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Abstract—The development of modern social media allows
millions of private photos to be uploaded and shared, which
provides a wide range of image acquisition but extremely threat-
ens personal image privacy. Face de-identification is treated as an
important privacy protection tool in multimedia data processing
by modifying image identity information. Although there exist
many traditional methods widely used to hide sensitive private
information, they all fail to balance the trade-off between privacy
and utility in qualitative and quantitative manners and cannot
generate de-identified results with satisfactory visual perception.
In this paper, we propose a novel face image privacy protection
method with differential private k-anonymity, which can not only
generate de-identified results with good image quality but also
control the balance between privacy protection and image utility
according to different application scenarios. The framework
consists of the following three steps: facial attributes prediction,
privacy-preserving attributes obfuscation, and naturally realistic
de-identificated image generation. Our extensive experiments
demonstrate the stability and effectiveness of the proposed model.

Index Terms—Image Privacy, Face De-identification

I. INTRODUCTION

The advances in internet as well as the popularity of
smartphones have made it possible for lots of personal photos
to be shared on social media every day. While technology
brings increasing convenience to our lives, it also poses a
certain threat to image privacy. As a consequence, it is crucial
for us to learn a method which can protect the sensitive private
information of face images before uploading and sharing them
with an unknown third party.

There exist many traditional methods to enhance facial
privacy in computer vision, where the most widely used
methods including blurring, pixelation and masking all hope to
obfuscate sensitive information directly. However, it has been
proved that these techniques are vulnerable to be defeated
and typically preserve neither privacy nor the image utility
[1]. Some deep learning models can still identify faces in
images encrypted with these techniques with high accuracy.
Furthermore, the images protected by these manners result
in unsatisfying perception since humans can easily capture
the interference. With the development of deep learning,
new mechanisms are proposed and applied to enhance im-
age privacy. More state-of-the-art methods [2]–[4] have been
proposed to improve the quality and realism of de-identified
results using the generative adversarial networks (GAN).

The major challenge of face de-identification is the trade-off
between privacy and image utility. The ideal de-identification
method should be able to control the balance to adapt to exten-
sive applications. Most GAN-based methods fail to quantify
this matter until Li et al. [5] proposed that facial privacy is
measurable and provided a privacy preservation way with an
attribute selection method based on privacy metrics such as
k-anonymity [6], l-diversity [7], and t-closeness. However,
AnonymousNet modified facial attributes of protected image
close to its real world distribution without considering the
control of image disturbance degree. We hope to add minor
changes for better utility preservation with the condition of
privacy protection.
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Fig. 1: Qualitative comparison of various traditional and state-of-the-arts de-identification methods, where (a) input image,
(b)-(d) are traditional methods including (b) blurred image, (c) adding Gaussian noise to the pixel, (d) pixelated image, and
(e)-(g) are GAN-based methods including (e) DeepPrivacy [2], (f) CIAGAN [3], (g) AnonymousNet [5], and (h) ours.

In this paper, we propose a face image privacy protection
method with differential private k-anonymity, including the
following two key features: (1) it first finds the average face
attributes of the k nearest neighbors of the given image, then
edits it towards the direction of the average face, which can
hide the identity while ensuring the modification is small. (2)
Differential Privacy (DP) is introduced to add randomness and
provides further protection on top of the former, because the
first step is a deterministic process and limited in protection
effectiveness. As the de-identification results shown in Fig.1,
our approach can generate the naturally realistic faces and keep
similarity with the original images.

II. RELATED WORK

A. Privacy-Preserving Machine Learning

The focus of privacy-preserving machine learning is how
to prevent leaking sensitive information in both model and
dataset. Differential private machine learning has been widely
used in perturbation, which aims to train models with formal
guarantees implemented by randomizing the training process
such as adding noise to the gradient. Visual privacy attacks and
defenses in deep learning has been analyzed in [8]. A model-
agnostic approach named “Private Aggregation of Teacher En-
sembles” (PATE) [9] introduces a model aggregation strategy
and injects randomness in the aggregation process. Another
more data-efficient algorithm named Private kNN [10] is the
first practical differentially private deep learning solution for
large-scale computer vision that can achieve comparable or
better consequence than PATE while reducing privacy loss.
Inspired by privacy-preserving strategies, we design the ob-
fuscation algorithm in attributes aggression process and apply
it to the face de-identification task.

B. Face De-identification Methods

The traditional obfuscation-based methods simply used blur-
ring, masking or pixelation to the face region, which always
result in limited utility because of facial information loss.
The k-Same family algorithms are based on k-anonymity
[6], which can guarantee that each de-identification image

indiscriminately relates to at least k faces in the gallery.
Owing to the popularity of deep generative models, more
novel GAN-based methods have been proposed. DeepPrivacy
[2] proposed to replace the whole face region with a fully
anonymized image to realize complete protection of sensitive
information. CIAGAN [3] introduced a conditional GAN to
remove identification characteristics of images and videos
while retaining pose features. Additionally, some recent meth-
ods [11]–[13] focus on the disentangled identity information
in latent space. However, most deep learning methods lack
privacy guarantees and cannot meet the adaption of various
privacy metrics. AnonymousNet [5] firstly proposed that facial
privacy is measurable and designed the privacy-preserving
attribute selection (PPAS) algorithm to de-identify images by
editing facial attributes. Unfortunately, AnonymousNet only
proceed from identity protection and edit the attributes close
to the real-world distribution. In our approach, we hope that
it can maintain more similarity with the original image and
de-identify with a small modification.

III. PRELIMINARIES

A. Face De-identification

The major purpose of de-identification task is to protect
identity information. For a given facial image X , the de-
identification function F intends to deceive the face recog-
nition model I and decrease recognition accuracy, which can
be formulated as,

I(X) ̸= I(F(X)), (1)

where I(X) represents the identity information of X . Con-
sidering image utility for both users and computer vision
tasks, we hope that the de-identified results can retain as
much similarity as the original and keep the necessary facial
information to allow face detectors can apply. Additionally,
better image quality and more satisfactory visual perception
are also preferred.



B. Differential Privacy

Differential privacy is a rigorous mathematical definition of
privacy and probability is used to take over randomness, which
is a strong guarantee since it is based on the statistical prop-
erty of the mechanism without the requirement of auxiliary
information [14].

Definition 1 (ε-differential privacy). Let ε be a positive real
number (privacy parameter) and the randomized algorithm A :
Y → Θ is said to provide ε-differential privacy if for all
neighboring datasets D,D′ ∈ Y that differ on at most a single
element, and all random subsets S ⊂ Θ satisfy:

Pr [A (D) ∈ S] ≤ eε · Pr [A (D′) ∈ S] . (2)

There are three commonly used mechanisms in differen-
tial privacy according to data types: Laplace, Gaussian and
exponential mechanism. The overall idea of the exponential
mechanism is that when receiving a query, it returns a certain
probability value calculated by the scoring function q instead
of a deterministic result, thereby achieving differential privacy.

Definition 2 (Exponential Mechanism). Let q(D, r) be a
function of dataset D which selects and outputs an element
r ∈ R, then an exponential mechanism M is ε-differential
privacy if

M(D) =

{
return r with probability ∝ exp

(
εq(D, r)

2∆q

)}
,

(3)
where ∆q represents the sensitivity of function q.

IV. OUR APPROACH

We will describe our three-step approach in detail in this
section. First of all, we employ the facial attribute classifier to
predict original attributes. Then we calculate the obfuscation
attributes with differential private k-anonymity algorithm. Fi-
nally, we employ the face attribute editing network to generate
de-identification results.

Step 1: Attributes Prediction. Firstly, we train a facial
attribute extraction network to predict labels of query X ,
which has two major functions in subsequent operations. On
the one hand, when calculating the obfuscation attributes, it
will be used as feature extractor to get deep features. On the
other hand, when generating the de-identification, we take the
different attributes as input, so we need the original prediction
for reference.

For the c-label classification problem, we adopt MultiL-
abelSoftMarginLoss as loss function, which creates a criterion
that optimizes a multi-label one-versus-all loss based on max-
entropy. For each sample in the minibatch:

L(u, v) =− 1

c

c∑
i

v[i] log
(
(1 + exp(−u[i]))−1

)
+ (1− v[i]) log

(
exp(−u[i])

1 + exp(−u[i])

)
,

(4)

where v[i] ∈ {0, 1}. Prediction label u and ground truth v are
with the same shape of (n, c), where n is the batchsize while

c represents the number of classes. At the end of this step, we
can get the original attributes P of the given image.

Step 2: Obfuscation We design differential private k-
anonymity algorithm to acquire the obfuscation attributes,
which can be summarized as the following two parts and we
will further describe their respective functions in Section V-C.

(a) k-anonymity Average Attributes. For the given no-
label query X , we sample a random subset Dγ with the
Poisson sampling of probability γ. Both X and Dγ will
be mapped into the feature space by a pre-trained feature
extractor φ. Then we select k nearest neighbors according
to the feature Euclidean distance between x = φ(X) and
f = {fi = φ(di) | ∀di ∈ Dγ}. Notice that for a binary clas-
sification task, the global sensitivity is 2, while for a problem
with c-labels, the global sensitivity will be extended to 2c,
which will make the following noisy-adding mechanisms
inefficient. In order to limit the range of global sensitivity,
we apply τ -approximation [10] limitation which means each
neighbor can only vote for τ attributes at most.

Definition 3 (τ -approximation). Considering the binary
multi-label task, the vote of neighbor j upon query X can
be expressed as a c-way vector, we apply

v̂j,i = vj,i·min

(
τ

| vj(X) |
, 1

)
, i ∈ [1, c], (5)

where |vj(x)| is the L1 norm of original neighbor j’s voting
results and v̂j is the neighbor j’s voting results with τ -
approximation. The global sensitivity of a randomized algo-
rithm Mτ can be reduced to 2τ with this setting.

(b) Differential Privacy. After obtaining the k-anonymity
average attributes and the corresponding votes V =
{v1, v2, . . . , vc}. To introduce more randomness for privacy
protection, we further apply exponential differential privacy
to voting process as privacy metrics. We divide all privacy-
sensitive attributes A into independent attributes B and conflict
attributes C, which satisfy A = B ∪ C and B ∩ C = ∅.

• Independent Attributes B. There is no correlation between
independent attribute ai and other attributes in B, that
is, we can individually determine whether to choose
it. Therefore, we count the voting results of with this
attribute vi as the value of score function q and select the
obfuscation attributes based on the probability calculated
by

p =
exp

(
εvi

2∆q

)
exp

(
εvi

2∆q

)
+ exp

(
ε(k−vi)
2∆q

) . (6)

• Conflict Attributes C. Considering the exclusivity be-
tween attributes, we further divide conflict attributes set
C into groups as C = {G1,G2, . . . ,Gm}, where is
no mutual influence between different groups. Generally
speaking, two or more attributes in the same group Gi

will not be selected simultaneously. We respectively count
the votes of each attribute as the score function q value



and the probability of selecting attribute ain in Gi = {ai1 ,
ai2 , . . . , aim} by

pin =
exp

(
εvin

2∆q

)
∑

m
j=1 exp

(
εvij

2∆q

) . (7)

Step 3: Image Generation We adopt a generative ad-
versarial network (GAN) to generate de-identification images
according to the obfuscation attributes. For better generation
and feature accuracy, we customize the facial attribute editing
model based on STGAN [15] which improves manipulation
ability by presenting selective transfer units incorporated with
encoder-decoder. Different from StarGAN [16] and AttGAN
[17], which both take target attributes as input, STGAN only
focuses on the changed attributes attrdiff that represents the
difference between predicted original facial attributes P and
the obfuscation attributes O in our approach.

The loss function includes adversarial loss Ladv , recon-
struction loss Lrec and attribute manipulation loss Lattr. The
adversarial loss [18] is applied for constraining the generated
results to be indistinguishable from real images. We follow
Wasserstein GAN (WGAN) and WGAN-GP [19] to define
the adversarial loss as,

max
Dadv

LDadv
=EXDadv(X)− EŶ Dadv(Ŷ )+

λEX̂

[(∥∥∥∇X̂Dadv(X̂)
∥∥∥
2
− 1

)2
]
,

(8)

max
G

LGadv
=EX,attrdiffDadv (G (X, attrdiff)) , (9)

where X̂ is uniformly sampled between a pair of original and
generated images and Ŷ = G (X, attrdiff).

The reconstruction loss is defined as,

Lrec = ∥X −G(X, 0)∥1, (10)

where the L1 distance is adopted for ensuring the quality
and clarity of the reconstructed images and G(X, 0) is the
reconstructed images sharing the same attributes with original.

To improve the accuracy of attributes editing, we introduce
the attribute manipulation loss Lattr. The attribute classifier
Dattr shares the common convolution layers with Dadv and
the attribute manipulation loss is designed as,

LDattr =−
c∑

i=1

[
attr(i)p logD

(i)
attr(X)+(

1− attr(i)p

)
log

(
1−D

(i)
attr(X)

)
,

(11)

LGattr =−
c∑

i=1

[
attr(i)o logD

(i)
attr(Ŷ )+(

1− attr(i)o

)
log

(
1−D

(i)
attr(Ŷ )

)
,

(12)

where attr
(i)
p means the i-th value of prediction attributes P,

attr
(i)
o indicates the i-th value of obfuscation attributes O and

D
(i)
attr(X) represents the i-th value of attribute classification

results of X by the attribute classifier Dattr.

Taking the above losses into account, the overall loss
function of discriminator D can be formulated as,

LD = −LDadv
+ λ1LDattr

, (13)

and that for the generator G is

LG = −LGadv
+ λ2LGattr

+ λ3Lrec, (14)

where λ1, λ2, and λ3 are the model tradeoff parameters.

V. EXPERIMENTS

A. Dataset

We use Large-scale CelebFaces Attributes (CelebA) Dataset
[20] which contains 202,599 aligned facial images and 10,177
identities with 40 with or without attributes labels of boolean
values. In experiments, we use about half of the dataset, of
which 75,160 images for training and 26,216 images for test.

B. Implementation Details

Attributes Prediction. We train the facial attributes clas-
sification network on CelebA dataset using the Resnet-50
structure. We conduct the batch size of 128, set a base learning
rate of 4×10−4 reducing by a polynomial decay with a gamma
of 0.1 and the weight decay is 5×10−4.

Attributes Obfuscation. When performing de-
identification for the given image, we firstly downsample
the training set in proportion to γ to get a random subset
Dγ and then extract deep features from the fully connected
layers of the facial attributes classification network. In our
experiments, we consider 13 attributes to protect, including
Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Bushy
Eyebrows, Eyeglasses, Male, Mouth Slightly Open, Mustache,
No Beard, Pale Skin and Young, due to that they are more
distinctive in appearance. Among the attributes considered,
we define two sets of conflicting attributes: G1={Black Hair,
Blond Hair, Brown Hair} and G2={Mustache, No Beard},
while the other are all defined as independent attributes.

Image Generation Network. We utilize the facial attributes
editing to generate de-identified images after obtaining the
obfuscation attributes. We train on CelebA dataset for the
considered attributes following the settings in [15] where the
tradeoff parameters in Equations (13) and (14) are set to
λ1 = 1, λ2 = 10 and λ3 = 100.

C. Performance Analysis

Fig.2 illustrates some de-identification results in pairs,
where the left presents the original image and the right is the
de-identified result generated by our approach. The pure apply
of k-anonymity fails to protect sensitive information from the
homogeneity attack and is vulnerable to the attacks based
on background knowledge [21]. Moreover, the protection
effectiveness is limited especially when the value of k is large.
Therefore, we employ differential privacy to provide more
randomness in obfuscation process of more reliable privacy
guarantees. The influence of two main parameters k and ε on
the attribute obfuscation is shown in Fig.3, where the accuracy
displayed on the y-axis is represented between obfuscation



Fig. 2: Some de-identification results generated by our approach. In each pair, the left is original and the right is de-identified.

Fig. 3: The influence of different k and ε values on the
obfuscation degree, where the y-axis represents attributes
accuracy between obfuscation attributes and the prediction.

attributes O and prediction attributes P. We only perturb
the considered attributes while the other attributes without
privacy protection keep the same as the predicted. When
we set ε = 0.0, it means randomly selecting either with or
without independent attributes and choosing one of the conflict
attributes in same group, both with the same probability. As ε
increases, the extent of disturbance decreases, the accuracy
will increase. The attributes accuracy will be greater as k
increases with the same ε and the impact of k values has been
magnified after the introduction of differential privacy, because
function q mainly depends on the voting results. Particularly,
due to the design of conflicting attributes mechanism and the
prediction deviation of k-anonymity, it will eventually stabilize
instead of reaching 100%.

D. Quantitative Evaluation

We use the following metrics to evaluate our approach
comparing with existing de-identification methods from both
identity protection effectiveness and image utility.

1) Identity protection effectiveness: Most of face verifi-
cation models judge whether two images have the same
identity by comparing identity embedding distance. We
use the Face Recognition to calculate the identity dis-

tance (Id-dis), which is based on the deep learning
model of dlib and the model tested with Labeled Faces
in the Wild datasets can achieve the accuracy of 99.38%.

2) Image utility: (a) Image quality: We use peak signal-
to-noise ratio(PSNR) and structure similarity(SSIM) to
measure image distortion at the pixel level. Fréchet In-
ception Distance [22] is used to measure image distance
in feature space. When applying system distortion, lower
FID indicates higher image quality. Learned perceptual
image patch similarity [23] distance is applied to mea-
sure visual similarity which is closer to human percep-
tion than traditional metrics. (b) Utility for computer
vision tasks: We evaluate whether the de-identification
results are still usable for identity-independent computer
vision tasks by performing face detection with opencv.
We define the proportion of faces can still be detected in
the protected images as Face Detectability (Face-det).

The comparison results are presented in Table I. Since the
strict threshold for judging whether two images have the same
identity is 0.5 in the face recognition model, we choose the
values of k and ε to make Id-dis basically meet the threshold.
We select two sets of parameters with a smaller obfuscation
and a larger in traditional methods including blurring, noise
and pixelation, and it can be concluded that when adding a
small disturbance, there is little impact on image quality but
almost no effects on identity protection. Increasing the degree
of disturbance contributes higher protection effectiveness, but
the image quality and utility will be damaged greatly. Com-
pared with traditional methods, the GAN-based methods can
balance the tradeoff better. Additionally, compared with the
de-identification methods based on entire face synthesis like
DeepPrivacy, our algorithm takes the reduction of modification
degree into consideration, so that de-identified results can
maintain higher perception similarity (lower LPIPS) with the
original. CIAGAN is the identity-swapping-based anonymiza-
tion methods so that the de-identified face still corresponds to a
real identity information, which may cause identity leakage in
dataset. Due to the requirement of face landmark and masked
background in CIAGAN, it is not convenient in practical
applications. Our approach can adjust privacy-protection level
by controlling the parameters k and ε, so as to meet the
application in different scenarios.



TABLE I: Comparison with other methods under different metrics.

Id-dis↑ PSNR↑ SSIM↑ FID↓ LPIPS↓ Face-det↑
Blurring(r=5) 0.2573 24.931 0.8005 66.866 0.0654 0.8600

Blurring(r=20) 0.4203 22.666 0.7419 91.623 0.0755 0.6917
Noise(σ=10) 0.2565 21.917 0.7739 32.126 0.0534 0.8136
Noise(σ=30) 0.2911 17.968 0.6281 83.169 0.1265 0.2832

Pixelation(4×4) 0.3251 25.221 0.8278 26.073 0.0326 0.9302
Pixelation(8×8) 0.6908 22.686 0.7010 83.666 0.0915 0.0211
DeepPrivacy [2] 0.7232 20.046 0.7605 27.569 0.0868 0.9606

CIAGAN [3] 0.5740 19.014 0.5349 36.719 0.0782 0.9455
AnonymousNet [5] 0.4891 19.102 0.7380 55.047 0.0965 0.8224
Ours(k=100,ε=0.05) 0.5608 19.069 0.7726 52.888 0.0411 0.9728
Ours(k=100,ε=0.10) 0.5269 20.308 0.7588 52.214 0.0345 0.9614
Ours(k=200,ε=0.05) 0.4795 21.029 0.8024 38.315 0.0323 0.9502

VI. CONCLUSION

In this paper, we focus on the problem of image privacy and
face de-identification. In order to confuse the identity infor-
mation with minor modifications, we propose a face image
privacy protection method to provide metric privacy based
on attributes indistinguishability. Our approach consists of
three steps: attributes prediction, privacy-protection attributes
obfuscation and de-identification image generation. We design
the differential private k-anonymity algorithm which com-
bines exponential differential privacy mechanism to introduce
additional randomness to the average attributes of k-nearest
neighbors in random subset. The method we propose can
achieve pleasant visual perception and balance the tradeoff
between privacy and utility by adjustable parameters. Exper-
iments demonstrate that our method is effective in identity
protection and utility preservation.
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