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ABSTRACT

Human activity recognition (HAR) using WiFi signals (WiFi-based HAR)

has drawn considerable interest from the research community. In contrast

to traditional device-based sensing techniques, WiFi-based HAR possesses

several advantages, including convenience, wide availability, and privacy

protection, making it an attractive sensing solution for a wide range of

applications in smart home, health care, and intelligent monitoring.

Recently, applying deep learning (DL) to WiFi-based HAR has received

strong research interest. Assisted by signal processing techniques, DL-based

HAR methods are able to automatically extract deep features from input

signals, contributing to successful recognitions. Despite its effectiveness in

improving recognition performance, DL-based HAR methods suffer from

several inherent drawbacks. First, feature extraction is a challenging task

that always bottlenecks the recognition performance. Second, DL-based

HAR requires a large number of training examples from the testing/targeted

environment or/and previously seen environments (PSEs) to train the cor-

responding DL architectures. When the number of required samples is

not sufficient, the sensing performance will drop dramatically. Third, the

trained model in one environment cannot be directly applied to another

environment without additional effort.

My PhD thesis aims to provide novel solutions to the above WiFi-

based HAR issues. Specifically, to extract effective features, we propose two

advanced methods together with leveraging the property of DL architectures

to enhance the quality of input signals of DL networks and extracted repre-





sentative features. For a reliable recognition with limited training samples,

we propose a novel HAR scheme by developing innovative signal processing

methods and exploring the characteristics of one-shot learning to reduce the

number of required training samples. The proposed HAR scheme is able to

accomplish successful recognitions when both the number of PSEs and the

amount of samples from the testing environment are quite limited (e.g., one

PSE and at the minimum one sample for each activity from the testing

environment). To achieve environmental robustness, we propose two novel

signal processing algorithms and leverage the features of the matching net-

work. The proposed models are trained once and can be directly applied to

various new/testing environments for reliable recognitions without requiring

an additional retraining process.
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