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ABSTRACT

Efficient Solution Methods for Just-In-Time Machine and Shop

Scheduling Problems

by

Mohammad Mahdi Ahmadian

The classical machine (i.e. single and parallel machine) and shop scheduling

(i.e. flow-shop, job-shop and open-shop) problems are concerned with performing

a set of independent jobs on a given set of machines with or without precedence

relations. This thesis explores variants of such problems, pertinent to the practice

of Just-In-Time (JIT) manufacturing, where each job (operation) has a due date

(or due window) and any deviation from it would incur either earliness or tardi-

ness costs. Embracing JIT philosophy by companies (by discouraging late delivery

and reducing warehousing and inventory costs), and their dire need for developing

more realistic scheduling models have led to a growing body of research on earliness-

tardiness minimization since the late 1970s. Yet, most studies have been devoted

to single machine scheduling problems, and very little research has been conducted

to address the multiple-machine or shop scheduling settings. Moreover, the current

solution methodologies often fail to deliver quality solutions for these problems par-

ticularly as the size of instances grows. Therefore, this PhD thesis will contribute to

developing efficient algorithms that are capable of obtaining high quality solutions

for computationally challenging instances. In addition, we contribute to the existing

approaches by integrating exact and heuristic algorithms to maximize the benefits

associated with them.

Dissertation directed by Dr. Amir Salehipour

School of Mathematical and Physical Sciences
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Chapter 1

Introduction

1.1 Background

The relentless pursuit of organizations to increase market share has led to the

meticulous study of internal processes often aiming at elimination of waste and

enhancing productivity. In most cases such processes are identified by applying op-

erations management (OM) practices and those adding no or little value are either

eliminated or redesigned. Indeed this continual improvement of processes gained

by OM allows companies to maintain competitive advantage. “Scheduling” as one

of the major areas of OM plays a crucial role in fulfillment of such goals. It is

concerned with determining and implementing intermediate- to short-term sched-

ules that effectively utilize both personnel and facilities/resources while meeting

customer demands (Heizer and Render, 2013). Sarin and Lefoka (1993) define man-

ufacturing scheduling as “allocation of manufacturing resources to various jobs over

time to best satisfy some criterion”. Thanks to rigorous schedules, companies can

have a better picture of tasks, recognize bottlenecks and handle them more efficiently

to attain smoother production flow.

Just-In-Time (JIT) is a production and inventory control system aiming at reduc-

ing inventory costs by purchasing materials or manufacturing products only when

they are needed. Developed by Toyota (Monden, 2011), JIT philosophy has signifi-

cantly contributed to cost reduction and performance improvement in many manu-

facturing systems (Oliver, 1991). It attempts to address important issues including

customer satisfaction. In addition to lower inventory, JIT systems may offer other

benefits to companies such as reduced lot sizes, improved quality, enhanced moti-

vation, and increased flexibility (McLachlin, 1997). These advantages have encour-

aged many companies to adopt JIT, including two-thirds of American manufacturers

(Gao, 2018).
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To adopt JIT, businesses need to look into a wide range of operations. For

instance successful JIT production often requires effective JIT procurement. As a

result the study of transportation operations between the suppliers and the manu-

facturer such as outbound deliveries and inbound shipments are of high importance

(Stank and Crum, 1997). Moreover, although originally proposed for manufactur-

ing systems, the applications of JIT go beyond production companies and being

adapted for other sectors (Canel et al., 2000) including air traffic control (Beasley

et al., 2000) or healthcare (Persona et al., 2008).

Implementing this philosophy has different implications on each area of OM. In

scheduling research, JIT can be reflected by considering some criteria such as the

(weighted) sum of earliness and tardiness. For instance, enhancing customer satisfac-

tion can be partly achieved by reducing avoidable delays. Additionally, minimizing

some function of earliness can contribute to reducing warehousing and inventory

costs. The research on such models can be traced back to the late 1970s (Eilon and

Chowdhury, 1977; Sidney, 1977). However, compared to other performance criteria

(e.g. makespan minimization) very little research has been conducted into minimiz-

ing earliness and tardiness (Bürgy and Bülbül, 2018). Besides, solution methods

already proposed often fail to deliver quality solutions for problems with such ob-

jective functions especially as the size of instances grows. As a result, in this PhD

thesis, we will contribute to developing efficient algorithms for JIT machine and shop

scheduling problems that are capable of obtaining high quality solutions for large

instances. In particular we will investigate two JIT problems with wide application

in transportation and manufacturing systems.

1.2 Research objectives

The major aim of this PhD thesis is to “develop efficient solution methods that

are capable of obtaining high quality solutions for large sized instances of the ma-

chine and shop scheduling problems”. This aim can be further broken down into

the following objectives:

• Developing a general and problem-independent framework to be used for a

large class of problems;
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• Building advanced optimization techniques with the capability of finding high

quality solutions for computationally challenging instances of the problem

which often cannot be efficiently solved using standard solvers within rea-

sonable computation times;

• Equipping meta-heuristic algorithms with exact and heuristic methods in order

to design efficient and more robust solution methods for the problem. Given

most metaheuristics do not produce the same results every time they run,

designing algorithmic frameworks with the ability to consistently converge to

same (similar) quality solutions is of interest.

In general developing advanced optimization techniques and algorithms demand

customized, highly efficient, and well established optimization methods. On the

other hand, adding the JIT constraints to the problem further complicates the

solution methods. Generally speaking, constructing a feasible schedule for these

scheduling problems under the JIT environment is a highly complex process. The

complexity can be both attributed to the sequencing (which takes care of the job

processing order, and hence the sequence dependent setup times), and scheduling

(which aims to optimize the start time of performing the jobs by minimizing earliness

and tardiness penalties). Having said that, most available solvers can easily obtain

good (if not optimal) solutions for small sized instances in a reasonable amount of

time. Unfortunately by increasing the problem size, most solvers lose their efficiency

and demand very long time to obtain reasonable solutions. As a result, many stud-

ies contributed to developing approximate sequencing and scheduling procedures.

To this end, they often construct a sequence, and then attempt to schedule the

given sequence. In spite of being time efficient, these approaches have two following

disadvantages:

• To enhance a sequence, simple swap or remove-insert moves are applied. Al-

though such moves can make significant improvements at the beginning of

search procedure, since they mostly take place randomly, usually fail to guide

the algorithm towards obtaining high quality, and preferably optimal, solu-

tions;

• In a majority of cases, the constructed schedule is utterly simple and far from
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being optimal. This is because the schedule is developed for a given sequence,

which may not be optimal, if the jobs are myopically positioned, i.e. without

considering their subsequent effects on the rest of the sequence.

To overcome these issues, we will use available mixed integer programming mod-

els for the purpose of allocating and sequencing. But since these models include a

huge number of binary variables, these variables are relaxed in the original model,

and a relaxed version of model is then solved using available solvers. To enhance

the sequences we not only utilize simple swapping or insertion moves but also make

use of a new neighborhood structure in which the precedence constraints of a set

of jobs are relaxed. This neighborhood leads to a list of jobs, which has two parts:

the non-relaxed part, which includes the already allocated and sequenced jobs, and

the relaxed part that includes jobs that are subject to both re-allocating and re-

sequencing. The advantage of this method over the traditional manipulations is

that here the moves are made with respect to other jobs, and their impacts on the

rest of the sequence are well considered.

In short, this PhD thesis contributes to the research on the machine and shop

scheduling problems in the following ways:

• Proposing a general framework which apart from its capability to compete

with state-of-the-art methods is conceptually very simple and can be easily

adapted for a large number of problem variants. We note that the state-

of-the-art methods incorporate various components within the heuristics and

meta-heuristics in order to surmount the difficulty arising in the sequence

part. This leads to advanced solution techniques which are often very difficult

to implement. We however, propose an algorithmic framework which is simple

straightforward and can be simply adopted in real settings.;

• Harnessing the power of solvers for sequencing the smaller instances which has

been mostly overlooked in the literature;

• Simplifying parameter tuning concerned with guiding the neighborhoods by

delegating the sequencing decisions to the solver.
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1.3 Problems addressed

In this thesis we focus on deterministic scheduling problems where all the infor-

mation related to jobs (e.g. processing time, due date, release time) and machines

(e.g. availability, breakdown) is known a priori. In the following we introduce

scheduling settings discussed in this thesis.

• Machine environment: Suppose there is a finite set of jobs to be processed

by only one machine. Machine environment is classified into two layouts,

namely single machine and parallel machine. In a single machine configura-

tion there is only one processing unit, whereas in parallel setting there are

several machines with the same function (Chen et al., 1998a). Each machine

can process one job at a time (aka resource constraint). A schedule is called

feasible if there is no overlap in the processing of jobs on a given machine.

Efforts to study JIT machine scheduling date back to as far as the late 1970s.

The last decade has witnessed significant progress in developing exact methods

for basic JIT machine scheduling problems (e.g. Tanaka and Fujikuma (2012)).

Yet more realistic variants with sequence dependent setup times or time win-

dows are still very challenging to solve optimally. For instance Tanaka and

Araki (2013)’s exact algorithm for some instances with only 85 jobs may take

more than 30 days to deliver a non-optimal solution even with 20 GB memory

size. In this thesis we deal with two such problems that are Aircraft Landing

Problem (ALP) and Aircraft Sequencing Problem (ASP). Both problems can

be viewed as a single/parallel machine scheduling with sequence dependent

setup times where the aircraft represents job and runway represents machine.

The ALP is a classical scheduling problem concerned with inbound flights in

which a fleet of aircraft must be sequenced and scheduled such that the total

deviation from target arrival times is minimized. The ASP, also known as the

runway scheduling problem, aims to improve runway utilization by optimally

assigning aircraft to the runway and scheduling the departure and arrival op-

erations of the runway such that the total (weighted) delay in landing and

take-off operations is minimized.

• Shop environment: Differing from machine setting, in shop layout each

job requires to visit several machines. The processing period for each visit
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is called operation. The order in which each job visits machines is called

processing routes (aka precedence constraint). In flow-shop all jobs share the

same processing route. On the other hand in job-shop each job has its own

processing route. For open-shop the order is arbitrary. It is obvious that a

schedule is feasible if satisfies both resource and precedence constraints. While

adaptation of JIT manufacturing for shop layouts is almost as old as Just-in-

Time philosophy itself, JIT shop scheduling research is still at an embryonic

stage with respect to developing exact solution methodologies. Moreover in

spite of all efforts to design efficient algorithms, due to stubborn nature of shop

scheduling models even updating the upper bounds for some of the problems is

still a challenge. In this context one may cite variants of the classical job-shop

scheduling problem (JSS) such as Just-in-time job-shop scheduling (JIT-JSS).

Introduced by Baptiste et al. (2008) in JIT-JSS each operation has a distinct

due-date and any deviation of the operation completion time from its due-date

incurs an earliness or tardiness penalty. We note that the upper bounds for

benchmark instance of JIT-JSS have been last updated in 2014 (see Wang

and Li (2014)). Even very recent studies like Bürgy and Bülbül (2018) simply

overlook JIT-JSS. As a result in this thesis we attempt to design algorithms

to tackle this computationally intractable variant.

1.4 Thesis organization

This thesis is organized as follows:

• Chapter 2: This chapter explores the literature on JIT in machine and shop

scheduling settings. Major studies are highlighted and some applications of

JIT systems are also investigated.

• Chapter 3: Two classical air traffic management problems that are related to

scheduling aircraft on multiple runways are addressed in this chapter. The

problems can be viewed as a single/parallel machine scheduling problem. An

effective solution method based on a framework called “Relax-and-Solve” is

proposed which is able to obtain high quality solutions for large instances in

reasonable amounts of time.
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• Chapter 4: This chapter is devoted to JIT-JSS. Two matheuristic algorithms

are presented. To this end novel neighbourhood structures are proposed for the

problem. It is shown that new neighbourhoods can explore the solution space

more effectively than traditional manipulation techniques. The algorithms

update the new best solutions for a large number of instances including large

ones.

• Chapter 5: A brief summary of the thesis contents and its contributions are

given in the final chapter. Recommendation for future works is given as well.
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Chapter 2

Literature Survey

Part of the review presented in this chapter is based on following publication:

• M. M. Ahmadian and A. Salehipour, “Heuristics for flights arrival scheduling

at airports.” International Transactions in Operational Research (2020).

2.1 Introduction

Timely delivery of products together with reducing the holding costs are among

highly valued goals delineated by firms. In make-to-order manufacturing systems,

customers’ satisfaction is of great importance (Fernandez-Viagas and Framinan, 2015).

Indeed the late deliveries may result in contractual penalties, loss of customer good-

will or losing future bidding opportunities (Easton and Moodie, 1999). On the other

hand early jobs can incur higher work-in-process or finished goods inventory levels

which require more storage capacity. In this context long deviations from due dates

can be interpreted as poor supply chain management. In scheduling theory such

goals are often reflected by a number of performance criteria concerning earliness

and tardiness of jobs.

In this chapter we review major studies to minimize earliness and tardiness. We

first give a short definition of machine and shop scheduling problems (Section 2.2).

Next we survey some of the papers addressing single and parallel machine scheduling

problems and focus on one interesting application of such models in the context of

air traffic control (Section 2.3). We then take a look at shop scheduling models (i.e.

flow shop (Section 2.4), job shop (Section 2.5) and open shop (Section 2.6)) and see

how JIT philosophy has been adopted for them. Finally we conclude the chapter

with an overall assessment of the literature and suggest some directions for future

research. It is worth mentioning part of the review given in Section 2.3 has been

published in the following journal paper:
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• M. M. Ahmadian and A. Salehipour, “Heuristics for flights arrival scheduling

at airports.” International Transactions in Operational Research (2020).

2.2 Problem statement

In machine scheduling layouts, there are n independent jobs (N = {1, . . . , n})
to be processed either on single or a set M = {1, . . . ,m} of the machines. Each job

i is characterised by a processing time on machine j (i.e. pij). In shop scheduling

systems (i.e. flow shop, job shop and open shop), the processing of job i is comprised

of some tasks (called operations) each having a processing time pij on machine j.

Moreover, the order in which operations of a job visit machines is called processing

route. In a flow shop, all jobs share the same route and in a job shop each job has

its own route. However, in an open shop setting the routing is immaterial.

In a JIT environment every job (or operation) has a due date (d ), earliness (α)

and tardiness (β) weights (costs), and any deviation of job/operation’s completion

time from its due date incurs an earliness or tardiness penalty. Specifically, com-

pleting job (or operation) before its due date leads to an earliness penalty (i.e. E ),

while completing it after the due date results in an tardiness penalty (i.e. T ). The

objective is to minimize the weighted sum of earliness-tardiness penalties.

According to Baker and Trietsch (2013) “a performance measure z is regular if:

(a) the scheduling objective is to minimize z, and

(b) z can increase only if at least one of the completion times in the schedule

increases.”

Presence of earliness costs renders most JIT objective functions to be non-regular.

That is because the decrease of a completion time may result in increasing the

associated earliness costs.

In the following we review major studies involving due dates and earliness-

tardiness penalties for machine and shop scheduling problems. A due date refers to

a single time that a job/operation should preferably be completed while a due win-

dow expresses the same notion within a time window. In addition to represent the

problems, the standard three-field notation scheme is used (Graham et al., 1979).
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2.3 Single and parallel machine scheduling

Research on single machine scheduling problem with the objective of minimizing

(weighted) earliness-tardiness can be traced back to 70s (Eilon and Chowdhury, 1977;

Sidney, 1977). For a good review of early works and results one can refer to Baker

and Scudder (1990). Garey et al. (1988) showed that the problem, even with an

identical weight for jobs is strongly NP-complete. Hall et al. (1991) proposed an

efficient dynamic program for the common due date variant (i.e. di = d). Yeung et

al. (2001) reported several pseudo-polynomial dynamic programs, as well as certain

polynomial time algorithms for some special cases. Some studies have also devel-

oped approximation algorithms for the problem. Kovalyov and Kubiak (1999) were

first who gave a fully polynomial approximation scheme (FPTAS) for 1|di = d, d ≥∑n
i=1 pi|

∑
i wi(Ei + Ti) where wi = αi = βi. Later Erel and Ghosh (2008) and very

recently Kellerer et al. (2018) obtained more efficient FPTASs based on reducing

this problem to minimizing a half product function. Studies of Abdul-Razaq and

Potts (1988); Azizoglu and Webster (1997); Li (1997); Chang (1999); Liaw (1999)

have managed to deliver quality solutions for instances with up to 50 jobs by de-

veloping Branch-and-Bound (B&B). Valente and Alves (2005) proposed a decom-

position based B&B in which the lower bounds are calculated by separating the

problem into weighted earliness and weighted tardiness sub-problems and obtained

optimal solutions for instances with up to 30 jobs. However, to produce high quality

solutions for larger instances, many authors have resorted to heuristics and meta-

heuristics. For instance, Ow and Morton (1989) presented two dispatching rules,

and a heuristic algorithm. Genetic Algorithm (GA) of Lee and Choi (1995), Evolu-

tionary Strategy, Simulated Annealing (SA) and Threshold Accepting of Biskup and

Feldmann (2005) under the restrictive common due window and distinct weighted

earliness and tardiness penalties for the weighted case, Tabu search (TS) of Wan

and Yen (2002), and hybrid GA with hill climbing and SA of M’Hallah (2007) for

the unweighted variant are among the meta-heuristics proposed for the problem. In

the last decade seminal works of Tanaka et al. (2009); Tanaka and Fujikuma (2012)

made a breakthrough in solving some of the fundamental scheduling problems in-

cluding minimizing (weighted) earliness-tardiness. The authors proposed dynamic

programming algorithms for the general single-machine scheduling problem with-
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out/with machine idle time. They later released their algorithms as two powerful

single-machine scheduling problem solvers called SiPS and SiPSi which can solve

instances of problems such as 1|dj|
∑

i(αiEi + βiTi) with up to 300 jobs efficiently.

They later extended their algorithm to include sequence dependent setup times i.e.

1|sik, di|
∑

i βiTi (Tanaka and Araki, 2013) which can only handle instances with up

to 85 jobs.

In the parallel environments, Biskup and Cheng (1999) showed that minimizing

the sum of earliness, tardiness and completion time penalties even on two identical

machines is NP-hard. They investigated the polynomially solvable case, and de-

signed a heuristic algorithm. Mason et al. (2009) proposed a mixed integer program

and a heuristic for P |di|
∑

i Ei + Ti, and Kedad-Sidhoum et al. (2008) provided a

time-indexed formulation of P |di, ri|
∑

i αiEi+βiTi and obtained lower bounds based

on the linear and Lagrangean relaxations of their formulation. Şen and Bülbül (2015)

developed a preemptive relaxation for R|di|
∑

i αiEi + βiTi in which feasible non-

preemptive schedules are constructed by job partition delivered by solution of the

preemptive relaxation. Since their formulation for relaxation is computationally ex-

pensive, they used a Benders decomposition of it to handle the large instances. A

number of studies have considered the problem in the presence of setup times. For

instance, Balakrishnan et al. (1999) presented a mixed integer program and a Ben-

ders decomposition for the uniform machines with sequence dependent setup times

(i.e. Q|di, ri, sikj|
∑

i αiEi + βiTi). Vallada and Ruiz (2012) studied a similar prob-

lem for unrelated parallel machines (i.e. R|di, sikj|
∑

i αiEi + βiTi) for which they

proposed a mathematical formulation. It is worthwhile to mention that lately an

exact (Bulhoes et al., 2018) and also a heuristic (Kramer and Subramanian, 2017)

framework have been proposed which can solve a large class of single and parallel

machine problems including those with earliness-tardiness penalties. Considering a

common due window Chen and Lee (2002) proposed a B&B algorithm and solved

instances with up to 40 jobs. In some studies the size of the due window is also min-

imized alongside the costs associated with earliness and tardiness (see for example

Janiak et al. (2007a) and Janiak et al. (2013)).
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An application: air traffic control

It is widely believed that a relevant amount of delays experienced at the airports

is often generated by an inefficient management of the runways capacity. Therefore,

many studies identify airports as the bottlenecks of the air transportation system

(Furini et al., 2015). The runway scheduling problem (RSP) aims to improve runway

utilization by allocating the aircraft to runways and optimally determining the land-

ing and take-off time of the aircraft so that a performance criterion is optimized, e.g.,

minimizing the total delays in landing and take-off operations. The RSP is known

to have significant impact on other operations occurring at airports, for example,

changes to the gate assignments (Zhang and Klabjan, 2017). The RSP has been

referred to aircraft sequencing problem (ASP) and aircraft landing problem (ALP),

though it seems there is no exact definition for ASP and ALP. For example, Furini

et al. (2015) defines ASP the problem of optimally assigning an airport’s runways to

the arrival and departure operations (inbound and outbound traffic), as well as op-

timally scheduling those operations, whereas ALP is known to be dealing with only

scheduling the arrival operations (inbound traffic; Beasley et al. (2000)). Following

this, the ASP focuses on minimizing the delays in landing and take-off operations

and does not penalize early landing and take-off operations, because it is unlikely

that aircraft can depart before their estimated departure time. Samá et al. (2017)’s

ASP model, which they name it aircraft scheduling problem, schedules the arrival

and departure operations and takes into account the landing and take-off path in

the terminal control area. The ALP’s objective, however, considers both earliness

and delay in the operations since aircraft can be landed before their estimated time

of arrival. After all, due to safety restrictions, the inbound traffic has priority over

the outbound and must therefore be managed more importantly and quickly than

the outbound traffic.

The objective of the ALP is to obtain a sequence of aircraft landings together

with their scheduled landing time such that early and late landings are minimized,

and operational constraints are respected. The major operational constraints aim

to maintain the minimum separation between every ordered pair of aircraft. Two

most applied separation requirements are “radar separation”, which is a lengthwise

spacing of five nautical miles (some busy airports may consider less than this) and
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a vertical spacing of 1,000 feet, and “wake turbulence separation (wake vortex or

separation time)”, which is a time spacing and depends on the type of aircraft. Be-

fore operation of Airbus A380, the international civil aviation organization (ICAO)

considered three categories of light (L), medium (M) and heavy (H) for wake turbu-

lence. Airbus A380 added the fourth category of super (S). As discussed by Furini et

al. (2015), other factors such as aircraft routes and weather conditions may impact

separation between aircraft. Hence, the separation times may slightly vary among

airports.

A number of different objectives and constraints may be considered for the ALP.

One major additional operational constraint is the constrained position shifting

(CPS), where each aircraft in the sequence may only deviate by a certain number

of positions from its position in the first-come-first-serve (FCFS) order (in which

aircraft are sequenced with respect to their arrival times to the airport). The CPS

is used to model the “fairness policy” among airlines (Balakrishnan and Chan-

dran, 2010). Some recent studies schedule the landing and take-off operations by

considering the landing and take-off path in the terminal control area (see D’Ariano

et al. (2015); Samá et al. (2017); Samá et al. (2018)). Aircraft must follow certain

paths in the controlled airspace surrounding an airport in which they are guided by

air traffic controllers. Those paths lead to additional operational constraints. The

airport-dependent operational settings may also introduce additional constraints.

Two important such constraints include temporary restrictions on utilizing some

runways, e.g., due to wind direction, weather or congestion or simply due to airline’s

preference, and non-availability of some runways for certain arrivals. An example of

the latter is Sydney Kingsford Smith airport in which only two of its three runways

can accept Airbus A380.

It is a well-known practice that the air traffic controllers order the aircraft by

using the FCFS rule, i.e., according to their arrival times to the airport. However,

a considerable room for improvement is possible with the use of optimization tech-

niques, mainly due to re-ordering the aircraft landings. This has been a motivation

for development of various solution approaches for the ALP, ranging from exact

methods to heuristics. For example, Bianco et al. (1999) modeled the ALP on one

runway as the single machine scheduling problem with ready times and sequence-
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dependent setup times and the objective function of minimizing the completion

times. They developed a dynamic programming algorithm. Ernst et al. (1999) pro-

posed an exact simplex-based algorithm and a heuristic for the ALP, and obtained

optimal solutions for instances with up to 44 aircraft. Beasley et al. (2000) presented

a mixed-integer program (MIP) and solved instances with up to 50 aircraft to opti-

mality. A branch-and-price algorithm was later proposed by Wen et al. (2005). They

showed that the bounds, which they obtained by applying a column generation al-

gorithm, are stronger than those obtained by the linear programming relaxation

(of the MIP). Balakrishnan and Chandran (2010) proposed a dynamic program-

ming algorithm for solving small instances of the ALP with the inclusion of CPS.

By using a time discretization approach, Faye (2015) proposed exact and heuristic

algorithms. His approach is based on an approximation of the separation times

and discretization of the planning horizon. For many small and large instances his

proposed methods deliver tighter lower bounds than those of Beasley et al. (2000).

Ghoniem and Farhadi (2015) reformulated the ALP as a set partitioning problem

and proposed a column generation algorithm. To solve the pricing problem, they

used the solver CPLEX. Later, they proposed a branch-and-price algorithm to ad-

dress the shortcomings in their earlier study. The pricing problem was now solved as

the shortest path problem with time-windows and non-triangular separation times

(Ghoniem et al., 2015). In spite of availability of exact algorithms for the ALP, prac-

tical and large instances still pose a computational challenge. Therefore, heuristics

and meta-heuristics have also been proposed to solve the ALP.

The first efforts to use meta-heuristics can be traced back to the work of Abela

et al. (1993), in which the genetic algorithm (GA) was used to solve instances

with up to 20 aircraft. Hansen (2004) also used the GA for a simplified variant

of the problem. Their test problems did not exceed 20 aircraft either. Pinol and

Beasley (2006) adapted scatter search (SS) and bionomic algorithm (BA). By testing

their algorithms on instances as large as 500 aircraft they obtained optimal solution

for instances with up to 50 aircraft. Later, Yu et al. (2011) proposed a two-step

algorithm, in which a feasible landing sequence is obtained in the first step and the

landing times are determined by a local search procedure in the second step. Their

investigation is limited to only one runway, for which superior solutions to those

of Pinol and Beasley (2006) were reported. Considering the same instances, Sale-
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hipour et al. (2013), Vadlamani and Hosseini (2014), Sabar and Kendall (2015) and

Girish (2016) have adapted simulated annealing (SA) and variable neighborhood

search (VNS), adaptive large neighborhood search (ALNS), iterated local search

(ILS) and particle swarm optimization (PSO), and obtained optimal solution for

small instances, and good quality solutions for large instances. Nevertheless, only a

few of those methods are able to obtain the best known solutions for large instances,

due to the computational complexity of the ALP. In addition, because those algo-

rithms include randomized components their performance may fluctuate and often

deteriorates as size of the instances increases. Salehipour and Ahmadian (2017) and

Salehipour et al. (2018) developed several algorithms including the variable neigh-

borhood descent (VND) with novel relaxation neighborhoods and iterative greedy

algorithms, and attempted to overcome several of the existing limitations. They

reported promising solutions for the single-runway case, though they did not con-

sider multiple runways. Certain special cases of the ALP have also been studied by

Hansen (2004), Salehipour et al. (2009) and Ng et al. (2017), who investigated the

arrivals and departures under uncertainty. We refer the interested reader to Bennell

et al. (2011) for a comprehensive review of solution techniques for the ALP and to Ng

et al. (2018) for an extensive overview and classification of meta-heuristic approaches

for airside operations research, which provides details and research directions on this

topic, as well as on related problems.

In practice, the schedule of the flights arrival (i.e., a feasible landing time of

aircraft) typically covers a planning horizon of about one hour and is updated ev-

ery few minutes. This is to ensure that the existing schedule is adjusted so that

it accommodates new flights entering into the airport control area. About two to

three minutes prior to landing, the schedule is frozen meaning that further changes

to the landing schedule will not be considered because the aircraft is too close to

the runway (Bennell et al., 2011). Following this, generating the landing schedules

in a short amount of time is necessary. In addition, the quality of the delivered

schedule, which is evaluated against a performance criterion, e.g., the total amount

of deviations about the target arrival times, may not be overlooked due to its sig-

nificant service and operational costs. Salehipour (2019) showed that considerable

improvements in the schedule and also in service and operational costs are possible

with the use of optimization techniques. Nonetheless, the available exact methods
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are unsuitable in practice because they cannot generate quality schedules quickly.

For example, over the tested single-runway instances, the optimal schedule is only

known for instances with up to 50 aircraft. The existing heuristic and meta-heuristics

methods, on the other hand, are usually faster than the exact methods, but may not

deliver quality schedules. We are only aware of one meta-heuristic that is able to

outperform all existing non-exact methods (Girish, 2016). That method, includes

a combination of hybrid algorithms and different neighborhood structures, meaning

that its implementation requires advanced algorithmic techniques and parameters

tuning.

2.4 Flow-shop

Sarper (1995) was the first who studied the earliness and tardiness objective

function for flow shop. More precisely he considered two-machine flow shop with

a common due date (i.e. F2|di = d|
∑

i(Ei + Ti)) and presented the mathematical

formulation of the problem. He also proposed three heuristics and showed that for

larger numbers of jobs the heuristic based on LPT dispatching rule outperforms

other two methods. Sung and Min (2001) addressed two machine flow shop with

at least one batching processing machine (BPM) with each batch having the same

processing time. Moreover jobs share a common due date which is at least as late

as the total processing time on the first machine. They addressed three cases of

the problem: a) a discrete processing machine (DPM) is followed by a BPM b) two

BPMs c) a DPM runs after a BPM. For the first two cases they propose a polyno-

mial algorithm and since the third case is shown to be NP-Complete, they present

a pseudo-polynomial algorithm. Yeung et al. (2004) studied two machine flow shop

where jobs share a common due window whose size and location are known a priori

(i.e. F2|[e, d]|
∑

i(Ei+Ti) where e and d are earliest due date and the latest due date

respectively). They show that there exists an optimal permutation schedule for the

problem among other dominance properties. They also propose a heuristic based on

some dominance rules which can solve near-optimally problem of 150 jobs in 20 sec-

onds. They also present a branch-and-bound algorithm in which the initial solution

is provided by their heuristic and two bounding functions base on pseudo-polynomial

dynamic programming algorithm of Weng and Ventura (1996) and Johnson’s rule

Johnson (1954). Yoon and Ventura (2002) studied lot-streaming flow shop in which
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a job (lot) can be split into smaller sublots (operations) where the sublots can over-

lap. The study presents several mathematical programs by considering different

constraints (e.g. no-wait, Limited capacity buffers). Moreover it proposes several

neighborhood search mechanisms to tackle the problem heuristically.

In addition a few studies have studied earliness and tardiness performance mea-

sure for m-machine flow shop. For instance Mosheiov (2003) addressed a flow shop

with unit processing times where jobs share a due date. He also considered a

fairly different objective function of minimizing the maximum earliness/tardiness

cost (i.e F |pij = 1, di = d|maxj(αiEi + βiTi) where αi = βi) and polynomially

solved the problem for both restrictive and non-restrictive due dates. Arabameri

and Salmasi (2013) investigated flow shop scheduling problem with sequence depen-

dent setup times and no wait constraint where a job must visit the machines without

any interruption (F |sij, di, nwt|maxi(αiEi+βiTi)). They proposed TS and PSO for

the problem and showed that PSO outperforms TS for the large sized instances.

2.4.1 Permutation flow-shop

In a permutation flow shop jobs maintain the same processing sequence on all

machines. Operational issues such as extra physical handling of jobs on the shop

floor along with computational cost of non-permutation schedules (Schaller and

Valente, 2019b) are among the main reasons for permutation flow shops being ex-

tensively studied in the literature (Ruiz and Maroto, 2005). Several authors have

investigated this setting considering both earliness and tardiness penalties. Chandra

et al. (2009) addressed a permutation flow shop where jobs share a common due date

(i.e. F |di = d, prmu|
∑

i(Ei + Ti)) for which they developed a heuristic based on

results for single machine unrestricted common due date problem. They divided the

problem to 3 cases according to the value of common due date: 1) unrestricted 2) re-

stricted 3) the due date is such that all jobs are tardy; and showed that the first case

can be solved optimally by extending the results for single machine while for cases 2

and 3 they developed a heuristic in which a sequence and schedule is obtained based

on bottleneck machine and is improved by local search. In some manufacturing sys-

tems due to expensive setup costs or limited availability of machines the insertion of

idle time must be avoided unless next job to be processed is not ready. This type of

idle time called forced idle time and has been considered by some studies. Zegordi
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et al. (1995) studied the permutation flow shop with weighted earliness-tardiness

objective function (i.e. F |di, prmu|
∑

i(αiEi+βiTi)) for which they proposed a sim-

ulated annealing equipped with the problem specific knowledge. More precisely in

order to pair exchange, a measure called “priority index” is calculated which indi-

cates the desirability of shifting a job forward and backward in a given sequence.

Their computational tests suggest the superiority of proposed SA over the formal

annealing heuristics. Later Madhushini et al. (2009) proposed a B&B algorithm for a

wide range of permutation flow shops including sum of weighted flowtime, weighted

tardiness and weighted earliness of jobs (i.e. F |di, prmu|
∑

i(γiFi+αiEi+βiTi)). In

their algorithm the bounding function is job based with respect to weighted flowtime

and weighted tardiness and machine based for weighted flowtime and weighted tardi-

ness and obtained by solving the assignment problem. Schaller and Valente (2013b)

studied F |di, prmu|
∑

i(Ei+Ti) and developed a GA for the problem. By comparing

the outcomes their algorithm with those of existing heuristic in the literature includ-

ing Zegordi et al. (1995) they concluded that GA consistently generates solutions

with a lower total earliness and tardiness than the other procedures tested. Later

M’Hallah (2014a) presented a mathematical model of the problem and proposed a

VNS which outperforms Schaller and Valente (2013b)’s GA and updates the upper

bounds for 70% of instances. Considering the same problem, Fernandez-Viagas et

al. (2016) proposed a constructive heuristic where jobs are appended to the partial

sequence based on index which is updated iteratively for unscheduled jobs according

to their idle time, completion time, earliness and tardiness. They also embedded the

sequence delivered by constructive heuristic in local search methods and proposed

several composite heuristics. In a separate study, Schaller and Valente (2013a) con-

sidered permutation flow shop with forced idle time in the presence of family set

up times where jobs are classified to families according to their similarities and a

set up time is required only two jobs from different families are processed one after

the other (i.e. F |di, prmu, familysetup|
∑

i(Ei + Ti)). They proposed six heuris-

tics from literature based on neighbourhood searches, variable greedy algorithms

and genetic algorithms. Based on the computational results a genetic algorithm

armed with job insertion and batch insertion local searches delivers better results

for large sized instances. In spite of technological justification, restricting idle time

to only forced one is at odds with earliness and tardiness objective (Sarper, 1995).
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That is because inserting unforced idle time can possibly improve the objective

by increasing the completion time of some early jobs. As a result some papers

have considered the cases in which the machine can be kept idle upon availability

of jobs. M’Hallah (2014b) studied permutation flow shop in which inserting un-

forced idle time is allowed (i.e. F |di, prmu|
∑

i(Ei+Ti)) and proposed an algorithm

which combines VNS and mixed integer programming (MIP) that is the VNS ob-

tains job sequence, and a mixed integer program delivers optimal idle times for the

given sequence. For this problem, Schaller and Valente (2019b) modified several

dispatching heuristics used for unforced idle time. Finally very recently Schaller

and Valente (2019a) presented a B&B algorithm for two machine permutation flow

shop with unforced idle times (i.e. F2|di, prmu|
∑

i(Ei + Ti)). To this end they

presented two lower bounds based in the results for single machine (Schaller, 2007)

and proved a number of dominance conditions for the problem. Based on these

conditions they developed four B&B algorithms and tested their performance for

instances with at most 30 jobs. The computational results suggest that a B&B with

a node to represent a post partial sequence outperforms other methods.

2.4.2 Hybrid flow-shop

In a hybrid flow shop there are m stages with at least one containing more

than one parallel machines. A small number of studies have attempted to adopt

JIT philosophy for this more realistic manufacturing environment. Indeed only 1%

of papers reviewed in Ruiz and Vázquez-Rodŕıguez (2010)’s comprehensive litera-

ture review of hybrid flow shop, deal with earliness and tardiness and more often

than not due to the complexity of this setting most of the solution methodologies

are restricted either to heuristics or meta-heuristics. Fakhrzad and Heydari (2008)

studied HF |di|
∑

i(αiEi + βiTi) and proposed a three layer heuristic in which jobs

are allocated to the machine, next several ordinary flow shop problems (i.e. with

only one machine at each stage) are solved and finally resource levelling is performed

by utilizing the remaining resources. The unweighted version of this problem (i.e.

HF |di|
∑

i(Ei + Ti)) was studied by Han et al. (2015) for which they propose a

dynamic co-evolution compact genetic algorithm. In their algorithm the popula-

tion is represented as a probability distribution over the set of solutions and to

avoid premature convergence a strategy called individual inheritance is applied. In
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order to minimize the inventory costs related to partially completed as well as fin-

ished products, Janiak et al. (2007b) considered an objective function comprised of

three parts: the total weighted earliness, the total weighted tardiness and the total

weighted waiting time (i.e. HF |ri, di|
∑

i(αiEi + βiTi + γiWi) where Wi denotes

the total waiting time of the job i). They use a decomposition approach to solve

the problem. For the timing subproblem they propose an approximation algorithm

which delivers optimal schedules if γi = 0 for each i ∈ N . They also present three

metaheuristics based on SA and TS to construct and manipulate sequences. By

solving instances containing up to 20 and 10 stages, they showed that SA has better

performance in terms of solution quality and computation time. Jolai et al. (2009)

studied no-wait hybrid flow shop (or flexible flow lines) where each job has a due

window and an ideal due date. Due to resource scarcity (i.e. machines) it may

happen that some jobs are rejected. Associated with each job is a profit, earliness

penalty and tardiness penalty and the objective is to schedule the jobs so the gained

profit is maximized. They proposed a three phase GA for the problem and managed

to solve instance with at most 50 jobs and 5 stages efficiently. Yan et al. (2014)

studied a two stage flow shop where each job consists of m + 1 operations. The

first m operations are unrelated and must be performed on m parallel dedicated

machines in the first stage and finally assembled in the second stage by a single

machine. The objective is the minimization of maximum makespan, maximum ear-

liness and maximum tardiness (i.e. αEmax+βTmax+γCmax). For this problem they

proposed a hybrid variable neighbourhood search – electromagnetism-like mecha-

nism (VNS-EM) algorithm in which VNS is applied to improve the best particle

of each generation. Their computational results suggest the superiority of VNS-

EM over VNS and EM. As noted by Sabuncuoglu and Lejmi (1999), assuming only

one point as the due date is unrealistic and in most manufacturing systems a due

window is considered for the completion of each job, that is jobs completed before

or after the window are regarded early and tardy respectively. Therefore recently

Pan et al. (2017) studied hybrid flow shops with due windows to minimize weighted

earliness and tardiness (i.e. HF |[d−i , d+i ]|
∑

i(αiEi + βiTi)) for which they proposed

an Iterated Local Search and Iterated Greedy procedures.
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Sequence-dependent setup times

There are only few studies minimizing earliness and tardiness in hybrid flow shop

setting in the presence of sequence-dependent setup times. Behnamian et al. (2010a)

studied hybrid flow shop with the presence of non-anticipatory sequence-dependent

setup times between jobs at each stage i.e. the setup for a given job on stage t cannot

be started until all the jobs on stage t− 1 are finished. To minimize the sum of ear-

liness and tardiness for jobs they proposed a hybrid algorithm consists of ACO, SA

and VNS. In the proposed algorithm the initial solution is generated by ACO and

improved by VNS/SA local search. In addition Behnamian and Zandieh (2013), ex-

amined the same objective function for a hybrid flow shop with sequence-dependent

setup times and with position-dependent processing times where the processing time

of each job at stage t may decrease due to positional learning effect. They proposed

a hybrid algorithm in which VNS is used for intensification while SA and PSO are

utilized to attain diversification. Behnamian et al. (2010b) investigated a hybrid flow

shop in which jobs are processed in groups. Only processing two different groups of

l and k at stage t requires setup times and it is sequence dependent (i.e. stlk). More-

over each job has a [di1, di2] due window where completion of i before di1 or after

di2 incurs earliness and tardiness penalties respectively. The problem is to find the

sequence of jobs belonging to a group as well as the order of groups on each machine

to minimize the sum of earliness and tardiness of jobs. They proposed a hybrid

metaheuristic based on PSO, VNS and SA in which PSO is used for exploration of

solution space while VNS/SA-based local search is utilized to perform exploitation.

Khare and Agrawal (2019) extended work of Behnamian et al. (2010a) and Pan

et al. (2017) by considering sequence-dependent setup time and due windows for

hybrid flow shop. The authors presented few metaheuristics to tackle the problem.

2.5 Job-shop

Job shop with earliness-tardiness pentalties was first considered in the late 1980s

(Fox and Smith, 1984; Sadeh and Fox, 1990). Later Beck and Refalo (2001), and

Beck and Refalo (2003) formally introduced the earliness-tardiness job shop schedul-

ing (ETSP) problem where each job has earliness and tardiness costs and a due date

(i.e. J |di|
∑

i(αiEi+βiTi)). They proposed a hybrid approach using constraint pro-
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gramming and linear programming in which the information obtained during the

search process is exchanged between these two solution techniques to achieve bet-

ter results. They presented four approaches namely: Probe, CRT-All, ProbePlus

and CRT-Root where the latter three are just modifications of Probe. Being a

backtracking algorithm and used in a B&B framework, at each node Probe ap-

proach 1) constraint propagation techniques are executed to infer new constraints

and domain reductions; 2) a linear relaxation of ETSP resulting from removing

resource constraints and adding obtained domains reduction and constraint propa-

gation is solved; 3) using the optimal start times obtained from step 2, new nodes

are branched in case of exceeding (violating) resource constraints or B&B is con-

tinued by backtracking to the parent node. As in ETSP only last operation of

each job incurs earliness or tardiness costs, at each node even a cost relevant sub-

problem (CRS) containing such operations can provide a lower bound for ETSP.

Motivated by this fact the second variant (i.e. CRT-All) is created by adding two

scheduling problems to the Probe procedure. In particular at each node first CRS

is solved and then it is checked whether it the start times delivered by CRS can be

extended to a global solution. Since solving these two scheduling problems can be

time consuming, ProbePlus and CRS-Root are designed to solve CRS problems less

frequently. By evaluating their algorithm on two sets of benchmarks, they showed

that solving cost relevant subproblems can be beneficial while doing this at each

node does not contribute much to a better performance. In an attempt to adapt

local search techniques applied to makespan optimization to ETSP, Beck and Re-

falo (2002) also proposed a hybrid local search (HLS) algorithm by combining TS

with LP in which only adjacent operations on a same machine lying on the critical

path are swapped. Given a complete sequence of operations on each machine, HLS

evaluates a generated neighbour by assigning optimal start time to each operation

by solving the timing subproblem for ETSP. They reported slightly worse solutions

than those reported in Beck and Refalo (2001). Danna et al. (2003) investigated

three MIP heuristics for ETSP which are used together with a MIP solver such as

CPLEX. The first heuristic called local branching defines a neighbourhood of a given

incumbent solution by allowing at most r binary variables to be different in current

and neighbour solutions. The created MIP (called sub-MIP) is then solved to ex-

plore better neighbours in the vicinity of incumbent solution. Differing from local
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branching, in relaxation induced neighbourhood search (RINS) the neighbourhood

is defined by fixing a subset of variables to their values in the incumbent solution.

Finally guided dives instead of defining neighbourhoods, steers the tree traversal to

the region which are close to the incumbent solution. Testing their heuristics on the

same benchmarks used by Beck and Refalo (2003), they showed that RINS outper-

forms other heuristics. In a separate study Danna and Perron (2003) also showed

that when large neighbourhoods are embedded in constraint programming, they pro-

vide quality solutions. Another constraint programming based algorithm for ETSP

was proposed by Kelbel and Hanzálek (2007); Kelbel and Hanzálek (2011). Inspired

by the fact that only last operation of each job influences the objective value, they

presented a new search procedure called cost directed initialization (CDI) for ETSP

to explore the search space. Contrary to the ranked based procedure in which the

search tree is constructed by assigning the values to variables in the increasing order,

CDI 1) ranks the variables associated with the completion time of the last opera-

tions (i.e. Ci,ni
in the increasing size of their domains 2) and assigns a value to

Ci,ni
so that it incurs the lowest earliness and tardiness cost for job i. It should be

noted that CDI is only applied once and for other possible values of the variables

ranking procedure is applied. According to the computational results, CP armed

with CDI obtains better results than those of RINS. Contrary to due dates which

can be violated, the deadlines must be respected that is each job must be completed

by its given deadline. Yang et al. (2012b) studied another variant of ETSP in which

each job i apart from its due date has a deadline d̄i and must be completed in [di, d̄i]

(i.e. J |[di, d̄i]|
∑

i(αiEi+βiTi)). They proposed a GA for the problem in which each

chromosome is scheduled using forward and backward scheduling and chromosomes

violating the deadlines undergo a repair strategy. Benchmarking against the MIP

model, it is shown that GA outperforms MIP in all instances. The two machine

case with a common due date (i.e. J2|di = d|
∑

i(Ei +Ti)) has also been studied by

Al-Salem et al. (2016) for which they proposed a dynamic programming algorithm.

In the aforementioned studies, jobs (and not operations) either have distinct due

dates or share a common due date. Thus the earliness-tardiness penalties are also

considered for each job (and not operation).

Another variant called just-in-time job shop scheduling (JIT-JSS) was intro-

duced by Baptiste et al. (2008), in which each operation has a distinct due date,



24

and earliness and tardiness weights (i.e. J |dij|
∑

i

∑
i(αijEij+βijTij)). To tackle the

problem they used Lagrangian relaxation and obtained lower bounds. Traditionally

there are two types of relaxations for job shop problems namely: 1) relaxing machine

(resource) constraints 2) relaxing precedence constraints. Baptiste et al. (2008) com-

pared the efficiency of these two relaxation techniques for JIT-JSS. In the case of

relaxing precedence constraints, the resulting problem can be decomposed into m

single machine scheduling sub-problems with earliness and tardiness penalty costs

which can be solved using Sourd and Kedad-Sidhoum (2003)’s B&B. In order to relax

the resource constraints they first propose a time index formulation of JIT-JSS and

show that each sub-problem created by this relaxation merely involves scheduling of

operations of a given job based on their precedence order for an arbitrary objective

function which can solved by dynamic program discussed in Chen et al. (1998b). It

is noteworthy that in both cases Lagrangian dual problem is solved by a standard

subgradient procedure. According to their results the resource constraints relaxation

deliver better lower bounds when the number of machines is large enough. While

JSS literature is very rich on heuristics and local search methods, it is sparse on

exact procedures primarily due to the inherent complexity and intractability of the

problem. One of the few exact methods is due Lancia et al. (2011). The authors

proposed two time indexed formulations for JSS with a min sum objective. The first

formulation called BP is an ILP model with column generation with each column

being a scheduling pattern of the operations of a given job. BP is solved by an ad

hoc branch and price algorithm. The second model named CBP is based on network

flow in which flows correspond to the schedules of single operations. CBP is solved

in a branch and cut framework or directly using an MIP solver. Applying CBP for

Baptiste et al. (2008) instance with up to 50 jobs and solving it as a standalone

ILP by CPLEX, Lancia et al. (2011)’s results suggest that CPLEX has obtained the

optimal values for instances with 20 and 30 operations but failed to prove the op-

timality. Also lower bounds delivered by CBP are tighter than those of Baptiste et

al. (2008). Later Tanaka et al. (2015) introduced another time indexed formulation

for JSS with a min sum objective in which precedence constraints among opera-

tions of a job are stated by their starting time. To obtain lower bounds for their

proposed formulation they applied a new Lagrangian relaxation technique which in-

tegrate relaxing of resource and precedence constraints. In other words Lagrangian
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dual problem contains subproblems resource and precedence relaxations. To do this

they duplicated the binary variables in their time indexed formulation. It is worth

mentioning that the new formulation with duplicated variables is conceptually the

same as formulating JSS by parallel dedicated machines introduced by Brucker et

al. (1999). They evaluated their proposed relaxation on Baptiste et al. (2008) in-

stance with 10 jobs with up to 100 operations. Although their results demonstrate

significantly tighter lower bounds than those of Baptiste et al. (2008), the compu-

tation times reported are very long sometimes in excess of 7000 seconds for some

instances. Large neighbourhood search (LNS) (Shaw, 1998) has been proved to be

a very effective tool for solving hard combinatorial optimization problems. By hy-

bridizing local search and CP/MIP, at each iteration LNS fixes a subset of variables

and re-optimizes the rest by CP or MIP Carchrae and Beck (2009). Laborie and

Godard (2007) proposed a self-adapting LNS (SA-LNS) for JIT-JSS. Given a set of

LNs and completion strategies (CS), at each iteration of their algorithm a LNi and

CSi are chosen and the relaxed solution is re-optimized based on CSi. If this com-

bination produces good solutions then the associated selection probabilities for LNi

and CSi are increased. Applying their algorithm they managed to update the upper

bounds for some instances of JIT-JSS with 15 and 20 jobs. By introducing a global

constraint which makes use of both upper bound and lower bound obtained from

relaxing the resource constraints Monette et al. (2009) proposed a more efficient CP

for JIT-JSS. They also improved the performance of CP by a simple local search

which is run each time a new solution is found by branch and bound. Laborie and

Rogerie (2016) presented a new relaxation called temporal linear relaxation (TLR)

for CP models which is a linear relaxation of temporal and assignment constraints.

Testing TLR on some classical scheduling problems, they showed that this relax-

ation does not improve the performance of CP optimizer for JIT-JSS. Heuristics

and meta-heuristics have also been applied to tackle JIT-JSS. Araujo et al. (2009)

developed a genetic algorithm (GA) for the problem, which Dos Santos et al. (2010)

later extended by designing a hybrid method, in which an evolutionary algorithm

is used to explore the sequences and a mathematical programming model is used

to find the optimal schedule for a given sequence. Their algorithm obtains quality

solutions for benchmark instances of JIT-JSS. Yang et al. (2012a) proposed a GA,

where each chromosome is processed through a three-stage decoding mechanism.
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For instances with 10 and 15 jobs, they reported that their method outperforms

those in the previous studies. Wang and Li (2014) applied an approach similar

to that of Dos Santos et al. (2010). They used a variable neighbourhood search

(VNS) algorithm to explore the sequences and a mathematical programming model

to optimally schedule the jobs in a given sequence. Their algorithm outperforms the

previous ones and obtains new best solutions for several instances of JIT-JSS.

One shortcoming of scheduling literature in general and job shop in particular is

existence of different problem definitions and absence of a unified solution methodol-

ogy being capable of handling a large class of problems (Bülbül and Kaminsky, 2013).

Aiming at generality a few number of papers have attempted to present algorithms

which can address a large class of job shop scheduling problems including ones with

earliness-tardiness objectives. Gélinas and Soumis (2005) proposed a Dantzig-Wolfe

decomposition for job shop with a min max objective where jobs do not necessar-

ily visit all machines. To model the problem they assumed each operation has a

time window to process which is updated (tightened) at each iteration of the al-

gorithm. In their formulation the precedence constraints are kept in the master

problem while the machine constraints and the time window constraints are rel-

egated to the column generation subproblems which are single machine problems

with time windows to minimize a peicewise linear objective function of completion

times (i.e. 1|[eu, d‘u]|
∑

fu(Cu)). As a weaker version of precedence constraints are

retained in the master problem as a result the proposed decomposition provides a

lower bound for the job shop. Authors imbedded their formulation in a B&B frame-

work and tested their algorithm for a JIT objective in which the maximum earliness

and tardiness incurred by operations is minimized (i.e. min gmax ≥ |Cu − du|, u ∈ I

where I is set of all operations). It is shown that the algorithm is efficient partic-

ularly for instances containing many jobs but few operations per job. Bülbül and

Kaminsky (2013) proposed an iterative based decomposition method which gener-

alizes bottleneck heuristic to solve job shop scheduling problems. At each iteration

each unscheduled machine is solved as a subproblem and one which hurts the over-

all objective of already scheduled machines the most is selected as bottleneck. One

advantage of this method is that it utilizes the information by the (partial) timing

problem to specify the parameters of single machine subproblems which are solved at

each iteration. They applied their algorithm for a job shop problem whose objective
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has two components: 1) intermediate holding costs and 2) a function of completion

times (comprised of total weighted earliness-tardiness and makespan) and showed

that their heuristic is competitive with existing solution methodologies. Bürgy and

Bülbül (2018) recently presented an overarching formulation of JSS called JS-CONV

with convex costs to which many existing variants of the problem with linear and

non-linear objective functions can be mapped. Given a feasible sequence of jobs

on each machine turns into an integer program with a convex function (the timing

problem). It is shown that timing problem can be transformed to a linear program

and efficiently solved using solution approach of Ahuja et al. (2003). By generalizing

the notion of criticality to JS-CONV, Bürgy and Bülbül (2018) showed that cost of

each feasible sequence S is only determined by critical arcs. As such to improve S, at

least one critical arc in S to be swapped. Let N(S) denote neighborhood containing

all the neighbors generated by swapping critical arcs in S. They proved that all the

neighbors in N(S) are feasible and that N(S) is opt-connected i.e. starting from

S there is a finite array of neighbors which leads to optimal sequence. Applying

swap neighborhood they proposed a tabu search with the timing algorithm at its

heart. They employed the tabu search both for linear and non-linear JIT objec-

tive functions containing earliness, tardiness and storage costs and reported quality

solutions.

Flexible job-shop

The flexible job-shop scheduling is an extension of classical job-shop in which at

least one machine can process a given operation. Only few studies have investigated

this problem for minimization of earliness and tardiness. Huang et al. (2013) consid-

ered a due window for each job where an early (tardy) penalty is only incurred if job’s

completion time is earlier (later) than its earliest (latest) due date (dei ((d
t
i)). More-

over a sequence dependent setup time slij occurs between jobs l and i if l precedes

i in station j. This problem can be denoted as fJ |di = [dei , d
t
i], slij|

∑
i(αEi + βTi).

They proposed a heuristic called two-pheromone ant colony (2PH-ACO) in which a

certain number of ants seek the best route. Differing from traditional ACO, in 2PH-

ACO a novel global pheromone updating rule is adopted to encourage the following

ants to stay close to the best route. To this end the amount of pheromone intensifies

at a certain node with the number of ants choosing this node in a particular order.
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Their computational results suggest that 2PH-ACO outperforms traditional ACO.

Motivated by mould fabrication process, Gomes et al. (2013) studied a flexible job

shop problem with non-identical parallel machines at each station in which jobs

may visit a certain machine or a set of machines more than once (aka reentrent

process in the literature). They presented a mixed integer program in which the

earliness and tardiness of orders alongside intermediate storage time are minimized.

To better capture the make-to-order nature of mould-making process they propose

a reactive scheduling algorithm to update the existing schedule upon arrival of a

set of new orders. More specifically mip is first solved for old orders and the initial

solution is obtained. Assuming that new orders arrive at time ti, a modified MIP

is then created to ensure that the new set operations cannot start before insertion

time (i.e. ti) and is solved for both old and new orders. When solving the modified

MIP, certain variables for old orders are either fixed or kept free based on their

values in the initial solution in relation to the insertion point. In remanufacturing

environments the used products are rebuilt and renovated to function at good as

or even better than new products. Introduction of remanufacturing jobs may cause

interruption and result in non-started operations of existing jobs to be rescheduled.

Gao et al. (2015) examined insertion of remanufacturing jobs for the flexible job

shop setting to minimize the average earliness and tardiness (i.e.

∑
i∈N |Ci − di|

n
)

and proposed a group of heuristics for both scheduling and rescheduling.

2.6 Open-shop

The open-shop scheduling problem has been the least studied shop scheduling

model with earliness-tardiness penalties. Lin (1998) was first to study the open shop

scheduling problem with earliness and tardiness costs in which each job is character-

ized by a distinct due date, earliness and tardiness costs (i.e. O|di|
∑

i(αiEi+βiTi)).

He proposed an O(n3m2) heuristic based on spanning tree which uses an idle time

rule, whenever a machine is freed, to schedule a tardy operation with minimum

idle time or delay early unscheduled operations to the next level. The superior-

ity of the proposed heuristic is established by comparing its results with those of

obtained from four simple dispatching rules on instances as large as 5 × 25. For

the same problem Doulabi et al. (2012) developed a simulated annealing algorithm

with three swap-based neighborhoods for generating sequences, and proposed two
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mixed integer programs, i.e., sequence and position-based models, in order to de-

termine job start times. Their method solved instances with up to 50 operations.

Lauff and Werner (2004) investigated the complexity of open shop problems with a

common due date to minimize the total earliness and tardiness with and without

intermediate storage costs. While minimization of total earliness and tardiness for

m-machine open shop with a non-restrictive due date (i.e. Om|di = d|
∑

i(Ei + Ti))

is polynomially solvable (Kubiak et al., 1990), they showed that two-machine open

shop with storage costs for d = 0 as well as for a non-restrictive due date is strongly

NP-hard.

2.7 Conclusion

In this chapter we reviewed some of the studies on minimization of earliness

and tardiness for both machine and shop scheduling settings. As discussed own-

ing to the complexity of the problems, many authors have resorted to heuristics or

meta-heuristics as an alternative to exact methods to address large instances. In

this context simple manipulation techniques are used to generate and improve se-

quences. On the other hand matheuristics as a new breed of algorithms made by the

inter-operation of heuristics and mathematical programming techniques (Boschetti

et al., 2009; Maniezzo et al., 2009) have been vastly overlooked and very little re-

search has been done on them. Therefore in this PhD project we aim at matheuristic

methods to address some of the drawbacks of existing solution methodologies. We

believe exploiting recent advances on mathematical programming techniques will

enable us to design robust and time effective heuristics for JIT machine and shop

scheduling problems.

From scientific prospective, we attempt to propose algorithms which unlike the

most studies in the extant literature operate by breaking down the original instance

of the problem into smaller instances at the master level, and solving the smaller

instances at the slave level, by optimizing a reduced formulation through applying

an exact solver. From a practical point of view, we contribute to the literature by

designing conceptually simple methods which contrary to the state-of-the-art meth-

ods utilizing various components within the heuristics and meta-heuristics, can be

easily adapted for a wide class of hard optimization problems. Also, by using an ex-
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act solver inside our algorithmic framework and harnessing its power for sequencing

the smaller instances which has been mostly overlooked in the literature we commit

to using advanced and established methods. In short while the existing metaheuris-

tics go to the trouble of guiding the neighborhoods to generate better sequences

which requires meticulous parameter tuning, we offer algorithms which delegate the

sequencing decision to the solver.
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Chapter 3

Just-In-Time Single and Parallel Machine

Scheduling

This chapter is based on following publications:

• M. M. Ahmadian and A. Salehipour, “Heuristics for flights arrival scheduling

at airports.” International Transactions in Operational Research (2020).

• M. M. Ahmadian and A. Salehipour, “A Matheuristic for Practical Flights

Arrival and Departure Scheduling.” IEEE International Conference on In-

dustrial Engineering and Engineering Management (IEEM), pp. 1162-1166.

IEEE, 2020.

3.1 Introduction

The classical parallel-machine scheduling problem is to assign n independent

jobs to m machines. This chapter explores extended variants of this problem in

which each job has a time interval to be finished (called due window), and machines

require setup times (preparation), which are dependent on the sequence on each

machine. Embracing Just-In-Time philosophy and the need for developing more

realistic scheduling models are among the reasons cited for considering setup times

and due dates (windows) simultaneously.

We propose efficient algorithms that are capable of delivering high quality sched-

ules. Unlike most studies in the extant literature, our algorithms are matheuristic

methods and operate by breaking down the original instance of the problem into

smaller instances at the master level, and independently solving the smaller in-

stances at the slave level through optimizing a compact formulation by an exact

solver. From a practical point of view, one may acknowledge the conceptual sim-

plicity of our algorithms as one of their merits. While the state-of-the-art methods
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utilize various components within the heuristics and meta-heuristics, leading there-

fore to implementation of advanced algorithmic techniques and parameters tunning,

the structure of our matheuristics are both simple and straightforward. Also, by us-

ing an exact solver inside our algorithms as the local search, not only we contribute

to a simpler framework, we also commit to using advanced and established solvers.

It is noteworthy that problems discussed in this chapter apart from manufac-

turing systems have certain applications in air traffic control. We address two such

problems i.e. Aircraft landing problem (ALP) and Aircraft Sequencing Problem

(ASP). The ALP on single and multiple runways aims to schedule a set of aircraft

for landing in a given planning horizon, and no changes to this set (i.e., removal

or addition of aircraft or runways) is permitted during the planning. As the input

data, we are given minimum separation time units between every pair of aircraft,

target landing times of aircraft, as well as their earliest and latest landing times

and the penalties per unit of earliness and lateness. On the other hand the ASP is

concerned with sequencing both inbound and outbound aircraft on a single runway.

We propose two Relax-and-Solve (R&S) matheuristic algorithms called Relax 1 and

Relax 2 for ALP and ASP respectively. The remainder of this chapter is organized as

follows. Section 3.2 explains the ALP and ASP, defines the mathematical notations

and formulates the problems as an MIP. Section 3.3 discusses the proposed R&S

matheuristic algorithm (i.e Relax 1) for ALP. The components of the algorithm,

including initial solution generation and improvement procedures will also be dis-

cussed in this section. In addition, a relaxed MIP is developed, which together with

the presented speed-up procedures significantly improve the efficiency of solving the

problem. The computational outcomes will be discussed in Section 3.3.6. Section 3.4

describes Relax 2 for ASP and provides the computational results of testing the Re-

lax 2 on benchmark instances. Finally, the chapter ends with a few conclusions.

Relax 1 and Relax 2 have previously appeared in the following publications:

• Relax 1 (for ALP (Section 3.3)):

– M.M. Ahmadian and A. Salehipour, “Heuristics for flights arrival schedul-

ing at airports.” International Transactions in Operational Research

(2020).
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• Relax 2 (for ASP (Section 3.4)):

– M.M. Ahmadian and A. Salehipour, “AMatheuristic for Practical Flights

Arrival and Departure Scheduling.” IEEE International Conference on

Industrial Engineering and Engineering Management (IEEM), pp. 1162-

1166. IEEE, 2020.

3.2 Problem statement

The ALP aims to determine an optimal allocation of a fleet of aircraft I =

{1, . . . , n} to land on the airport’s runways (a landing sequence), and also an optimal

schedule of landings simultaneously. Although the target landing time of aircraft

i ∈ I, i.e., Ti is given a priori, the scheduled or real landing time xi, also known

as the scheduled time of arrival (STA), is an operational-dependent variable which

must be decided upon. This implies that an aircraft may not land on its target

landing time or even close to this time. We assume that all runways are identical

and accept all types of aircraft.

Minimizing the total cost of early and delayed landings about the given target

landing times is the objective of the ALP. If aircraft i lands earlier than its target

landing time Ti, i.e., xi ≤ Ti, its landing is penalized proportionally to the amount

of earliness, which is αi = max(0, Ti − xi). Conversely, if aircraft i is scheduled

to land later than its target landing time, i.e., xj ≥ Tj, the penalty of its late

landing is proportional to the amount of its delay, which is βi = max(0, xi − Ti).

Per unit cost of early and late landing of aircraft i is given by parameters c−i ≥
0 and c+i ≥ 0. The total cost of early and late landings is therefore equal to∑n

i=1(c
−
i αi + c+i βi). Considering different per unit cost for early and late landings

generalizes the modeling since these two costs may not be identical in practice.

Also, in practice, the target landing time of aircraft i may be selected from the time

window [Ei, Li], which defines the earliest and latest landing times. Therefore, a

feasible aircraft landing must be scheduled in this time window, that is Ei ≤ xi ≤ Li.

It follows that αi > 0 if the decision variable xi lies within the range [Ei, Ti), and

βi > 0 if it lies within the range (Ti, Li].

A safe landing requires a separation time sij ∈ R+, i, j ∈ I, i ̸= j between

every pair of ordered aircraft i and j landing on the same runway. Several factors,
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including the type of aircraft, impact the separation times; typically, the choice of

the runway does not affect the separation times. Moreover, the separation time

between every pair of ordered aircraft landing on the same runway is different from

landing on different runways. We assume that the separation time between two

aircraft landing on different runways is zero time unit. This assumption has been

made by other authors in the literature, for example, see Pinol and Beasley (2006).

The ALP can be formulated as an MIP. Problem P1 presents the mathematical

model for ALP (Pinol and Beasley, 2006; Salehipour et al., 2013). In problem P1,

the non-negative variables xi ≥ 0, ∀i ∈ I represent the scheduled landing time of

aircraft i. Also, the non-negative variables αi, βi ≥ 0, ∀i ∈ I show the amount of

earliness and tardiness of aircraft i. The binary variables yij, ∀i, j ∈ I, i ̸= j take

the value of 1 if aircraft i lands before j and 0 otherwise. The binary variables

δij, ∀i, j ∈ I, i ̸= j are introduced to model if aircraft i and j land on the same

runway, for which the variables take the value of 1, and 0 otherwise. The binary

variables γir, ∀i ∈ I, r ∈ R take the value of 1 if aircraft i lands on runway r and 0

otherwise. In problem P1, M represents a very large constant, value of which may

be obtained per instance as discussed in Beasley et al. (2000). Table 3.1 summarizes

the mathematical notations used in problem P1.

Problem P1

min z =
∑
i∈I

(c−i αi + c+i βi) (3.1)

Subject to

Ei ≤ xi ≤ Li, ∀i ∈ I, (3.2)

xi − Ti = αi − βi, ∀i ∈ I, (3.3)

xj − xi ≥ sijδij −Myji, ∀i, j ∈ I, i ̸= j, (3.4)

yij + yji = 1, ∀i, j ∈ I, i ̸= j, (3.5)
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Table 3.1 : The mathematical notations.

Sets
I Set of aircraft, I = {1, . . . , n}, |I| = n, indexed by i.
R Set of runways, R = {1, . . . ,m}, |R| = m, indexed by m.

Parameters
sij Separation time units between two ordered aircraft i and j landing on

the same runway, sij > 0, i, j ∈ I, i ̸= j.
Ti Target landing time of aircraft i, Ti ≥ 0, i ∈ I.
Ei Earliest landing time of aircraft i, Ei ≥ 0, i ∈ I.
Li Latest landing time of aircraft i, Li ≥ Ei, i ∈ I.
c−i Cost of early landing of aircraft i, c−i ≥ 0, i ∈ I.
c+i Cost of late landing of aircraft i, c+i ≥ 0, i ∈ I.

Variables
xi Scheduled landing time (STA) of aircraft i, xi ≥ 0, i ∈ I.
αi Amount of landing earliness of aircraft i (landing before target landing

time), αi = max(0, Ti − xi), αi ≥ 0.
βi Amount of landing lateness of aircraft i (landing after target landing

time), βi = max(0, xi − Ti), βi ≥ 0.
yij Whether aircraft i lands before aircraft j, yij ∈ {0, 1}, i, j ∈ I, i ̸= j.
δij Whether aircraft i and j land on the same runway, δij ∈ {0, 1}, i, j ∈

I, i ̸= j.
γir Whether aircraft i is allocated to runway r, γir ∈ {0, 1}, i ∈ I, r ∈ R.

δij ≥ γir + γjr − 1, ∀i, j ∈ I, i ̸= j, r ∈ R, (3.6)

∑
r∈R

γir = 1, ∀i ∈ I, (3.7)

yij, δij ∈ {0, 1}, ∀i, j ∈ I, i ̸= j, (3.8)

γir ∈ {0, 1}, ∀i ∈ I, r ∈ R, (3.9)

xi, αi, βi ≥ 0, ∀i ∈ I. (3.10)

The objective function (Equation (3.1)) minimizes the total cost of landing de-

viations about the target landing times. Constraints (3.2) ensure that every aircraft

lands in its time window. Constraints (3.3) link the decision variables xi and param-

eters Ti to decision variables αi and βi. Constraints (3.4) ensure that if two aircraft

i and j land on the same runway, at least sij time units should be elapsed before
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aircraft j could be landed on that runway. Given a set of two aircraft, constraints

(3.5) ensure that one lands before the other. Constraints (3.6) link the decision

variables δij and γir. Constraints (3.7) imply that every aircraft lands on only one

runway. Constraints (3.8) and (3.9) force decision variables yij, δij and γir to take

only binary values. Finally, constraints (3.10) impose non-negativity for decision

variables xi, αi and βi.

As discussed earlier, the ASP includes inbound and outbound traffic. Moreover,

contrary to ALP, the aircraft sequencing problem (ASP) aims to schedule the landing

and take-off operations on a single runway such that the total weighted delays of all

aircraft are minimized. Hence one can formulate ASP by slightly modifying Problem

P1 and eliminating decision variables Ei, δij and γir.

3.3 Relax 1 for ALP

In this section, we propose a R&S matheuristic algorithm (i.e. Relax 1) for

the ALP. Matheuristic algorithms are made by the inter-operation of heuristics

and mathematical programming techniques (Boschetti et al., 2009; Maniezzo et

al., 2009), and have been adapted for a wide range of optimization problems (Doi

et al., 2018; Fuentes et al., 2018; Woo and Kim, 2018).

Given an initial sequence for aircraft landings, the R&S algorithm, which is

also known as fix-and-optimize (Helber and Sahling, 2010), delivers an improved

sequence by iteratively destructing (relaxing) a sub-sequence of the incumbent se-

quence, which includes a subset of consecutive aircraft, and re-constructing a feasible

sequence by using optimization techniques. Indeed, the “relax” part nominates a

subset of aircraft to change their position in the landing sequence, whereby the

“solve” part determines a (new) landing order for the aircraft in the subset, and ob-

tains a complete landing schedule for all aircraft. Algorithm 3.1 shows a high-level

presentation of the R&S algorithm.

We use the solver CPLEX (ILOG, 2017) as the local search in the solve part of

the proposed Relax 1. Our algorithm is conceptually simple, and we will show in

Section 3.3.6 that it also delivers quality solutions for the ALP. Next, we discuss the

solution representation, initial sequence generation, relax and solve operations and

the speed-up techniques.
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Algorithm 3.1: The relax-and-solve (R&S) matheuristic algorithm for the
ALP.
1 Input: An initial sequence Π (an ordered set of aircraft) for landing.
2 while the stopping condition is not met do
3 Relax();
4 Solve();

5 end
6 return The best obtained landing schedule;

3.3.1 Generating an initial sequence

We show a sequence for the ALP by an ordered list of 2× n elements. The first

row gives the landing positions in the sequence and the second row specifies the

runway allocations. For example, the schedule illustrated in Table 3.4 with m = 2

can be represented as follows:

Π =

3 4 5 6 8 7 9 10 1 14 13 2 12 11 15

1 1 1 2 1 2 1 2 1 2 2 1 1 2 1

 .

We generate such an initial sequence of landings (which includes a landing se-

quence and runway allocations) for the Relax 1 by utilizing the earliest target land-

ing time (ETLT) construction algorithm of Salehipour et al. (2013); (see Algo-

rithm 3.2). The ETLT generates an initial sequence by sorting aircraft in non-

decreasing order of their target landing times (i.e., by following the FCFS dispatch-

ing rule), and assigning the runways accordingly. Next we present the pseudocode

of the ETLT algorithm and a numerical example of ETLT. It is noteworthy that

ETLT has the running time of O(n log n).

The ETLT algorithm

The ETLT algorithm (Salehipour et al., 2013) is summarized in Algorithm 3.2.

A numerical example

Consider the instance Airland2 that includes 15 aircraft. Table 3.2 illustrates the

landing data for this instance. The separation time between every pair of aircraft

landing on the same runway is shown in Table 3.3. Table 3.4 represents the landing
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Algorithm 3.2: The earliest target landing time (ETLT) construction

heuristic.

1 Input: An instance of the ALP, where I and R are sets of aircraft and runways,

ω = {} and Π2×n = {}.
2 Output: A feasible landing sequence Π for the ALP.

3 Initialization:

4 r := 1 (selecting the first runway);

5 k := 1;

6 Let ω := (σ(1), σ(2), . . . , σ(n)), where Tσ(1) ≤ Tσ(2) ≤ ... ≤ Tσ(n), be the sorted

sequence of aircraft landings (sorted in non-decreasing order of target landing

times);

7 Π[1][k] := ω[1]; // The first aircraft (i.e., ω[1]) appears first in Π

8 Π[2][k] := r; // Assign the first aircraft (i.e., ω[1]) to runway 1

9 Remove the first element from ω;

10 Allocation:

11 while ω ̸= {} do
12 k := k + 1;

13 if |ω| = 1 then

14 Π[1][k] := ω[1] and Π[2][k] := r;

15 Remove the first element from ω;

16 else

17 if Tω[2] < Tω[1] + sω[1],ω[2] then

// Assign the first two aircraft in ω to two different runways

18 Π[1][k] := ω[1] and Π[2][k] := r;

19 k := k + 1;

20 r := r + 1;

21 if r > m then

22 r := 1;

23 end

24 Π[1][k] := ω[2] and Π[2][k] := r;

25 Remove the first two elements from ω;

26 else

// Assign the first two aircraft in ω to the same runway

27 Π[1][k] := ω[1] and Π[2][k] := r;

28 k := k + 1;

29 Π[1][k] := ω[2] and Π[2][k] := r;

30 Remove the first two elements from ω;

31 end

32 r := r + 1;

33 if r > m then

34 r := 1;

35 end

36 end

37 end

38 return Π;
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sequences generated by the ETLT (Algorithm 3.2) on one and two runways and

their schedule delivered by the CPLEX.

Table 3.2 : The landing data for Airland2.

Aircraft Ei Ti Li c−i c+i
1 129 155 559 10 10
2 190 250 732 10 10
3 84 93 501 30 30
4 89 98 509 30 30
5 100 111 536 30 30
6 107 120 552 30 30
7 109 121 550 30 30
8 109 120 544 30 30
9 115 128 557 30 30
10 134 151 610 30 30
11 266 341 837 10 10
12 251 313 778 10 10
13 160 181 674 30 30
14 152 171 637 30 30
15 276 342 815 10 10

3.3.2 Relaxing sequencing constraints for a subset of aircraft

The relax procedure selects a sub-sequence of a given sequence Π. That subset

contains a number of consecutive aircraft in the sequence Π. The motivation behind

the relax procedure is as follows. An optimal landing schedule for the given landing

sequence Π can be obtained in polynomial time using problem P1 because given Π

problem P1 turns into a linear program. It is clear that such a schedule is optimal

for Π, and it may not be the global optimal schedule for the problem, implying that

if the landing sequence changes, an improved schedule may be produced. Given Π,

the relax procedure iteratively destructs the landing order for only a small number of

aircraft so that the solve procedure can (optimally) re-order the nominated aircraft

in a short amount of time.

Almost every heuristic and meta-heuristic algorithm for the ALP operates by

iteratively manipulating the landing order of a small number of aircraft to generate

new landing sequences. The quality of a generated sequence is evaluated by its sched-

ule. For example, Awasthi et al. (2013) and Girish (2016) presented polynomial-time

algorithms for delivering the optimal schedule, and Furini et al. (2015) and Pinol
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Table 3.3 : The separation times between pairs of aircraft for Airland2.

(i, j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 - 3 15 15 15 15 15 15 15 15 3 3 15 15 3
2 3 - 15 15 15 15 15 15 15 15 3 3 15 15 3
3 15 15 - 8 8 8 8 8 8 8 15 15 8 8 15
4 15 15 8 - 8 8 8 8 8 8 15 15 8 8 15
5 15 15 8 8 - 8 8 8 8 8 15 15 8 8 15
6 15 15 8 8 8 - 8 8 8 8 15 15 8 8 15
7 15 15 8 8 8 8 - 8 8 8 15 15 8 8 15
8 15 15 8 8 8 8 8 - 8 8 15 15 8 8 15
9 15 15 8 8 8 8 8 8 - 8 15 15 8 8 15
10 15 15 8 8 8 8 8 8 8 - 15 15 8 8 15
11 3 3 15 15 15 15 15 15 15 15 - 3 15 15 3
12 3 3 15 15 15 15 15 15 15 15 3 - 15 15 3
13 15 15 8 8 8 8 8 8 8 8 15 15 - 8 15
14 15 15 8 8 8 8 8 8 8 8 15 15 8 - 15
15 3 3 15 15 15 15 15 15 15 15 3 3 15 15 -

Table 3.4 : The sequences generated by Algorithm 3.2 and their associated schedule
delivered by CPLEX for Airland2.

m
=

1 i 3 4 5 6 8 7 9 10 1 14 13 2 12 11 15
r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
xi 88 96 104 112 120 128 136 144 159 174 182 250 313 341 344

c−i αi + c+i βi 150 60 210 240 0 210 240 210 40 90 30 0 0 0 20 z = 1500

m
=

2 i 3 4 5 6 8 7 9 10 1 14 13 2 12 11 15
r 1 1 1 2 1 2 1 2 1 2 2 1 1 2 1
xi 90 98 111 113 120 121 128 151 155 171 181 250 313 341 342

c−i αi + c+i βi 90 0 0 210 0 0 0 0 0 0 0 0 0 0 0 z = 300

and Beasley (2006), used the solvers CPLEX and Gurobi for generating the optimal

schedule. One difference between our matheuristic and the previous studies is that

we use the available solvers for both re-sequencing and scheduling.

We may classify two approaches for the re-sequencing: “complete” and “partial”.

In complete approach, changes are made to either the entire or a part of the sequence.

However, the sequence is considered as a whole and the re-sequencing occurs on

the complete array of aircraft. For example, Pinol and Beasley (2006) change a

sequence through recombination operators and Salehipour et al. (2013), Awasthi

et al. (2013) and Sabar and Kendall (2015) perform swap and insertion moves for

the same purpose. One major shortcoming regarding that approach is that if an

exact solver is used within these algorithms its role is relegated to only scheduling

(i.e., the solver is only used to obtain the optimal landing schedule for a given

sequence). Therefore, the solvers are not utilized to manipulate the sequences and



41

obtain improved ones. Indeed, moves made by the solvers are often very fruitful,

and contrary to the traditional manipulation techniques (e.g., swap or insertion),

which are mostly performed randomly or myopically and without considering their

subsequent impact on the rest of the sequence, the solvers can obtain high quality

sequences and schedules. Yet, long sequences associated with large instances are a

limiting factor for the available solvers.

In the partial approach which is suitable for long aircraft sequences, the se-

quence is broken down into a number of sub-sequences and changes are made to

one sub-sequence at a time while the rest of the sequence remains unchanged. Hu

and Chen (2005) and Zhan et al. (2009) decomposed the problem into smaller sub-

sequences by using the receding horizon control method. To this end, the aircraft

whose target times are within a specific receding horizon are selected first, and then

are scheduled. We note that the partial approach also allows the exact solvers to be

used for re-sequencing. For example, Xiangwei et al. (2011) proposed a sliding win-

dow algorithm for the ALP. At each iteration, by sliding the window the algorithm

chooses a specified number of unscheduled aircraft, and solves the original ALP as-

sociated with those aircraft (i.e., obtains both landing sequence and schedule). In

order to maintain the connection to the preceding and succeeding aircraft, the land-

ing times of the previously scheduled aircraft are fixed. The algorithm iterates until

all aircraft have their landing times fixed. Clearly, fixing landing time of the aircraft

can potentially lead to sub-optimal schedules. A similar idea was investigated by

Girish (2016). The study used a state-of-the-art algorithm to deliver an optimal

landing schedule for a given sequence.

Similar decomposition ideas have also been used for solving the ASP. To model

a variant of the ASP in which each aircraft can be shifted by at most certain po-

sitions in the sequence both backward and forward, Furini et al. (2012); Furini et

al. (2015) presented an MIP, and proposed a rolling horizon algorithm, which iter-

atively solves the MIP for a variable time window. The time window rolls forward

at each iteration. The last aircraft of the current iteration represents the initial

condition for the next iteration. Salehipour and Ahmadian (2017) and Salehipour

et al. (2018) adapted the idea of rolling horizon for the ALP, and proposed novel

relaxation neighborhoods in which re-sequencing and scheduling are simultaneously
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performed by the exact solvers. Our matheuristic shares certain similarities with

the rolling horizon framework and those relaxation neighborhoods.

The relax procedure in Relax 1 breaks down the given landing sequence Π into

d sub-sequences. We use two parameters of “relaxation center”, denoted by RC ∈
Z+, and “relaxation radius”, shown by RR ∈ Z+ to form the sub-sequences. The

parameter RC determines the center position of the sub-sequence, i.e., the aircraft

positioned in the middle of the sub-sequence, and the parameter RR specifies the size

of the sub-sequence. Hence the sub-sequence R ⊂ Π is formed by the middle position

RC and RR positions backward and forward. We call R the “relaxed” sub-sequence

and the remaining sub-sequence(s) the “non-relaxed”. We set RC and RR such that

a certain degree of overlapping between the currently and previously relaxed aircraft

is obtained. Ideally, RR should take a small value so that the relaxed sub-sequence

contains a small number of aircraft ensuring that the re-sequencing is efficiently

performed. The parameter RC is updated during the progress of Relax 1. Thus

each iteration of the relax procedure involves the formation of a new sub-sequence

R.

Every sub-sequence R is relaxed through lifting the precedence constraints of

the aircraft in the sub-sequence, letting therefore the aircraft change their landing

position in the sequence. The relax procedure does not let the landing position of

the aircraft other than those in the current R be changed. To have a better grasp of

the relax procedure, consider the landing sequence illustrated in Table 3.4 with 15

aircraft and one runway (the associated instance and its data are given in Table 3.3):

Π =

3 4 5 6 8 7 9 10 1 14 13 2 12 11 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 .

Because the operation of the relax procedure is slightly more complex with mul-

tiple runways, we first discuss the single-runway case. Given RC = 8, i.e., the 8th

position in the sequence and RR = 1, the relaxed sub-sequence is R =

9, 10, 1

1, 1, 1

,

which is highlighted in Π. Therefore, the relax procedure relaxes the precedence

constraints for those aircraft. Figure 3.1 shows how this is performed in relation

to the whole sequence. The relaxed aircraft are represented by green and yellow
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Figure 3.1 : Operation of the relax procedure in the instance with 15 aircraft and one
runway. The relaxed aircraft are represented by green and yellow (the green vertex
shows the relaxation center). Aircraft shown in red are immediate predecessor and
successor of the relaxed sub-sequence. The conjunctive arcs specify the aircraft that
are subject to only scheduling (their sequence is kept as is) and the disjunctive arcs
(shown in dashed) represent the relaxed aircraft that are subject to both sequencing
and scheduling. Arcs from vertex 7 and arcs to vertex 14 ensure that the relaxed
aircraft will be re-sequenced only within the relaxed sub-sequence and that they are
connected to the whole sequence.

vertices (the green vertex shows the relaxation center). As shown in the figure,

arcs originating from the predecessor and ending in the successor of the relaxed

sub-sequence, i.e., aircraft 7 and 14, vertices of which are shown in red, (i ) enforce

the relaxed aircraft to be re-sequenced only within the relaxed sub-sequence, that

is between aircraft 7 and 14, and (ii) ensure that the relaxed sub-sequence is not

disconnected from the complete sequence, by imposing the boundary constraints

(arcs originating from vertex 7 and ending in vertex 14).

The operation of the relax procedure on multiple runways is more complicated

because the relaxed aircraft are required to be allocated to runways before any

sequencing and scheduling can be performed. Consider the landing sequence shown

in Table 3.4 with two runways:

Π =

3 4 5 6 8 7 9 10 1 14 13 2 12 11 15

1 1 1 2 1 2 1 2 1 2 2 1 1 2 1

 .

Let the relax sub-sequence include aircraft 9, 10 and 1 (highlighted in the first

row). As Figure 3.2 illustrates, aircraft 8 and 7 landing on runways 1 and 2 im-
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mediately precede the relaxed sub-sequence. Also, aircraft 14 and 2 that land on

runways 2 and 1 immediately succeed the relaxed sub-sequence. Thus, the relax

procedure operates such that the relaxed sub-sequence will be re-sequenced between

those predecessors and successors. The relaxed aircraft can be assigned to any of

the available runways.

Similar to the single-runway case, the order of aircraft in the non-relaxed sub-

sequence(s) is kept unchanged and only the relaxed aircraft are subject to runway

allocation and re-sequencing. Therefore, depending on the location of the relaxed

sub-sequence (the beginning, middle or end of the sequence) a set of additional

precedence constraints are required to ensure the “connectivity”, i.e., the prede-

cessor of the relaxed sub-sequence is also the predecessor to the successor of the

relaxed sub-sequence. In our example, those constraints ensure that aircraft 8 lands

before aircraft 2 on runway 1 (also 7 prior to 14 on runway 2). Additionally, those

constraints establish the connectivity between the non-relaxed aircraft, i.e., aircraft

8 and 2 on runway 1 (aircraft 7 and 14 on runway 2) because if no relaxed aircraft

is allocated to runway 1 (and 2), they still hold. In Figure 3.2, the highlighted

black arcs between vertices 8 and 2 (and 7 and 14) illustrate these constraints (e.g.,

x2 ≥ x8 + s82 and x14 ≥ x7 + s7,14). Moreover, the figure contains a set of conjunc-

tive dashed arcs between the non-relaxed aircraft preceding the relaxed aircraft, i.e.,

originating from vertices 8 and 7, and between the relaxed aircraft and the succeed-

ing non-relaxed aircraft, i.e., ending in vertices 14 and 2. Those arcs only exist if

the relaxed aircraft land on the same runway of those non-relaxed aircraft.

The above discussion leads to the following set of connectivity constraints:

xi ≥ xj + sji −M(2− γir − γjr), i = 9, 10, 1, j = 8, 7, r = 1, 2. (3.11)

Similarly, the following constraints are defined between the relaxed aircraft and the

succeeding aircraft, i.e., aircraft 2 and 14:

xj ≥ xi + sij −M(2− γir − γjr), i = 9, 10, 1, j = 2, 14, r = 1, 2. (3.12)

It should be pointed out that the relax procedure ensures that the relaxed air-

craft will only be positioned within the relaxed sub-sequence and that they are
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Figure 3.2 : Operation of the relax procedure in an instance with multiple runways,
where the relax sub-sequence includes aircraft 9, 10 and 1 (a pair (i, r) represents
aircraft i landing on runway r shown in green and yellow (the green represents the
relaxation centre)). Aircraft shown in blue and red land on runway one and two
respectively. The conjunctive arcs specify aircraft that keep their sequence and are
subject to only scheduling. Disjunctive arcs within the relaxed sub-sequence (shown
in dashed) represent the relaxed aircraft, which are subject to runway allocation,
re-sequencing and scheduling.

always connected to the whole sequence. That is the primary advantage of the relax

procedure over the traditional manipulations.

3.3.3 Solving partially relaxed sequence

The solve procedure aims at generating a (optimal) landing sequence for every

sub-sequence R, and a (optimal) schedule for the whole sequence by utilizing the

solver CPLEX (ILOG, 2017). For this reason, we construct a relaxed formulation

of problem P1 by relaxing certain precedence constraints. Our relaxed formulation,

denoted by problem P2, is computationally less challenging than solving problem

P1 due to the smaller number of precedence constraints.

Problem P2

Constraints (3.4) in problem P1 determine the landing schedule for an aircraft by

considering all scheduled aircraft, and ensuring that the separation times are met.

Even a medium-sized instance of the ALP may involve a large number of constraints

(3.4). We observe that in the majority of the tested instances such a large number
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Figure 3.3 : Only a few immediate precedence constraints might be binding when
scheduling an aircraft.

of constraints may be avoided without violating the separation time requirements.

Therefore, we obtain problem P2 by relaxing a large number of constraints (3.4).

Let us start by a given instance with 100 aircraft and one runway. Given a

landing sequence, problem P1 determines the landing schedule for every aircraft by

considering the landing schedule of all of its preceding aircraft. This is equivalent

to inequality (3.13):

xj ≥ max
1≤i≤j−1

{xi + sij}. (3.13)

where aircraft j lands after aircraft i. Consider the landing sequence Π =

1, 2, . . . , 99, 100

1, 1, . . . , 1, 1

.

Assume that we want to determine the landing schedule for the last aircraft. It fol-

lows from constraints (3.4) in problem P1 that

x100 ≥ x1 + s1,100,
...

x100 ≥ x98 + s98,100,

x100 ≥ x99 + s99,100.

This is illustrated in Figure 3.3. However, because of the characteristic of the

separation times, the binding constraints are typically due to certain immediate

predecessors, and most likely due to the very immediate predecessor. Also, because

problem P2 is built on a given sequence we only include the smallest number of
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constraints (3.4) for the non-relaxed sub-sequence(s), which is equal to n − 1. It

should be noted that the number of all constraints (3.4) in problem P1 is equal to∑n−1
i=1 (i) = n×(n−1)

2
, and we therefore relax a huge number of those constraints in

problem P2. We include all constraints (3.4) for the relaxed sub-sequence R though.

It is therefore clear that problem P2 is computationally more efficient than prob-

lem P1. This, however, has a drawback and that is the schedule obtained by problem

P2 may not be feasible for the original problem P1. The reason is that we do not

enforce the separation time requirement for all aircraft, except only for the adjacent

aircraft in the non-relaxed sub-sequence(s). For example, for the presented instance

with 100 aircraft, problem P1 introduces 4950 constraints (3.4), whereas problem P2

includes only 99 of those constraints (3.4). Due to the same reasoning, the objective

function of problem P2 is a lower bound on the optimal objective function value of

problem P1.

To implement problem P2 for the single-runway case, we use the following “or

logical” (exclusive disjunction) constraints, which are features of CPLEX. Using

the “or logical” constraints would lead to removal of the binary variables yij and

constraints (3.5):

xj ≥ xi + sij or xi ≥ xj + sji, j = i+ 1 or i = j + 1. (3.14)

We may follow the similar procedure and develop problem P2 for the multiple-

runway case. This leads to the addition of constraints (3.15) and removal of con-

straints (3.4), (3.5) and (3.6) and binary variables yij:

xj ≥ xi + sij(γir + γjr − 1) or xi ≥ xj + sji(γir + γjr − 1),

j = i+ 1 or i = j + 1, r = 1, . . . ,m. (3.15)

We note that constraints (3.15) do not include binary variables δij. In summary,

given a feasible sequence Π, the problem P2 is formed by the objective function

(3.1), constraints (3.2), (3.3), (3.7), (3.15), and variables γir, xi, αi, βi.
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Next, we propose a procedure for dealing with the infeasible schedule generated by

problem P2.

Feasibility of problem P2

Recall that problem P2 does not include all of constraints (3.4), meaning that

the separation time requirement may not be applied between every pair of air-

craft. Indeed, the separation time requirement is only applied between all aircraft

in the relaxed sub-sequence and between the adjacent aircraft in the non-relaxed

sub-sequence(s). This may result in the schedule generated by problem P2 to be

infeasible for problem P1, particularly, if the separation times do not follow the

triangular inequality.

The feasibility of the schedule produced by problem P2 can easily be verified, and

then repaired if violated. Intuitively, if the landing schedule produced by problem P2

is given as the input to problem P1 (hence, all the decision variables in problem P1

turn into parameters), then solving problem P1 effectively results either in the same

schedule as of problem P2, or in an infeasible status. The latter implies that some

of the not-yet-added constraints (3.4) must be included in problem P2. Because

we do not have a priori information on the number of those constraints and also

to keep problem P2 efficiently solvable, we start by including constraints related to

two immediate predecessors of an aircraft (initially we include one constraint (3.4)

per aircraft, i.e., the landing schedule of an aircraft only depends on its immediate

predecessor, which is shown in Figure 3.4a). To this end, we update problem P2 by

adding an additional constraint per aircraft, which may be generated in a similar

way to that of constraints (3.14) or (3.15). This is illustrated in Figure 3.4b. Again,

we solve problem P2 and check the feasibility of the so obtained schedule against

problem P1. In case of infeasibility, we consider three preceding aircraft (Figure 3.4c)

for every aircraft, and follow the above procedure. No more than three preceding

aircraft will be considered because there is no guarantee on the minimum number of

preceding aircraft to be considered for each aircraft, in order to ensure that a feasible

schedule is delivered. Therefore, if no feasible schedule is produced by problem P2,

problem P1 that contains all preceding constraints is solved, by considering time

limits, to deliver a feasible schedule.
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Figure 3.4 : Generating a feasible schedule for the ALP by problem P2: (a) the
case of using one constraint (3.4) per aircraft in problem P2 (the default case), (b)
the case of using two constraints (3.4) per aircraft, and (c) the case of using three
constraints (3.4) per aircraft.

We use the solver CPLEX with a time limit for solving problem P2 because

obtaining an optimal solution for problem P2 may still be a computational challenge.

Setting reasonable time limits may not compromise the solution quality and can

significantly improve the efficiency of solving the problem, which is important for

real-world applications. We note that problem P2 reports an infeasible schedule

only for one instance, out of the 49 tested instances in Section 3.3.6, which was then

repaired by the above procedure. That indicates the effectiveness of problem P2 in

generating feasible schedules for problem P1.

In order to further improve the efficiency of the proposed Relax 1, in what follows

we propose speed-up techniques that further expedite the solve procedure.

Speed-up procedures

Fast algorithms are very important for real-world applications of the ALP. In

this section, we propose two speed-up procedures to further reduce the computation

time of the solve procedure. The first speed-up is proposed for the single-runway

case and the second one is designed for the multiple-runway case.

Recall that in the single-runway case the Relax 1 starts from the beginning of

a given sequence and progressively relaxes and solves a number of sub-sequences.

Due to the penalties associated with early and late landings changing the landing

position of an aircraft too further forward or backward in the sequence is unlikely

to be “profitable”, i.e., it may not improve the objective function value. Therefore,

we restrict the re-sequencing of an aircraft within a few positions backward and

forward, which we refer to the vicinity of the aircraft. The vicinity is controlled
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Figure 3.5 : The operation of speed-up procedure for the single-runway case: (a)
a relaxed aircraft shown in green is connected either to neighbor aircraft (shown
in yellow) that are located within a certain proximity, or to non-neighbor aircraft
(shown in gray) by disjunctive arcs, and (b) due to parameter AR an aircraft is only
re-sequenced with its neighbors that are within AR positions from the aircraft. The
disjunctive dashed arcs highlight that and the conjunctive arcs are used to highlight
the non-neighbor aircraft.

by the parameter AR ∈ Z+ (“adjacency radius”). This idea has been graphically

illustrated in Figure 3.5.

For the multiple-runway case, we observe that by employing more runways the

number of aircraft landings on each runway decreases, and therefore, the chance of

scheduling aircraft landings on their target landing time increases. This results in a

considerable number of aircraft to have an earliness or lateness penalty of zero. In

most circumstances, relaxing such aircraft would not lead to a better schedule and

it only increases the computational burden. Hence, before relaxing a sub-sequence

the solve procedure pre-processes the landing penalties of the aircraft in the sub-

sequence, as well as of the successor non-relaxed aircraft (if the successor non-relaxed

aircraft are early or tardy delaying the relaxed aircraft may yield improved schedule)

within the relaxation radius (RR); see Figure 3.6. If the landing penalties of all those

aircraft are equal to zero, the solve procedure skips relaxing the sub-sequence and
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Figure 3.6 : A set of aircraft to be relaxed (shown in green and yellow), and a set
of non-relaxed aircraft (shown in gray), both of which include the aircraft in the
relaxation radius (RR). If the landing penalties of all those aircraft are equal to
zero the solve procedure skips relaxing those aircraft and proceeds to the next sub-
sequence.

considers the next sub-sequence.

We will discuss the impact of the speed-up procedures on the overall run time

of the Relax 1 in Section 3.3.6.

3.3.4 Updating the incumbent sequence

Upon obtaining a schedule with an improved objective function value by the Re-

lax 1, the incumbent sequence Π may need to be updated. This is easily performed

by sorting the relaxed aircraft in non-decreasing order of their scheduled landing

times (the value of decision variables xi). It should be noted that because the order

of non-relaxed aircraft remains unchanged, the update scheme keeps their order as

is.

3.3.5 Operation of the R&S algorithm

Following the detailed discussion of the components of Relax 1 in previous sec-

tions, Figure 3.7 summarizes the implementation of the proposed algorithm for

solving the ALP. In the flowchart, Π represents the initial sequence obtained by

the ETLT construction heuristic (see Algorithm 3.2 in Section 3.3.1). The optimal

schedule for Π is generated by solving problem P1 by CPLEX. We denote by z1(.)

the objective function value of problem P1 and by z2(.) that of problem P2, both

given a sequence of aircraft landings. As seen in Figure 3.7, Relax 1 starts iterating
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if and only if the initial sequence Π leads to an objective function value greater than

zero. At each iteration, a set of consecutive aircraft is relaxed from their landing

position in the incumbent sequence, and the aircraft are re-sequenced by solving

problem P2 (or by problem P1 if problem P2 fails to produce a feasible landing

schedule) and the current sequence is updated accordingly. That process continues

until the stopping criterion is reached. It is important to note that if the objective

function values of problems P1 and P2 for the obtained sequence do not match up

and less than three immediate preceding aircraft were considered by problem P2 in

the solve procedure (i.e., f < 3), Relax 1 is restarted by letting one more immediate

preceding aircraft in problem P2, otherwise the obtained schedule is returned.

3.3.6 Computational results

We tested the proposed Relax 1 on 13 standard benchmark instances of the ALP

available at OR Library ∗. The instances range from small (with 10 aircraft) to large

ones (up to 500 aircraft), and include up to five runways. Therefore, we considered

a total number of 49 instances, from which 13 instances use one runway and the

remaining 36 instances utilize between two and five runways. We coded Relax 1

algorithm in the C++ programming language and implemented problems P1 and

P2 by using the CPLEX Concert Technology version 12.8.0 (ILOG, 2017). Unless

otherwise stated, we used default parameter settings for CPLEX. We performed

the computational experiments on a Personal Computer with Intel® Core™ i5-6500

CPU clocked at 3.20GHz with 8GB of memory under Windows 10 operating system.

The computing machine has four processors (threads). We used only one processor

for CPLEX (both within Relax 1 and as the stand-alone).

Next, we explain the parameter tunning process followed by analyzing the effec-

tiveness of the speed-up procedures in Section 3.3.6. The computational results of

Relax 1 are reported in Section 3.3.6.

Parameter tunning

In order to tune the parameters of Relax 1, we do not run a full factorial design

of experiments because the combination of values of the parameters would result

∗http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html
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in a large number of experiments. Hence, we conduct some experiments in which

a number of instances are solved using different values of parameters. We could

not obtain a set of values for the parameters that work well on all instances. We,

however, observe that the choice of values of the parameters depends on the size

of the instances and further varies between the single-runway and multiple-runway

cases. We therefore group the 13 instances with one runway into four classes of (1)

small with up to 20 aircraft, medium that includes (2) between 20 and 150 aircraft

and (3) between 150 and 250 aircraft, and (4) large with more than 250 aircraft. We

also group the 36 instances with multiple runways into four classes of (1) small with

up to 20 aircraft, medium in two different classes: (2) between 20 and 100 aircraft

and (3) between 100 and 250 aircraft, and (4) large with more than 250 aircraft.

Table 3.5 gives the values of the parameters, per each instance-group, that we use

to solve all instances of the group.

We choose those values of the parameters because considering the impact of size

of an instance they result in good quality solutions in short times. For example, the

smaller values of d (number of sub-sequences) typically lead to larger sub-sequences

but fewer of them, which are more challenging to solve in short times; and we observe

that while that does not contribute to the solution’s quality, it greatly increases

the computation time. Regarding parameters RR and AR, due to earliness and

tardiness penalties we observe that it is not beneficial to schedule an aircraft far

from its target landing time, neither earlier nor later, implying that larger values

for those parameters may not be beneficial. We impose time limit for the solver

CPLEX as an effective computation time reduction strategy. We choose the time

limits such that good solutions are obtained in short computation times.

The algorithm terminates if one of the following three stopping criteria is met:

• Maximum number of iterations: For both single- and multiple-runway cases

we set that value to max(d,min(n
2
, 180)).

• Maximum number of iterations without improvement: We set the value of

this parameter to 15 and 5 for the single and multiple-runway cases. This

criterion is only introduced when the number of executed iterations exceeds d

(i.e., Relax 1 has been through the whole sequence at least once).
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Table 3.5 : Value of parameters for Relax 1.

Runway No. of sub-sequences (d) Relaxation radius (RR) Adjacency radius (AR) Time limit (seconds)
n Value n Value n Value n Value

Single n ≤ 20 4 n ≤ 150 max(4, n
25

) n ≤ 250 5 n ≤ 100 1
20 < n ≤ 150 25 150 < n ≤ 250 max(4, n

50
) n > 250 6 n > 100 2

150 < n ≤ 250 50 n > 250 max(4, n
150

)
n > 250 180

Multiple n ≤ 20 4 - 6 - - n ≤ 250 1
20 < n ≤ 100 25 - 6 - - n > 250 2
100 < n ≤ 250 40 - 6 - -
n > 250 80 - 6 - -

• Objective function value of zero: The value of zero for the objective function

means that an optimal schedule is delivered (though, not every optimal sched-

ule has the value of zero, see Table 3.4; we also note that the objective function

cannot take a negative value).

Effectiveness of the speed-up procedures

As previously discussed in Section 3.3.3, we apply two speed-up procedures in

order to improve the computation time of Relax 1. In this section we verify the

effectiveness of those speed-up procedures by conducting two experiments on the

four large instances with more than 100 aircraft. The first experiment is devoted to

the speed-up for the single-runway case, and in the second experiment we analyze

the speed-up for the multiple-runway case. We run Relax 1 for five times with and

without the speed-ups. We report the average computation times of Relax 1 (over

five runs) in Table 3.6 for single and multiple-runway cases. The table shows that the

speed-up for the single-runway case can reduce the computation time of solving the

large instances between 15% and 40%. Also, the speed-up for the multiple-runway

case improves the run time of Relax 1 between 30% and 45%. The outcomes suggest

the effectiveness of the speed-up procedures in reducing the run time of our proposed

algorithm.

Comparison across state-of-the-art algorithms

In this section we compare the performance of Relax 1 and those of CPLEX (for

solving problem P1) and RH-VAR2-LS of Girish (2016) that we re-implemented.

We chose RH-VAR2-LS because it was shown to be the best performing algorithm

in the literature for solving the ALP (Girish, 2016). We note that while we made a

meticulous effort to re-implement the RH-VAR2-LS algorithm as close as possible to
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Table 3.6 : The impact of the speed-up procedures on the computation time (in
seconds) of Relax 1 for large instances (n > 100).

Single runway Multiple runways
Instance Speed up No speed-up Speed-up No speed-up
Airland10 36.97 54.15 5.95 8.52
Airland11 5.82 6.87 6.42 9.68
Airland12 24.07 32.44 5.52 10.33
Airland13 63.83 105.68 21.95 32.33

its original implementation reported in that study, our re-implementation might be

slightly different from the operation of the original algorithm. This is because the

original study by Girish (2016) did not fully disclose all the components of the RH-

VAR2-LS algorithm. In the following we list the components for which no details

were given in Girish (2016):

• In section 3.4.4 of Girish (2016), the local search procedure containing four

neighborhoods is explained. According to the paper “The local search proce-

dure generates a set of neighborhood position vectors corresponding to each

particle position vector q (q = 1, 2, . . . , swarmsize). The best neighborhood

(with the least total penalty cost) replaces the particle position vector if it is an

improved solution”. But no detail in this regard was given. More specifically,

it is questionable how “a set of neighborhood position vectors” is generated,

e.g., is the set formed individually for each neighborhood or a set containing

neighbors from all neighborhoods is created? Is there any order among the

neighborhoods? What is the size of this set? Does the size remain unchanged

across all the instances or vary as the instance size grows? Does the size of set

vary for single and multiple runway cases?

• Considering swap and remove-insert neighborhoods (discussed in 3.4.4 of Girish (2016)),

are the positions selected uniformly or is the selection somehow guided?

• According to the explanation given in section 4.2.2 of Girish (2016), improved

solutions obtained from local search must undergo a repair mechanism which is,

according to the author similar to the one presented in Tasgetiren et al. (2004).

However, the problem addressed in Tasgetiren et al. (2004) is different from
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ALP (the paper studies single machine with objective of total weighted tardi-

ness with no time windows). It is therefore not clear how repair mechanism

works for the multiple-runway case.

• We also noted a case in which the original algorithm of Girish (2016) may

get stuck. In section 3.4.4 of Girish (2016), the proposed rolling horizon is

explained in which a set of aircraft in the so-called “optimization window”

are optimized by HPSO-LS while the landing order of aircraft preceding the

window is frozen. To initialize HPSO-LS, feasible landing orders and runway

allocations for aircraft in the window are generated. The initial swarm is then

scheduled with regard to preceding aircraft. But what if no feasible order or

runway allocation exists for aircraft in the window with respect to preceding

aircraft. We specifically faced this case for Airland 12 and 13 with 2 runways

for which algorithm failed to generate initial swarm for some aircraft in the

window and got stuck.

We warm-start the CPLEX with the same initial landing sequence that we use

for Relax 1 and we let the CPLEX run for a maximum of one hour. We choose

the long run time of one hour for the CPLEX to show that the CPLEX will not

benefit from long computation times. Also, we terminate the RH-VAR2-LS algo-

rithm by following the stopping rules discussed in Girish (2016). That results in

the computation times of RH-VAR2-LS to be significantly longer than Relax 1, im-

plying that RH-VAR2-LS benefits from extra run times. Despite these efforts, our

re-implementation of the RH-VAR2-LS algorithm led to inferior solutions to those

reported in the original study. For clarity, in Table 3.7 we report the outcomes of

the re-implemented RH-VAR2-LS (column “RH-VAR2-LS (Girish, 2016)”), as well

as the objective function values reported in Girish (2016) (column “BKS”).

In Table 3.7, the first three columns give the details for each instance includ-

ing the name and the number of aircraft (n) and runways (m). The fourth col-

umn reports the best known solution (BKS) for each instance, which is taken from

Girish (2016). Columns five to seven show the objective values, optimality gaps

upon termination and the computation times for CPLEX. The remaining columns

show the outcomes of RH-VAR2-LS of Girish (2016), which we re-implement on our

machine and those of Relax 1, respectively, where the columns z∗, zavg and zstd show
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the best, average and standard deviation of the objective function values obtained

over five runs by each algorithm, and columns Tavg and and Tstd denote the average

and standard deviation of the computation times of each algorithm over five runs.

According to Table 3.7, the inferior outcomes of the re-implemented RH-VAR2-

LS indicate that under the same computational settings our Relax 1 is able to ob-

tain superior schedules. Moreover, while the Relax 1 algorithm outperforms both

CPLEX and the re-implemented RH-VAR2-LS, it is the fastest method, suggesting

its suitability for practical settings. In particular, the Relax 1 delivers the same

or superior solutions (and never worse) to both CPLEX and RH-VAR2-LS, has

the smallest run times that is bounded by around 1 minute, and has the standard

deviation of 0 for all but one instance.
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Figure 3.7 : Detailed operations of Relax 1 algorithm for the ALP.
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Table 3.7 : The detailed outcomes of CPLEX, RH-VAR2-LS (Girish (2016)) and Relax 1 (for experiments CPLEX 12.8.0 was used).

Instance n m BKS CPLEX RH-VAR2-LS (Girish, 2016) Relax 1
z∗ Gap (%) T z∗ zavg zstd Tavg Tstd z∗ zavg zstd Tavg Tstd

Airland1 10 1 700 700 0 0.03 700 700 0 0.30 0.09 700 700 0 0.14 0.03
2 90 90 0 0.03 90 90 0 0.27 0.26 90 90 0 0.29 0.05
3 0 0 0 0.02 0 0 0 0.04 0.02 0 0 0 0.00 0.00

Airland2 15 1 1480 1480 0 0.08 1480 1492 10.95 0.42 0.16 1480 1480 0 0.21 0.02
2 210 210 0 0.06 210 210 0 0.45 0.29 210 210 0 0.47 0.01
3 0 0 0 0.02 0 0 0 0.05 0.03 0 0 0 1.08 0.44

Airland3 20 1 820 820 0 0.03 820 1108 280.57 0.37 0.20 820 820 0 0.14 0.00
2 60 60 0 0.08 60 60 0 1.31 0.73 60 60 0 1.25 0.01
3 0 0 0 0.03 0 0 0 0.09 0.03 0 0 0 0.01 0.00

Airland4 20 1 2520 2520 0 1.87 2520 2520 0 0.43 0.22 2520 2520 0 0.33 0.01
2 640 640 0 8.94 640 640 0 1.31 0.67 640 640 0 2.77 0.07
3 130 130 0 0.69 130 130 0 1.19 0.63 130 130 0 2.20 0.05
4 0 0 0 0.05 0 0 0 0.08 0.04 0 0 0 0.35 0.01

Airland5 20 1 3100 3100 0 9.55 3680 4058 306.63 0.97 0.34 3100 3100 0 0.91 0.01
2 650 650 0 8.94 650 680 22.36 1.30 0.69 650 650 0 3.63 0.02
3 170 170 0 0.97 170 170 0 0.97 0.37 170 170 0 2.99 0.01
4 0 0 0 0.05 0 0 0 0.08 0.04 0 0 0 0.33 0.00

Airland6 30 1 24442 24442 0 0 24442 24442 0 2.33 1.39 24442 24442 0 0.04 0.00
2 554 554 0 0.14 568 614.2 36.72 4.27 2.24 554 554 0 0.62 0.01
3 0 0 0 0.03 0 0 0 0.11 0.06 0 0 0 0.03 0.00

Airland7 44 1 1550 1550 0 0.16 1550 1550 0 4.76 2.46 1550 1550 0 0.17 0.01
2 0 0 0 0.05 0 0 0 0.45 0.25 0 0 0 0.01 0.00

Airland8 50 1 1950 1950 0 0.19 2020 2206 181.19 2.01 1.17 1950 1950 0 1.48 0.02
2 135 135 0 0.66 135 138 6.71 6.67 3.56 135 135 0 6.88 0.03
3 0 0 0 0.2 0 0 0 0.33 0.17 0 0 0 0.02 0.00

Airland9 100 1 5611.7 5611.99 25.23% 3600 5871.12 6200.57 478.71 10.58 5.63 5611.7 5611.7 0 3.79 0.06
2 444.1 444.1 6.33% 3600 444.1 456.116 23.23 34.59 18.34 444.1 444.1 0 4.16 0.07
3 75.75 75.75 0 0.83 75.75 221.818 168.25 17.41 12.25 75.75 75.75 0 2.39 0.01
4 0 0 0 0.37 0 100.642 203.84 8.60 3.70 0 0 0 0.11 0.00

Airland10 150 1 12292.2 12310.4 52.04% 3600 12616 13311.1 620.43 29.18 15.74 12292.2 12293 1.79 36.97 0.57
2 1143.7 1143.7 79.26% 3600 1143.7 1143.81 0.10 63.15 33.30 1143.7 1143.7 0 8.43 0.03
3 205.21 205.21 0 7.86 205.21 227.186 49.14 50.13 26.29 205.21 205.21 0 10.67 0.03
4 34.22 34.22 0 2.22 34.22 166.47 183.40 22.84 14.34 34.22 34.22 0 3.88 0.01
5 0 0 0 0.87 7.08 198.862 223.25 23.27 13.81 0 0 0 0.82 0.01

Airland11 200 1 12418.32 12418.32 37.74% 3600 12682.2 13190.4 303.19 30.80 16.40 12418.32 12418.32 0 5.82 0.02
2 1330.91 1330.91 87.15% 3600 1330.91 1355.67 27.03 91.29 47.91 1330.91 1330.91 0 10.04 0.05
3 253.07 253.07 0 11.89 253.07 264.198 24.52 69.46 35.42 253.07 253.07 0 9.15 0.03
4 54.53 54.53 0 3.93 54.53 182.27 181.46 57.56 32.66 54.53 54.53 0 5.03 0.03
5 0 0 0 1.61 44.41 114.074 114.86 35.31 14.97 0 0 0 1.48 0.01

Airland12 250 1 16122.18 16157 42.84% 3600 16466.8 17079.5 397.87 55.73 30.35 16122.18 16122.18 0 24.07 0.01
2 1695.62 1695.62 90.87% 3600 1707.04 2202.068 1069.76 52.93 20.37 1695.62 1695.62 0 11.73 0.03
3 221.97 221.97 0 22.23 221.97 289.164 148.54 68.04 36.34 221.97 221.97 0 5.71 0.01
4 2.44 2.44 0 3.92 35.69 817.014 830.86 58.88 31.18 2.44 2.44 0 3.70 0.02
5 0 0 0 2.37 57.04 142.02 71.01 48.93 29.17 0 0 0 0.93 0.03

Airland13 500 1 37064.11 37523.5 50.32% 3600 39361.2 40177.6 925.62 302.69 152.76 37077.4 37077.4 0 63.83 0.24
2 3920.39 3957.02 97.65% 3600 3931.33 4001.452 97.12 138.03 4.45 3920.39 3920.39 0 41.04 0.03
3 673.85 673.85 90.02% 3600 691.85 864.074 216.17 239.73 136.35 673.85 673.85 0 30.18 0.04
4 89.95 89.95 0 16.86 89.95 179.634 120.05 201.63 98.77 89.95 89.95 0 12.72 0.02
5 0 0 0 11.29 193.6 340.074 126.77 143.72 85.41 0 0 0 3.86 0.03
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From Table 3.7, it is clear that the exact solvers such as CPLEX may not be a

good choice for practical settings owing to their long run times and poor quality of

the generated schedules.

In conclusion, the practitioner may choose the proposed Relax 1 due to the fol-

lowing reasons. Firstly, as Table 3.7 details, Relax 1 is the top performing method

with respect to both the quality of the generated schedules and the run times. Sec-

ondly, the implementation of Relax 1 is simple and straightforward as Relax 1 only

relies on a generic decomposition-based framework. Thirdly, Relax 1 utilizes the

standard solver CPLEX, which has a demonstrated and established performance.

The latter is important because it provides the practitioner with the extensive access

to the support of CPLEX, and removes the need for developing customized heuristic

and meta-heuristic methods which require extensive research and without guaran-

teeing the outcomes due to erratic performance. In our opinion, the conceptual

simplicity of Relax 1 is a significant advantage because it makes Relax 1 algorithm

to be easily adapted for other challenging combinatorial optimization problems.

3.4 Relax 2 for ASP

In this section we present another matheuristic (called Relax 2) to tackle ASP.

We test the algorithm on two sets of 27 benchmark instances for the Milan inter-

national airport Furini et al. (2015). The instances range from 60 aircraft up to

170 aircraft and include one runway. It should be noted that the proposed Relax 2

slightly differs from Relax 1. The differences are as follows:

• To generate initial solutions we use a powerful single-machine scheduling prob-

lem solver called SiPSi originally developed by Tanaka and Fujikuma (2012)

for the single machine scheduling problem with job release time and due-date

and the objective function of minimizing the total earliness-tardiness, i.e., for

problem 1|pi, ri, di|
∑

(wE
i Ei +wT

i Ti), where ri and di are the release time and

due-date of job i ∈ I, and Ei = max{0, di−Ci} and Ti = max{0, Ci−di} show
earliness and tardiness for job i, respectively (Ci is the completion time of job

i, and wE
i and wT

i are the earliness and tardiness penalty coefficient per unit of

earliness and tardiness). According to Kramer and Subramanian (2017), SiPSi

is the best exact method for solving 1|pi, ri, di|
∑

wE
i Ei+wT

i Ti). We customize



61

SiPSi so that we can use it to generate an initial sequence of landing/take-off

for the ASP. For this reason, we construct an instance for SiPSi per instance

of the ASP as following. We assume the identical processing time for all jobs,

which we obtain as the minimum separation time among all ASP instances.

That results in setting the processing time of jobs to 2. We let the values of re-

lease time and due-date be equal to the target landing time and we set wE
i = 0

(the earliness penalty coefficient). We note that we set wT
i as in the ASP in-

stances, i.e., wT
i = wi. In short, we solve problem 1|pi = 2, ri = di|

∑
wiTi by

SiPSi, which results in a sequence of aircraft landing/take-off for the ASP;

• For instances with less than 60 aircraft we set relaxation radius to 5 (i.e.,

RR = 5) and for larger instances to 7 (i.e., RR = 7).

• We initialize the number of sub-sequences (d) by 15 for instances containing

less than 150 aircraft and 30 otherwise. The value of d is updated after every

d iterations as follows: if d ≤ 10, then d = 10, otherwise d = d− 5. Using this

dynamic updating scheme for d, we reduce the number of overlapping aircraft

between sub-sequences as the search proceeds.

• We use three stopping criteria for the Relax 2, whichever occurs the first: (i)

the maximum number of iterations of 60, (ii) the maximum number of itera-

tions without improvement of 15, and (iii) obtaining a schedule with objective

value of zero.

We run the Relax 2 algorithm for 5 times for each instance. Table 3.8 details

the results for Relax 2. In the table, the first column gives the instance names,

the second column reports the optimal objective function value for the instances as

reported in Avella et al. (2017). Column three shows the objective value of the initial

solutions obtained by SiPSi. Columns four and five detail the best solution delivered

by Relax 2 across five runs and also the gap from the optimal solution, where the

gap is obtained as
z∗ −Opt

z∗
× 100. Similarly, columns six and seven denote the

average objective function value over five runs and the associated gap calculated as
zavg −Opt

zavg
× 100. Finally column eight presents the average computation time in

seconds over five runs.
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Table 3.8 : The results of Relax 2 for 27 instances of ASP (for experiments CPLEX
12.8.0 was used).

Instance Opt. SiPSi z∗ Gap z∗ zavg Gap zavg Tavg

FPT01 265 265 265 0 265 0 0.73
FPT02 293 301 293 0 293 0 1.45
FPT03 255 263 255 0 255 0 0.75
FPT04 268 276 268 0 268 0 0.76
FPT05 249 257 249 0 249 0 0.7
FPT06 167 167 167 0 167 0 0.5
FPT07 198 205 198 0 198 0 0.98
FPT08 167 179 167 0 167 0 0.86
FPT09 183 195 183 0 183 0 0.74
FPT10 211 223 211 0 211 0 0.76
FPT11 229 241 229 0 229 0 0.64
FPT12 207 207 207 0 207 0 0.4
FPT13 604 614 604 0 604 0 10.6
FPT14 1994 2012 1994 0 1995.6 0.08 25.88
FPT15 796 796 796 0 796 0 8.54
FPT16 1316 1349 1316 0 1316 0 23.51
FPT17 2368 2439 2370 0.08 2370.4 0.1 23.73
FPT18 1508 1775 1512 0.27 1512 0.27 23.7
FPT19 2115 2127 2115 0 2115 0 21.75
FPT20 3055 3184 3057 0.07 3057 0.07 30.13
FPT21 3577 4018 3579 0.06 3579 0.06 25.42
FPT22 2909 2958 2909 0 2909 0 25.78
FPT23 3649 3658 3649 0 3649 0 26.62
FPT24 3691 4132 3693 0.05 3693 0.05 21.99
FPT25 3786 3797 3786 0 3786 0 29.95
FPT26 4142 4203 4142 0 4142 0 38.46
FPT27 4171 4615 4177 0.14 4177 0.14 35.93

As Table 3.8 shows, Relax 2 delivers the optimal solution for 21 instances, out of

27. For the six instances that the Relax 2 does not report the optimal solution, its

largest gap is 0.27% and its average gap is around 0.11%. Notably, the computation

time of Relax 2 is never any greater than 40 seconds on average. Those highlight

the Relax 2 as an ideal choice of the algorithm for larger real-world problems.
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3.5 Conclusion

We proposed two efficient R&S matheuristic algorithms for solving the ALP

and ASP. The core idea behind our algorithms is iterative deconstruction and

re-construction of a sub-sequence of aircraft landings. By solving benchmark in-

stances and comparing the outcomes and the state-of-the-art algorithm and the

solver CPLEX we showed that the proposed algorithms obtain the best known solu-

tions and are quick enough to be implemented in real-time. Those advantages of the

R&S algorithms along with its algorithmic simplicity and ease of implementation

contribute to the applicability of the proposed algorithms for real-world applications.

This is very important because due to the typical short time window available for

planning the aircraft landings delivering high quality landing schedules or updating

the available schedules in a short time is very important, and therefore, fast and

effective algorithms are paramount.

Although we utilized the solver CPLEX in the solve procedure of proposed al-

gorithm, mainly due to the high performance of CPLEX, that does not limit the

usability and applicability of the R&S algorithms because other exact methods in-

cluding the branch-and-bound can be used instead. As future research directions,

one may extend the R&S algorithm for the case of separation time requirements

between pairs of aircraft landing on different runways. Another direction can be

generalizing the R&S for the variants of nonidentical and dedicated runways. Also,

investigations may be performed around adaptability of the R&S to other challeng-

ing combinatorial optimization problems.
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Chapter 4

Just-In-Time Job Shop Scheduling

This chapter is based on following publications:

• M. M. Ahmadian and A. Salehipour, “The just-in-time job-shop scheduling

problem with distinct due-dates for operations,” Journal of Heuristics, pp.

1-30, 2020.

• M. M. Ahmadian, A. Salehipour and TCE. Cheng, “A meta-heuristic to solve

the just-in-time job-shop scheduling problem,” European Journal of Opera-

tional Research, 2020.

4.1 Introduction

The job-shop problem is a famous scheduling problem, in which every job has

of a set of operations that needs to be performed in a specific order by a set of ma-

chines such that a performance criterion is optimized. Due to its complexity (Garey

et al., 1976) and countless applications (French, 1982) the problem has attracted

much attention. Nonetheless, only few studies address the performance criterion

of minimizing the (weighted) earliness and tardiness. Such a criterion is pertinent

to the just-in-time (JIT) policy because minimizing the earliness impacts, e.g., the

warehousing and inventory costs, and minimizing the tardiness leads to shorter de-

livery times, and therefore, to a higher level of customer satisfaction.

The JIT job-shop scheduling problem is a variant of the classical job-shop schedul-

ing, in which every job (operation) consists of a set of operations with a respective

due-date and earliness and tardiness penalty coefficients, and any deviation from the

due-date is penalized. More specifically, completing a job (an operation) before its

due-date leads to earliness penalties and completing it after the due-date results in

tardiness penalties. The objective function minimizes the total penalties of earliness

and tardiness.
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Generally speaking, two types of due-dates have been studied in the literature,

namely the job-level and the operation-level. While the former involves a due-date

for every job (and therefore all operations of the job share the same due-date), the

latter assumes a due-date for each operation, implying that every operation has a

distinct due-date. Models with the operation-level due-date characterize a broader

range of environments; however, they are often more challenging to solve. In this

chapter, we focus on the operation-level due-date, so we explore the more general

case.

We propose two matheuristic algorithms (called Math 1 and Math 2) designed

to take advantage of a novel decomposition method to tackle JIT-JSS. The method

operates by decomposing JIT-JSS into smaller problems, delivering optimal or near-

optimal sequences for the operations, and generating a schedule, i.e., determining the

completion time for each operation. It is known that for sequencing and scheduling

problems, including JIT-JSS, if a feasible sequence is provided, then an optimal

schedule for the given sequence can be obtained in polynomial time (Pinedo, 2008:

Chapter 4, page 74). Similar decomposition ideas have been used to address the

routing scheduling problem. For example, Dumas et al. (1990) decomposed the

vehicle routing problem with time windows into sequencing and scheduling sub-

problems, and obtained the optimal service time schedule for a fixed path in O(n)

time, where n is the number of nodes or customers. Here, we consider JIT-JSS in

which there are distinct due-dates, and earliness and tardiness penalty coefficients

for the operations. In other words, we study the more general and difficult variant

of the job-shop scheduling problem involving operation due-dates. Furthermore,

we test our solution methods on the benchmark instances in Baptiste et al. (2008),

where all the parameters including the due-dates, and earliness and tardiness penalty

coefficients are given for each instance.

We organize the rest of the chapter as follows: Section 4.2 discusses some of the

applications of JIT-JSS. In Section 4.3 we introduce JIT-JSS, define the notation,

and formulate the problem as a mathematical program. Sections 4.4 and 4.5 pro-

poses two matheuristic algorithm (i.e. Math 1 and Math 2) for solving the JIT-JSS

problem, and explain the components of each algorithm. Sections 4.4.6 and 4.5.2

report the computational experiments and Section 4.6 concludes the chapter by sug-
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gesting topics for future research. Math 1 and Math 2 have previously appeared in

the following publications:

• Math 1 (Section 4.4):

– M. M. Ahmadian and A. Salehipour, “The just-in-time job-shop schedul-

ing problem with distinct due-dates for operations,” Journal of Heuris-

tics, pp. 1-30, 2020.

• Math 2 (Section 4.5):

– M. M. Ahmadian, A. Salehipour and TCE. Cheng, “A meta-heuristic to

solve the just-in-time job-shop scheduling problem,” European Journal of

Operational Research, 2020.

4.2 Applications

JIT-JSS, i.e., the job-shop scheduling problem to minimize (weighted) earliness

and tardiness has broad real-world applications. Below we discuss some of them.

Consider a railway transportation system in which a set of trains operates. A

train visits a set of stations in a pre-specified order. Obviously, no two trains can

be present simultaneously at any station. A train’s stopping time at a station plus

its travel time from the preceding station models the processing time of the train

at the station. The traffic controller must schedule the trains visiting the stations

such that the trains leave the stations at the ideal (desirable) departure times. Each

time unit of the actual departure time before or after the ideal departure time is

penalized. The traffic controller aims at constructing a train timetable such that the

total deviation of the trains from their ideal departure times is minimized. We refer

the interested reader to Flamini and Pacciarelli (2008) and Liu and Kozan (2011)

for the details on the train scheduling problem.

Pham and Klinkert (2008) discussed an application of the job-shop scheduling

in the context of hospital resource allocation where a set of patients in a hospital

is to undergo surgeries. Typically, patient flow sequentially follows the three stages

of pre-operative, peri-operative, and post-operative. Although the characteristics

of the tasks performed on each patient (e.g., duration and processing route, are
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different), the tasks must be carried out in a pre-determined order. Each task is

assigned an ideal completion time (due-date) and any deviation from the due-date

should be avoided.

Suppose a pre-fab company has received orders for pre-built houses. Each order

has a unique design, which in turn requires different manufacturing and installation

of the modules, that is an order of completing the modules must be met per de-

sign. Since such houses are usually delivered very fast (often less than six months),

rigorous scheduling of tasks is required. Also, the company may not be willing to

deliver the houses to the owners before the delivery dates due to owner’s reluctance

to move in causing capital tied up in inventory. It is clear that any delay in delivery

is penalized per contract.

4.3 Problem statement

Given N = {1, . . . , n} and M = {1, . . . ,m} the sets of jobs and machines, in

the JIT-JSS problem job i visits each machine exactly once and has m operations,

where Oi = {O1
i , . . . , O

m
i } is the set of its operations and O1

i is the first scheduled

operation of job i, O2
i is the second scheduled operation and so on. One may denote

the set of all operations by O = {Ok
i |Ok

i ∈ Oi, ∀i ∈ N, k ∈ {1, . . . ,m}}. The

order in which operations of a job visit machines (the “processing route”) is known

a priori. In this context, the machine that processes operation Ok
i is denoted by

M(Ok
i ) ∈ M . Likewise, for each machine Mj ∈ M we let O(Mj) denote the set

of operations to be processed by machine Mj. All operations are available at time

0. Operation Ok
i has a due-date dki , and earliness and tardiness penalty coefficients

αk
i and βk

i per unit of deviation from dki . Any deviation from the due-date results

in either an earliness or a tardiness penalty. More precisely, completing operation

Ok
i earlier than its due-date, i.e., Ck

i ≤ dki , incurs a penalty of αk
iE

k
i , where Ck

i is

the completion time of Ok
i and Ek

i = max{dki − Ck
i , 0} is the amount of earliness.

Similarly, completing operation Ok
i after its due-date, i.e., Ck

i ≥ dki , incurs a penalty

of βk
i T

k
i , where T k

i = max{Ck
i − dki , 0} is the amount of tardiness.

Similar to the classical job-shop, each machine can process at most one operation

at a time (the resource constraint). Also, preemption of the operations is not allowed.

The JIT-JSS aims to obtain a feasible schedule, i.e., the completion time of the
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operations so as to minimize the total weighted earliness and tardiness penalties.

The mathematical notations used in the problem formulation have been summarized

in Table 4.1.

Table 4.1 : The mathematical notations used in the JIT-JSS formulation.

Sets
N Set of jobs, N = {1, . . . , n}.
M Set of machines, M = {1, . . . ,m}.
O (Oi) Set of all operations (set of operations of job i ∈ N). Also, we let Ok

i be the
kth scheduled operation of job i ∈ N, k ∈ {1, . . . ,m}.

Parameters
pki Processing time of operation Ok

i , p
k
i ≥ 0, i ∈ N, k ∈ {1, . . . ,m}.

dki Due-date of operation Ok
i , d

k
i ≥ 0, i ∈ N, k ∈ {1, . . . ,m}.

αk
i Earliness penalty coefficient associated with operation Ok

i , α
k
i ≥ 0, i ∈ N, k ∈

{1, . . . ,m}.
βk
i Tardiness penalty coefficient associated with operation Ok

i , β
k
i ≥ 0, i ∈ N, k ∈

{1, . . . ,m}.
Variables
Ck
i Completion time of operation Ok

i , C
k
i ≥ 0, i ∈ N, k ∈ {1, . . . ,m}.

ESk
i Earliest start time of operation Ok

i , ESk
i ≥ 0, i ∈ N, k ∈ {1, . . . ,m}.

ECk
i Earliest completion time of operation Ok

i , ECk
i ≥ 0, i ∈ N, k ∈ {1, . . . ,m}.

Ek
i Earliness of operation Ok

i , E
k
i ≥ 0, i ∈ N, k ∈ {1, . . . ,m}.

T k
i Tardiness of operation Ok

i , T
k
i ≥ 0, i ∈ N, k ∈ {1, . . . ,m}.

Cmax Makespan, i.e., Cmax = max
i∈N
{Cm

i }.
Lmax Maximum lateness.

A mathematical model for JIT-JSS

Baptiste et al. (2008) proposed a mathematical model for the JIT-JSS problem

by using the so called “logical or” constraints. ProblemJIT −JSS shows this.

ProblemJIT −JSS

z = min
n∑

i=1

m∑
k=1

(αk
iE

k
i + βk

i T
k
i ) (4.1)

subject to

Ck
i − pki ≥ 0, i ∈ N, k ∈M, (4.2)
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Ck
i ≤ Ck+1

i − pk+1
i , i ∈ N, k ∈ {1, . . . ,m− 1}, (4.3)

Ck
i ≥ Ch

l + pki or Ch
l ≥ Ck

i + phl , j ∈M,Ok
i , O

h
l ∈ O(Mj), (4.4)

Ek
i ≥ dki − Ck

i , i ∈ N, k ∈M, (4.5)

T k
i ≥ Ck

i − dki , i ∈ N, k ∈M, (4.6)

Ek
i ≥ 0, i ∈ N, k ∈M, (4.7)

T k
i ≥ 0, i ∈ N, k ∈M. (4.8)

The objective function (4.1) minimizes the total weighted earliness and tardiness

penalties. Constraints (4.2) ensure that the start time of each operation must not

be earlier than the time 0. Constraints (4.3) specify the precedence relations among

the job’s operations. Constraints (4.4) impose that each machine can process at

most one operation at a time. Constraints (4.5) and (4.6) define the earliness and

tardiness. Constraints (4.7) and (4.8) ensure that the earliness and tardiness only

take non-negative values.

Although ProblemJIT −JSS does not include any binary variables, and instead,

uses the “logical or” constraints (4.4) (ILOG, 2017), it is still very difficult to solve.

However, given a sequence (order) Π of performing the jobs’ operations on the ma-

chines, it follows that either of the “logical or” constraints (4.4) holds. Therefore,

constraints (4.4) turn into linear inequalities, which we denote by (4Π), specifying

the order given by Π on each machine. By substituting constraints (4.4) by (4Π),

ProblemJIT −JSS is then a linear program (LP) for which the optimal completion

time of the operations can be obtained in polynomial time. In addition, we may

use ProblemJIT −JSS to optimize a partial sequence, i.e., optimizing the sequence

of a few operations at a time. If we let a small number of operations in the partial

sequence, we may be able to deliver an optimal order of execution for those opera-

tions. This idea is used in Section 4.4 to develop a matheuristic algorithm. Next,

we illustrate a small example of the JIT-JSS problem.
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Example 1

Table 4.2 gives the processing order and time of jobs’ operations on three ma-

chines (4 × 3 instance). Table 4.3 shows due-date of the operations and earliness

and tardiness penalty coefficients. For example, operation 1 of job 1 has a due-date

of 4 (d11 = 4), and earliness and tardiness penalty coefficients of 0.29 and 0.30 per

unit of deviation from the due-date (α1
1 = 0.29 and β1

1 = 0.30). A feasible schedule

for this instance is shown by the Gantt chart of Figure 4.1, in which (i, j) denotes

the operation of job i on machine j, i.e., Oj
i . As the figure shows, four operations

of O2
1 and O1

3 (both on M2), and O1
1 and O1

2 (both on M3) are early, i.e., they finish

before their due-date. Here, O1
4 is the only tardy operation that is performed on M2.

The rest of the operations finish on their due-dates. The objective function value of

this schedule is equal to z = α1
1 × E1

1 + α2
1 × E2

1 + α1
2 × E1

2 + α1
3 × E1

3 + β1
4 × T 1

4 =

0.29× 1 + 0.23× 1 + 0.10× 1 + 0.12× 1 + 0.80× 3 = 3.14.

Table 4.2 : Technological order and processing time of the operations for 4 × 3
instance.

Job i Operation 1 Operation 2 Operation 3
M(O1

i ) and p1i M(O2
i ) and p2i M(O3

i ) and p3i
1 M3 and 3 M2 and 3 M1 and 3
2 M3 and 5 M2 and 4 M1 and 2
3 M2 and 2 M3 and 1 M1 and 3
4 M2 and 3 M1 and 4 M3 and 1

Table 4.3 : Due-date and earliness and tardiness penalty coefficients of the operations
for 4× 3 instance.

Job i Operation 1 Operation 2 Operation 3
d1i α1

i β1
i d2i α2

i β2
i d3i α3

i β3
i

1 4 0.29 0.30 7 0.10 0.15 15 0.21 0.89
2 9 0.23 0.29 12 0.26 0.75 20 0.22 0.77
3 9 0.12 0.69 15 0.18 0.95 18 0.13 0.30
4 12 0.26 0.80 24 0.22 0.17 25 0.29 0.51

4.4 Math 1 for JIT-JSS

In this section we discuss our first proposed matheuristic algorithm (i.e. Math 1)

based on variable neighborhood search (VNS) for the JIT-JSS problem.
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M1 (2,1)(1,1) (3,1) (4,1)

M2 (1,2) (3,2) (2,2) (4,2)

M3 (1,3) (2,3) (3,3) (4,3)

0 2 4 6 8 10 12 14 16 18 20 22 24 t

Job 1 Job 2 Job 3 Job 4

Figure 4.1 : A feasible schedule (of completing the operations) for 4× 3 instance. A
pair (i, j) represents execution of job i on machine j.

Given an initial sequence, the proposed matheuristic algorithm operates by de-

composing JIT-JSS into sub-problems, i.e., smaller instances each with only a few

operations and machines, delivering optimal or near optimal sequences of operations

for the sub-problems and obtaining a feasible schedule (the completion time for the

operations) for the complete problem. The algorithm forms the sub-problems by

applying two neighborhoods. Then, the algorithm uses the available optimization

solvers such as CPLEX (ILOG, 2017) to solve the generated sub-problems.

As discussed in Chapter 2 (see Section 2.5), Dos Santos et al. (2010) and Wang

and Li (2014) applied heuristic algorithms to obtain a sequence and then solvers to

determine the schedule. However, we use the solvers for two purposes: (1) obtaining

the execution order of the operations in the sub-problem, and (2) determining the

schedule for all operations. In this respect, the proposed algorithm is an “integra-

tive” matheuristic (Raidl and Puchinger, 2008), in which VNS meta-heuristic works

at the master level, controlling therefore the slave local search procedure. The local

search includes optimizing the (reduced) mathematical program that includes only

a few variables by the solver. One can cite the ease of implementation and utilizing

the power of available solvers as the advantages of this approach, and restricting the

estimation of lower bounds for performance assessment as its pitfall.

In what follows we first discuss encoding and decoding a sequence, and then we

explain in detail each component of the proposed matheuristic algorithm.
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4.4.1 Sequence encoding and decoding

We represent a sequence for JIT-JSS by using the operation-based encoding

developed for the job-shop scheduling problem (Gen et al., 1994). We formally

define a feasible sequence of the execution order of the operations on the machines

as Π = (π1, π2, . . . , πn×m), where π1 is the first element of Π and πn×m is the last

element of Π. For an n-job and m-machine instance, this representation gives a

total order over n×m operations, in which each job appears exactly m times, where

the kth occurrence, k ∈ {1, . . . ,m}, of job i represents its kth operation denoted

by Ok
i . It follows that a sequence admits a representation if and only if for each

job i ∈ N the order induced on Oi is exactly the one fixed by the instance, i.e.,

(O1
i , O

2
i , . . . , O

m
i ).

Consider the instance I3×4 given earlier in Section 4.3. The sequence presented

as Π = (1, 1, 2, 3, 2, 4, 3, 1, 3, 2, 4, 4) specifies the execution order of the operations of

I3×4, where the first “1” (“2” or “3”) represents the first operation of job “1” (“2”

or “3”), and so on. That is,

Π = (1 1 2 3 2 4 3 1 3 2 4 4)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
M3 M2 M3 M2 M2 M2 M3 M1 M1 M1 M1 M3

In order to deduce a schedule from sequence Π, we utilize the solver CPLEX.

Given sequence Π, it follows that for each j ∈ M , the operations in O(Mj) are

executed in the order induced by Π on O(Mj). This implies that only one of the

“logical or” constraints (4.4) now holds due to the execution order of the operations

that is given by Π. That order is expressed by constraints 4Π. It is also clear that

by replacing constraints (4.4) by (4Π), ProblemJIT −JSS turns into an LP.

As an example, Table 4.4 presents constraints (4Π) for the instance I3×4, where Π

is given as above. Solving the resulting LP by CPLEX leads to an optimal schedule

for Π, which is illustrated in Figure 4.1.

It should be noted that even though the schedule returned by CPLEX is optimal

for the given sequence Π, it is possible that more than one schedule is associated

with Π if multiple optimal schedules exist for Π. Moreover, because there is no
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Table 4.4 : Constraints (4Π) for the instance I3×4 that are induced by Π =
(1, 1, 2, 3, 2, 4, 3, 1, 3, 2, 4, 4) on O(Mj), j = 1, 2, 3.

M1 M2 M3

C3
3 ≥ C3

1 + p33 C1
3 ≥ C2

1 + p13 C1
2 ≥ C1

1 + p12

C3
2 ≥ C3

3 + p32 C2
2 ≥ C1

3 + p22 C2
3 ≥ C1

2 + p23

C2
4 ≥ C3

2 + p24 C1
4 ≥ C2

2 + p14 C3
4 ≥ C2

3 + p34

deadline and hard time window for performing the operations in JIT-JSS, every

sequence admits a schedule.

4.4.2 Generating an initial sequence

The VNS algorithm that will be discussed in Section 4.5.1 requires an initial

sequence, i.e., a feasible order of executing the operations on the machines. For this

purpose, we implement two methods of Giffler Thompson (GT) and Shifting Bottle-

neck Heuristic (SBH), and we initialize VNS with the initial sequence generated by

one of them. The probability of GT being selected to start the VNS algorithm with

is 0.6 and that of SBH is 0.4. Therefore, the methods GT and SBH do not have the

equal chance to be selected to generate an initial sequence. The reason for including

two methods with different probabilities lies in performing five runs for the VNS

algorithm. We will later discuss this in more details in Section 4.4.6. Let Π denote

the initial sequence generated by either GT or SBH. As detailed in Section 4.4.1,

we replace constraints (4.4) by (4Π) and solve ProblemJIT −JSS by CPLEX. That

process leads to an optimal schedule for Π with the objective function value z(Π).

We use Π and z(Π) to initialize Math 1.

Next, we explain GT and SBH methods.

The Giffler Thompson method

The well-known GT constructive algorithm (Giffler and Thompson, 1960) can

be used to generate an initial sequence Π for JIT-JSS. Given the earliest completion

time C∗ among all schedulable operations (whose predecessors have already been

scheduled) and its associated machine M∗, GT determines all operations that can

be started prior to C∗. Any conflict among the operations is then settled by using
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a dispatching rule, e.g., the random selection (as in the original GT), or the earliest

due-date (EDD) first (as in the present study). The process continues until all

operations are scheduled. Algorithm 4.1 summarizes GT.

Algorithm 4.1: The Giffler Thompson (GT) algorithm.

1 Input: An instance of the JIT-JSS problem.
2 Output: A feasible sequence of operations on the machines for the input

instance.

3 Initialization: F = {O1
i |i ∈ N}, i.e., adding the first operation of each job to set

F ; the empty sequence Π of size n×m; ES1
i = 0 and EC1

i = pki , ∀O1
i ∈ F .

4 while F is not empty do
5 Find the earliest completion time C∗ and its associated machine M∗ for the

operations in F (i.e., C∗ = min
Ok

i ∈F
{ECk

i });

6 F ′ = {Ok
i ∈ F |ESk

i < C∗,M(Ok
i ) = M∗} (building the conflict set);

7 Select O′ ∈ F ′ to be scheduled next (by using the earliest due-date (EDD)
first dispatching rule) and append it to Π;

8 Remove O′ from F , and add its immediate job successor (if any) to F ;

9 Update the earliest start and completion times for all Ok
i ∈ F ;

10 end
11 return Π;

The Shifting Bottleneck Heuristic method

An initial sequence Π can alternatively be generated by the SBH algorithm

(Adams et al., 1988). SBH has been applied for various job-shop scheduling prob-

lems, see for example, Mason et al. (2002); Mönch and Drießel (2005) and Mönch

et al. (2007). SBH aims to minimize the maximum completion time of all opera-

tions. It selects the machine with the maximum lateness as the “bottleneck” and

re-sequences the jobs on previously scheduled machines according to the bottleneck.

The process continues until no unscheduled machines remain. The SBH procedure

is summarized in Algorithm 4.2. In Algorithm 4.2, the conjunctive arcs show the

order of operations to be processed on the machines and the disjunctive arcs denote

the pairs of operations that must be executed on the same machine, yet their order

to be decided. The graph with the disjunctive and conjunctive arcs is known the

disjunctive graph, where the operations are shown by vertices.
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Algorithm 4.2: The Shifting Bottleneck Heuristic (SBH) algorithm.

1 Input: An instance of the JIT-JSS problem.

2 Output: A feasible sequence of operations on the machines for the input

instance.

3 Initialization: Set M ′ = {} of scheduled machines and graph G with all the

conjunctive arcs (no disjunctive arcs); the empty sequence Π of size n×m.

4 while M ̸= M ′ do

5 Step 1: Searching the machines yet to be scheduled.

6 for Mj ∈M \M ′ do

7 Generate an instance of 1|ri|Lmax for Mj ; // i.e., minimize the maximum

lateness on a given machine subject to the jobs’ release time

8 Compute the maximum lateness on machine Mj (i.e., Lmax(Mj));

9 end

10 Step 2: Bottleneck selection and sequencing.

11 Let Mu ∈ argmax
Mj∈M\M ′

(Lmax(Mj));

12 Sequence Mu according to sequence obtained for 1|ri|Lmax and update G by

fixing the disjunctive arcs for Mu;

13 M ′ = M ′ ∪ {Mu}.

14 Step 3: Re-sequencing the already scheduled machines.

15 for Mj ∈M ′ \ {Mu} do

16 Delete disjunctive arcs for Mj from G;

17 Form 1|ri|Lmax for Mj , find the sequence that minimizes Lmax(Mj) and

insert the corresponding disjunctive arcs in graph G;

18 end

19 end

20 Specify the final order of jobs on each machine from G and update Π accordingly;

21 return Π;

4.4.3 The improvement algorithm

Our improvement engine, within the proposed matheuristic, is the VNS algo-

rithm. VNS is a meta-heuristic, which systematically changes the neighborhood

structures to avoid being trapped in local optima (Mladenović and Hansen, 1997).



76

VNS includes two major steps: Shake and local search. Starting from an initial

sequence, in the shake phase, the algorithm randomly generates a neighbor S ′ from

one of the already defined neighborhood structures. Then, S ′ is passed to the local

search phase for improvement. The improved S ′′ is replaced by the current best

sequence, and the local search continues. If no improvement is observed, the al-

gorithm returns to the shake phase. The algorithm continues until the stopping

criterion is met. Algorithm 4.3 outlines the proposed Math 1. In the local search

phase of Math 1 we apply two relaxation-based neighborhoods denoted by N1 and

N2 (to be discussed shortly).

It should be noted that our proposed Math 1 differs from the traditional VNS

in the following ways: (1) we only use one neighborhood structure, and that N1

for the shake phase, (2) we explore several neighbor sequences in each neighborhood

structure, precisely nc neighbor sequences, rather than only one (see Sub-procedure

LS in Algorithm 4.3), and S ′ is updated if an improved sequence is explored (in which

the search also continues for nc iterations, i.e., the number of visiting neighbors is

determined by nc), and (3) while in the traditional VNS once an improved neighbor

is obtained, the search continues from the first neighborhood, we continue the search

with the next neighborhood structure.

Next, we explain the relaxation neighborhoods.

4.4.4 Relaxation neighborhoods

In this section, we explain the idea of relaxation neighborhoods. We start by

introducing the general concept and that how the relaxation neighborhoods dif-

fer from their traditional counterparts. Then, we explain the parameters and the

pseudo-code (Algorithm 4.4) of the relaxation neighborhoods, followed by an illus-

trative example.

Consider the sequence Π. At each execution of the relaxation neighborhoods,

a small sub-set R ⊂ O of operations is chosen to be relaxed. That is, the order

imposed by Π is relaxed for the operations in R, meaning that they are subject to

re-ordering for possible improvement. However, order of the remaining non-relaxed

operations, i.e., NR = O \ R is kept unchanged. As detailed in Section 4.3 we

use the solver CPLEX to solve ProblemJIT −JSS given R and NR, which leads to
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Algorithm 4.3: Math 1 for the JIT-JSS problem.

1 Input: An initial sequence Π and its associated objective function value z(Π); a
set of neighborhood structures Nκ, κ = 1, 2 to be used in the local search.

2 Output: An improved sequence.

3 while the stopping condition is not met do
4 for i := 1 to 2 do
5 Shake:
6 Π′ ← N1(Π);

7 Local search:
8 Π′′ ← LS(Π′, i);
9 if z(Π′′) < z(Π) then

10 Π := Π′′;
11 z(Π) := z(Π′′);

12 end

13 end

14 end
15 return Π;

16 Sub-procedure LS(Π′, κ) //the local search in VNS

17 if κ = 1 then
18 for f := 1 to nc do
19 temp←N1(Π

′);
20 if z(temp) < z(Π′) then
21 Π′ := temp;
22 z(Π′) := z(temp);

23 end

24 end

25 else
26 for f := 0 to nc − 1 do
27 temp←N2(Π

′, f, nc);
28 if z(temp) < z(Π′) then
29 Π′ := temp;
30 z(Π′) := z(temp);

31 end

32 end

33 end
34 return Π′;
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Figure 4.2 : The global process of relaxation neighborhoods.

possible re-ordering and scheduling of the operations in R, and only re-scheduling of

the operations in NR. We stop the solver after Tlimit seconds, and if a new schedule

is obtained, its associated sequence is re-encoded and the search continues. The

process of relaxation neighborhood is illustrated in Figure 4.2.

Dos Santos et al. (2010) and Wang and Li (2014) used recombination operators

and swapping and insertion moves to generate new (improved) sequences of perform-

ing the operations. Such a sequence implies that the order of operations’ execution is

known, turning therefore constraints (4.4) in ProblemJIT −JSS into linear inequities.

Then, the schedule, i.e., the completion time of the operations is obtained through

solving ProblemJIT −JSS by the available solvers, e.g., CPLEX. Two major short-

comings of those procedures include (1) ignoring the impact of the moves on the rest

of the sequence (because the manipulations are mostly applied either randomly or

myopically), which leads to low quality schedules, and (2) utilizing the solvers only

to deliver the optimal schedule for a given sequence, instead of using the solver for

both sequencing and scheduling.

Salehipour and Ahmadian (2017) and Salehipour et al. (2018) proposed novel

relaxation neighborhoods in the context of aircraft landing problem, which aim to

destruct a sequence of landing aircraft and construct a new (improved) sequence,

in order to overcome those limitations. Those relaxation neighborhoods take a
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sequence as input and guide an exact solver to only re-order the landing of a subset

of aircraft. We follow a similar process for solving JIT-JSS. Also, regardless of only

re-ordering the operations in R, the schedule is obtained for all the operations, i.e.,

for the operations in R and NR, minimizing therefore the impact of the random

and myopic moves. In addition, CPLEX is used for both sequencing and scheduling,

through re-ordering the operations in R and scheduling all operations. Particularly,

we keep a few operations in R so that the solver may efficiently deliver the optimal

order for executing the operations in R.

The generation of R, i.e., the set of consecutive operations to be relaxed in Π,

is controlled by two parameters: “relaxation center”, denoted by RC ∈ Z+, that

determines the operation positioned in the middle of R, and “relaxation radius”,

represented by RR ∈ Z+, that defines the number of operations to the left and to

the right of RC. We implement two variants of relaxation neighborhoods. In the

first variant, which is denoted by N1, the parameter RC is randomly selected. We

utilize N1 both in the shake and in the local search phases. Contrary to N1, the

second variant, i.e., N2, which is only used in the local search phase, starts from the

beginning of a given sequence and progressively relaxes a number of operations at

a time until it reaches the end of the sequence. Within N1 and N2, a reduced MP

for the given sequence Π is formed (see Step 3 in Algorithm 4.4). In particular, for

each machine j, the step identifies the relaxed and non-relaxed operations (denoted

by Rj and NRj) and introduces constraints (4.4) and (4NRj
) accordingly. Then, in

order to restore the connectivity between Rj and NRj, constraints (4.9) and (4.10)

are added. We formally explain N1 and N2 in Algorithm 4.4.

4.4.5 Re-encoding scheme

It follows that only the order of the operations in R can be changed by the

solver, whereas the operations in NR that are processed on the same machine are

executed in the same order induced by the given sequence Π. Because there are no

binary variables in ProblemJIT −JSS that determine the relative order of executing

the operations on the machines, the order of the operations in R in the new schedule

cannot be deduced directly. In order to obtain a sequence from the newly delivered

schedule, we sort the operations belonging to R in non-decreasing order of their

completion time (we keep the order of the operations in NR unchanged). The ties
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Algorithm 4.4: Relaxation neighborhoods Nκ, κ ∈ {1, 2}.
1 Input: A sequence Π = (π1 , π2 , . . . , πn×m); parameters f , nc (for N2).
2 Output: A sequence.

3 Step 1: Set the relaxation center, relaxation radius and time limit.
4 Calculate RC (for N2 use f and nc), RR, Tlimit according to Table 4.6;

5 Step 2: Formation of the relaxed and non-relaxed sub-sets.
6 Let R and NR specify relaxed and non-relaxed subsets where

R = {πr|max{1, RC −RR} ≤ r ≤ min{n×m,RC +RR}} and NR = O \R;

7 Step 3: Form the reduced MP.
8 Create constraints (4.1)–(4.3),(4.5)–(4.8),(4.9), (4.10) for all the operations;

9 //Imposing resource and connectivity constraints among operations in

R and NR
10 for j ∈M do
11 Let Rj = R ∩ O(Mj) and NRj = (O \R) ∩ O(Mj);
12 Add the “logical or” constraints (4.4) for each (Oa, Ob) ∈ R2

j (i.e., the
machine precedence to be decided among the relaxed operations in Rj);

13 Add the linear constraints (4NRj ) for the order induced by Π on NRj (i.e.,
deciding the machine precedence among the non-relaxed operations);

14 Opre (if exists) denotes the last operation of NRj in the sequence Π,
preceding operations in Rj ;

15 Osuc (if exists) represents the first operation of NRj in the sequence Π,
succeeding operations in Rj ;

16 for Ok
i ∈ Rj do

17

If Opre exists, generate constraint Cpre ≤ Ck
i − pki ; (4.9)

If Osuc exists, generate constraint Csuc ≥ Ck
i + psuc; (4.10)

18 end

19 end
20 Step 4: Re-sequencing and scheduling.
21 Solve the reduced MP (see Step 3) by CPLEX. Interrupt the solving procedure

after Tlimit seconds; Encode the sequence according to the generated schedule;

22 Step 5: Return the sequence constructed in Step 4;
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can be broken arbitrarily for the operations with the same completion time. This

implies that several sequences might be associated with a schedule. We, however,

re-encode only one of those sequences to represent the schedule.

Next, we illustrate a small example to elaborate the relaxation neighborhoods

and the formation of the sets of relaxed and non-relaxed operations.

Example 2

Consider the instance I3×4 discussed in Section 4.3. Assume that the following

initial sequence Π is given. The associated schedule for Π obtained by CPLEX is

illustrated in Figure 4.1.

Π = (1 1 2 3 2 4 3 1 3 2 4 4)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
M3 M2 M3 M2 M2 M2 M3 M1 M1 M1 M1 M3

Phase 1: Relaxation

Assume that RC = 5 and RR = 1, which leads to R = {O1
3, O

2
2, O

1
4} and NR =

{O1
1, O

2
1, O

1
2, O

2
3, O

3
1, O

3
3, O

3
2, O

2
4, O

3
4}. Figure 4.3 illustrates the process of relaxation.

The nodes that show the operations in R are shown in green and yellow (the green

node denotes the relaxation center). The non-relaxed operations and their execution

order on machines 1 and 3 is represented by NR. Constraints (4NR) which are shown

in columns 1 and 3 in Table 4.4, determine the execution order and the completion

time for the operations in NR. The dashed arcs in Figure 4.3 denote the relaxed

operations contained in R, which can be expressed by constraints (4.4) as following:

C1
3 ≥ C2

2 + p13 or C2
2 ≥ C1

3 + p22,

C2
2 ≥ C1

4 + p22 or C1
4 ≥ C2

2 + p14,

C1
4 ≥ C1

3 + p14 or C1
3 ≥ C1

4 + p13.

Following Algorithm 4.4, in order to restore the connectivity between the oper-

ations in R and NR, constraints (4.9) and (4.10) must be introduced. To this end,

two operations Opre and Osuc must be identified on every machine on which the

operations in R are executed. In this example, the operations in R are executed on
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M2. Also, it follows that the last operation in NR that precedes the operations in R

is Opre = O2
1, which is shown by the red node in Figure 4.3. As a result, constraints

(4.9) are instantiated as follows:

C2
1 ≤ C1

3 − p13,

C2
1 ≤ C2

2 − p22,

C2
1 ≤ C1

4 − p14.

We show those three constraints in Figure 4.3 by three black arcs leaving the

red node (1, 2), ensuring that Opre = O2
1 precedes the relaxed operations on M2. We

note that we did not introduce constraints (4.10) because no operation Osuc on M2

exists.

Figure 4.3 : An example of the relaxation neighborhood for 4 × 3 instance. A pair
(i, j) represents job i on machine j. The relaxed jobs are represented by green and
yellow (the green vertex shows the relaxation center). Job shown in red is immediate
predecessor of the relaxed sub-sequence.

Phase 2: Solving with CPLEX

In this phase, the reduced MP obtained in phase 1 is solved by CPLEX. Assume

that CPLEX is stopped after 1 second of running and the best schedule explored

is reported. Furthermore, suppose that within 1 second, CPLEX explored all the

neighbor sequences detailed in Table 4.5 (since R includes 3 operations, there are
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6 distinct orders for the operations in R, including the incumbent sequence). It

follows that neighbor 1 leads to the best schedule because it has the least objective

function value, shown by the * in the table.

Table 4.5 : The objective function values of the incumbent and neighbor sequences
as explored by CPLEX for the reduced MP.

Neighbor Sequence Objective value (z)

Incumbent (1, 1, 2, 3, 2, 4, 3, 1, 3, 2, 4, 4) 3.14
1 (1, 1, 2, 3, 4, 2, 3, 1, 3, 2, 4, 4) 3*
2 (1, 1, 2, 2, 3, 4, 3, 1, 3, 2, 4, 4) 10.82
3 (1, 1, 2, 2, 4, 3, 3, 1, 3, 2, 4, 4) 19.39
4 (1, 1, 2, 4, 3, 2, 3, 1, 3, 2, 4, 4) 4.8
5 (1, 1, 2, 4, 2, 3, 3, 1, 3, 2, 4, 4) 11.61

M1 (2,1)(1,1) (3,1) (4,1)

M2 (1,2) (3,2) (4,2) (2,2)

M3 (1,3) (2,3) (3,3) (4,3)

0 2 4 6 8 10 12 14 16 18 20 22 24 t

Job 1 Job 2 Job 3 Job 4

Figure 4.4 : A feasible schedule for the instance I4×3. Pair (i, j) represents job i on
machine j.

The schedule of neighbor 1 obtained by CPLEX is shown by the Gantt chart

in Figure 4.4. To obtain the new sequence, the relaxed operations are sorted in

non-decreasing order of their completion time while the order of the non-relaxed

operations is kept unchanged:

M3 M2 M3 M2 M2 M2 M3 M1 M1 M1 M1 M3

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Π′ = (1 1 2 3 4 2 3 1 3 2 4 4)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Ck

i : 4 7 9 9 12 16 15 15 18 20 24 25
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4.4.6 Computational results

We evaluate Math 1 on the 72 benchmark instances of Baptiste et al. (2008).

Those instances include three different sizes for jobs and machines, where n ∈
{10, 15, 20} and m ∈ {2, 5, 10}, and therefore, the instances range from 20 to 200

operations. For each combination of n and m eight instances were generated. We

refer the interested reader to Baptiste et al. (2008) for details.

Instances

The 72 benchmark instances of JIT-JSS provided in Baptiste et al. (2008) range

from 20 to 200 operations. Each instance is named using the format n-m-DD-W-ID,

where n ∈ {10, 15, 20} and m ∈ {2, 5, 10} denote the numbers of jobs and ma-

chines, respectively. For each combination of n and m, i.e.,
({{10,15,20},{2,5,10}}

{n,m}

)
, eight

instances were generated by randomly choosing DD, W, and ID. In particular,

• if the difference between the due-dates of consecutive operations of the same

job, i.e., DD, is equal to the processing time of the last operation, then DD =

tight. If it is equal to the processing time of the last operation plus a random

value in the range [0, 10], then DD = loose.

• W, which is the relation between the earliness and tardiness penalty coefficients,

is either equal if both α and β are chosen randomly in the range [0.1, 1], or

tard if α is taken in the range [0.1, 0.3] and β in the range [0.1, 1].

• ID is either 1 or 2, indexing either of the two instances generated for each

combination of the other parameters.

We code Math 1 in the C++ programming language (for the implementation

of SBH, we used the code provided by Applegate and Cook (1991), which is pub-

licly available at http://www.math.uwaterloo.ca/~bico/jobshop/). We imple-

ment ProblemJIT −JSS by using the CPLEX Concert Technology version 12.6.0

(ILOG, 2017) with the default parameters, except the time limit and the number

of processors (threads). Within Math 1 we only use one thread for CPLEX, and

in the stand alone CPLEX we utilize four threads. We perform the computational

http://www.math.uwaterloo.ca/~bico/jobshop/
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experiments on a Personal Computer with Intel® Core™ i5-430M CPU clocked at

2.26GHz with 4GB of memory under Windows 10 operating system.

The algorithm terminates if one of the following three criteria is met: (1) the

maximum number of iterations is reached; we set this to 10; (2) the maximum

number of iterations without an improvement is recorded, which is set to 2 (i.e., if the

algorithm cannot deliver an improved solution after 2 consecutive iterations); and,

(3) the maximum computation time is elapsed; we set this to 200 seconds. Table 4.6

details the value of parameters that we use in the algorithm. The parameters nc and

Tlimit are chosen according to the problem size. We choose the value of parameters

RC and RR upon each execution of N1 or N2 according to the distribution functions

given in Table 4.6 and Figure 4.5. In the table, R(a, b) denotes a discrete uniform

random number in the ranges [a, b]. In Figure 4.5, a sequence is broken down into

three sections (shown by different patterns). For example, an operation from the

first or last 20% of operations might be chosen as RC with the probability of 0.2.

Table 4.6 : Value of the parameters.

Parameter N1 N2

nc 15

=

{
5, if n×m < 100

10, if n×m ≥ 100

RR
n×m

R(5, 10)

=


5, if n×m < 50

10, if 50 ≤ n×m ≤ 150

15, if n×m > 150

RC See Figure 4.5
f × n×m

nc
+R(0, 5)

Tlimit (sec) 1

=


1, if n×m < 50

2, if 50 ≤ n×m ≤ 100

3, if n×m > 100

We compare the algorithm’s outcomes and the best solution obtained by the

state-of-the-art methods that solved the same instances, as well as the solver CPLEX.
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48%
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Figure 4.5 : Distribution function to choose the value of parameter RC for N1.

Those state-of-the-art methods include (1) the LNS of Laborie and Godard (2007)

(only available for instances with 15 and 20 jobs), (2) the CP and LNS of Monette et

al. (2009), (3) the EA of Dos Santos et al. (2010), (4) the GA of Yang et al. (2012a)

(only available for instances with 10 and 15 jobs), and (5) the VNS of Wang and

Li (2014).

We show the details of the results in Table 4.7. The outcomes include the best

results over 5 runs obtained by Math 1, the previous methods and the solver CPLEX.

The first and second columns show the name of the instances and the number of

operations. The third and fourth columns report the best objective function values

obtained by CPLEX and previous methods. Recall that the outcomes of CPLEX

are obtained by using four threads; we also set the time limit of 1,800 seconds for

the stand alone CPLEX. The fifth and sixth columns present the best objective

function values and computation times of Math 1. The value of time is averaged

over five runs. The reason for five runs is twofold. First, to mitigate, to some

extent, the fluctuations in the performance of CPLEX. In particular, because we

use CPLEX heuristically (by setting a time limit) it may not deliver the same

solution for an instance over different algorithm’s runs. Second, because there are

certain randomized components in Math 1, the multiple-run is a reasonable strategy

to ensure a fair level of performance. The last two columns of Table 4.7 show the

amount of improvement over CPLEX (Impr 1 in %) and over the previous methods

(Impr 2 in %). The values of Impr 1 and 2 are calculated as z′−z
z′
×100, where z′ is the

objective function value reported by either CPLEX (for Impr 1) or previous methods

(for Impr 2), and z is that of Math 1. Therefore, the positive values indicate the
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improved solutions obtained in this study. The value of zero means that Math 1

obtains the same solution as of CPLEX or the state-of-the-art methods. In the

table, the best objective function values are highlighted.

According to Table 4.7, despite the long computation time of CPLEX (1,800

seconds), CPLEX underperforms Math 1 for 51 instances, i.e., for about 71% of

instances. In addition, Math 1 obtains superior solutions to the previous methods

for 40 instances, out of 72; in other words, for nearly 56% of the instances. The

matheuristic also produces the same quality solution as of the previous methods for

20 instances. Overall, Math 1 delivers solutions that are at least as good as the best

available ones in the literature for almost 84% of the instances. We note that while

each run of our matheuristic algorithm takes at most three minutes, on average,

the quality solutions reported in the table are obtained within almost 15 minutes

because we run the algorithm for 5 times.

While the amount of improvement yielded by Math 1 is still considerable for

instances with 10 jobs, it is significant for larger instances with 15 and 20 jobs.

Additionally, a large number of new best solutions is obtained for those instances.

For example, the algorithm delivers 16 and 19 new best solutions for instances with

15 and 20 jobs. Therefore, Math 1 obtains a total number of 35 new best solutions

for those 48 instances, where the average amount of improvement is nearly 5%. The

amount of improvement over CPLEX is far greater and is in the order of almost

43%.

It should be noted that the run time of some of the state-of-the-art methods was

not reported. For example, while each run of the algorithms proposed by Monette

et al. (2009) was reported to take 600 seconds, the run time of the VNS of Wang and

Li (2014) that is among the top performing algorithms for JIT-JSS of its time is not

available. Therefore, we did not perform a method-wise comparison, and instead,

carried out an instance-wise evaluation, which indicates that our proposed method

offers an efficient solution approach for the problem. It is worth re-emphasizing that

the state-of-the-art methods utilize a broad range of heuristic and meta-heuristic

algorithms, as well as solvers, and it has been a challenge to overcome the best

previous outcomes.

We also compare the Math 1’s solutions and the best solutions of the literature
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and those of solver CPLEX though their values of gap from the best lower bound.

We detail the values of the lower bound and those of the calculated gaps in Table 4.8.

The first column denotes the name of the instances. Columns under the headings

“LBR” and “LBP”, which are due to Baptiste et al. (2008), report the values of

the lower bound given by the Lagrangian resource constraints relaxation and the

Lagrangian precedence constraints relaxation, respectively. As Baptiste et al. (2008)

set the time limit for their Lagrangian relaxations, some lower bounds are therefore

not available because their algorithm was stopped before delivering the lower bounds.

Such cases have been shown with the “-” in Table 4.8. Also, column “LBRP” lists

the lower bounds by the job-level and machine-level Lagrangian relaxation of Tanaka

et al. (2015) which are given only for instances with 10 jobs. The column “Best LB”

denotes the best value of the lower bound over the available schemes. The last three

columns report the percentage of gap between the solution of a method and the best

LB, where the gap of an instance is calculated as |Best LB−z
Best LB

| × 100, and z denotes

the objective value of the tested method.

As Table 4.8 shows, Math 1 leads to the smallest average gap, which is around

13%, whereby the average gap of CPLEX is nearly 30% and that of the best of the

literature is around 15%.

4.5 Math 2 for JIT-JSS

So far we designed Math 1 armed with novel relaxation neighbourhoods. We also

showed the how our proposed mathueristic can obtain superior solutions by updating

the best known solution for nearly 56% of instances. However, the following points

remained unaddressed:

• In Section 4.4.4 several differences between conventional VNS and our pro-

posed method (such as using only one neighbourhood in the shake) were listed.

Yet their merit was never explored;

• Although major shortcomings of traditional manipulation techniques com-

pared to relaxation neighbourhoods were discussed (see Table 4.7), the impact

of our novel neighbourhoods on the solution quality was not examined.

As a result in this section we propose another variant of VNS (i.e. Math 2) which
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Table 4.7 : The detailed computational results (for experiments CPLEX 12.6.0 was
used).

Instance n × m CPLEX Best of literature Math 1 Time Impr 1 Impr 2
tight-equal-1-10x2 20 461.96 461.96 461.96 6.06 0.00 0.00
tight-equal-2-10x2 20 448.32 448.32 448.32 6.93 0.00 0.00
tight-equal-1-10x5 50 722.61 689.11 689.11 11.28 4.64 0.00
tight-equal-2-10x5 50 779.18 763.24 763.24 9.63 2.05 0.00
tight-equal-1-10x10 100 1276.23 1277.44 1276.23 21.10 0.00 0.09
tight-equal-2-10x10 100 1887.24 1878.26 1866.92 21.75 1.08 0.60
loose-equal-1-10x2 20 224.84 224.84 224.84 7.47 0.00 0.00
loose-equal-2-10x2 20 324.43 319.37 324.43 4.18 0.00 -1.58
loose-equal-1-10x5 50 1721.54 1740.08 1767.07 15.89 -2.64 -1.55
loose-equal-2-10x5 50 971.96 967.73 971.96 8.01 0.00 -0.44
loose-equal-1-10x10 100 364.39 364.39 360.74 17.80 1.00 1.00
loose-equal-2-10x10 100 249.85 249.85 249.85 24.63 0.00 0.00
tight-tard-1-10x2 20 179.46 179.46 179.46 6.86 0.00 0.00
tight-tard-2-10x2 20 145.37 145.37 145.37 5.45 0.00 0.00
tight-tard-1-10x5 50 385.93 387.3 387.3 12.79 -0.35 0.00
tight-tard-2-10x5 50 627.45 632.67 635.93 9.72 -1.35 -0.52
tight-tard-1-10x10 100 668.14 687.65 687.65 23.48 -2.92 0.00
tight-tard-2-10x10 100 783.47 779.3 777.85 18.38 0.72 0.19
loose-tard-1-10x2 20 416.44 416.44 416.44 3.91 0.00 0.00
loose-tard-2-10x2 20 137.94 137.94 137.94 7.80 0.00 0.00
loose-tard-1-10x5 50 175.08 175.08 175.08 13.30 0.00 0.00
loose-tard-2-10x5 50 518.33 499.93 504.36 12.61 2.70 -0.89
loose-tard-1-10x10 100 375.71 383.86 375.71 19.27 0.00 2.12
loose-tard-2-10x10 100 144.94 144.94 144.94 12.22 0.00 0.00
tight-equal-1-15x2 30 3400.13 3344.54 3344.54 55.14 1.63 0.00
tight-equal-2-15x2 30 1496.92 1479.76 1479.76 35.36 1.15 0.00
tight-equal-1-15x5 75 1341.29 1363.08 1318.68 72.89 1.69 3.26
tight-equal-2-15x5 75 2670.97 2693.24 2897.51 67.22 -8.48 -7.58
tight-equal-1-15x10 150 7665.92 6848.97 6950.03 102.19 9.34 -1.48
tight-equal-2-15x10 150 5352.15 5365.23 4750.25 119.92 11.25 11.46
loose-equal-1-15x2 30 1066.64 1041.7 1041.33 25.61 2.37 0.04
loose-equal-2-15x2 30 522.22 497.97 505.16 22.15 3.27 -1.44
loose-equal-1-15x5 75 3280 3267.79 3207.45 100.36 2.21 1.85
loose-equal-2-15x5 75 3449.47 3357.13 3276.3 81.20 5.02 2.41
loose-equal-1-15x10 150 1005.92 986.43 947.52 102.00 5.81 3.94
loose-equal-2-15x10 150 1634.89 1563.03 1522.04 124.45 6.90 2.62
tight-tard-1-15x2 30 807.45 790.5 790.5 72.20 2.10 0.00
tight-tard-2-15x2 30 905.37 905.37 905.37 34.30 0.00 0.00
tight-tard-1-15x5 75 1384.44 1389.81 1359.18 95.03 1.82 2.20
tight-tard-2-15x5 75 714.88 701.16 679.45 78.28 4.96 3.10
tight-tard-1-15x10 150 858.83 813.46 776.39 123.63 9.60 4.56
tight-tard-2-15x10 150 1442.82 1304.27 1232.37 125.16 14.59 5.51
loose-tard-1-15x2 30 661.74 654.84 654.84 51.09 1.04 0.00
loose-tard-2-15x2 30 285.16 291.43 279.71 34.22 1.91 4.02
loose-tard-1-15x5 75 1404.9 1315.53 1281.26 102.37 8.80 2.61
loose-tard-2-15x5 75 332.85 386.25 341.03 136.25 -2.46 11.71
loose-tard-1-15x10 150 283.13 282.35 277.24 106.32 2.08 1.81
loose-tard-2-15x10 150 679.35 658.9 587.9 110.10 13.46 10.78
tight-equal-1-20x2 40 1951.02 1940.3 1933.72 111.06 0.89 0.34
tight-equal-2-20x2 40 977.1 943.7 951.28 96.56 2.64 -0.80
tight-equal-1-20x5 100 3009.43 2853.31 2869.97 180.71 4.63 -0.58
tight-equal-2-20x5 100 7523.08 6915.06 6643.07 120.73 11.70 3.93
tight-equal-1-20x10 200 16300.6 10520.4 10426.5 133.16 36.04 0.89
tight-equal-2-20x10 200 12101.8 7201.05 7303.93 169.12 39.65 -1.43
loose-equal-1-20x2 40 2578.31 2550.53 2547.68 75.37 1.19 0.11
loose-equal-2-20x2 40 3194.94 3109.29 3069.13 88.11 3.94 1.29
loose-equal-1-20x5 100 8579.99 7646.9 7496.27 179.54 12.63 1.97
loose-equal-2-20x5 100 7978.99 7294.5 7053.66 182.89 11.60 3.30
loose-equal-1-20x10 200 6891.01 5022.49 4920.46 150.24 28.60 2.03
loose-equal-2-20x10 200 3681.51 1816.53 1626.53 166.58 55.82 10.46
tight-tard-1-20x2 40 1866.89 1682.72 1671.87 132.16 10.45 0.64
tight-tard-2-20x2 40 1466.63 1452.05 1452.05 104.45 0.99 0.00
tight-tard-1-20x5 100 3776.46 3640 3612.93 173.98 4.33 0.74
tight-tard-2-20x5 100 1944.21 1873.8 1809.02 172.75 6.95 3.46
tight-tard-1-20x10 200 11748.3 4778.16 4397.66 107.83 62.57 7.96
tight-tard-2-20x10 200 6699.4 3270.09 3198.11 159.33 52.26 2.20
loose-tard-1-20x2 40 1393.36 1204.92 1204.43 109.74 13.56 0.04
loose-tard-2-20x2 40 802.32 774.22 782.39 75.06 2.48 -1.06
loose-tard-1-20x5 100 3259.1 2973.23 2968.86 164.47 8.91 0.15
loose-tard-2-20x5 100 4128.23 3654.86 3609.4 142.93 12.57 1.24
loose-tard-1-20x10 200 8219.27 5100.46 5039.34 164.78 38.69 1.20
loose-tard-2-20x10 200 1678.07 1588.7 1440.72 167.90 14.14 9.31
Average 77.88 42.71 4.51
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allows us to investigate the above mentioned points. In particular the new VNS:

1. includes traditional manipulation techniques i.e. swap and remove-insert;

2. utilizes N1 (relax-2 hereafter) as relaxation neighbourhood;

3. uses a different relaxation neighbourhood called relax-1 in the shake phase.

It is worth mentioning that in Math 2, the initial sequence for JIT-JSS is gener-

ated through procedure GT (discussed in algorithm 4.1) while the solution represen-

tation and re-encoding of scheduled sequences are performed as per Sections 4.4.1

and 4.4.5 respectively.

4.5.1 Improvement algorithm

After obtaining a feasible initial sequence for JIT-JSS (through procedure GT

(discussed in algorithm 4.1), we improve the sequence by applying the VNS algo-

rithm. Algorithm 4.5 summarizes the proposed Math 2.

In the shake phase of Math 2, we apply the “relax-1” neighbourhood, which

relaxes several machine precedence constraints in the given sequence. Specifically,

relax-1 randomly selects two machines on which the machine precedence constraints

for performing several operations are relaxed. According to our computational re-

sults, the relax-1 neighbourhood is computationally inexpensive and is able to pro-

duce very good quality solutions as well.

After performing the shake phase, Math 2 proceeds to the local search phase,

where the three neighbourhoods of “relax-2”, “remove-insert” and “swap” are ap-

plied. We discuss these neighbourhood structures in the following sections. Fig-

ure 4.6 gives a flowchart of the proposed Math 2.

Relax-1 neighbourhood

As illustrated in Figure 4.6, in the shake phase the “relax-1” neighbourhood is

applied. To have a better grasp of this neighbourhood, consider the instance 4 × 3

discussed in Section 4.3. Recall that Figure 4.1 shows the schedule for the following

sequence: Π = (1, 1, 2,3,2,4, 3, 1, 3, 2, 4, 4). The second row of the following array

specifies the processing machines for the operations of Π.
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Algorithm 4.5: Math 2 for JIT-JSS.

1 Input: An initial sequence Π, generated by GT and its associated objective
value z(Π); a set of neighbourhood structures Nκ, κ = 1, 2, 3, to be used in the
local search.

2 Output: An improved sequence for JIT-JSS.

3 while the stopping condition is not met do
4 κ := 1;
5 while κ ≤ 3 do
6 Shake:
7 Π′ ←relax-1(Π);

8 Local Search:

9 Π
′′ ← LS(Π

′
, κ); //See Sub-procedure

10 Move or not:

11 if z(Π
′′
) < z(Π) then

12 z(Π) := z(Π
′′
)

13 Π := Π
′′
;

14 else
15 κ := κ+ 1;

16 end

17 end

18 end
19 return the best obtained sequence Π and its objective value z(Π);

20 Sub-procedure LS(Π
′
, κ) //the local search in VNS

21 iter := 1;
22 while iter ≤ iter max do

23 temp←Nκ(Π
′
);

24 if z(temp) < z(Π
′
) then

25 z(Π
′
) := z(temp);

26 Π
′
:= temp;

27 else
28 iter := iter + 1;

29 end

30 end

31 return Π
′
;
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Start

An instance of JIT-JSS; a set of 
neighborhood structures 𝑁𝑁𝜅𝜅,𝜅𝜅 = 1,2,3; 

Π = {}. 

Generate an initial sequence Π using GT. Obtain optimal 
schedule for S and the corresponding objective value z(Π) by 

using ProblemJIT-JSS. 

Apply math_2 on Π, and generate neighboring sequence Π’.
Obtain optimal schedule for Π’ and the corresponding objective

𝑧𝑧(Π’) by optimizing ProblemJIT-JSS.

Output Π

Stop

Yes

N
Stopping 
criterion?

𝑧𝑧(Π’) < 𝑧𝑧(Π)

Π = Π’, and 𝑧𝑧(Π) = 𝑧𝑧(Π′) Keep Π unchanged

NoYes

Figure 4.6 : The flowchart of Math 2 for solving JIT-JSS.


 Job 1 1 2 3 2 4 3 1 3 2 4 4

Machine 3 2 3 2 2 2 3 1 1 1 1 3


 .

Considering Π again, suppose RC = 5, i.e., the 5th position in the sequence,

and RR = 4. Then the relaxed sub-sequence is R = (1, 1, 2, 3, 2, 4, 3, 1, 3) (or,

equivalently, (O1
1, O

2
1, O

1
2, O

1
3, O

2
2, O

1
4, O

2
3, O

3
1, O

3
3)). Scanning through the operations

in R, it is clear that they are being performed on machines 1, 2, and 3. However, in

the relax-1 neighbourhood, which we use in the shake phase, only two machines are

taken into consideration. Assume that machines 1 and 3 are randomly chosen for

this reason. This means that the machine precedence constraints for the selected
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S

2,3

3,2

1,3

4,2

2,2

3,3

1,2

4,1

2,1

3,1

1,1

4,3

T

Figure 4.7 : An example of the relax-1 neighbourhood for the instance 4 × 3. A
pair (i, j) represents job i on machine j. As machine 2 has not been selected, its
associated operations in R (shown in grey) are performed in the given order by
Π. The thick conjunctive arcs impose the order in which grey operations to be
performed on machine 2.

operations on these two machines are relaxed. However, because machine 2 is not

selected, its associated operations in R, i.e., O2
1, O

1
3, O

2
2, and O1

4, are performed

in the given order by Π, i.e., we do not change their order. Figure 4.7 shows the

relaxed operations on machines 1 and 3 (in yellow) and the non-relaxed operations

on machine 2 (in gray). The bold conjunctive arcs specify the order in which the

operations in gray are performed on machine 2. Figure 4.8 shows restoring the

connectivity between the relaxed and non-relaxed sub-sequences by imposing a few

conjunctive arcs ending at the red nodes.

It is worth mentioning that while the relax-1 and relax-2 neighbourhoods are

conceptually very similar, their functions in the proposed VNS are quite different.

We use the relax-1 neighbourhood to introduce diversification into the search and

explore new regions of the solution space. We apply relax-2, however, in the local

search to intensify the search and obtain superior solutions through exploiting the

incumbent solution.

Remove-Insert neighbourhood

Given a sequence, a randomly selected operation is removed from its original

position and inserted into another randomly selected position. Figure 4.9 shows an
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Figure 4.8 : An example of the relax-1 neighbourhood for the instance 4 × 3. The
conjunctive arcs ending at red nodes guarantee the connectivity between relaxed
and non-relaxed operations. A pair (i, j) represents job i on machine j.

example of the remove-insert neighbourhood for the instance 4 × 3. N2 in Algo-

rithm 4.5 denotes this neighbourhood.

1a: 1 2 3 2 4 3 1 3 2 4 4

1b: 1 3 2 4 2 3 1 3 2 4 4

Figure 4.9 : An example of the remove-insert neighbourhood in the instance 4 × 3:
(a) before the remove-insert operation and (b) after the remove-insert operation.

Swap neighbourhood

This neighbourhood swaps the positions of two randomly chosen operations in a

sequence. Figure 4.10 shows an example of the swap neighbourhood for the instance

4× 3. In Algorithm 4.5, N3 denotes this neighbourhood.

4.5.2 Computational results

To assess the performance of Math 2 (see Algorithm 4.5), we test it on the

72 benchmark instances introduced in Section 4.4.6. We first tune the value of

parameters of Math 2 and examine the impact of neighbourhoods on solution quality.
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1a: 1 2 3 2 4 3 1 3 2 4 4

1b: 1 3 3 2 4 3 1 2 2 4 4

Figure 4.10 : Swapping two operations in the instance 4 × 3; (a) before the swap
and (b) after the swap.

Then we adopt the best setting for Math 2. We compare the performance of Math 2

and the EA and VNS algorithms of Dos Santos et al. (2010) and Wang and Li (2014),

which we re-implement on the same machine as of our Math 2. We also solve

ProblemJIT −JSS using CPLEX Concert Technology version 12.8.0 (ILOG, 2017).

Next, we tune the value of parameters and analyse the impact of neighbourhoods,

and report the computational results.

Parameter tuning

We run two experiments to tune the values of the parameters of Math 2 and

to examine the impact of neighbourhoods on solution quality. The first experiment

assesses the best neighbourhood(s) for shake, the order of the neighbourhoods in

the local search, and the effects of the values of two parameters of RC and RR on

solution quality. The second experiment evaluates the contribution of the relax-2

neighbourhood to solution quality.

Experiment 1

We investigate the impacts of the following on solution quality of Math 2:

• Neighbourhood(s) in the shake phase: As discussed in Section 4.5.1, Math 2

differs from the classic one in that it uses relax-1 in the shake phase. To verify

the superiority of the results delivered by our proposed shake, we test two

variants: (1) relax-1 in shake (denoted as shake 1) and relax-2, swap, and

remove-insert in shake (denoted as shake 2).

• The order of the neighbourhoods in the local search phase: The order of the

neighbourhoods may affect solution quality. Since we include the three neigh-

bourhoods of swap, remove-insert, and relax-2 in Math 2, there are six distinct
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orders for implementing these neighbourhoods. We test the performance of

Math 2 under all these six orders of neighbourhoods.

• Parameter RC: When choosing the value of RC, one can randomly and uni-

formly pick an operation from a given sequence. This, however, might not

always lead to quality solutions. Therefore, we test three simple non-uniform

distributions (see Figures 4.11 to 4.13) from which the value of RC in each

iteration of Sub-procedure LS in Algorithm 4.5 is chosen. For example, the

distribution function shown in Figure 4.11 breaks down a given sequence into

four distinct sections (shown in various patterns) with different probabilities

of occurrence, i.e., 0.20, 0.20, 0.25, and 0.35. As Figure 4.11 illustrates, there

is a 20% chance that the value of RC is randomly chosen from either the first

or the last 5% of the operations in the given sequence.

• Parameter RR: It is reasonable to choose the value of RR proportionate to the

size of the instance. We test two sets of values for RR detailed in Table 4.10,

denoted as RR 1 and RR 2. For example, under RR 1, the value of the

parameter RR is equal to n×m
3

for instances with ten jobs, while under RR 2,

the value is equal to n×m
6

.

We select 12 instances, out of 72, ranging from 10 to 20 jobs and 5 to 10 machines

and run Math 2 for five times. We exclude instances with two machines. Testing

two possibilities for shake, six distinct neighbourhood orders for local search, two

sets of the value of RR, and three distributions (to choose the value of RC, and

also to guide the swap and remove-insert neighbourhoods, i.e., to select a pair of

positions for the operations in swap, and the removal and insertion positions in

remove-insert) result in 4,320 tested combinations (12× 5× 2× 6× 2× 3). For the

computational results of this section, we set the values of the parameter iter max

for relax-2, swap, and remove-insert to 10, 20, and 20, respectively. We also set

the computational time limit of CPLEX (within Math 2) to one second for both

the relax-1 and relax-2 neighbourhoods. From our initial experiments, we observe

that setting the CPLEX time limit to greater values does not considerably improve

the quality of the solutions but it leads to an increase in the computational time

for Math 2. To terminate Math 2, we use two criteria (whichever occurs earlier)
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of (1) the maximum number of iterations that we set to ⌊n×m
4
⌋, where ⌊x⌋ is the

greatest integer less than or equal to x, and (2) the maximum number of iterations

without an improvement that we set to three, meaning that Math 2 terminates if it

cannot find an improved solution after three consecutive iterations. We summarize

the outcomes in Table 4.9.

In Table 4.9, we calculate “Avg (best)” as

∑12
k=1(

zk−z∗k
z∗
k

×100)

12
, where z∗k is the best

known solution in the literature for the instance k and zk is the best solution delivered

by Math 2 in five runs for the same instance. Therefore, a negative value implies an

improved solution obtained by Math 2. We also compute the average computational

time (in seconds) over all the 12 instances that we solve. As the table shows,

the largest average improvement is equal to -4.31 (highlighted in the table) and

is obtained via shake 1 that includes relax-1; the neighbourhood order of relax-2,

remove-insert, and swap; distribution 1 for selecting RC; and RR 1 for selecting

the parameter RR. We therefore use this setting to solve the remaining instances,

which will be discussed in Section 4.5.2. It should be noted that the RR 2 setting for

selecting the value of parameter RR leads to a significantly faster Math 2, though

its solution quality is inferior to that of RR 1.
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Table 4.8 : The best known lower bounds.

Gap (%)
Instance LBR LBP LBRP Best LB CPLEX Best of

litera-
ture

Math 1

tight-equal-1-10x2 434 433 461.96 461.96 0 0 0
tight-equal-2-10x2 357 418 448.32 448.32 0 0 0
tight-equal-1-10x5 660 536 688.674 688.674 4.93 0.06 0.06
tight-equal-2-10x5 592 612 763.24 763.24 2.09 0 0
tight-equal-1-10x10 1126 812 1184.395 1184.395 7.75 7.86 7.75
tight-equal-2-10x10 1535 819 1659.251 1659.251 13.74 13.2 12.52
loose-equal-1-10x2 218 219 224.84 224.84 0 0 0
loose-equal-2-10x2 313 298 317.542 317.542 2.17 0.58 2.17
loose-equal-1-10x5 1263 1205 1680.105 1680.105 2.47 3.57 5.18
loose-equal-2-10x5 878 780 945.206 945.206 2.83 2.38 2.83
loose-equal-1-10x10 331 294 355.401 355.401 2.53 2.53 1.5
loose-equal-2-10x10 246 211 249.85 249.85 0 0 0
tight-tard-1-10x2 168 174 179.25 179.25 0.12 0.12 0.12
tight-tard-2-10x2 143 138 145.37 145.37 0 0 0
tight-tard-1-10x5 361 322 371.174 371.174 3.98 4.34 4.34
tight-tard-2-10x5 420 461 610.905 610.905 2.71 3.56 4.1
tight-tard-1-10x10 574 408 599.612 599.612 11.43 14.68 14.68
tight-tard-2-10x10 666 469 717.61 717.61 9.18 8.6 8.39
loose-tard-1-10x2 413 408 416.44 416.44 0 0 0
loose-tard-2-10x2 135 137 137.94 137.94 0 0 0
loose-tard-1-10x5 168 159 175.08 175.08 0 0 0
loose-tard-2-10x5 355 313 467.437 467.437 10.89 6.95 7.9
loose-tard-1-10x10 356 314 368.823 368.823 1.87 4.08 1.87
loose-tard-2-10x10 138 119 144.94 144.94 0 0 0
tight-equal-1-15x2 2902 3316 - 3316 2.54 0.86 0.86
tight-equal-2-15x2 1253 1449 - 1449 3.31 2.12 2.12
tight-equal-1-15x5 964 1052 - 1052 27.5 29.57 25.35
tight-equal-2-15x5 1630 1992 - 1992 34.08 35.2 45.46
tight-equal-1-15x10 4389 3662 - 4389 74.66 56.05 58.35
tight-equal-2-15x10 3539 2564 - 3539 51.23 51.6 34.23
loose-equal-1-15x2 1014 1032 - 1032 3.36 0.94 0.9
loose-equal-2-15x2 490 472 - 490 6.58 1.63 3.09
loose-equal-1-15x5 2449 2763 - 2763 18.71 18.27 16.09
loose-equal-2-15x5 2818 2773 - 2818 22.41 19.13 16.26
loose-equal-1-15x10 758 628 - 758 32.71 30.14 25
loose-equal-2-15x10 1242 979 - 1242 31.63 25.85 22.55
tight-tard-1-15x2 720 786 - 786 2.73 0.57 0.57
tight-tard-2-15x2 843 886 - 886 2.19 2.19 2.19
tight-tard-1-15x5 1008 1014 - 1014 36.53 37.06 34.04
tight-tard-2-15x5 626 547 - 626 14.2 12.01 8.54
tight-tard-1-15x10 649 467 - 649 32.33 25.34 19.63
tight-tard-2-15x10 955 761 - 955 51.08 36.57 29.04
loose-tard-1-15x2 616 650 - 650 1.81 0.74 0.74
loose-tard-2-15x2 278 277 - 278 2.58 4.83 0.62
loose-tard-1-15x5 1098 1005 - 1098 27.95 19.81 16.69
loose-tard-2-15x5 314 313 - 314 6 23.01 8.61
loose-tard-1-15x10 258 233 - 258 9.74 9.44 7.46
loose-tard-2-15x10 476 454 - 476 42.72 38.42 23.51
tight-equal-1-20x2 1747 1901 - 1901 2.63 2.07 1.72
tight-equal-2-20x2 858 912 - 912 7.14 3.48 4.31
tight-equal-1-20x5 2506 2244 - 2506 20.09 13.86 14.52
tight-equal-2-20x5 4923 5817 - 5817 29.33 18.88 14.2
tight-equal-1-20x10 6656 6708 - 6708 143 56.83 55.43
tight-equal-2-20x10 5705 - - 5705 112.13 26.22 28.03
loose-equal-1-20x2 2388 2546 - 2546 1.27 0.18 0.07
loose-equal-2-20x2 2970 3013 - 3013 6.04 3.2 1.86
loose-equal-1-20x5 5571 6697 - 6697 28.12 14.18 11.93
loose-equal-2-20x5 5496 6017 - 6017 32.61 21.23 17.23
loose-equal-1-20x10 3538 3099 - 3538 94.77 41.96 39.07
loose-equal-2-20x10 1344 1150 - 1344 173.92 35.16 21.02
tight-tard-1-20x2 1515 - - 1515 23.23 11.07 10.35
tight-tard-2-20x2 1375 1327 - 1375 6.66 5.6 5.6
tight-tard-1-20x5 2507 3244 - 3244 16.41 12.21 11.37
tight-tard-2-20x5 1633 - - 1633 19.06 14.75 10.78
tight-tard-1-20x10 3003 2764 - 3003 291.22 59.11 46.44
tight-tard-2-20x10 2740 - - 2740 144.5 19.35 16.72
loose-tard-1-20x2 1194 1189 - 1194 16.7 0.91 0.87
loose-tard-2-20x2 734 735 - 735 9.16 5.34 6.45
loose-tard-1-20x5 2177 2524 - 2524 29.12 17.8 17.63
loose-tard-2-20x5 2643 3060 - 3060 34.91 19.44 17.95
loose-tard-1-20x10 2462 2436 - 2462 233.85 107.17 104.68
loose-tard-2-20x10 1226 - - 1226 36.87 29.58 17.51
Average 29.58 15.19 13.21
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Table 4.9 : Summary of the computational results in experiment 1.

Order∗
Distribution 1 Distribution 2 Distribution 3

RR 1 RR 2 RR 1 RR 2 RR 1 RR 2
Avg (Best) Avg (Time) Avg (Best) Avg (Time) Avg (Best) Avg (Time) Avg (Best) Avg (Time) Avg (Best) Avg (Time) Avg (Best) Avg (Time)

S
h
a
k
e
1

R2-S-RI -4.28 152.05 -2.67 64.06 -4.07 165.86 -2.28 65.14 -4.23 169.61 -2.80 72.97
R2-RI-S -4.31 170.62 -2.78 71.59 -3.87 161.09 -2.05 67.10 -3.75 153.64 -1.91 69.60
S-R2-RI -3.97 151.56 -2.72 63.68 -3.63 156.35 -2.53 65.66 -3.97 146.39 -2.17 67.71
S-RI-R2 -3.79 157.29 -2.26 62.65 -3.65 144.33 -2.51 63.98 -3.61 153.97 -1.94 69.81
RI-S-R2 -3.63 155.66 -2.93 62.53 -3.35 155.81 -2.66 65.81 -3.94 157.94 -2.51 73.97
RI-R2-S -3.79 169.51 -2.64 73.07 -3.83 149.33 -3.04 59.45 -3.85 170.14 -2.87 73.24

S
h
a
k
e
2

R2-S-RI -3.66 162.55 -2.09 83.04 -3.76 156.03 -2.61 74.32 -3.65 154.13 -2.64 86.62
R2-RI-S -3.20 136.73 -1.98 73.31 -3.27 136.86 -2.32 77.86 -3.68 150.48 -2.19 74.64
S-R2-RI -2.96 158.44 -2.68 87.79 -3.84 156.21 -2.43 75.47 -3.36 135.54 -1.99 86.67
S-RI-R2 -3.22 142.20 -2.08 67.86 -2.90 137.27 -2.31 80.34 -2.78 143.98 -2.85 84.34
RI-S-R2 -3.23 145.96 -3.32 78.66 -3.40 137.42 -3.20 68.12 -3.72 149.68 -2.28 77.75
RI-R2-S -3.56 146.41 -2.75 73.06 -3.59 148.82 -2.63 76.93 -3.31 144.74 -2.07 87.47

∗R2: relax-2, RI: remove-insert, S: swap.
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5% 15% 20% 20% 20% 15% 5%

20%
20%
25%
35%

Begin EndA sequence

Figure 4.11 : Distribution function 1 to choose the value of parameter RC from for
relax-1 and relax-2 and to guide swap and remove-insert neighbourhoods, i.e., to
select a pair of positions for the operations in swap and the removal and insertion
positions in remove-insert.

5% 35% 20% 35% 5%

20%
50%
30%

Begin EndA sequence

Figure 4.12 : Distribution function 2 to choose the value of parameter RC from for
relax-1 and relax-2 and to guide swap and remove-insert neighbourhoods.

Experiment 2

Since the relax-2 neighbourhood has distinct characteristics from those of the

traditional neighbourhoods such as swap and remove-insert, we investigate its im-

pact on solution quality. We conduct experiment 2, in which we exclude the relax-2

neighbourhood from the local search so that the order of the implemented neighbour-

hoods included remove-insert and swap. We do not change the remaining settings,

i.e., we use relax-1 in shake, distribution 1, and the setting RR 1 for selecting the

values of the parameters RC and RR (see Section 4.5.2). We solve the same 12

instances discussed in Section 4.5.2 and summarize the outcomes in Table 4.11.
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20% 20% 20% 20% 20%

40%
20%
40%

Begin EndA sequence

Figure 4.13 : Distribution function 3 to choose the value of parameter RC from for
relax-1 and relax-2 and to guide swap and remove-insert neighbourhoods.

Table 4.10 : The values of the parameter RR in experiment 1.

RR 1 RR 2



n×m

3
, if n = 10

n×m

4
, if n = 15

n×m

5
, if n = 20



n×m

6
, if n = 10

n×m

8
, if n = 15

n×m

10
, if n = 20

Similar to Table 4.9, we compute “Avg (best)” as

∑12
k=1(

zk−z∗k
z∗
k

×100)

12
, where z∗k is the

best known solution in the literature for the instance k and zk is the best solution

obtained by Math 2 in five runs for the same instance. Moreover, we calculate the

average computational time, i.e., Avg (Time), over all the 12 instances that we solve.

According to the results, it is clear that the relax-2 neighbourhood is very effective

in obtaining high quality solutions. We note that while, on average, the removal

of the relax-2 neighbourhood leads to slightly better solutions than the best known

Table 4.11 : Impact of the relax-2 neighbourhood on solution quality.

Order of neighbourhoods Avg (best) Avg (time)

R2-RI-S∗ -4.31 170.62
RI-S -0.32 16.34
∗R2: relax-2, RI: remove-insert, S: swap.
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ones in the literature, i.e., 0.32%, its inclusion significantly enhances the solutions

by nearly 4% (4.31− 0.32 = 3.99).

Comparison against state-of-the-art solution methods

We compare the performance of Math 2 with that of solver CPLEX, and the EA

and VNS algorithms of Dos Santos et al. (2010), and Wang and Li (2014), which we

re-implement on the same computer as that for implementing Math 2. To make fair

comparisons, we initialize CPLEX and VNS with the same initial solution, i.e., we

use the initial solutions returned by GT to initialize both CPLEX and Math 2. We

opted to re-implement only EA and VNS, rather than all the available methods for

solving the same instances (Laborie and Godard, 2007; Monette et al., 2009; Yang

et al., 2012a), since the two chosen algorithms are conceptually similar to Math 2

algorithm in that the algorithms operate by iteratively solving the mixed integer

program, and 87.5% of the best known solutions in the literature are due to the two

algorithms.

It should be noted that while we make a meticulous effort to re-implement EA

and VNS as close as possible to their original implementation reported in Dos San-

tos et al. (2010), and Wang and Li (2014), our re-implementation may be slightly

different from the operations of the algorithms as explained in the original studies.

This is because the original works did not fully discuss all the components of those

algorithms. In addition, we provide an additional computational time allowance for

those algorithms in order to ensure a fair comparison. As such, for each value of n,

we set the run times of EA and VNS to the longest running time of Math 2 over all

the instances with the same value of n and five runs of the algorithm. Therefore, we

ran EA and VNS for 96, 308 and 603 seconds for instances with 10, 15 and 20 jobs.

Table 4.12 summarizes the outcomes of Math 2, and those obtained by CPLEX

and our re-implementation of EA of Dos Santos et al. (2010), and VNS of Wang

and Li (2014). The results show that Math 2 performs well against all the three

methods of CPLEX, EA, and VNS. Specifically, for 61 instances, out of 72, Math 2

delivers solutions that are either of same or superior quality to the best solutions

produced by CPLEX, EA, and VNS. This is significant and is equal to nearly 85% of

instances. Interestingly, even the average solution of Math 2 competes well with the
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best solutions produced by CPLEX, EA, and VNS for almost 43% of the instances.

The average solution of Math 2 outperforms the best solution of CPLEX and the

average solutions of EA and VNS for 45 instances, i.e., for 62.5% of the instances. To

complement the analysis of the results in Table 4.12 and to validate the statistical

significance of the superior performance of Math 2 over the other three methods, we

conduct Wilcoxon signed rank tests at the significance level of 5%, i.e., α = 0.05, on

pairwise comparisons of the average performance between Math 2 versus CPLEX,

EA of Dos Santos et al. (2010), and VNS of Wang and Li (2014) for instances with

10, 15, and 20 jobs. The null hypothesis is that there is no significant difference

in the average objective function value between two compared methods. We use

the alternative hypothesis to test whether the average objective function value of

Math 2 is less than that of the other method. Table 4.13 reports the p-values of

the tests. It is noted that when the p-value is less than the value of the significance

level, it indicates that there is a significant difference between the two compared

methods. Table 4.13 shows that all the null hypotheses are rejected, except for the

test of Math 2 versus CPLEX for n = 10, which is expected as CPLEX produces

quality solutions at the expense of long computing times (up to 1,800 seconds).

The rejections of the tests of Math 2 versus EA and the VNS further demonstrate

that Math 2 armed with novel relaxation neighbourhoods is capable of obtaining

high quality solutions that are much superior to those obtained by previous top

performing methods.

Table 4.12 : Summary of the computational results for Math 2.

Criterion Number of jobs (n) Total
10 15 20

Number of instances for which the best solution delivered
by Math 2 is equal to or better than the best among
CPLEX, EA and VNS

23 18 20 61

Number of instances for which the average solution deliv-
ered by Math 2 is equal to or better than the best among
CPLEX, EA and VNS

11 11 9 31

Number of instances for which the average solution de-
livered by Math 2 is equal to or better than the average
among CPLEX, EA and VNS

14 14 17 45

Tables 4.14 to 4.16 provide the details of the computational results, where each
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Table 4.13 : The p-values of the Wilcoxon signed rank tests.

Test n = 10 n = 15 n = 20

Math 2 versus CPLEX 0.843 0.022 0.000
Math 2 versus EA (Dos Santos et al. (2010)) 0.000 0.002 0.001
Math 2 versus VNS (Wang and Li (2014)) 0.000 0.000 0.000

table presents the results associated with each value of n. The tables compare the

best results obtained by Math 2 versus the best results obtained by CPLEX, and

those produced by our re-implementation of EA of Dos Santos et al. (2010), and

VNS of Wang and Li (2014). In Tables 4.14 to 4.16, the first column shows the

names of the instances. The second and third columns denote the outcomes of

CPLEX obtained under the time limit of 1,800 seconds, including the best obtained

objective function value (“z”) and the computational time in seconds. Columns

four to six show the outcomes of EA, namely the best objective function value

(“zbest”), the average objective function value over five runs (“zavg”), and the pre-set

computational time in seconds (“Time (s.)”), and columns seven to nine denote those

of Wang and Li (2014)’s VNS. The last four columns present the outcomes of Math 2.

Within those, the column “z0” shows the objective function value of the initial

solution, and the remaining three columns report the best and average objective

function values, and the average of the computational time (in seconds) over the

five runs. We run EA, Wang and Li (2014)’s VNS, and Math 2 algorithms for five

runs in order to mitigate fluctuations in the performance of the solver CPLEX. Since

we apply CPLEX heuristically by setting a time limit and we use the default values

for its parameters, except the time limit and number of processors, CPLEX may

not deliver the same solution for an instance over different runs of an algorithm. In

the tables, the numbers in bold indicate the best solutions among four methods and

the numbers in the parentheses show the numbers of occurrence of the best solution

for the instances.

According to Table 4.14, Math 2 delivers the largest number of best solutions

among the four tested methods, i.e., for 23 instances. CPLEX produces 13 best

solutions. Neither of EA and VNS obtains the best solutions for more than 54% of

the instances. For the majority of instances, our algorithm obtains the best solutions

in multiple runs of the algorithm, indicating its reliable performance. Math 2 is also
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the fastest method. Recall that we use the longest running time of Math 2 over

all the instances with the same value of n and five runs of the algorithm as the

computational time limit for EA and VNS. Against such a background, while on

average the computational time of Math 2 is around one minute, EA and VNS

have average computational times of more than 1.5 minutes. It should be noted

that Math 2 significantly improves the initial solutions reported in column “z0”,

implying that its effectiveness may not only be attributed to the quality of the

initial solutions.

Table 4.15 reports the outcomes of the four methods for solving the instances

with 15 jobs. As the numbers in bold show, Math 2 obtains the largest number of

best solutions, achieving that for 18 instances. This is equal to 75% of the instances,

whereby none of the methods of CPLEX, EA, and VNS can obtain the best solutions

for more than 42% of the instances. Our algorithm is also significantly faster. The

longest running time of our algorithm for all the 24 instances and five runs is around

308 seconds, which we set as the computational time limits for both EA and VNS.

Nevertheless, on average, Math 2 is able to obtain the best solutions in less time.

According to Table 4.16, which shows the outcomes of CPLEX, EA, VNS, and

Math 2 for instances with 20 jobs, our algorithm outperforms all the three methods

for comparison. For example, within 30 minutes of running, CPLEX is unable to re-

port a single best solution, and EA and VNS report only six and one best solutions,

respectively. These are for about 25% and 4% of the instances. Our algorithm, how-

ever, produces the best solutions for 20 instances, achieving that in less than five

minutes on average, whereas EA and VNS are let run for ten minutes. The perfor-

mance of Math 2 is further acknowledged by Figures 4.14 and 4.15, which illustrate

the progress of CPLEX, EA, VNS, and Math 2 in reporting the best solution for

two instances of “tight-equal-1-20×10” and “loose-tard-2-20×10”. As seen

from the figures, the proposed VNS manages to find much better objective values

in shorter computational times.
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Figure 4.14 : Changes in the objective value z under CPLEX, EA, VNS, and Math 2
for “tight-equal-1-20×10”.
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Figure 4.15 : Changes in the objective value z under CPLEX, EA, VNS, and Math 2
for “loose-tard-2-20×10”.
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Table 4.14 : Computational results for instances with 10 jobs (for experiments CPLEX 12.8.0 was used).

Instance CPLEX EA (Dos Santos et al. (2010)) VNS (Wang and Li (2014)) Math 2
z Time (s.) zbest zavg Time (s.) zbest zavg Time (s.) z0 zbest zavg Time (s.)

tight-equal-1-10x2 461.96 1800 461.96 (5) 461.96 96 461.96 (4) 466.22 96 860.57 461.96 (5) 461.96 38.38
tight-equal-2-10x2 448.32 412.31 448.32 (5) 448.32 96 448.32 (5) 448.32 96 592.69 448.32 (5) 448.32 33.47
tight-equal-1-10x5 689.11 1800 689.11 (1) 735.30 96 689.11 (5) 689.11 96 1141.07 689.11 (4) 695.81 41.16
tight-equal-2-10x5 763.24 1800 770.49 (1) 782.95 96 764.03 (1) 809.80 96 1059.49 763.24 (5) 763.24 46.76
tight-equal-1-10x10 1281.66 1800 1276.23 (1) 1297.51 96 1277.44 (1) 1312.24 96 2786.21 1276.23 (3) 1280.09 68.14
tight-equal-2-10x10 1885.25 1800 1885.25 (1) 1944.50 96 1871.23 (1) 1877.24 96 3238.05 1866.92 (3) 1875.33 73.80
loose-equal-1-10x2 224.84 1598.6 224.84 (5) 224.84 96 224.84 (5) 224.84 96 345.3 224.84 (5) 224.84 36.97
loose-equal-2-10x2 319.37 1800 324.43 (5) 324.43 96 319.37 (1) 327.50 96 642.8 319.37 (3) 321.39 35.36
loose-equal-1-10x5 1738.05 1800 1733.38 (1) 1771.63 96 1738.05 (2) 1752.69 96 2459.63 1719.63 (2) 1739.46 51.30
loose-equal-2-10x5 971.96 1800 968.89 (1) 1001.45 96 967.73 (2) 981.14 96 1534.52 967.73 (3) 970.29 49.74
loose-equal-1-10x10 360.74 1800 366.77 (1) 375.88 96 365.81 (1) 368.18 96 724.95 364.39 (5) 364.39 51.99
loose-equal-2-10x10 251.86 1800 249.85 (1) 254.78 96 252.99 (1) 256.05 96 419.72 249.85 (5) 249.85 69.81
tight-tard-1-10x2 179.46 1260 179.46 (1) 179.84 96 179.46 (5) 179.46 96 296.55 179.46 (5) 179.46 19.72
tight-tard-2-10x2 145.37 1800 145.37 (5) 145.37 96 145.37 (2) 145.54 96 279.52 145.37 (3) 148.33 44.94
tight-tard-1-10x5 379.19 1800 380.82 (1) 387.98 96 380 (1) 389.81 96 533.08 379.19 (1) 387.09 58.96
tight-tard-2-10x5 635.93 1800 627.45 (2) 633.80 96 628.68 (1) 651.52 96 893.52 627.45 (5) 627.45 52.23
tight-tard-1-10x10 687.65 1800 717.85 (1) 760.61 96 746.03 (1) 759.14 96 1254.37 668.14 (2) 694.74 67.19
tight-tard-2-10x10 779.17 1800 780.82 (1) 795.78 96 785.79 (1) 803.61 96 1416.39 777.85 (1) 781.93 60.98
loose-tard-1-10x2 416.44 255.09 416.44 (5) 416.44 96 416.44 (4) 416.51 96 506.44 416.44 (5) 416.44 9.45
loose-tard-2-10x2 137.94 215.33 137.94 (5) 137.94 96 137.94 (4) 137.95 96 248.63 137.94 (5) 137.94 13.76
loose-tard-1-10x5 176.83 1800 175.08 (2) 177.92 96 175.08 (1) 177.56 96 275.14 175.08 (5) 175.08 45.23
loose-tard-2-10x5 492.05 1800 525.88 (1) 529.25 96 499.93 (1) 511.88 96 689.74 485.06 (1) 494.73 51.90
loose-tard-1-10x10 375.71 1800 383.84 (1) 387.84 96 380.26 (1) 389.82 96 592.82 374.2 (3) 376.00 54.97
loose-tard-2-10x10 144.94 1800 144.94 (3) 148.49 96 144.99 (1) 147.03 96 263.52 144.94 (5) 144.94 52.73
Numbers in bold indicate the best solution among four methods.
Numbers in the parentheses indicate the number of occurrence of the best solution over five runs for the instance.
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Table 4.15 : Computational results for instances with 15 jobs (for experiments CPLEX 12.8.0 was used).

Instance CPLEX EA (Dos Santos et al. (2010)) VNS (Wang and Li (2014)) Math 2
z Time (s.) zbest zavg Time (s.) zbest zavg Time (s.) z0 zbest zavg Time (s.)

tight-equal-1-15x2 3366.66 1800 3344.54 (2) 3351.96 308 3344.54 (1) 3349.22 308 5138.98 3344.54 (5) 3344.54 60.14
tight-equal-2-15x2 1479.76 1800 1479.76 (3) 1480.77 308 1479.76 (2) 1481.79 308 1773.94 1479.76 (5) 1479.76 62.18
tight-equal-1-15x5 1412.71 1800 1369.06 (1) 1382.62 308 1345.21 (1) 1395.29 308 1974.39 1342.3 (1) 1358.95 111.03
tight-equal-2-15x5 2782.17 1800 2630.06 (1) 2695.47 308 2709.13 (1) 2738.18 308 4131.59 2641.28 (2) 2644.80 117.32
tight-equal-1-15x10 7167.59 1800 7380.76 (1) 7669.13 308 8120.43 (1) 8261.36 308 10123.2 6820.87 (1) 6937.49 119.53
tight-equal-2-15x10 5407.42 1800 4893.44 (1) 5159.20 308 4966.34 (1) 5158.85 308 8483.69 4760.48 (1) 4904.92 162.27
loose-equal-1-15x2 1041.33 1800 1041.33 (3) 1045.32 308 1041.33 (2) 1041.98 308 1470.05 1041.33 (4) 1044.61 56.73
loose-equal-2-15x2 497.97 1800 497.97 (2) 505.66 308 514.72 (1) 532.61 308 946.96 512.54 (1) 516.95 68.90
loose-equal-1-15x5 3457.57 1800 3220.16 (1) 3305.47 308 3321.54 (1) 3431.96 308 4795.27 3272.46 (1) 3337.26 149.59
loose-equal-2-15x5 3437.32 1800 3328.86 (1) 3357.53 308 3310.27 (1) 3352.09 308 4710.14 3260.81 (1) 3291.32 134.43
loose-equal-1-15x10 875.74 1800 1008.28 (1) 1114.67 308 977.43 (1) 998.03 308 1633.74 906.49 (1) 928.39 167.90
loose-equal-2-15x10 1587.09 1800 1720.18 (1) 1774.68 308 1584.44 (1) 1628.08 308 3134.21 1487.33 (1) 1540.40 141.20
tight-tard-1-15x2 806.92 1800 790.5 (2) 790.67 308 790.66 (1) 803.35 308 1131.25 790.5 (3) 796.72 74.91
tight-tard-2-15x2 905.37 1800 905.37 (5) 905.37 308 905.37 (1) 906.35 308 1159.59 905.37 (5) 905.37 84.95
tight-tard-1-15x5 1371.29 1800 1371.37 (1) 1380.55 308 1426.97 (1) 1476.65 308 1938.67 1359.18 (1) 1371.13 137.08
tight-tard-2-15x5 721.46 1800 691.1 (1) 696.04 308 725.72 (1) 753.55 308 1030.78 681.27 (1) 690.75 175.06
tight-tard-1-15x10 815.03 1800 800.87 (1) 824.74 308 832.08 (1) 861.04 308 1228.14 767.26 (1) 795.59 158.15
tight-tard-2-15x10 1267.53 1800 1310.04 (1) 1360.76 308 1452.9 (1) 1700.07 308 2620.94 1224.82 (1) 1259.04 166.27
loose-tard-1-15x2 654.84 1800 654.84 (5) 654.84 308 654.84 (1) 655.24 308 935.74 654.84 (5) 654.84 72.83
loose-tard-2-15x2 293.17 1800 279.71 (2) 287.38 308 297.54 (2) 299.02 308 514.81 285.16 (1) 289.74 74.07
loose-tard-1-15x5 1281.87 1800 1320.93 (1) 1334.13 308 1315.47 (1) 1338.49 308 2238.12 1281 (1) 1302.70 133.23
loose-tard-2-15x5 335.55 1800 329.47 (1) 340.09 308 335.55 (1) 347.24 308 552.18 328.26 (1) 341.45 166.52
loose-tard-1-15x10 277 1800 297.19 (1) 313.86 308 296.6 (1) 301.55 308 415.06 277 (2) 277.67 102.40
loose-tard-2-15x10 597.93 1800 713.97 (1) 779.17 308 664.13 (1) 692.36 308 1344.65 601.24 (1) 646.20 176.80
Numbers in bold indicate the best solution among four methods.
Numbers in the parentheses indicate the number of occurrence of the best solution over five runs for the instance.
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Table 4.16 : Computational results for instances with 20 jobs (for experiments CPLEX 12.8.0 was used).

Instance CPLEX EA (Dos Santos et al. (2010)) VNS (Wang and Li (2014)) Math 2
z Time (s.) zbest zavg Time (s.) zbest zavg Time (s.) z0 zbest zavg Time (s.)

tight-equal-1-20x2 1940.06 1800 1937.49 (1) 1941.61 603 1939.11 (1) 1945.5 603 2358.02 1936.45 (1) 1937.52 127.92
tight-equal-2-20x2 961.44 1800 941.69 (1) 949.65 603 959.65 (1) 970.61 603 1322.46 943.7 (1) 957.61 126.56
tight-equal-1-20x5 3013.79 1800 2866.94 (1) 2900.40 603 2935.95 (1) 2975.49 603 4260.52 2865.95 (1) 2914.56 202.42
tight-equal-2-20x5 7233.35 1800 6741.16 (1) 6911.98 603 6964.91 (1) 7020.32 603 8503.53 6613.62 (1) 6768.30 240.31
tight-equal-1-20x10 11561.7 1800 10607.2 (1) 11151.10 603 11073.1 (1) 11393 603 16364 10378.8 (1) 10738.30 301.42
tight-equal-2-20x10 8501.42 1800 7310.32 (1) 7483.84 603 7317.74 (1) 7441.83 603 10774.1 6839.3 (1) 7023.42 360.35
loose-equal-1-20x2 2565.51 1800 2548.95 (1) 2553.98 603 2551.22 (1) 2554.22 603 3332.57 2548.95 (1) 2553.13 123.41
loose-equal-2-20x2 3105.34 1800 3069.13 (1) 3082.75 603 3070.16 (1) 3080.42 603 4080.6 3069.13 (1) 3073.32 119.31
loose-equal-1-20x5 8271.34 1800 7545.44 (1) 7715.24 603 7758.02 (1) 7839.11 603 11938.6 7524.13 (1) 7631.64 309.63
loose-equal-2-20x5 7793.45 1800 7252.81 (1) 7370.63 603 7302.01 (1) 7473.78 603 9992.2 7059.38 (1) 7140.02 225.54
loose-equal-1-20x10 5597.4 1800 5260.48 (1) 5511.91 603 5476.47 (1) 5734.55 603 8564.4 4651.31 (1) 4934.16 300.09
loose-equal-2-20x10 1862.41 1800 1987.65 (1) 2156.08 603 1718.08 (1) 1801.39 603 3322.76 1597.89 (1) 1639.36 300.69
tight-tard-1-20x2 1675.37 1800 1671.87 (1) 1675.10 603 1682.94 (1) 1694.69 603 2321.6 1674.6 (1) 1680.75 188.36
tight-tard-2-20x2 1489.65 1800 1448.66 (1) 1451.54 603 1459.57 (1) 1461.33 603 2054.31 1451.61 (1) 1454.81 119.28
tight-tard-1-20x5 3821.29 1800 3672.18 (1) 3704.30 603 3669.09 (1) 3712.62 603 4723.24 3620.61 (1) 3651.52 369.08
tight-tard-2-20x5 1881.02 1800 1858.19 (1) 1869.58 603 1976.11 (1) 2004.96 603 2653.29 1792.78 (1) 1819.30 276.96
tight-tard-1-20x10 4984.31 1800 4853.81 (1) 4977.21 603 5536.64 (1) 5702.14 603 7973.57 4445.59 (1) 4709.70 368.69
tight-tard-2-20x10 4057.01 1800 3358.61 (1) 3485.34 603 3245.9 (1) 3432.98 603 5471.32 3085.54 (1) 3153.98 349.36
loose-tard-1-20x2 1265.36 1800 1206.97 (5) 1206.97 603 1205.59 (1) 1208.62 603 1979.16 1206.4 (1) 1227.59 139.23
loose-tard-2-20x2 772.89 1800 769.35 (1) 771.42 603 790.12 (1) 801.548 603 1317.53 769.35 (1) 780.47 136.06
loose-tard-1-20x5 3548.14 1800 2938.24 (1) 3043.90 603 3517.2 (1) 3650.07 603 5391.36 2931.11 (1) 3047.98 265.64
loose-tard-2-20x5 4048.77 1800 3722.61 (1) 3771.55 603 3684.67 (1) 3821.16 603 5403.89 3627.51 (1) 3737.41 280.08
loose-tard-1-20x10 6494.34 1800 5093.89 (1) 5421.98 603 5478.21 (1) 5640.81 603 9235.84 4817.32 (1) 5204.46 421.29
loose-tard-2-20x10 1545.95 1800 1570.64 (1) 1658.06 603 1599.55 (1) 1627.43 603 2464.99 1401.28 (1) 1448.16 397.56
Numbers in bold indicate the best solution among four methods.
Numbers in the parentheses indicate the number of occurrence of the best solution over five runs for the instance.
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4.6 Conclusion

In this chapter we developed two efficient matheuristic algorithms to tackle the

computationally intractable JIT-JSS problem. To generate improved solutions, we

implemented both classical and novel neighbourhood structures. We tested the

impact of our proposed neigbourhoods and showed their efficacy in obtaining high

quality solutions. To evaluate the performance of proposed algorithms, as well as

the quality of solutions, we conducted comprehensive computational experiments to

treat a set of 72 benchmark instances of JIT-JSS. Furthermore, we compared the

performance of our matheuristics and state-of-the-art solution algorithms for JIT-

JSS in the extant literature. Overall, our proposed matheuristics produce new best

solutions for a large number of tested instances, including new best solutions for

about 80% of the instances with 20 jobs, which include up to 200 operations and

are among the most difficult instances in the set.

The major contributions of our study lie in providing effective solution methods

for JIT-JSS, which are able to produce new best solutions for a large number of

benchmark instances, and the relaxation neighbourhoods. To choose relaxed oper-

ations we proposed a distribution-based selection mechanism within the neighbour-

hood structures. We believe the selection of sub-sequences can be further improved

by directing the search towards more expensive sub-sequences.
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Chapter 5

Conclusion

In this thesis we investigated JIT machine and shop scheduling problems. In partic-

ular we focused on classical scheduling problems with applications in the air traffic

control and manufacturing systems. Contrary to most studies, we opted a less paved

road by grafting matheuristics onto the existing local search procedures. Through

extensive computational experiments, it was verified that new relaxation neighbour-

hoods are able to guide the search to more promising regions in the solution space.

This chapter outlines the merits of the algorithmic framework presented in this

thesis. It highlights how the objectives and aims set in Chapter 1 (see Section 1.2)

were achieved and limitations of proposed matheuristics. Recommendations and a

few potential areas for future research are also given.

5.1 Summary of contributions

In order to address some of the drawbacks of existing solution methodologies we

utilized a “Relax-and-Solve” (R&S) framework. R&S consists of two components of

”Relax” and ”Solve”. At each iteration, a subsequence is chosen and its associated

operations are relaxed. Then the partially relaxed sequence is solved using a solver

(e.g. CPLEX). The “relax” phase allows the operations in the sub-sequence to

be able to change their order, whereas the “solve” ensures a feasible (improved)

schedule is constructed. By applying R&S:

• We managed to address problems from very different settings with the same

algorithmic framework. In spite of dealing with problems from machine and

shop scheduling environments in Chapters 3 and 4, we developed heuristics

with same building block. In this regard, R&S allowed us to achieve one of the

research objectives of this study to derive a problem-independent resolution

method to address optimization problems in different settings. In this respect
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our methodology bears similarities with Large Neighbourhood Search (LNS)

(Shaw, 1998; Ropke and Pisinger, 2006) which also tackles challenging com-

binatorial optimization problems by applying destroy and repair techniques.

We believe general and high-level nature of our proposed framework can fill

the void of a unified solution methodology in highly scattered literature of JIT

scheduling as noted by Bülbül and Kaminsky (2013);

• We developed effective solution methods which are able to obtain high-quality

solutions for large instances in reasonable amounts of time. In particular in

Chapter 3 we showed that the presented algorithm solves the largest instances

in about one minute, and is therefore suitable for practical settings. In the

case of JIT-JSS, the matheuristic algorithms found new best solutions for more

than half of the benchmark instances, including new best solutions for 80% of

the instances with 20 jobs for the first time. This is in line with one of our

research aims to design efficient algorithms that are capable to tackle large

instances. Also by exploiting recent advances on mathematical programming

techniques (and using an exact solver), we attained another research goal to

design robust heuristics;

• One of primary goals of this research was to develop a simple solution method-

ology which in addition to being capable of competing with state-of-the-art

algorithms could be easily tuned. As discussed in Chapter 2, although tra-

ditional manipulation techniques often require meticulous parameter tuning

and quickly make improvement to initial solutions, they often fail to guide

the algorithm towards generating high quality sequences. To overcome these

shortcomings we introduced novel relaxation based neighborhoods in which

sequencing/allocation decisions are delegated to solvers and as a result the im-

pact of traditional random or myopic moves is minimized. To demonstrate the

effectiveness of our novel neighborhoods, we compared proposed matheuristics

against state-of-art algorithms in Chapters 3 and 4. Our extensive computa-

tional experiments suggest that the proposed neighborhood structures deliver

solutions which for many instances are superior to those of existing meth-

ods. While the state-of-the-art methods utilize various components within

the heuristics and meta-heuristics, leading therefore to implementation of ad-
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vanced algorithmic techniques and parameters tuning, our proposed R&S’s

structure is both simple and straightforward which remarkably simplifies pa-

rameter tuning.

5.2 Limitations of the study

In this thesis we only tested R&S with CPLEX (ILOG, 2017). Given the obtained

results we concluded that our matheuristic outperforms existing solution methods.

However, due to delegation of sequencing decisions to the solver, the performance of

our framework heavily depends on that of the solver. As such, although it is expected

that similar (or superior) results can be achieved using other commercial solvers such

as GUROBI (Gurobi Optimization, 2018) or XPRESS (Xpress, 2020), integrating

R&S with open source optimization packages like GPLK (Makhorin, 2019) or LP-

SOLVE (Berkelaar and Notebaert, n.d.) may not lead to the same performance

particularly for large sized instances.

Although R&S managed to obtain a large number of best known solutions for

ALP and ASP, also significantly improved the upper bounds for JIT-JSS, its ar-

chitecture restricts estimation of lower bounds to further assess its performance.

Nevertheless, we believe our upper bounds can indirectly contribute to obtaining

better lower bounds. For instance in case of JIT-JSS, best solutions found by R&S

can be utilized to speed up the convergence of Lagrangian Relaxations of Baptiste

et al. (2008) and Tanaka et al. (2015).

5.3 Future research directions

The following areas for possible future research are recommended:

• In this research a distribution-based selection mechanism was used to guide

the neighbourhoods. In this regard, the selection of sub-sequences can be fur-

ther improved by directing the search towards more expensive sub-sequences.

For instance the information associated with the current solution such as the

completion time, waiting time or reduced costs of each operation in the current

solution can be used to select the next set of operations to be relaxed.

• Future research can also be directed towards designing more advanced relaxation-
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based neighborhoods that are able to extract problem-specific information to

guide the search. For instance deducing dominance rules can reduce the num-

ber of moves to be explored by the solver for relaxed set. Moreover while

we only used MIP solver (i.e. CPLEX) to re-optimize the sub-problems, one

can also solve this using CP solvers. Indeed using hybrid methods leveraging

CP/MIP in which the information between solvers is exchanged is another

interesting research path.

• Similar to classical manipulation techniques, our novel neighbourhood struc-

tures can also be applied to deal with a myriad of optimization problems. In

this study we adapted them for sequencing decisions (resource constraints)

which are the main source for the complexity of scheduling problems. We

believe their applications can be explored for other optimization problems in

different realms by partially destructing and re-optimizing complicating con-

straints.

• The Covid 19 pandemic exposed vulnerabilities in global supply chains causing

many organizations to rethink their supply chain strategies. On the other

hand excessive insistence on JIT principles like waste elimination often in the

form of cutting corners has left many firms with very little margin for error.

Removing nearly all the redundancies and imposing inventory costs on supplier

side may render systems which are susceptible to disruptions such as the case

with Coronavirus pandemic. As noted by Zhu et al. (2020), JIT is a powerful

tool in times of normalcy but also a strong cause of the shortages in the event

of a crisis. This necessitates the need to introduce resilience into JIT systems.

To the best of our knowledge, resilient JIT models are almost non-existent in

the literature. Thus constructing baseline schedules which can be recovered

within a reasonable time can be another interesting research avenue.
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Appendix A

Comparison of Relax 1 and Relax 2 for ALP and

ASP

Following one of examiner’s suggestion, we conducted new experiments comparing

Relax 1 and Relax 2 for ALP∗ (see Table A.1) and ASP (Table A.2) instances.

However, since we did not have access to our original UTS computer, we performed

experiments on a different personal computer. We ran each algorithm five times. In

Tables A.1 and A.2, the first column shows the names of the instances. Columns

two to four show the outcomes of Relax 1, namely the best objective function value

(“zbest”), the average objective function value over five runs (“zavg”) and the average

computational time in seconds (“Time (s.)”), and columns five to seven denote those

of Relax 2. The value of time is averaged over five runs.

∗Since the initial solution generator for Relax 2 is SiPSi (which is a single machine solver), we only
ran experiments for single runway case.
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Table A.1 : The comparison of Relax 1 and Relax 2 for ALP instances (m = 1) (for
experiments CPLEX 12.6.0 was used).

Instance Relax 1 Relax 2
zbest zavg Time (s.) zbest zavg Time (s.)

Airland1 700 700 0.675 700 700 0.7028
Airland2 1480 1480 1.6526 1480 1480 1.4832
Airland3 820 820 2.0068 820 820 1.4046
Airland4 2520 2520 1.7844 2520 2520 1.9712
Airland5 3100 3100 3.77 3100 3100 3.549
Airland6 24442 24442 1.4834 24442 24442 1.0298
Airland7 1550 1550 2.177 1550 1550 2.5986
Airland8 1950 1950 9.842 1950 1950 9.9304
Airland9 5611.7 5611.7 14.6016 5611.7 5611.7 15.4692
Airland10 12379.2 12430.9 54.3588 12292.2 12361.8 54.9938
Airland11 12418.3 12418.3 25.3804 12418.3 12418.3 27.0212
Airland12 16176.7 16239.9 56.5442 16176.7 16176.7 58.188
Airland13 37433 37450.5 143.689 37433 37437.4 162.907
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Table A.2 : The comparison of Relax 1 and Relax 2 for ASP instances (for experi-
ments CPLEX 12.6.0 was used).

Instance Relax 1 Relax 2
zbest zavg Time (s.) zbest zavg Time (s.)

FPT01 265 265 13.0102 265 265 8.2308
FPT02 293 293 14.8266 293 293 13.8058
FPT03 255 255 11.9394 255 255 11.3242
FPT04 268 268 13.5212 268 268 10.0774
FPT05 249 249 14.034 249 249 8.954
FPT06 167 167 12.204 167 167 8.0294
FPT07 201 201 14.211 198 198 12.3236
FPT08 167 167 16.5864 167 167 10.8702
FPT09 186 186 12.288 183 183 11.583
FPT10 214 214 10.9338 211 211 9.9458
FPT11 229 229 15.5752 229 229 9.0542
FPT12 207 207 11.3706 207 207 7.9364
FPT13 604 608.8 52.1458 604 604 25.4552
FPT14 2053 2132.2 72.6906 1994 1998 40.216
FPT15 798 800.8 48.0672 796 796 20.0854
FPT16 1324 1359.6 69.107 1316 1316 46.2382
FPT17 2506 2679 78.6326 2372 2385.6 43.5766
FPT18 1563 1597 72.6354 1512 1512 40.9234
FPT19 2167 2355.8 82.4556 2115 2115 47.9506
FPT20 3459 4026.2 83.1324 3063 3063 51.6024
FPT21 4461 4873.8 83.4232 3597 3620.6 70.2284
FPT22 3711 4041.8 96.3036 2920 2920 63.1934
FPT23 4865 5423.4 95.9728 3649 3649 63.7716
FPT24 5057 5623.8 94.2338 3695 3698.6 67.5946
FPT25 4982 5274.8 108.088 3786 3786 87.7462
FPT26 5598 5992.4 111.753 4155 4155 101.383
FPT27 5741 6071.4 109.607 4173 4176.2 112.722



118

Appendix B

Comparison of Math 1 and Math 2 for JIT-JSS

Following one of examiner’s suggestion, we conducted new experiments comparing

Math 1 and Math 2 for JIT-JSS instances (see Table B.1). However, since we did

not have access to our original UTS computer, we performed experiments on a

different personal computer. We ran each algorithm five times. In Table B.1, the

first column shows the names of the instances. Columns two to four show the

outcomes of Math 1, namely the best objective function value (“zbest”), the average

objective function value over five runs (“zavg”) and the average computational time

in seconds (“Time (s.)”), and columns five to seven denote those of Math 2. The

value of time is averaged over five runs.
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Table B.1 : The comparison of Math 1 and Math 2 for JIT-JSS instances (for ex-
periments CPLEX 12.6.0 was used).

Instance Math 1 Math 2
zbest zavg Time (s.) zbest zavg Time (s.)

tight-equal-test1-10x2 461.96 470.596 6.0634 461.96 461.96 55.7598
tight-equal-test2-10x2 448.32 448.32 6.9266 448.32 448.32 44.2392
tight-equal-test1-10x5 689.11 698.394 11.2766 689.11 715.91 62.987
tight-equal-test2-10x5 763.24 768.964 9.6284 763.24 769.3 76.5788
tight-equal-test1-10x10 1276.23 1289.75 21.0958 1276.23 1277.32 74.9544
tight-equal-test2-10x10 1866.92 2081.12 21.7508 1866.92 1872.98 119.549
loose-equal-test1-10x2 224.84 234.924 7.4714 224.84 224.84 48.2056
loose-equal-test2-10x2 324.43 346.73 4.1788 319.37 325.886 48.0938
loose-equal-test1-10x5 1767.07 1827.61 15.89 1719.63 1746.87 71.5264
loose-equal-test2-10x5 971.96 1017.79 8.013 971.96 978.796 63.2058
loose-equal-test1-10x10 360.74 369.078 17.7974 364.39 365.72 78.8674
loose-equal-test2-10x10 249.85 254.154 24.6322 249.85 249.85 85.0184
tight-tard-test1-10x2 179.46 183.644 6.8594 179.46 179.46 41.0294
tight-tard-test2-10x2 145.37 146.586 5.4492 145.37 147.802 61.7218
tight-tard-test1-10x5 387.3 393.464 12.7918 386.57 389.318 69.4222
tight-tard-test2-10x5 635.93 637.222 9.7178 627.45 629.146 65.2264
tight-tard-test1-10x10 687.65 719.662 23.4762 668.14 708.036 102.142
tight-tard-test2-10x10 777.85 787.872 18.3792 777.85 779.472 100.656
loose-tard-test1-10x2 416.44 424.542 3.9148 416.44 416.44 23.2934
loose-tard-test2-10x2 137.94 158.22 7.8016 137.94 137.94 29.2476
loose-tard-test1-10x5 175.08 179.59 13.296 175.08 175.08 63.0514
loose-tard-test2-10x5 504.36 517.486 12.61 485.06 503.168 63.085
loose-tard-test1-10x10 375.71 376.906 19.271 374.2 377.244 76.8022
loose-tard-test2-10x10 144.94 144.94 12.2222 144.94 144.94 66.0602

tight-equal-test1-15x2 3344.54 3344.54 55.1374 3344.54 3345.62 90.2058
tight-equal-test2-15x2 1479.76 1479.76 35.364 1479.76 1481.31 91.5046
tight-equal-test1-15x5 1318.68 1350.33 72.8858 1318.68 1336.2 167.592
tight-equal-test2-15x5 2897.51 2940.67 67.221 2632.22 2680.67 157.065
tight-equal-test1-15x10 6950.03 7257.76 102.186 6952.99 7403.77 217.464
tight-equal-test2-15x10 4750.25 5044.12 119.916 4849.68 5238.89 211.028
loose-equal-test1-15x2 1041.33 1054.47 25.6126 1041.33 1041.4 91.252
loose-equal-test2-15x2 505.16 516.932 22.1472 505.16 516.72 84.0696
loose-equal-test1-15x5 3207.45 3287.7 100.355 3196.85 3311.73 177.947
loose-equal-test2-15x5 3276.3 3335.37 81.1986 3283.43 3353.25 193.254
loose-equal-test1-15x10 947.52 963.446 101.998 924.82 947.518 205.316
loose-equal-test2-15x10 1522.04 1543.09 124.447 1490.27 1564.8 183.417
tight-tard-test1-15x2 790.5 798.182 72.2042 790.66 794.532 112.056
tight-tard-test2-15x2 905.37 908.336 34.3016 905.37 905.77 112.353
tight-tard-test1-15x5 1359.18 1378.59 95.0292 1370.55 1374.02 152.229
tight-tard-test2-15x5 679.45 691.54 78.278 689.76 697.162 194.178
tight-tard-test1-15x10 776.39 787.498 123.625 797.3 818.072 206.422
tight-tard-test2-15x10 1232.37 1290.13 125.155 1231.14 1291.7 199.894
loose-tard-test1-15x2 654.84 654.84 51.085 654.84 654.84 93.7398
loose-tard-test2-15x2 279.71 310.452 34.2182 290.88 296.052 85.0284
loose-tard-test1-15x5 1281.26 1316.52 102.368 1281.41 1290.68 159.471
loose-tard-test2-15x5 341.03 381.998 136.254 329.34 343.094 154.921
loose-tard-test1-15x10 277.24 278.168 106.316 280.54 281.454 194.864
loose-tard-test2-15x10 587.9 633.276 110.098 630.99 654.228 223.13

tight-equal-test1-20x2 1933.72 1936.45 111.055 1937.49 1943.91 172.688
tight-equal-test2-20x2 951.28 963.138 96.5628 951.11 960.126 137.473
tight-equal-test1-20x5 2869.97 2914.79 180.706 2888.47 2908.02 291.43
tight-equal-test2-20x5 6643.07 6786.06 120.731 6724.53 6774.83 244.783
tight-equal-test1-20x10 10426.5 10666.2 133.158 10572.4 10977.8 449.783
tight-equal-test2-20x10 7303.93 7358.98 169.124 7041.96 7378.66 432.021
loose-equal-test1-20x2 2547.68 2550.3 75.3654 2556.97 2562.64 235.629
loose-equal-test2-20x2 3069.13 3096.81 88.1052 3074.73 3084.05 185.607
loose-equal-test1-20x5 7496.27 7722.58 179.542 7581.3 7667.14 281.33
loose-equal-test2-20x5 7053.66 7192.19 182.892 7100.13 7180.14 343.8
loose-equal-test1-20x10 4920.46 5048.79 150.235 5132.16 5228.04 509.341
loose-equal-test2-20x10 1626.53 1690.3 166.584 1624.55 1763.31 375.113
tight-tard-test1-20x2 1671.87 1680.69 132.157 1683.6 1696.89 176.225
tight-tard-test2-20x2 1452.05 1457.81 104.447 1449.93 1458.84 223.903
tight-tard-test1-20x5 3612.93 3662.22 173.979 3640.84 3674.64 357.169
tight-tard-test2-20x5 1809.02 1857.85 172.753 1807.29 1835.58 390.2
tight-tard-test1-20x10 4397.66 5227.82 107.833 4574 4782.67 457.433
tight-tard-test2-20x10 3198.11 3363.48 159.332 3253.29 3328.1 518.791
loose-tard-test1-20x2 1204.43 1231.65 109.736 1210.25 1225.83 183.437
loose-tard-test2-20x2 782.39 797.904 75.059 771.06 784.656 191.127
loose-tard-test1-20x5 2968.86 3065.98 164.473 3029.64 3041.16 337.323
loose-tard-test2-20x5 3609.4 3759.88 142.931 3717.15 3785.82 365.16
loose-tard-test1-20x10 5039.34 5421.44 164.783 5438.71 5697.67 598.35
loose-tard-test2-20x10 1440.72 1551.87 167.896 1498.89 1549.25 553.065
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Awasthi, A., Kramer, O., and Lässig, J. (2013). “Aircraft Landing Problem: An

Efficient Algorithm for a Given Landing Sequence”. In: 2013 IEEE 16th Inter-

national Conference on Computational Science and Engineering, pp. 20–27.

Azizoglu, M. andWebster, S. (1997). “Scheduling about an unrestricted common due

window with arbitrary earliness/tardiness penalty rates”. In: IIE Transactions

29(11), pp. 1001–1006.

Baker, K. R. and Scudder, G. D. (1990). “Sequencing with Earliness and Tardiness

Penalties: A Review”. In: Operations Research 38(1), pp. 22–36.

Baker, K. R. and Trietsch, D. (2013). Principles of sequencing and scheduling. John

Wiley & Sons.

Balakrishnan, H. and Chandran, B. G. (2010). “Algorithms for Scheduling Runway

Operations Under Constrained Position Shifting”. In: Operations Research 58(6),

pp. 1650–1665. issn: 0030364X, 15265463.

Balakrishnan, N., Kanet, J. J., and Sridharan, V (1999). “Early/tardy scheduling

with sequence dependent setups on uniform parallel machines”. In: Computers

& Operations Research 26(2), pp. 127–141.

Baptiste, P., Flamini, M., and Sourd, F. (2008). “Lagrangian bounds for just-in-time

job-shop scheduling”. In: Computers & Operations Research 35(3). Part Special

Issue: New Trends in Locational Analysis, pp. 906 –915. issn: 0305-0548.

Beasley, J. E., Krishnamoorthy, M., Sharaiha, Y. M., and Abramson, D. (2000).

“Scheduling aircraft landings—the static case”. In: Transportation science 34(2),

pp. 180–197.

Beck, C. and Refalo, P. (2002). “Combining local search and linear programming

to solve earliness/tardiness scheduling problems”. In: In Fourth International

Workshop on Integration of AI and OR Techniques (CP-AI-OR’02), pp. 221–

235.

Beck, J. C. and Refalo, P. (2001). “A hybrid approach to scheduling with earliness

and tardiness costs”. In: In Proceedings of the Third International Workshop on

Integration of AI and OR Techniques in Constraint Programming for Combina-

torial Optimisation Problems (CP-AI-OR’01), pp. 175–188.

Beck, J. C. and Refalo, P. (2003). “A hybrid approach to scheduling with earliness

and tardiness costs”. In: Annals of Operations Research 118(1), pp. 49–71.



122

Behnamian, J, Fatemi Ghomi, S., and Zandieh, M (2010a). “Development of a hy-

brid metaheuristic to minimise earliness and tardiness in a hybrid flowshop with

sequence-dependent setup times”. In: International Journal of Production Re-

search 48(5), pp. 1415–1438.

Behnamian, J and Zandieh, M (2013). “Earliness and tardiness minimizing on a real-

istic hybrid flowshop scheduling with learning effect by advanced metaheuristic”.

In: Arabian Journal for Science and Engineering 38(5), pp. 1229–1242.

Behnamian, J, Zandieh, M, and Ghomi, S. F. (2010b). “Due windows group schedul-

ing using an effective hybrid optimization approach”. In: The International Jour-

nal of Advanced Manufacturing Technology 46(5-8), pp. 721–735.

Bennell, J. A., Mesgarpour, M., and Potts, C. N. (2011). “Airport runway schedul-

ing”. In: 4OR 9(2), p. 115. issn: 1614-2411.

Berkelaar, K. M. and Notebaert, P (n.d.). Open source (mixed-integer) linear pro-

gramming system. Sourceforge.

Bianco, L., Dell’Olmo, P., and Giordani, S. (1999). “Minimizing total completion

time subject to release dates and sequence-dependentprocessing times”. In: An-

nals of Operations Research 86(0), pp. 393–415. issn: 1572-9338.

Biskup, D. and Cheng, T. E. (1999). “Multiple-machine scheduling with earliness,

tardiness and completion time penalties”. In: Computers & Operations Research

26(1), pp. 45 –57.

Biskup, D. and Feldmann, M. (2005). “On scheduling around large restrictive com-

mon due windows”. In: European Journal of Operational Research 162(3). Decision-

Aid to Improve Organisational Performance, pp. 740 –761.

Boschetti, M. A., Maniezzo, V., Roffilli, M., and Bolufé Röhler, A. (2009). “Matheuris-
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Bürgy, R. and Bülbül, K. (2018). “The job shop scheduling problem with convex

costs”. In: European Journal of Operational Research 268(1), pp. 82–100.

Canel, C., Rosen, D., and Anderson, E. A. (2000). “Just-in-time is not just for man-

ufacturing: a service perspective”. In: Industrial Management & Data Systems.

Carchrae, T. and Beck, J. C. (2009). “Principles for the design of large neighborhood

search”. In: Journal of Mathematical Modelling and Algorithms 8(3), pp. 245–

270.

Chandra, P., Mehta, P., and Tirupati, D. (2009). “Permutation flow shop scheduling

with earliness and tardiness penalties”. In: International Journal of Production

Research 47(20), pp. 5591–5610.

Chang, P. C. (1999). “A branch and bound approach for single machine schedul-

ing with earliness and tardiness penalties”. In: Computers & Mathematics with

Applications 37(10), pp. 133–144.

Chen, B., Potts, C. N., and Woeginger, G. J. (1998a). “A review of machine schedul-

ing: Complexity, algorithms and approximability”. In: Handbook of combinatorial

optimization, pp. 1493–1641.

Chen, H., Chu, C., and Proth, J.-M. (1998b). “An improvement of the Lagrangean

relaxation approach for job shop scheduling: a dynamic programming method”.

In: IEEE transactions on robotics and automation 14(5), pp. 786–795.

Chen, Z.-L. and Lee, C.-Y. (2002). “Parallel machine scheduling with a common due

window”. In: European Journal of Operational Research 136(3), pp. 512 –527.

Danna, E. and Perron, L. (2003). “Structured vs. unstructured large neighborhood

search: A case study on job-shop scheduling problems with earliness and tardiness

costs”. In: International Conference on Principles and Practice of Constraint

Programming. Springer, pp. 817–821.

Danna, E., Rothberg, E., and Le Pape, C. (2003). “Integrating mixed integer pro-

gramming and local search: A case study on job-shop scheduling problems”. In:

Fifth International Workshop on Integration of AI and OR techniques in Con-

straint Programming for Combinatorial Optimisation Problems (CP-AI-OR’2003),

pp. 65–79.



124

D’Ariano, A., Pacciarelli, D., Pistelli, M., and Pranzo, M. (2015). “Real-time schedul-

ing of aircraft arrivals and departures in a terminal maneuvering area”. In: Net-

works 65(3), pp. 212–227.

Doi, T., Nishi, T., and Voß, S. (2018). “Two-level decomposition-based matheuristic

for airline crew rostering problems with fair working time”. In: European Journal

of Operational Research 267(2), pp. 428 –438. issn: 0377-2217.

Dos Santos, A. G., Araujo, R. P., and Arroyo, J. E. (2010). “A combination of evolu-

tionary algorithm, mathematical programming, and a new local search procedure

for the just-in-time job-shop scheduling problem”. In: International Conference

on Learning and Intelligent Optimization. Springer, pp. 10–24.

Doulabi, S. H. H., Avazbeigi, M., Arab, S., and Davoudpour, H. (2012). “An effective

hybrid simulated annealing and two mixed integer linear formulations for just-in-

time open shop scheduling problem”. In: The International Journal of Advanced

Manufacturing Technology 59(9-12), pp. 1143–1155.

Dumas, Y., Soumis, F., and Desrosiers, J. (1990). “Optimizing the schedule for a

fixed vehicle path with convex inconvenience costs”. In: Transportation Science

24(2), pp. 145–152.

Easton, F. F. and Moodie, D. R. (1999). “Pricing and lead time decisions for make-

to-order firms with contingent orders”. In: European Journal of operational re-

search 116(2), pp. 305–318.

Eilon, S. and Chowdhury, I. (1977). “Minimising waiting time variance in the single

machine problem”. In: Management Science 23(6), pp. 567–575.

Erel, E. and Ghosh, J. B. (2008). “FPTAS for half-products minimization with

scheduling applications”. In: Discrete Applied Mathematics 156(15), pp. 3046–

3056.

Ernst, A. T., Krishnamoorthy, M., and Storer, R. H. (1999). “Heuristic and exact

algorithms for scheduling aircraft landings”. In: Networks 34(3), pp. 229–241.

issn: 1097-0037.

Fakhrzad, M. and Heydari, M. (2008). “A heuristic algorithm for hybrid flow-shop

production scheduling to minimize the sum of the earliness andf tardiness costs”.

In: Journal of the Chinese Institute of Industrial Engineers 25(2), pp. 105–115.



125

Faye, A. (2015). “Solving the Aircraft Landing Problem with time discretization

approach”. In: European Journal of Operational Research 242(3), pp. 1028 –

1038. issn: 0377-2217.

Fernandez-Viagas, V., Dios, M., and Framinan, J. M. (2016). “Efficient constructive

and composite heuristics for the permutation flowshop to minimise total earliness

and tardiness”. In: Computers & Operations Research 75, pp. 38–48.

Fernandez-Viagas, V. and Framinan, J. M. (2015). “NEH-based heuristics for the

permutation flowshop scheduling problem to minimise total tardiness”. In: Com-

puters & Operations Research 60, pp. 27–36.

Flamini, M. and Pacciarelli, D. (2008). “Real time management of a metro rail

terminus”. In: European Journal of Operational Research 189(3), pp. 746–761.

Fox, M. S. and Smith, S. F. (1984). “ISIS—a knowledge-based system for factory

scheduling”. In: Expert Systems 1(1), pp. 25–49.

French, S. (1982). Sequencing and scheduling: an introduction to the mathematics of

the job-shop. Ellis Horwood Ltd, Publisher.
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