B.1 where the number of samples is non-linearly proportional

to the training time required for a conventional GP using unbinned data.

TABLE B.1: Total time (in seconds) for conventional offline and unbinned GP.

Dataset 1 2 3 4
No. samples 2005 2685 3715 3655
Training Time 300.49 530.52 1298.8 1223.1
Run Time 0.0394 0.0423 0.0474 0.0504
Efficiency (s/sample) || 0.1499 0.1976 0.3496 0.3347

The comparison for total time taken (Training Time + Run Time) is evident when com-
pared against the results presented in Table B.2 where the longest time taken is 36.07s.
Furthermore, we observe that the two GP-BCM variants have similar efficiency. We do
note that online GP-BCM has a marginally lower efficiency when compared to offline
GP-BCM. However, the training time required for online GP-BCM is significantly lower.
The online GP-BCM variant also allows continuous inference of « while training new
models, providing scalability for applications.

TABLE B.2: Total time taken, in seconds (s), for the offline and online variants of GP-
BCM to perform inference in data set 1 (2005 samples).

GP-BCM | No. samples .. . . .
Variant per GP No. GPs | Training Time | Run Time | Efficiency (s/GP)
200 10 35.9875 0.0828 3.60703
Offline 400 ) 17.9483 0.0569 3.60104
600 3 10.9066 0.0577 3.65477
200 4 3.7616 11.0546 3.70405
Online 400 2 3.7548 3.7545 3.75465
600 1 3.7451 0.0591 3.8042
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TABLE B.3: Root Mean Square Error from experiment results conducted with GP-BCM
variants and offline-trained GP, and Sum of Squared Errors of each variant for all datasets.

RMSE Online GP-BCM Offline GP-BCM
No. Samples No. Samples GP

(rads) | 200 300 400 500 600 | 200 300 400 500 600
Dataset 1 (401 sample frames)
Qs 0.19 0.15 0.17 0.19 0.17 | 066 049 035 0.92 0.19 | 0.08
Qs 032 030 032 033 032 07 121 067 139 0.89 |0.19
ay 032 025 026 056 031 | 060 120 0.73 0.31 1.05 | 0.22
as 0.11 0.13 0.11 0.117 0.10 | 0.7 0.41 0.08 0.09 0.55 | 0.11
SSE | 0.25 0.19 021 047 0.24 | 1.68 331 1.11 288 2.22|0.10
Dataset 2 (537 sample frames)
Qs 0.01 0.02 0.001 0.01 0.01 | 274 298 355 1.68 0.87 |0.02
a3 0.06 0.09 0.05 004 0.04 ] 192 273 289 1.50 0.70 | 0.05
ay 0.30 0.36 0.03 0.04 0.02| 038 043 0.38 0.33 0.53 | 0.06
as 3.01 099 024 026 0.17 | 021 0.15 0.13 0.15 0.25 | 0.03
SSE | 9.16 1.13 0.06 0.07 0.03] 114 165 21.1 5.20 1.59 | 0.01
Dataset 3 (743 sample frames)
o9 0.09 0.05 0.05 0.07 0.11 | 1.61 045 0.10 0.17 0.61 | 0.05
a3 0.26 025 028 025 023 ] 197 287 052 0.26 0.77 | 0.15
ay 466 0.66 047 095 045 | 200 170 0.79 1.19 1.85 |0.19
as 0.24 022 0.16 005 038 | 0.65 0.77 098 1.03 1.35 | 0.08
SSE | 21.8 0.55 0.32 098 041 | 10.89 11.92 1.87 256 6.22 | 0.07
Dataset 4 (731 sample frames)
a2 0.20 020 0.20 0.18 0.20 | 049 0.65 0.21 0.22 0.27 | 0.15
Qs 0.18 028 0.20 0.18 0.22 | 057 0.8 037 0.29 0.70 | 0.14
ay 0.65 128 045 0.18 0.15| 039 095 035 0.53 1.04 |0.17
as 0.18 0.27 0.18 0.19 0.19 | 0.56 0.63 041 0.46 0.60 | 0.15
SSE | 052 1.83 031 0.13 0.15 | 1.04 206 0.47 0.62 1.99 | 0.09

Given that there are 3 occluded nodes in the data set (requiring 4 « inferences), an
overall metric is required to evaluate the different variants within GP-BCM. The Sum of
Squared Errors (SSE) is chosen to evaluate each variant’s sensitivity to outliers due to the
quadratic nature of the error metric, similar to RMSE. SSE’s sensitivity to outlier data
forms a biased metric against outliers, making it optimal for the application since large

inference errors can adversely affect subsequent analysis when interacting with a DLO.

From the results shown in Table B.3, we can see that the online GP-BCM variant is
comparable in performance to conventional GP. The sample sizes which produced the
best result for online and offline GP-BCM were bolded, identifying a key characteristic
of GP-BCM. We can see that the GP sample size affects the ability for the underlying

GPs to provide accurate estimates as small sample sizes can potentially have a smaller
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range of training inputs, causing the model to be overconfident on incorrect estimates. A
representative example of this phenomenon can be seen in data set 2 for offline GP-BCM

where a9 and a3 were consistently inaccurate when compared against a4 and as.

The overall results of the framework were worse off in data sets 3 and 4 due to the feature-
rich nature of the data set itself. A noticeable dissipation of features within the data set can
be seen when the number of samples per sub-model decreases. However, the preservation
of local features can be seen when the number of models reaches a moderate value. In
contrast to the feature-rich data sets 3 & 4, the GP-BCM performed well when compared

to conventional GP with the feature-sparse data sets 1 & 2 as seen in Figure B.4.

Further investigation into highly erroneous outputs observed for the offline variants in-
dicate that the underlying models for those data sets had the least variance due to in-
sufficient training data. This skewed the resultant output since that overconfident GP
ensemble member, with inaccurate regression inferences, was strongly weighted. On the
other hand, the ability for GP-BCM to capture and integrate local features and trends with
prior online data provides a distinct advantage over standalone GPs. Furthermore, the
uncertainties attached to the resultant output distribution provides data-rich information

for subsequent frameworks without additional overheads.
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FIGURE B.4: The results of a3 node from: (a) raw dataset; (8) the 200 sample size

online GP-BCM,; (c) the 600 sample size online GP-BCM. In (a), local features are filtered

through the 4 (at the time of inference) underlying GP models built. The 95% confidence

interval is indicated by the shaded region. In contrast, (c) highlights the preservation of
local features leading to better results for as node for the data set.






Appendix C

Longest Warping Subsequence
(LWSS)

The Longest Warping Subsequence (LWSS) score was developed to work in tandem with
the RMSE to distinguish between outliers and systematic changes. Given two multi-
dimensional data sets, conventional comparison methods compute a single scalar metric
of similarity between the two data sets. Common methods include the paired t-test,
RMSE, and the Auto-regressive Moving Average. For a path following task, commonly
seen in rehabilitation, these methods do not indicate when and where the divergence

occurs, making it difficult to extract relevant information.

Time-series Dataset 2 Time-series Dataset 2

Time-series Dataset 1
Time-series Dataset 1

(A) (B)

FIGURE C.1: A comparison of the warping path between two time-series data sets: (a)

two near-identical data sets produce a near-diagonal warping path representing a 1-to-1

match between the data samples; and (B) two distinctly different data sets will cause long
sequences in the warping path indicating its inability to find data sample matches.
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Dynamic Time Warping [199] provides a distance metric and a warping path, describing
how data samples are matched, using one data set as a reference. Thus, change detection
is possible using the longest sequence in the warping matrix. A long sequence, as shown

in Figure C.1(z), indicates a region of change.
The LWSS is the ratio of the longest sequence normalised to the data set sizes:

Lmax Y
LWSS(w, 2) = — "X Lmas(t0,2)

, C.1
m X argmax size(w, z) (G-1)
where w is a (n x D) data set, z is a (m x D) data set, and L, is the longest sequence

within the warping matrix.

In scenarios where two data sets are discordant, ascertaining the magnitude of the differ-
ence is challenging with the warping path. Thus, RMSE can be used as a complementary
measure of the difference between the two data sets. When a changed path is detected, a
buffer, W is initialised to accumulate subsequent test paths. The buffer looks for changes

in a window of test paths, using the RMSE and the LWSS ratio as follows:

A
gW,e)=>" {RMSE(wa, ze) X LW S8 (wg, zc)}, (C.2)
a=1
where A is the number of accumulated test paths and z is the model of the trained path

for class c.

When the joint RMSE-LWSS score, g(W, ¢), is consistently less than a specified threshold,
the presented input is treated as an outlier. Conversely, when the RMSE-LWSS score
is over the previous threshold, the presented input is assumed to be novel, providing an

opportunity to create a separate model or ignoring the specific input.

C.1 Experiment

An experiment was conducted to investigate the performance of the Longest Warping
Subsequence (LWSS) score and to compare against GP classification. Twenty-five healthy
participants were asked to interact with a 7 Degree-of-Freedom (DoF') robotic manipulator
(HAHN Rethink Robotics, Rheinbollen, Germany) with a bespoke handle affixed to the
robot endpoint. The robot arm was programmed to enter a XY-plane constrained zero-g
mode native to the Rethink Robotics’ Intera SDK. Participants were asked to follow the

path displayed on a screen. The relative position of the robot endpoint is presented in the
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F1GURE C.2: The setup for the Sawyer manipulator, constrained to the X-Y plane with
gravity compensation, and the target path shown on the screen.

screen as seen in Figure. C.2. Notably, in this experiment, only the task-centric endpoint

position data from the robotic arm was recorded.

Participants were asked to perform the path following task on a total of 6 unique paths.
These included 4 original paths for training a Gaussian Process model, and 2 different paths
which represent outliers and systematic changes (This compensatory behaviour results
in paths that deviates from the original tracks, and completely different track profile
indicating dysfunction). In total, 100 trajectories were collected, of which 60 were used for
training the GP model, 20 were used to validate the generated model, and 20 were used

for testing (all trajectories with the 2 different paths are in this data subset).

Since participants completed the task with different velocity profiles, the data was tem-
porally aligned and normalised to facilitate the generation of the time-series GP model.
The data is embedded in a multivariate environment. Thus, a multi-dimensional DTW
algorithm [286] was used to warp the data sets, with the data sets z-normalised to follow

the algorithm’s recommendation.

A covariance matrix of the DTW distances between the training data sets was created
and averaged to determine the reference data set for each path during DTW. The warped
paths are then temporally standardised and used to train a Gaussian Process model to

generalise the optimal path and classify future input paths.
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C.2 Results

The paths performed by the participants are indicated as Paths 1-4. The 15-participant
training data set produced a GP model for each of the original 4 paths (with one seen in
Figure C.3). The 5-participant holdout set used the original paths, while the 5-participant
test set was obtained from 2 original paths, 1 modified path, and 1 novel path. All data
sets were temporally normalised to 200 samples through linear interpolation. Each of the
4 GP models in the training data set was then trained on a GP Laplace Approximation

classifier in a one-vs.-rest fashion.

) GP Model for Path 100 Y-axis for GP Model

11 75

0r g 50
i

-1 | 25

_2 E, . . 0 -2 t . . . . ,

-2 0 2 20 40 60 80 100
(A) (B)
X-axis for GP Model o

End

20 40 60 80 100
() (D)

FIGURE C.3: The time-series GP model built for classification based on the data sets for
the path shown in the bottom right.

To avoid class imbalance, training samples were reduced to keep a 1:1 ratio of positive and
negative training samples. The holdout set was tested against the classification models
built to confirm the validity of the trained classifier. During data processing, one of the

data sets in the holdout set was found to be erroneous, since it only consisted of half a
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TABLE C.1: The posterior probabilities from the GP classification and RMSE-LWSS
score from the holdout set.

Path Mean Class Posterior Probabilities
No. Class 1 Class 2 Class 3 Class 4
1 0.69 0.16 0.26 0.27
2 0.27 0.79 0.18 0.22
3 0.28 0.18 0.73 0.31
4 0.37 0.30 0.34 0.72

Mean RMSE-LWSS Score
1 0.002 0.238 0.096 0.068
2 0.534 0.004 0.145 0.037
3 0.116 0.121 0.001 0.016
4 0.143 0.053 0.016 0.002

second’s worth of data, and was thus discarded. The results from the holdout set are

shown in Table C.1 along with the calculated RMSE-LWSS score for comparison.

In the 5-participant test data set, Paths 1 & 2 are identical to the learned models (Class

TABLE C.2: The mean posterior probabilities, RMSE-LWSS score, RMSE, and LWSS
score of each class/path in the testing data set.

Path Mean Class Posterior Probabilities
No. Class 1 Class 2 Class 3 Class 4
1 0.797 0.229 0.352 0.357
2 0.202 0.812 0.259 0.297
3 0.240 0.185 0.509 0.405
4 0.256 0.268 0.456 0.493

Mean RMSE-LWSS Score
1 0.004 0.271 0.021 0.108
2 0.114 0.003 0.133 0.212
3 0.042 0.153 0.023 0.034
4 0.018 0.048 0.051 0.068
Mean RMSE
1 0.164 1.002 0.137 0.428
2 0.856 0.156 0.974 1.265
3 0.214 1.123 0.178 0.278
4 0.114 0.897 0.280 0.413
Mean LWSS
1 0.025 0.272 0.180 0.246
2 0.133 0.018 0.136 0.167
3 0.193 0.136 0.130 0.115
4 0.155 0.053 0.184 0.162
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TABLE C.3: The GP Laplace Approximation classification posterior probabilities for z-
normalised and raw data, along with position only data and force-inclusive position data.

Path Mean Class Posterior Probabilities
No. Class 1 \ Class 2 \ Class 3 \ Class 4
Z-normalised Position Data

1 0.80 0.23 0.35 0.36
2 0.20 0.81 0.26 0.30
3 0.24 0.18 0.51 0.41
4 0.26 0.27 0.46 0.49
Z-normalised Position & Force Data

1 0.87 0.21 0.40 0.32
2 0.21 0.88 0.38 0.31
3 0.28 0.14 0.44 0.51
4 0.31 0.28 0.42 0.41

Raw Position Data
1 0.77 0.20 0.36 0.41
2 0.23 0.82 0.25 0.35
3 0.28 0.27 0.56 0.44
4 0.32 0.38 0.44 0.43
Raw Position & Force Data

1 0.85 0.50 0.33 0.28
2 0.41 0.86 0.30 0.21
3 0.59 0.44 0.58 0.49
4 0.55 0.56 0.55 0.56

1 & 2), Path 3 is a modified path of Class 3, and Path 4 is a novel path which has
not been seen by any of the GP classifiers. The posterior probabilities from the Laplace
Approximation classification and the RMSE-LWSS scores is presented in Table C.2 with
the best results highlighted in bold. The component measures of mean RMSE and mean
LWSS score are also presented in the table.

C.3 Discussion

The results indicate that an experimental threshold of 0.01 is sufficient to identify input
paths which are outliers or novel paths. Looking into the individual component scores, the
RMSE and the LWSS, can provide the distinction between the two. The outlier (modified)
path is distinguishable by the combination of low RMSE and high RMSE-LWSS score,
while the novel path is identified by a high score for both RMSE-LWSS and LWSS.
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To explore the efficiency of data utilisation, additional post-hoc analysis was conducted
to determine if the use of all available data would improve the functional use of the
LWSS score. An additional set of binary GP classifiers was built using both position and
endpoint force data derived from the robot joint torques. The results are tabulated in
Table C.3. While the inclusion of force data mildly improved the classifier’s confidence for
known paths, its inclusion is highly detrimental to the results for the outlier (modified)
and novel paths. It also provides no insight when compared against results obtained from

the position only GP classifiers.

One aspect which did affect the performance of the LWSS score is the z-normalisation of
all data, as recommended by authors for the multi-dimensional [286]. Z-normalising the
data provides properties of size-invariance and robustness which outweighs the benefits
of using raw data. This difference in the representations is clearly seen in Figure C.4.
Furthermore, the normalisation of data will provide a more agnostic approach towards the

integration of RMSE-LWSS score in robotic systems for assessments and assistance.
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FicURE C.4: Two contour plots comparing how data representation can affect the pos-
terior probabilities from the learning model: (a) using z-normalised data; and (8) using
raw data.
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