

Novel customisable phases for micro solid-phase extraction and automated biological sample preparation

by Karen Duong

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Distinguished Professor Philip Doble, Dr David Bishop and Dr Raquel Gonzalez de Vega.

University of Technology Sydney Faculty of Science

August 2021

Certificate of authorship and originality

I, Karen Duong declare that this thesis, is submitted in fulfilment of the requirements for the

award of Doctor of Philosophy, in the School of Mathematical and Physical Sciences at the

University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Production Note:

Signature removed prior to publication.

Date: 30th August 2021

i

Acknowledgements

This thesis wouldn't have been possible without the help and support of many people.

I would like to thank my supervisors, Distinguished Professor Philip Doble, Dr David Bishop and Dr Raquel Gonzalez de Vega for their expertise, great advice, time, and emotional support. They have been instrumental to the success of this project. Dr Raquel Gonzalez de Vega played a significant role and her contributions to this work are greatly appreciated which involved help in performing the final experiments involving the complete automated workflow work with BSA and human serum samples.

Thank you to Peter Dawes, Andrew Minett, Reno Cerra and Mark Wardle at Eprep for the opportunity to work on this project. They have provided countless hours of support. Furthermore, I'd like the express my gratitude to UTS and Eprep for the opportunity to be involved in the Industry Doctorate Program. This targeted PhD program has provided me with invaluable skills and experiences for my career and personal development.

Thank you to Dr David Clases for his assistance with my research project, helping me run instruments, and for offering great support and ideas. I would also like to thank Dr Matt Padula and Joel Steele for their help with proteomics and running samples. Thank you to Dr Ronald Shimmon and Dr Dayanne Bordin for providing great technical services.

I'd like to thank the analytical research group, Mika Westerhausen, Matthew Diplock, Phuc Nguyen, Prashina Singh, Natasha Benson-Jeffrey, Sarah Meyer, Thomas Lockwood and Brooke Mansell for their comradery, support and good times. Would like to thank my peers, Minh Nguyen for being a good lunch buddy and always bringing the best snacks, and Jacqueline Loyola-Echeverria for providing moral support. Thank you to Susan Shimmon and Mahmoud El Safadi for the great times we had in laboratory.

I want to give a huge thanks to my family who encouraged me to finish. They have showed me never-ending love and support, and to them I am so grateful. Thank you to all my friends for your support and words of encouragement. Particularly, a massive thanks to Hue for being there for me through the highs and lows. Finally, I'd like to give my utmost thanks to the LORD God for his providence and guidance over all things.

Abstract

Protein biomarkers play an important role in clinical settings as they serve as measurable indicators for normal or abnormal biological processes. They aid in accelerated disease identification, diagnosis, prognosis, and response to treatments. Recently, mass spectrometry (MS) assays have been introduced as an alternate to the conventionally used immunoassays. MS provides accurate and precise quantification due to its high sensitivity and specificity. However, major challenges lie with sample preparation involving lengthy workflows, limited automation, and challenges related to highly complex biological samples where several techniques are applied.

This thesis aims to improve sample preparation techniques to provide an accurate, rapid, and automated method for protein biomarker quantification using micro-solid-phase extraction (μ SPE) technology through the development of a micro-immobilised-enzyme reactor (IMER) and a μ SPE immunoaffinity cartridge to alleviate sample preparation bottlenecks caused by conventional ~18-hour digestions.

A novel and customisable material was prepared for bio-ligand immobilisation. A hybrid inorganic-organic material using silica modified with carboxymethylated dextran (CMD) was prepared. This material was packed into µSPE cartridges and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) coupling was exploited to immobilise enzymes and antibodies in-situ using a programmable syringe driver allowing for the development of an automated workflow.

Reproducible trypsin digestion was observed using high performance liquid chromatography (HPLC) through the cleavage of N- α -Benzoyl-L-arginine ethyl ester (BAEE). Three model proteins (bovine serum albumin, cytochrome c and thyroglobulin) and a human serum sample were analysed, and compared to conventional in-solution digestion by employing liquid chromatography orbitrap mass spectrometry (LC-OT-MS) and liquid chromatography quadrupole time of flight mass spectrometry (LC-QToF-MS). The IMER facilitated protein digestion within 10 minutes at room temperature and overall, observed lower sequence coverages and number of identified proteins compared to the conventional in solution digestion method at 37°C.

In the same manner as trypsin, anti-BSA was immobilised and BSA isolation was confirmed using size exclusion chromatography hyphenated to triple quadrupole inductively coupled plasma mass spectrometry (SEC-ICP-MS/MS). Whilst immobilisation of anti-BSA was achieved, challenges with low level protein detection were observed.

The immunoaffinity and trypsin μ SPE cartridge were combined into an automated workflow for protein pre-concentration and digestion. Using BSA as the model protein, BSA standards and BSA spiked into human serum samples were subjected to the workflow. BSA extraction and digestion was achieved, however, the complex human serum matrix negatively impacted the BSA isolation compared to neat standards. Further investigation and optimisation of the workflow must be performed.

List of Publications and Presentations

Journal Publications

Immunoaffinity extraction followed by enzymatic digestion for the isolation and identification of proteins employing automated μSPE reactors and mass spectrometry (Submitted to Analytical and Bioanalytical Chemistry).

Application Notes

Karen Duong, Simin Maleknia, Andrew Minett, David Bishop, Philip Doble, "µSPEed-Cxyl microreactor cartridges: Trypsin cartridges for digests of bovine serum albumin (BSA)", ePrep Application Note, 2019.

Karen Duong, Philip Doble, "µSPEed recovery curve with 4 nitrotoluene", ePrep Application Note, 2015.

Conference Poster Presentations

Karen Duong, Raquel Gonzalez de Vega, Andrew Minett, David Bishop, Philip Doble, "Immunoaffinity and enzymatic reactor micro-solid-phase extraction cartridges for rapid protein isolation and digest", American Society for Mass Spectrometry Conference, 2019, Atlanta, Georgia, USA.

Karen Duong, Simin Maleknia, Andrew Minett, David Bishop, Philip Doble, "Immobilised enzymes on micro-solid-phase extraction cartridges for automated protein digestion", American Society for Mass Spectrometry Conference, 2018, San Diego, California, USA.

Karen Duong, Simin Maleknia, Andrew Minett, David Bishop, Philip Doble, "Customisable micro-solid-phase extraction for selective binding in biological sample preparation", The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, 2018, Orlando, Florida, USA.

Karen Duong, Simin Maleknia, Andrew Minett, David Bishop, Philip Doble, "Immobilised enzymes on customisable micro-solid-phase extraction cartridges for proteolytic digests in minutes", Lorne Proteomics Symposium, 2018, Lorne, Melbourne, Australia.

Table of Contents

Cert	ificate	of authorship and originality	i
Ackı	nowled	gements	ii
Abs	tract		iii
List	of Pub	lications and Presentations	v
Tabl	e of Co	ontents	vi
		reviations and Acronyms	
		res	
List	of Tabl	les	xvi
Cha	pter 1	Introduction: Protein biomarker quantification for clinical proteom	ics1
1.1	Bioma	arkers for Clinical Proteomics	2
	1.1.1	Protein Biomarker Quantification	3
	1.1.2	Molecular mass spectrometry for the analysis and determination of	potential
		biomarkers	5
	1.1.3	Elemental mass spectrometry for the analysis and determination of	potential
		biomarkers	7
	1.1.4	Sample preparation for biomarker analysis	10
1.2	Solid	Phase Extraction	15
	1.2.1	Miniaturisation, automation, and progression of SPE methods	17
	1.2.2	Customisable material for targeted sample preparation	20
1.3	Projec	ct Aims	30
Cha	pter 2	Customisable support material for biologically selective and au	tomated
sam	ple pre	paration using the ePrep μSPE format	33
2.1	Introd	luction	34
2.2	Exper	imental	37
	2.2.1	Chemicals and Consumables	37
	2.2.2	μSPE method	37

	2.2.3	Development of customisable material for µSPE cartridges	37
2.3	Resul	ts and Discussion	41
2.4	Concl	usion	50
Cha	pter 3	Development of rapid and automated µSPE sample preparation w	orkflows
for	protein	biomarkers	51
3.1	Introd	luction	52
3.2	Exper	imental	55
	3.2.1	Chemicals and Consumables	
	3.2.2	μSPE sample preparation workflow development	55
3.3	Devel	opment of the IMER µSPE cartridge	59
	3.3.1	Instrumentation and parameters for IMER µSPE cartridge	59
	3.3.2	Sample preparation for protein digestion using model proteins and hum	ıan serum
		sample	62
	3.3.3	Results and Discussion	63
3.4	Devel	opment of the immunoaffinity µSPE cartridge	78
	3.4.1	Instrumentation and parameters for immunoaffinity µSPE cartridge	78
	3.4.2	Exogenous labelling of proteins	79
	3.4.3	Antibody immobilisation and Ab-Ag complex formation	80
	3.4.4	Results and Discussion	82
3.5	Comb	oination of the immunoaffinity and IMER μSPE cartridges for an a	utomated
wo	rkflow		89
	3.5.1	μSPE workflow	89
	3.5.2	Results and Discussion	89
3.6	Concl	usion	91
Cha	pter 4	: Overall Conclusions and Future Work	93
D.f.			00

List of Abbreviations and Acronyms

Ab-Ag: antibody-antigen complex

ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

ACN: acetonitrile

AGC: automated gain control

APS: aminopropyl silica

ATR: attenuated total reflectance

BA: N_{α} -Benzoyl-L-arginine

BAEE: N_{α} -benzoyl-L-arginine ethyl ester

BCA: bicinchoninic acid

BEC: background equivalent concentration

BIN: barrel insert and needle

BSA: bovine serum albumin

CID: collision induced dissociation

CMD: carboxymethylated dextran

Cyt c: cytochrome c

CV: coefficient of variation

Da: dalton

DMSPE: dispersive micro-solid-phase extraction

DNA: deoxyribonucleic acid

DSS: disuccinimidyl suberate

DTT: dithiothreitol

EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

ELISA: enzyme-linked immunosorbent assays

ESI: electrospray ionisation

Fab: fragment antigen binding

F_c: fragment crystallisable

FDR: false discovery rate

FI: flow injection

FTIR: Fourier-transform infrared spectroscopy

GC: gas chromatography

HAPs: high abundant proteins

HPLC: high performance liquid chromatography

HRP: horseradish peroxidase

IA: iodoacetamide

IASPE: immunoaffinity-based solid-phase extraction

ICP-MS: inductively coupled plasma mass spectrometry

ID: inside diameter

Ig: immunoglobulin

IMAC: immobilised metal affinity chromatograph

IMER: immobilised enzyme reactor

ITSP: instrument top sample preparation

KHP: potassium hydrogen phthalate

LAPs: low abundant proteins

LC: liquid chromatography

LAC: lectin affinity chromatography

LLE: liquid-liquid extraction

mAb: monoclonal antibody

MALDI: matrix assisted laser desorption/ionisation

MEPS: microextraction by packed sorbents

MES: 2-(N-morpholino)ethanesulfonic acid

MIPs: molecularly imprinted polymers

MISPE: molecularly imprinted solid-phase extraction

MOAC: metal oxide affinity chromatography

MRM: multiple reaction monitoring

MS: mass spectrometry

MS/MS: tandem mass spectrometry

MSPE: magnetic solid-phase extraction

MW: molecular weight

m/z: mass-to-charge ratio

NHS: *N*-hydroxysuccinimide

OAI: oriented antibody immobilisation

OD: outside diameter

OT: orbitrap

pAb: polyclonal antibody

PBS: phosphate buffer saline

PEG: poly(ethylene glycol)

pl: isoelectric point

PIT: pre-immobilised trypsin

PPT: protein precipitation

PRM: parallel reaction monitoring

Q1, Q2, Q3: quadrupole 1, 2 and 3

Q-OT: quadrupole-orbitrap

QQQ: triple quadrupole

RAI: random antibody immobilisation

RNA: ribonucleic acid

SBSE: stir-bar sorptive extraction

SEC: size exclusion chromatography

SPE: solid-phase extraction

SPME: solid-phase microextraction

SPR: surface plasmon resonance

SRM: selected reaction monitoring

TCEP: tris(2-carboxyethyl)phosphine hydrochloride

TPCK: L-1-tosylamide-2-phenylethyl chloromethyl ketone

TIC: total ion chromatogram

ToF: time-of-flight

UV: ultraviolet

UV-Vis: ultraviolet-visible

List of Figures

Figure 1.1: Illustration of a QQQ mass spectrometer with mass filters (Q1, Q3), and collision
cell (Q2) [58]6
Figure 1.2: Protein interactions with porous stationary phases used in SEC [77]8
Figure 1.3: MS/MS mode using an oxygen cell for mass shifting of 32 S (m/z 32) to 32 S16O (m/z
48) [87]9
Figure 1.4: Sample preparation workflow for targeted quantification of protein biomarkers
[101]
Figure 1.5: Bind-elute strategy for SPE [170]17
Figure 1.6: Non-specific interaction between silica surface and proteins. A) electrostation
interaction between negatively charged surface and positively charged residues on the protein,
and B-D) protein deformation due to weak internal cohesion resulting in deformation and
hydrophobic interaction with the silica surface [254]22
Figure 1.7: Immobilisation strategies used for biomolecules (E) [148]24
Figure 1.8: A) Avidin-biotin complex with four binding sites, and B) Bicyclic structure of biotin
with a carbylic acid side chain that can be modified [283]26
Figure 1.9: Antibody immobilisation through intermediate proteins: protein A or G [280] 26
Figure 1.10: Homo- and hetero- bifuncational crosslinkers with reactive groups held by a
spacer arm [291, 292]28
Figure 1.11: EDC activation of a carboxylic group for form an unstable o-acylisourea
intermediate that when reacted with an amine compound, forms an amide bond between the
carboxylate compound and amine compound [295]29
Figure 1.12: Primary amine reacting with the stable NHS ester to form an amide bond [295].
29
Figure 1.13: -SH groups obtained through disulfide bridge reduction [305]30
Figure 2.1: digiVOL® syringe driver used for method development and the press-fit µSPEed
cartridge onto a syringe. The $\mu SPEed$ offers two flow paths where solutions are aspirated
through the one-way valve and dispensed onto the sorbent packing material [314]36
Figure 2.2: ePrep® Sample Preparation Workstation showing sample trays and liquid
dispensing syringes [314]36

Figure 2.3: Methods for non-covalent and covalent immobilsation of HRP onto silica-CMD
cartridges
Figure 2.4: FTIR spectra obtained for starting materials a) APS, b) CMD (red), and the
synthesised material c) silica-CMD
Figure 2.5: Conductometric titration of the blank control with no silica-CMD material 43
Figure 2.6: A) Conductometric titration of silica-CMD prepared from 120 Å material with the
first derivatives for the B) starting and C) end point of the neutralisation of -COOH groups on
the silica-CMD.
Figure 2.7: Conductometric titration of silica-CMD prepared from 300 Å material 47
Figure 2.8: FTIR of 1000 Å APS material following attempted CMD coating47
Figure 2.9: Absorbance of ABTS radical cation at 620 nm using the Thermo Fisher Multiskan
Ascent 96/384 Plate Reader to compare between non-covalent and covalent immobilisation
of HRP onto silica-CMD material
Figure 3.1: Automated $\mu SPEed$ biomarker workflow for both protein immunoaffinity isolation
and digestion
Figure 3.2: Observing the presence of BAEE (4 min) hydrolysis to BA (2 min) by excess non-
covalently bound trypsin in collected salt wash buffer aliquots. A) Chromatogram shows BAEE
hydrolysis following the first salt wash buffer wash and B) a chromatogram showing no
presence of trypsin in subsequent washes64
Figure 3.3: Comparison of two BSA digests (5 μg protein load) using different CaCl ₂
concentrations. Aliquot A1) TIC for BSA digest in running buffer containing 1000 μM CaCl $_2$ and
Aliquot A2) TIC for elution buffer aliquot following the 1000 μM CaCl $_2$ running buffer digest
using 25 mM Tris, 10 mM $CaCl_2$ and 10% ACN showing minimal peptide adsorption. Aliquot
B1) TIC for BSA digest in running buffer containing 500 μM CaCl ₂ and the Aliquot B2) TIC for
elution buffer aliquot following the 500 μM CaCl2 running buffer using 25 mM Tris, 10 mM
$CaCl_2$ and 10% ACN showing peptide adsorption. C) TIC of 50 ng/ μL BSA standard that was
not digested
Figure 3.4: Cyt c adsorption onto a) -COOH glycine end-capped as observed by the red
appearance, and the absence of cyt c adsorption onto b) -OH ethanolamine end-capped
silica-CMD

Figure 3.5: HPLC-UV chromatogram at 254 nm for BAEE (4 min) digestion to BA (2 min) for a
2-minute digest and b) 5-minute digest
Figure 3.6: TICs of cartridge digests of Cyt c with varying protein amounts. A) A 5-minute diges
of 10 μg of Cyt c showing remaining undigested protein whilst B) a 5-minute digest of 1 μg
Cyt c shows no undigested protein69
Figure 3.7: TICs of cartridge digests of BSA with varying protein amounts. A) A 10-minute diges
of 5 μg BSA showing undigested protein whilst B) a 10-minute digest of 1 μg BSA with minima
protein remaining
Figure 3.8: A) and B) show TIC of BSA digest using two trypsin cartridges where 15 pmol o
BSA was loaded with an incubation time of 10 minutes. Analysis was performed using the LC
OT-MS and the resulting injected peptides from 375 fmol of digested protein. C) TIC of a blank
trypsin cartridge digest where running buffer was used
Figure 3.9: Two BSA cartridge digests (top being 61% sequence coverage and bottom 59%)
showing high overlap of protein sequence coverage72
Figure 3.10: Standard calibration curve constructed for BAEE after analysis with HPLC-UV73
Figure 3.11: Number of identified peptides using IMER and in-solution digests for BSA, Cyt
and Tg, and the number of peptides observed across both methods75
Figure 3.12: Protein sequence coverage for the A) overnight and B) cartridge digest of BSA
highlighting the amino acids that were unique to each respective sequence coverage and no
observed in the other
Figure 3.13: Protein sequence coverage for the A) overnight and B) cartridge digest of Cyt of
highlighting the amino acids that were unique to each respective sequence coverage and no
observed in the other
Figure 3.14: Protein sequence coverage for the A) overnight and B) cartridge digest of Tg
highlighting the amino acids that were unique to each respective sequence coverage and no
observed in the other
Figure 3.15: Example of Maxpar™ labelling through maleimide linkages on desired
biomolecule containing free -SH groups [353]80
Figure 3.16: A) Covalent immobilisation of anti-BSA onto silica-CMD and visualisation with
mouse IgG HRP polymer antibody and B) covalent immobilisation of BSA onto silica-CMD fo

complex formation with anti-BSA, and visualisation with mouse IgG HRP polymer antibody.
Figure 3.17: Visualisation of HRP activity with mouse IgG HRP polymer and ABTS substrate for
the confirmation of A) covalent immobilisation of anti-BSA onto silica-CMD as well as the B)
BSA immobilisation followed by complex formation betweeen anti-BSA and BSA, and C) and
D) as their respectivblank controls where no covalent immobilisation was performed using
EDC/NHS83
Figure 3.18: Protein ladder calibration used to calculate MW of the biomolecule using the
retention time using the Agilent Bio SEC-3 column84
Figure 3.19: SEC-ICP-MS/MS analysis using the Agilent Bio SEC-3 column for BSA (black), anti-
BSA (red), and Ab-Ag complex (orange) with corresponding MW calculations using the protein
ladder calibration
Figure 3.20: Chromatographic separation of BSA (S signal, red) and labelled BSA-Er (Er signal,
black) by SEC-ICP-MS/MS analysis using the Waters ACQUITY UPLC Protein BEH SEC 85
Figure 3.21: Chromatograms obtained form the analysis of salt wash buffer aliquots following
BSA sample loading onto an ePrep cartridge and analysed using FI-ICP-MS/MS for detection
of ³² S ¹⁶ O
Figure 3.22: Chromatograms obtained from the analysis of salt wash buffer aliquots following
BSA-Er sample loading onto an ePrep cartridge and analysed using FI-ICP-MS/MS for
detection of ¹⁶⁶ Er
Figure 3.23: Analysis of eluted sample following immunoaffinity extraction of BSA with an anti-
BSA ePrep cartridge. Sample was analysed using SEC-ICP-MS/MS for detection of ³² S ¹⁶ O 88
Figure 3.24: Analysis of eluted sample following immunoaffinity extraction of BSA with an anti-
BSA ePrep cartridge. Sample was analysed using FI-ICP-MS/MS for detection of ³² S ¹⁶ O 88
Figure 3.25: BSA protein coverage (26%) obtained by LC-OT-MS of the spiked human sample
after protein isolation followed by tryptic digestion90

List of Tables

Table 1.1: Enzyme immobilisation techniques and their advantages and disadvantages [148].
24
Table 2.1: Calculated mmol of -COOH groups per gram of customised silica-CMD material for
n=7 batches
Table 2.2: Relationship between pore size and surface area for APS, and the resulting mmol of
-COOH groups from the synthesis of silica-CMD [327]47
Table 3.1: HPLC conditions for analysis of the trypsin digest of BAEE59
Table 3.2: Analysis conditions for protein digestion on LC-MS instruments
Table 3.3: Two cartridge digestion methods with differing running buffer salt concentrations
followed by an elution buffer to observe for any peptide adsorption to the cartridge as a result.
All aliquots were analysed by LC-QToF-MS65
Table 3.4: Effect of flow rate on BAEE digest whilst ensuring the total incubation for both
digests remain the same
Table 3.5: Calculated BAEE concentration following a 2-minute incubation with six trypsin
cartridges73
Table 3.6: BSA sequence coverages for μ SPE cartridge digest and BSA MS overnight in-solution
digest
Table 3.7: Typical operating conditions for the 8900 ICP-MS/MS78
Table 3.8: SEC calibration for the protein ladder standard used to calculate sample
Table 3.9: Obtained BSA protein coverage after immunoaffinity extraction followed by tryptic
digestion using three affinity cartridge twice90