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Abstract
Perplexity is one of the key parameters of dimensionality reduction algorithm of t-distributed stochastic neighbor embedding
(t-SNE). In this paper, we investigated the relationship of t-SNE perplexity and graph layout evaluation metrics including
graph stress, preserved neighborhood information and visual inspection. As we found that a small perplexity is correlated
with a relative higher normalized stress while preserving neighborhood information with a higher precision but less global
structure information, we proposed our method to estimate appropriate perplexity either based on a modified standard t-SNE
or the sklearn Barnes–Hut TSNE. Experimental results demonstrate effectiveness and ease of use of our approach when tested
on a set of benchmark datasets.

Keywords Data visualization · Dimensionality reduction · Graph layout · Graph/network data · Perplexity · t-SNE

1 Introduction

Aparticular class of graph layoutmethods is based on dimen-
sionality reduction (DR) techniques, which are designed to
embed original high-dimensional data into a two or three-
dimensional data, so that the graph is visually readable [1,2].
Some examples of DR techniques successfully applied for
graph layout include linear DR such as principal component
analysis (PCA) [3], sampling-based approximationDR [4,5],
nonlinear DR such as t-SNE [6–8], where the graph-theoretic
distances between pairs of nodes in a graph aremapped as the
original high-dimensional data for DR [3,6,9,10]. The aim of
the DR techniques based on the graph-theoretic distance is
to minimize the difference between the graph-theoretic dis-
tance and the two-dimensional Euclidean distance, such that
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the two-dimensional layout reflects as much as possible the
pair-wiser high-dimensional distances within a given neigh-
borhood.

t-SNE [11] is one of the nonlinear DR algorithms which
has been widely used in various applications. It is also one of
the most successful DR algorithms for graph layouts includ-
ing IDMAP, UMAP and PBC [12]. Among the set of param-
eters which determine the t-SNE performance, perplexity is
the one showing randomness, as different perplexities often
yield different visualizations. Maaten and Hinton [11] sug-
gested typical values of the perplexity ranging between 5
and 50. Later, Wattenberg et al. [13] demonstrated examples
with various settings of perplexity, which lead to a variety of
shapes, clusters and topology of the two-dimensional visual-
ization, and they claimed that “getting the most from t-SNE
may mean analyzing multiple plots with different perplexi-
ties.” It seems to be the reality that in practices, the perplexity
is usually obtained by a random initialization, or a guess
based on experiences, or a grid search, the one with the
best performance out of the tries is then selected. For large
datasets, a grid search is extremely time-consuming, which
is not a good practice.

The question about how to estimate an appropriate t-SNE
perplexity is still left open, although it is indicated that the
most appropriate value of perplexity depends on the den-
sity of data, which means that a larger and/or denser dataset
requires a larger perplexity [14]. We are also very interested
in how to estimate a perplexity which is appropriate to gener-
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ate graph layouts with good quality and less random output,
and is easy to use without requirement to try multiple times.
Since the perplexity is closely related to the size and den-
sity of the data as suggested above, we explore the following
questions to reveal the truth behind themysterious perplexity
of t-SNE in this paper. The questions include:

1. What it the relationship between different perplexities
and the size of a graph dataset?

2. Is there a reasonable perplexity range for a good-quality
graph layout? If the answer is yes, what role the size and
density of a graph plays when estimating a reasonable
perplexity?

In the remaining of this paper, we first review the state-
of-the-art tools employing t-SNE to draw graphs. We then
design our approach to investigate t-SNE perplexity. The
experimental results are finally presented to validate our
approach. Our contributions are:

1. We modify the standard t-SNE [14] to fit underestimated
perplexity as a valid input to improve its usability (the
standard t-SNE does not accept the underestimated per-
plexity as an valid input).

2. We explore the impact of different perplexities on graph
layout, identify the relationship between the perplexity
andgraph layout quality, and propose a perplexity estima-
tion approach for good graph layouts using the standard
t-SNE.

3. We further propose an adapted version of perplexity esti-
mation which can be applied with sklearn Barnes–Hut
TSNE [15] to accelerate the process while keeping good
layout quality for large graph datasets.

Tested on a set of benchmark datasets, our proposed
approach demonstrates better performance when compared
with one of the most successful methods tsNET* [6], by
reducing 5% of the normalized stress and increasing 2.5% of
the neighborhood preservation on average. With our adapted
version for perplexity estimation of sklearn Barnes–Hut
TSNE [15], the runtime on large datasets can be reduced
from hundreds of seconds with the standard t-SNE to tens
of seconds, meanwhile keeping comparable even better nor-
malized stress and neighborhood preservation. Our proposed
approach presents advantages with respect to effectiveness
and ease of use.

2 Related work

In this section, we review the relatedworkwhich employed t-
SNE to draw graph, and introduce the definition of perplexity

in t-SNE and metrics for graph layout evaluation applied in
this paper.

2.1 Graph drawing based on t-SNE and t-SNE
variations

Kruiger et al. [6] demonstrated that their employment of
t-SNE, named tsNET, outperforms several other DR algo-
rithms like IDMAP in graph layout, where tsNET simplifies
the input parameter settings to focus on perplexity only with
minimal tuning of other parameters such as learning rate and
number of iterations. Based on tsNET, tsNET* initializes a
layout using PivotMDS, and optimizes the layout based on
the PivotMDS layout. It is mentioned that the perplexities
were set on average of 80 with a standard deviation of 45 for
most of the test datasets. However, it has not been discussed
how perplexity for each dataset was selected (except EVA
dataset) and if different perplexity affects the graph layout,
tsNET rejects small perplexity as input.

Xu et al. [7] drew graphs using a model named t-NeRV
[16], which was a generalized t-SNE model based on a
modified graph-theoretic distance matrix, in which the cost
function is a combination of the average of both of the
Kullback–Leibler divergence from high-dimensional space
to low-dimensional space and vice versa, the cost of one of
the energy model out of a modified Kamada and Kawai (KK)
model, a modified Fruchterman-Reingold (FR) model, and
a modified Linlog model. Their approach also showed that
the output graph layout is quite dependent on the fine-tuning
of a set of parameters controlling early compression, adja-
cent neighbor compression, node repulsive forces, and edge
attractive forces during the cost computation. Again, how the
perplexity was selected for different results presented in the
paper has not been mentioned.

In addition to drawing graph based on the graph-theoretic
distances, a parametric version of t-SNE named GraphTSNE
[8] adopted additional node features in the final graph layout.
GraphTSNE trains a two-layer residue gated graph convolu-
tional network using a modified t-SNE cost CT consisting of
both the graph clustering loss CG and the feature clustering
loss CX , so that CT = αCG + (1 − α)CX . The graph clus-
tering loss is computed based on the shortest graph-theoretic
distance, while the feature clustering loss is computed based
on the Euclidean distance of word embedding of each node.
An important learning goal is to optimize the trade-offweight
α for the two loss components, and the perplexity is set to 30.
However, when tested with tsNET, the CORA dataset works
when the perplexity is set bigger than 169. The impact of dif-
ferent perplexities in GraphTSNE has not been investigated.

We can observe that the perplexity initialization of the
use cases mentioned above shows randomness. As a fact,
optimization of perplexity has raised attention of some
researchers. De Rosa et al. [17] investigated several perplex-
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ity meta-heuristic optimization methods including artificial
bee colony algorithm, bat algorithm, genetic programming,
and particle swarm optimization on word embedding visual-
ization. A practical issue is that the optimization methods are
evaluated by the Kullback–Leibler divergence cost residue,
which is closely related to perplexity itself. Thatmeans differ-
ent perplexities correspond to different costwhen initializing,
the cost residues for different perplexities are not compara-
ble. De Bodt et al. [18,19] tried perplexity-free parametric
t-SNE, and also tried to adjust the embeddings (visualization)
by using additional class labels instead of the traditional per-
plexity [20]. Their methods introduced supervised training
process. As in our case, t-SNE will be employed for unsu-
pervised DR, we will first investigate the impact of different
perplexities on graph layout quality, then test our approach to
estimate appropriate value of this parameter on benchmark
datasets.

2.2 Definition of perplexity in t-SNE

The perplexity in t-SNE is 2 to the power of Shannon entropy
of the conditional distribution induced by a data point xi (see
Eq. 1). As explained byMaaten [14], “the perplexity of a fair
die with k sides is equal to k. In t-SNE, the perplexity may
be viewed as a knob that sets the number of effective near-
est neighbors. It is comparable with the number of nearest
neighbors k that is employed in many manifold learners.”

Perp(Pi ) = 2H(Pi ) (1)

where

H(Pi ) = −
∑

j

p j |i log2 p j |i (2)

and

p j |i = exp(− ∥∥xi − x j
∥∥2 /2σ 2

i )
∑

k(k �=i) exp(−‖xi − xk‖2 /2σ 2
i )

, pi |i = 0 (3)

where p j |i is the conditional probability of data point x j in
the neighborhood of xi based on a Gaussian distribution. t-
SNE defines joint probabilities pi j by symmetrizing the two
conditional probabilities as follows:

pi j = p j |i + pi | j
2

. (4)

Note that the bandwidth of the Gaussian kernels, i.e., σi in
Eq. 3, is set in away that H(Pi ) equals a predefinedperplexity
[15]. In addition, σi is different for each data point xi , which
means that it changes for each high-dimensional instance in

order to capture the variations in density for different high-
dimensional neighborhoods, where σi tends to be smaller in
regions of the data space with a higher data density com-
pared to the regions with lower density [15]. In practices,
σi is found iteratively by trial-and-error [21], using binary
search, until a user-defined perplexity H is reached. With
this process the probability matrix P in the high-dimensional
space is obtained. Similarly, the probability matrix Q in the
low-dimensional space based on t-distribution is computed
as

qi j = q ji = (1 + ∥∥yi − y j
∥∥2)−1

∑
k �=l(1 + ‖yk − yl‖2)−1

, qi |i = 0 (5)

Then, Kullback–Leibler divergence CKL as cost is computed
to minimize the difference between P and Q, usually by
gradient descent.

CKL =
∑

i �= j

pi j log
pi j
qi j

. (6)

With anunderestimatedperplexity or the unfoundedGaus-
sian kernel after limited iterations, the data points in the
defined neighborhood fail to fit to a Gaussian, resulting in
exceptions with undefined p j |i . We discuss our solution to
this issue in Sect. 3.1.

2.3 Metrics for graph layout evaluation

Espadoto et al. [12] summarized most widely used met-
rics for graph layout evaluations. Quality metrics include
scalarmetrics (trustworthiness, continuity, normalized stress,
neighborhood hit, visual separation metrics), local met-
rics (projection precision score, stretching and compression,
average local error), and point-pair metrics. Aswewould like
to keep in line with the work of tsNET and tsNET* [6], the
graph layout in this paper is evaluated exactly the same as [6]
by (1) normalized stress measurementMσ , (2) neighborhood
preservation measurement Mnp, and (3) visual inspection.
Below, we list the formal definitions of normalized stress
and neighborhood preservation in [6]. As the visual inspec-
tion is not a quantitative metric, we are not able to define it as
a metric similar to the other two measurements. Instead, we
evaluate a visualization by inspecting the structural distortion
or overlapping on the benchmark datasets.

2.3.1 Normalized stress measureM�

A key to the DR-approach is to suitably define the distance
d so that the stress is minimized to reflect a good layout.

Given a set ofNn-dimensional observations {xi ∈ Rn}Ni=1,
a DR technique maps xi to a lower-dimensional set {yi ∈
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Rm}Ni=1, where m is usually 2 or 3. The measurement of
normalized stress Mσ is computed as:

Mσ =
∑

i, j

(
d(xi , x j ) − ∥∥yi − y j

∥∥
d(xi , x j )

)2

(7)

where d(xi , x j ) is a distance metric over the input space,
in this case, is the shortest graph-theoretical distance, and∥∥yi − y j

∥∥ usually refers to the Euclidean 2D distance.

2.3.2 Neighborhood preservation measureMnp

Given a graph G = (V , E), let NG(xi , rG) = {x j ∈
V |di j <= rG} denote the nodes with a graph-theoretic
distance no more than rG from node xi . Then, in the low-
dimensional space, which is usually the two-dimensional
projection space, an equally sized neighborhood of xi in the
layout NY (xi , ki ) is defined as the set of nodes correspond-
ing to the data points that are the ki -nearest-neighbors of yi ,
with ki = |NG(xi , rG)|. Note that ki may differ for differ-
ent xi . The neighborhood preservation measurement Mnp is
then defined as the Jaccard similarity between the neighbor-
hoods in the high- and low-dimensional spaces NG and NY ,
averaged over G.

Mnp = 1

|V |
∑

i

|NG(xi , rG) ∩ NY (xi , ki )|
|NG(xi , rG) ∪ NY (xi , ki )| (8)

In our tests, we let rG = 2 to compare with the results in
the related references.

3 Design of our approach

3.1 Modification on perplexity and bandwidth
fitting in standard t-SNE

We make modification based on the Python code available
from t-SNE Github [14] to improve handling of exceptions
during bandwidth fitting.

Handling exceptions may vary in practices. The original
standard t-SNE code based on which we have been work-
ing does not accept underestimated perplexities, neither does
tsNET. For example, tsNET simply throws the exceptions in
case an underestimated perplexity is fed, an increased user-
defined perplexity is then expected to try again until it works.
It is a reasonable solution in practice, as an increased per-
plexitymeans considering a broader neighborhoodwithmore
samples formore reliable statistical results.However, the ran-
domness in this perplexity initialization procedure seems to
be quite user-unfriendly, especially for some extreme exam-

ples like the EVA dataset, which needs almost 600 as the
perplexity to start off in tsNET [6].

As we identify that the exceptions are caused by data spar-
sity, we apply two strategies as solutions to the problem. One
strategy is to increase the Gaussian kernel σi by a controlled
exaggeration rate during the process to find an appropriate
βi , where βi is a function of σi , βi = 1

2σ 2
i
, in order to avoid

failures when fitting the data points. The exaggeration rate is
2 in our experiment.

Another strategy is to run an intrinsic grid search within
limited steps for a bigger perplexity. When detecting an
exception during fitting without updating the initial exag-
geration rate of Gaussian kernel, the perplexity is increased
by a pre-defined rate, which is currently 3 in our experiment.
The modifications are described in algorithm 1.

Algorithm 1 Modification on bandwidth and perplexity fit-
ting in the standard t-SNE
Require: distance matri x D
Ensure: probability matrix P without undefined value.
1: if exp(−d2ik ∗ βi ), k �= i , is undefined, where dik is the

(irow, kcolumn) cell in D then
2: if strategy 1: increase σi then
3: while number of tries < pre-defined number 1 do
4: βi / = exaggerate rate
5: recompute pi j
6: end while
7: end if
8: if strategy_2: increase user-defined perplexity then
9: while number_of _tr ies < pre_de f ined_number_2 do
10: perplexi t yuser−de f ined+ =

increase_pre_de f ined_number
11: re_compute pi j
12: end while
13: end if
14: end if

The two strategies are applied in different situations to
ensure the delivery of an output. Generally, the perplex-
ity strategy works for all kinds of datasets. However, as
the intrinsic grid search process for a big dataset is time-
consuming, the Gaussian kernel strategy can be considered
to deliver a resultwith any perplexity initialization. In our fol-
lowing experiments, the Gaussian kernel strategy is applied
to large graphs, and perplexity increase strategy is applied to
small graphs.

3.2 Appropriate perplexity estimation for the
standard t-SNE

First of all, wewould like to identify the relationship between
a perplexity and the graph layout qualitymeasured by the nor-
malized stress, neighborhood preservation, and visualization
that directly reflects the global connective structure.
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The concept of “large” and “small” in terms of perplexity
is dependent on the size of dataset; therefore, we map the
value of perplexity to a specific percentage of the dataset
size. The t-SNE perplexity defines the size of neighborhood
within which the data points are considered. Based on the
above discussion, we propose the following hypothesis:

Hypothesis: A relative smaller perplexity will generate a
graph layout with both higher normalized stress and more
neighborhood preservation, while a larger perplexity will
generate a graph layout with both lower normalized stress
and less neighborhood preservation.

As a higher normalized stress means more overall infor-
mation will be lost from a global perspective, and a higher
neighborhoodpreservationmeans neighborhood information
can be preservedwith a higher precision froma local perspec-
tive, andvice versa, a further questionbasedon thehypothesis
is, how to find the balance between a perplexity and graph
layout quality measured by the two metrics. We propose our
perplexity estimation approach by considering the size of
dataset, the distribution of input data, and the graph density,
which is illustrated as follows.

Given a graphG(V , E), theGaussianmean (μ) and kernel
(σ ) of the graph-theoretic distances of G is obtained at first.
Then, we estimate a reasonable perplexity perp according
to the dataset size |V |, graph density d = |E |/|V |, μ and σ

of the Gaussian, which can be described as:

perp =
{
a_fixed_number, if |V | < threshold,
|V |μ−2σ

μ
δ(d), if |V | ≥ threshold,

(9)

where δ(d) can be regarded as the graph density regulator,
as the graph density d is considered as a positively corre-
lated factor of perplexity in addition to the dataset size, a
small or large d corresponds to a small or large perplexity,
respectively.

The idea behind the upper part of the perplexity selection
in Eq. 9 is that the statistical result for small sized data is less
reliable compared to relative large sized data. Therefore, we
can set a fixed number as the perplexity. The idea behind the
bottom part of the selection method can be explained from
three aspects. First, the perplexity can be bigger for large
dataset, smaller for small dataset, then the dataset size |V |
is a direct factor when choosing a perplexity. Second, the
perplexity can be bigger for more densely distributed data,
whereas a smaller perplexity works for sparsely distributed
data. This factor can be measured by how far the Gaussian
distribution spreads considering the neighborhood far away,
i.e., μ−2σ

μ
. Finally, the perplexity is regulated by the graph

density regulator δ(d).

3.3 Appropriate perplexity estimation for sklearn
Barnes–Hut TSNE

Moreover, we also consider the runtime issue. The runtime
on large datasets such as graphs with over 2000 vertices are
reported over several hundreds of seconds when applying
tsNET and tsNET* (see Table 4 in [6]), similar trend about
runtime for ourmodified version of the standard t-SNE is also
expected. In the current Python environment, an accelerated
t-SNE version, sklearn Barnes–Hut TSNE, is available by
implementing Barnes–Hut approximations, allowing the tool
to be applied on large real-world datasets [15].

We then adapt our perplexity estimation to sklearn
Barnes–Hut TSNE by updating Eq. 9 as:

perp = |V |μ − σ

3μ
δ(d), if |V | ≥ threshold. (10)

The adaption to sklearn Barnes–Hut TSNE in Eq. 10
is expected to work on the large datasets for accelerating
purpose without losing too much precision. We test all the
proposed methods in the following experiments.

4 Experiment and results

The visualizations presented in this paper are generated in
Python with libraries including numpy, sklearn, networkx
and plotly, in jupyter notebook or other web-based Python
frameworks. We visualize the nodes in a graph as red dots,
and the edges in red, green and grey with respect to different
edge length. Equation 11 illustrates how the edge color is
assigned, where e, colore, dμ and dσ represent the length
of the edge, color of the edge, mean distance and standard
deviation of the graph-theoretic distances of the individual
graph dataset, respectively.

colore =
⎧
⎨

⎩

red, if e < dμ − dσ ,

green, if dμ − dσ ≤ e ≤ dμ + dσ ,

grey, if e > dμ + dσ .

(11)

4.1 Test data

We test our approach with the 20 datasets released by the
tsNET team [22]. Table 1 lists the datasets.

In order to analyze the results, we label the datasets regard-
ing their size and graph density. Small and large graphs refer
to graphs with less than 1000 and more than 1000 vertices,
respectively. Sparse and dense graphs stand for graphs with
graph density less than 3 andmore than 3, respectively, where
the graph density is calculated by |E |/|V |.
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Table 1 Benchmark datasets Dataset Dataset type |V | |E | |E |/|V |
dtw_72 Planar, structural 72 75 1.0417

lesmis Collaboration network 77 254 3.2987

can_96 Mesh-like, structural 96 336 3.5000

rajat11 Miscellaneous 135 377 2.7926

jazz Collaboration network 198 2742 13.8485

visbrazil Collaboration network 222 236 1.5135

grid17 Planar, mesh-like, structural 289 544 1.8824

mesh3e1 Mesh-like, structural 289 800 2.7682

netscience Collaboration network 379 914 2.4116

dwt_419 Structural 419 1572 3.7518

price_1000 Planar, tree 1000 999 0.9990

dwt_1005 Structural 1005 3808 3.7891

cage8 Miscellaneous 1015 4994 4.9202

bcsstk09 Mesh-like, structural 1083 8677 8.0120

block_2000 Clusters 2000 9912 4.9560

sierpinski3d Structural 2050 6144 2.9971

CA-GrQc Collaboration network 4158 13, 422 3.2280

EVA Collaboration network 4475 4652 1.0396

3elt Planar, mesh-like 4720 13, 722 2.9072

us_powergrid Structural 4941 6594 1.3345

4.2 Validation of hypothesis

We carry out a series of tests to validate hypothesis. The
perplexity is set as 2%, 5%, 10%, 20%, 30%, 40% and 50%
of the size of individual dataset. Figure 1 shows the boxplot
of Mnp and Mσ over the 20 datasets, where the mean value
of each subgroup labeled by the percentage is dotted.

Figure 1b shows that the average neighborhood preser-
vation Mnp increases to the peak when perplexity is less
than 10% of dataset size, then decreases with the increase
in perplexity. The average normalized stress Mσ in Fig. 1a
increases to the peak when perplexity is less than 5% of
dataset size, then decreases with the increase in perplexity.
However, the decrease in Mσ is less sharp than the Mnp, as
shown in Table 2 where the linear model coefficient lm_coef
ofMσ andMnp is− 4.3826 and− 6.1940, respectively. If we
flip over one of the fitted lines against the x-axis, the intersec-
tion point of the two lines can be identifiedwhen x = 0.4664.
It indicates that a large perplexity no more than 47% of the
dataset size could result in quite stable visualization in which
both normalized stress and neighborhood preservation could
be more likely to be well-balanced. The correlation between
pairs of variables is presented in Table 2. Pearson’s correla-
tion coefficient presented as cor_coef suggests that both of
the average Mnp and the average Mσ are significantly nega-
tively correlated to perplexity, with correlation coefficient −
0.8299 and − 0.9450, respectively, both are very close to −
1. The results strongly support the hypothesis that a smaller

perplexity corresponds to a larger Mσ and a larger Mnp, and
that a larger perplexity corresponds to smaller Mσ and Mnp.
In addition, the smoothed quadratic means of both Mσ and
Mnp shown in Fig. 2, which are fitted in R by loess method
and formula y ∼ x , is also a strong visual support to the
hypothesis.

To illustrate the issue visually with examples, Fig. 3
demonstrates two datasets with gradually increased perplex-
ities ranging from 2 to 100% of the dataset size using the
modified standard t-SNE. We can see that the visualizations
generated with a larger perplexity are fairly robust from a
global perspective (less Mσ ), meanwhile preserving neigh-
borhood information with less precision (less Mnp) as more
nodes are overlapped with the increase in perplexity.

We also examine the tsNET and tsNET* visualizations
using their released code with the change of perplexities the
same as in Fig. 3, which is shown as Fig. 4. Themaximal iter-
ation number is set 1100 for all tests presented in Fig. 3 and
Fig. 4. A similar trend as Fig. 3 presented can be inspected
from the graph layouts presented in Fig. 4 that tsNET and
tsNET* visualizations generated with a larger perplexity are
quite robust from the global perspective. However, the nodes
of dw_1005 in tsNET and tsNET* layouts with a larger per-
plexity are much compressed with the increase in perplexity
before 20% of the dataset size, and spread out with less
overlapping with the increase in perplexity after 30% of the
dataset size, which is different from what we can observe in
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Fig. 1 Boxplot of neighborhood preservation and normalized stress of the 20 datasets, mean value of each percentage group is dotted

Table 2 Correlation of
perplexity percentage and
average Mσ and average Mnp

Perp_pct with lm coefficient and intercept Correlation

lm_coef1 lm_intc2 cor_coef3 95% C I p_value4

Average Mσ − 4.3826 0.7024 − 0.8299 [− 0.9741,− 0.2048] 0.0209

Average Mnp − 6.1940 4.2302 − 0.9450 [− 0.9921,− 0.6655] 0.0013

1 lm_coef is the fitted linear model coefficient
2 lm_intc is the fitted linear model intercept
3 cor_coef is the Pearson’s correlation coefficient
4We adopt that values within 95% confidence interval (CI) and a p-value less than 0.05 are acceptable

Fig. 2 Trends of neighborhood preservation and normalized stress of the 20 datasets with the increase in perplexity

Fig. 3 Visualizations with perplexities as different percentages of the dataset size by the modified standard t-SNE
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Fig. 3, most probably due to the additional control of node
repulsion and edge attraction in tsNET [6].

Overall,we can identify the descending trends of bothMnp

and Mσ with the increase in perplexity in Fig. 1, with which
the hypothesis can be validated. In addition, as shown in
Table 2,Mnp andMσ are positively correlatedwith p = 0.63,
it suggests that there is a need to find a trade-off betweenMnp

and Mσ with respect to an appropriate perplexity, which will
be large enough to generate a good layout with less Mσ , but
small enough to preserve more neighborhood details with
higher Mnp.

4.3 Perplexity estimation based on our approach
based on themodified standard t-SNE

We test our perplexity estimation approach with the 20
datasets. The perplexity is set according to Eq. 9, with the
fixed value 40 as perplexity for small sized graphs. The
threshold is 1000. Further, we roughly set the value of
δ(d) ∈ {0.1, 0.3} in our experiment as described in Eq. 12,
and only apply a big δ(d) value to large and very dense graphs
to avoid overfitting.

δ(d) =
{
0.1, if d < 6,
0.3, if d ≥ 6 and |V | ≥ 1000.

(12)

4.3.1 M� andMnp

Table 3 shows the experiment results in details. Overall, we
can find that both the average Mσ and Mnp of our approach
show improvements compared with the overall averages of
tsNET* reported in [6]. It suggests that our perplexity estima-
tion approach is very robust and effective to balance between
normalized stress and neighborhood preservation. When
observing the performance of our method on the four differ-
ent types of graphs, the average Mσ and Mnp for small- and
large-sized groups as well as the sparse group also demon-
strate excellent performance stability. The performance of
our approach on dense graphs is also comparable to that of
tsNET*, with a less average normalized stress and neighbor-
hood preservation, without significant difference however.
The performance on several individual datasets including
dwt_72, rajat11, 3elt, us_powergrid and dwt_1005 outper-
form that of tsNET*, the others show either a better or
comparable Mσ or a better or comparable Mnp at the same
time, except dwt_419. Then, we test with a larger perplexity,
a value which is over 15% of the dataset size of dwt_419, we
can obtain very stable excellent performance.

4.3.2 Visual inspection

Visual inspections of all datasets with perplexity of 2%
and 10% of dataset size, as well as estimation with our

method based on the modified standard t-SNE, are shown
in Fig. 6. We can find that a small perplexity often results
in a decrease/uncertainty of fitting precision and therefore
causes visual distortions of the graph layout. Several mesh-
type graph examples in Fig. 6, such as dwt_72, can_96, 3elt,
dwt_1005, sierpinski3d and bcsstk09 can illustrate this prob-
lem clearly, when their perplexities are set as small as 2% of
the individual dataset size. Overall, most of the visualizations
generated with the perplexity estimated with our approach
based on the modified standard t-SNE, except dwt_419, dis-
play better structures without or with less visual distortions
(shown as gray edges). dwt_419 can be better visualized
when the perplexity is increased, as mentioned above.

4.3.3 Runtime

The runtime in seconds is shown in Fig. 5, where the datasets
are ordered by their number of nodes (size) along the x-axis.
We do not compare the runtime in a precise way the same
as in Table 3 due to the reason that the runtime reported
in the work of tsNET and tsNET* was based on their cus-
tomized settings of perplexity and stop conditions, which are
unknown to us. We can observe that the runtime in Fig. 5 in
general is increased with the decrease in perplexity from 2 to
50% for the same dataset, and large datasets need more time.
It shows that our perplexity estimation approach chooses the
perplexity between 2 and 10% of dataset size for most of the
datasets tested.

We focus on the performance of our approach based on
the modified standard t-SNE rather than the speed in the
experiments above. As it takes several hundreds of seconds
for tsNET/tsNET* and our modified version of the standard
t-SNE on large datasets with over 4000 nodes, we try to
improve it by the adapted estimation method as described
in Eq. 10. Our experiment on the large test datasets also
demonstrates very good performancewithMσ = 0.1218 and
Mnp = 0.6296 on average, compared to the average tsNET*
Mσ = 0.1243 and Mnp = 0.5971, as given in Table 4.
We find that our perplexity estimation for the Barnes–Hut
t-SNE does not work well on small datasets, and it works
better on large dense data than on large sparse data, as the
Barnes–Hut approximation on sparse or small data causes a
higher information loss. The average runtime is dramatically
reduced from 598 s with our modified standard t-SNE to 12.9
swith sklearnBarnes–HutTSNE,while keeping overall good
graph layout quality comparable to the method based on the
modified standard t-SNE.

4.4 Discussion

In our approach, we estimate the value of perplexity based
on the normality of the input data, which is very effective
when tested on the benchmark datasets. We also notice that
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Fig. 4 tsNET and tsNET* visualizations with perplexities as different percentages of the dataset size

Table 3 Normalized stress
(Mσ ) and neighborhood
preservation (Mnp) measures of
graph layouts by the modified
standard t-SNE (st-SNE), where
italics and bold numbers
correspond to outperformed and
underperformed measures
compared to tsNET*,
respectively

Dataset Size/density label M1
σ M2

np

tsNET* st-SNE tsNET* st-SNE

Perplexity = 40

dtw_72 Small/sparse 0.048 0.0392 0.855 0.8647

rajat11 Small/sparse 0.097 0.0779 0.717 0.7220

visbrazil Small/sparse 0.098 0.0722 0.584 0.5308

grid17 Small/sparse 0.021 0.0493 0.785 0.8499

mesh3e1 Small/sparse 0.014 0.0166 0.904 0.9984

netscience Small/sparse 0.100 0.1112 0.707 0.7154

lesmis Small/dense 0.111 0.0967 0.712 0.6945

can_96 Small/dense 0.084 0.0743 0.671 0.6495

jazz Small/dense 0.128 0.1388 0.804 0.8077

dwt_419 Small/dense 0.024 0.0386 0.741 0.7108

Perplexity = |V |μ−2σ
μ

δ(
|E |
|V | ) as in Eq. 9

price_1000 Large/sparse 0.160 0.1220 0.639 0.6229

sierpinski3d Large/sparse 0.093 0.1013 0.580 0.6531

EVA Large/sparse 0.161 0.2161 0.802 0.8227

3elt Large/sparse 0.090 0.0717 0.715 0.8113

us_powergrid Large/sparse 0.101 0.0742 0.457 0.5424

dwt_1005 Large/dense 0.035 0.0185 0.619 0.6667

cage8 Large/dense 0.203 0.1658 0.437 0.4219

bcsstk09 Large/dense 0.022 0.0220 0.867 0.8509

block_2000 Large/dense 0.189 0.1604 0.372 0.3640

CA-GrQc Large/dense 0.189 0.2057 0.483 0.4871

Average Overall 0.0984 0.0936 0.6726 0.6893

Small 0.0725 0.0715 0.7480 0.7544

Large 0.1243 0.1158 0.5971 0.6243

Sparse 0.0894 0.0865 0.7041 0.7394

Dense 0.1094 0.1023 0.6340 0.6281

1The smaller, the better Mσ is, whereas the bigger, the better Mnp is
2The Mσ and Mnp of tsNET* are drawn from [6]
3Values in bold/italics stand for measures outperform/underperform tsNET∗
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Fig. 5 Runtime in seconds with different perplexity as percentage of dataset size based on the modified standard t-SNE (a small datasets, b large
datasets)

Table 4 Normalized stress
(Mσ ), neighborhood
preservation (Mnp) measures
and runtime (in seconds) of
sklearn Barnes–Hut TSNE
(TSNE)

Perplexity = |V |μ−σ
3μ δ(

|E |
|V | ) as in Eq. 10

Dataset TSNE Mσ Mnp

runtime (s) tsNET* TSNE tsNET* TSNE

Large sparse price_1000 2.8 0.160 0.1666 0.639 0.6332

sierpinski3d 5.0 0.093 0.1421 0.580 0.6538

EVA 27.4 0.161 0.1771 0.802 0.8197

3elt 23.5 0.090 0.0660 0.715 0.8226

us_powergrid 24.8 0.101 0.0889 0.457 0.5789

Large dense dwt_1005 2.4 0.035 0.0199 0.619 0.6744

cage8 2.5 0.203 0.1551 0.437 0.4161

bcsstk09 3.5 0.022 0.0242 0.867 0.8420

block_2000 5.6 0.189 0.1519 0.372 0.3645

CA-GrQc 31.3 0.189 0.2264 0.483 0.4915

Average Large-overall 12.9 0.1243 0.1218 0.5971 0.6296

Large-sparse 16.7 0.1210 0.1281 0.6386 0.7014

Large-dense 9.0 0.1276 0.1155 0.5556 0.5577

Values in bold/italics stand for measures outperform/underperform tsNET∗

each test dataset is a connected component such that the dis-
tribution of pairwise graph-theoretic distances fits normality
well. For graphs with many disconnected components, a lay-
out with much higher stress is supposed to be generated by
t-SNE, as pilot experiments show, and similar findings is
also reported in the work [7]. Focusing on the largest con-
nected component or the connected component of interest is
a practical solution to employ t-SNE on graphs with many
disconnected components.

We estimate the value of perplexity for small sized graph
with less than 1000 nodes to 40, which is an approxima-
tion between 2 and 10% of 1000, based on the average
graph size of the test data. An increased value of graph

density regulator δ(d) is not applied to the small graphs to
avoid overfitting, whose visualizations show more random-
ness/uncertainty than the large graphs due to the data sparsity.
In our experiment, we observe an automatic increase in per-
plexity from 40 to 100 for the small dense dataset jazz, and
it shows the robustness of our approach.

Our approach presents advantages with respect to ease of
use and effectiveness.

First, our approach does not require users to try multi-
ple times with different perplexities as input to deliver the
acceptable output, which is very easy to use. For example,
the EVA dataset can be visualized with any smaller perplex-
ities compared to 600 in tsNET and tsNET*, as shown in
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Fig. 6. However, an extra grid search could probably help to
find an optimum with extra costs of time and effort.

Second, our approach does not rely on the t-SNE parame-
ter tuning such as the weight of the compression term [6,7],
and it does not require an additional PivotMDS layout as
initialization as tsNET* does, although the employment of
a PivotMDS layout seems to be beneficial for small graphs
as tested. As the tsNET* works based on the initialization of
PivotMDS layouts, t-SNE cannot obtain better embeddings
in case the PivotMDS layouts could not fully reflect the rela-
tions based on graph-theoretic distances.

Experimental results show that our approach is very effec-
tive to visualize graph data with good quality evaluated
by normalized stress, neighborhood preservation and visual
inspections, as well as a significant improvement in run-
time when applied with sklearn Barnes–Hut TSNE on large
datasets without losing visualization quality. Our work is a
step beyond the work of Kruiger et al. [6] and Wattenberg et
al. [13], and it not only reveals the impact of t-SNE perplex-
ity on graph layouts, but also presents guidelines to estimate
an appropriate perplexity for good layout, and offers pos-
sibility to accelerate the process using widely used Python
tools.

5 Conclusion and future work

In this paper, we investigated the relationship of t-SNE per-
plexity and graph layout, improved the standard t-SNE to fit a
variety of perplexity initialization, and proposed a perplexity
estimation approach for good-quality graph data visualiza-
tion evaluated by widely recognized quality metrics of graph
layout.

Our approach demonstrated effectiveness and ease of use
for graph data visualization when tested on a set of different
types of benchmark datasets. As t-SNE is a widely recog-
nized DR technique and perplexity is the most significant
parameter, our research can be beneficial to a broad range of
related researches and applications.

In the future, we will investigate other graph structures to
improve our estimation, especially the density regulator, and
testmore types of data such as the disconnected networks and
labeled networks.We are also very interested in investigating
the relationship of similar parameters as perplexity and graph
layout in other manifold algorithms such as UMAP.
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Appendix A Visual inspections of test
datasets

See Fig. 6
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Fig. 6 Visual inspections of the 20 datasets tested. Individual dataset is visualized with estimated perplexity by our approach on the modified
standard t-SNE (estimated), and 2% and 10% of dataset size as perplexity
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