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Models of Motion Patterns for Mobile Robotic Systems

Stephan Sehestedt, Sarath Kodagoda and Gamini Dissanayake

Abstract—Human robot interaction is an emerging area
of research with many challenges. Knowledge about human
behaviours could lead to more effective and efficient interactions
of a robot in populated environments. This paper presents a
probabilistic framework for the learning and representation
of human motion patterns in an office environment. This is
based on the observation that most human trajectories are not
random. Instead people plan trajectories based on many consid-
erations, such as social rules and path length. Motion patterns
are learnt using a sampling routine which outcome is used to
construct an incrementally growing Sampled Hidden Markov
Model. This model has a number of interesting properties and
can be of use in many applications. For example, the learnt
knowledge can be used to predict motion and infer social rules
and thus improve a robot’s operation and its interaction with
people in a populated space. The proposed learning method is
extensively validated in real world experiments.

I. INTRODUCTION

Operating effectively in dynamic environments is one of

the big challenges of mobile robotics as unpredictability of

human motion may require sudden changes to planned tasks.

Thus far, a common approach is to employ a method to

minimise the impact of such events. This may be done by

using sensors which are unaffected by moving objects, such

as a camera which observes the ceiling [1]. Alternatively

tracking of dynamic objects allow segmentation of any sensor

observations so that sensor data that is detrimental to the

operation of tasks such as localisation can be discarded [2].

This paper takes the view that prior knowledge of the motion

of dynamic objects can be exploited in tasks such as path

planning and human robot interaction.

Extracting motion patterns has attracted significant atten-

tion in the video surveillance literature where the interest is

to identify suspicious behaviour by observing a scene. Here,

one of the fundamental underlying assumptions is that the

observer is stationary. The problem’s complexity is further

reduced by observing complete trajectories from start to end.

Algorithms based on these notions have been successfully

implemented and presented in a range of publications in-

cluding [3], [4] and [5].

In the field of mobile robotics these assumptions usually

do not hold thus requiring different strategies for dealing

with this issue. The greates difficulty stems from the fact

that mobile robots need to operate in expansive environments

and are likely to encounter more diverse motion patterns.

The problem will be further complicated by the location un-

certainty of the moving observer. Furthermore, it is essential

Stephan Sehestedt, Sarath Kodagoda and Gamini Dissanayake are
with the ARC Centre of Excellence for Autonomous Systems (CAS),
The University of Technology, Sydney, Australia {S.Sehestedt,
S.Kodagoda, G.Dissanayake}@cas.edu.au

that incomplete observations of trajectories can be effectively

handled.

To our knowledge there are only a few publications that

address these issues. Bennewitz et al. [6] developed a method

to learn a model of dynamics in an office environment which

was used for a mobile robot. This work uses stationary

sensors and it is necessary that complete trajectories are

observed. Furthermore, the learning algorithm operates off-

line and it assumes that motion always happens between

some specified points (e.g. an object travels from a start

point A to an end point B). Vasquez et al. [5] propose

Growing Hidden Markov Models (GHMM) to incrementally

learn motion patterns in an area. This allows for on-line

learning, however this work also requires that the observer is

stationary, which limits its applicability in mobile robotics.

This paper presents and discusses a novel approach to

learning typical motion patterns in an environment of a robot

based on Sampled Hidden Markov Models (SHMM). A sam-

ple set is used to represent the dynamics in the environment,

which is used to incrementally learn and dynamically update

a Hidden Markov Model (HMM). In particular, we will focus

on the SHMMs properties and possible applications.

The remainder of this publication is organised as follows.

Section II briefly outlines a sampling procedure to learn

a probability distribution of motion patterns. In section III

we propose SHMMs represent common motion patterns

in an environment which can be learnt on-line, without

supervision, on a mobile robot. Furthermore, Key properties

of the proposed model are discussed and experimentally

demonstrated in Section IV. Finally, Section V presents a

discussion, conclusions and future work.

II. SAMPLING MOTION PATTERNS

In a 2D environment motion patterns can be described

as a probability distribution over the x − y − θ location

and velocity v. Descretising the state space into a spatial

grid followed by building a motion histogram [7] and then

normalising the values of the grid cells would result in an

approximation of the joint probability distribution

P (x, y, θ, v) (1)

which represents the probability of the simultaneous oc-

currence of x− y − θ and v. Knowledge of this distribution

constitutes knowing all motion patterns in the environment

independent of time. The distribution is very complex and

thus require a significant amount of data to succeed. There-

fore, In [8] we proposed a sampling algorithm to incre-

mentally learn an approximation of Eq. 1. Here we extend



the idea to an efficient representation of motion patterns.

In the following we briefly outline the proposed sampling

procedure.

A mobile robot equipped with sensors for localisation

and object tracking observes a person’s trajectory. Tracking

algorithms commonly represent each peace of a trajectory

as probability distribution from which it is possible to take

samples. In Fig. 1(a) a person (green rectangle) walks from

the left to the right while being tracked. The samples are

taken from the prediction of the tracking algorithm and are

weighed according to the observation. In the figure a 2D

projection of the samples is shown along with the 95%

confidence ellipses in x and y (green ellipses). Fig. 1(b)

shows the sample set after more people moved along a

similar trajectory.

(a)

(b)

Fig. 1. a) The object (green rectangle) moved from the left to the right.
The dark points denote samples generated from the tracker’s prediction. The
green ellipses denote the covariance after weighing the samples according
to the most recent observation of the target b) The sample set after more
objects were observed.

III. SAMPLED HIDDEN MARKOV MODELS

In this section we present our approach to learning Sam-

pled Hidden Markov Models (SHMM) using the sampling

algorithm outlined above. The main consideration is to derive

a model which can be learnt and utilised by a mobile robot

to improve its operation in a populated space. Even though

our sample based representation is already more efficient

than a grid based approach, the proposed SHMM reduces

computational complexity even further by exploiting a sparse

representation.

A. Hidden Markov Models

A Hidden Markov Model is a statistical model that repre-

sents a system as a directed graph. Here we briefly outline

HMMs following the notation used by Rabiner [9]. HMMs

are defined by N states of a system S = s1, s2, ..., sN ,

observation symbols V = v1, v2, ..., vM with M being the

number of symbols and state transition probability distribu-

tion A = aij , which is given as

aij = P (qt+1 = s(j)|qt = s(i)), 1 ≤ i ≤ N

1 ≤ j ≤ N
(2)

Furthermore, the observation probabilities in state j, B =
bij are formulated as

bij = P (v(i)|s(j)), 1 ≤ i ≤ M

1 ≤ j ≤ N
(3)

Finally, the initial state distribution π = πi is defined as

πi = P (q1 = s(i)), 1 ≤ i ≤ N (4)

Most HMM frameworks highly depend on prior knowl-

edge of the topology of the model and learning is performed

through previously obtained data sets. There is no easy way

to update these models over time [9]. Thus, these implemen-

tations are not suitable for the application at hand. There

are numerous, usually application dependent, derivatives of

HMMs reported in the literature and we will briefly refer to

the ones most relevant to the presented work.

The idea of using HMMs to model trajectories is not new,

however, comparatively few publications are found in the

domain of mobile robotics. The use of a hierarchy of HMMs

to describe motion patterns on different levels was proposed

by Liao et al. [10]. However, it requires the topology to be

given and learning is done off-line. Vasquez et al. [5] propose

Growing Hidden Markov Models for incremental learning

of topology. However, its practical applicability in mobile

robotics applications is limited due to the assumptions that

are made. In particular, the method requires the observation

of complete trajectories, meaning objects always have to be

seen from the start of the path to the very end and the

observer needs to be stationary at all times. In contrast, in the

following section we will present an approach which allows

to efficiently learn and update an HMM over time, which

does not assume full observability of trajectories and can be

used on mobile platform.

B. Deriving a Hidden Markov Model

From the sampling algorithm in Section II a particle cloud

is obtained (as shown in Fig. 2(a)), which has the same

temporal resolution as the sensor used for tracking, along

with clustering information (i.e. it is a series of sample

clusters, with each cluster representing the tracked objects

pose and velocity at one point in time). This set of samples

represents one persons trajectory as far as it has been

observed. It is assumed that the observed process is a first

order Markov process, i.e. motion at time t only depends on

motion at t − 1.
1) Sampling The States and Transitions: From the al-

gorithm in Section II a vector of M clusters of weighted

samples is obtained which describes an observed trajectory

C =
[

c(0) c(1) ... c(M)
]

(5)

To extract an HMM each of those clusters in C can be

interpreted as a state of an HMM as

S = s(i) =

[

µ(i)

Σ(i)

]

1 ≤ i ≤ N (6)

where µ(i) and σ(i) are mean and covariance of the i− th
state and N is the number of states. Assuming zero states

at the beginning, N = M after adding C to the initially

empty model. µ(i) and σ(i) are computed from the underlying

sample set and thus represent a 4-dimensional distribution



over x − y − θ − v. In Fig. 2(a) a 2D projection of SHMM

states can be seen as the red covariance ellipses in x and y.
This figure also shows the learnt model based on a single

observed trajectory and the underlying samples.

The transition from state i to state j is given by the

sequence of sample clusters and thus the transition matrix

A consists of

aij =

[

N (ij)

P (s(j)|s(i))

]

1 ≤ i ≤ N

1 ≤ j ≤ N

(7)

where N ij is the number of times the transition was

observed and P (s(j)|s(i)) is the probability of the transition.

Naturally, the probabilities of the newly learnt transitions in

this example are 1.

(a) (b)

Fig. 2. a/b) A motion pattern is learnt. People are walking from the bottom
to the top of the image along the green arrow.

2) Updating The Model: When observing another tra-

jectory, a series of sample clusters is produced and data

association has to done to be determine whether the trajectory

or part thereof is already contained in the model. To do this

data association, the symmetrised Kullback-Leibler distance

(KLD) [11] is used. It calculates the distance of clusters

in C to states in the model. The KL-distance is commonly

used in the literature for this purpose, nevertheless it is to be

noted that other distance measures such as the Mahalanobis

distance could be used as well. The symmetrised KL-distance

is defined as follows

KLDsym(s(i)|c(j)) = KLD(s(i)|c(j))

+KLD(c(j)|s(i)), 1 ≤ i ≤ N

1 ≤ j ≤ M

(8)

where KLDsym(s(i)|c(j)) denotes the symmetrised KL-

distance of state s(i) to cluster c(j) taking into account all N
states and all M clusters of a trajectory. If an association is

found between the i-th state and the j-th cluster, the cluster’s

samples will be added to the state. To keep the number of

samples used to model a state constant and to discard low

weighted samples, a resampling procedure is employed. This

is done as in a normal particle filter with systematic resam-

pling [12]. Finally, the transition probabilities are updated

as

P (s(j)|s(i)) =
N (ij)

∑N

j=0 N (ij)
(9)

If a cluster could not be associated to an already existing

state of the SHMM, it is added as a new state and the state

transition matrix A gets extended accordingly.

(a) (b)

Fig. 3. a) A person is tracked coming from the left and then walking along
the previously learnt path. b) Same situation with a person coming from the
right. The robot (not visible) changed its location during observations. (real
data)

To update the state transitions the knowledge about the

sequence of newly added and associated states can be ex-

ploited. Where a transition is already known the values can

be updated by incrementing N (ij) and updating the transition

probabilities accordingly.

Fig. 2(b) shows the updated model after a second person

was observed moving along a similar trajectory as the first

person (as indicated by the green arrow). Towards the top of

the figure the robot lost track of the person and it can be seen

that the two top most states were not updated. Since the two

trajectories were very similar no new states and transitions

had to be added.

In contrast Fig. 3(a) shows the SHMM after another person

was observed coming from the left, again following the

trajectory indicated by the green arrow. It can be seen that

new states were added coming from the left and that a

transition from the new part of the model to the former

model was learnt. The situation is similar in Fig. 3(b) where

a person was tracked coming from the right and the model

is updated accordingly.

C. Using the SHMM On a Mobile Robot

The above definition of the SHMM to model common

motion in an environment did not take all aspects into

consideration which may be of importance for a mobile

robot. Most importantly computational complexity and lim-

ited observability have to be considered.

1) Complexity Considerations: Firstly, by applying the

above without further consideration a very detailed model

would be learnt. I.e. with a rate of observations of 10Hz,

there would be a state every 10cm for objects moving

at 1m/s. Our interest is a model of commonly occuring

motion patterns rather than detailed trajectories. Therefore,

we discard some of the observations to obtain a distance

of approximately 0.7m between states for people moving



at a normal walking pace. Still, for learning we take all

observations into account.

Handling 4-dimensional Gaussian distributions can be a

demanding task, especially under the computational con-

straints of a mobile robot. Therefore we propose to exploit

the structure of the SHMM to reduce the dimensionality to

just 2.

Firstly, there are two possible ways to exclude v from

the state estimate. It is possible to either sample with a

fixed frequency or do binning. When using a fixed frequency

with which clusters of samples are produced, the distance

between clusters refers to the speed of the observed object

thus implicitly representing v. For binning, speed domains

may be chosen and for each domain a distance between

successive clusters is defined. Our current implementation

uses the latter method since it is less vulnerable to timing

inaccuracies.

Considering the 2 dimensional structure of an SHMM as

in Fig. 3(b) it can be seen that the expected orientation can

be derived from the relative location of successive states.

Moreover, when there are multiple transitions a probability

for the matching headings can be obtained using the tran-

sition probabilities. Hence, we can drop the explicit use of

θ without loss of information and obtain a 2-dimensional

description of a state.

2) Limited Observability: In most cases a mobile robot

will not be able to see all or most parts of its environment at

all times. More precisely, when it comes to calculating the

transition probabilities of the SHMM, it cannot be guaranteed

that all parts of the environment are observed for the same

duration of time during robot operation. Firstly, this can lead

to poor estimates for the transition probabilities. Secondly,

the value N (ij) cannot be used as a measure of traffic

density, because the relation between the values of different

transitions is not known, due to the possibly largely different

time frames during which parts of the environment were in

the robot’s field of view.

To overcome this, we add the overall time of observation

of a part of the model to the state’s transitions

aij =





∆T (ij)

N (ij)

P (s(j)|s(i))



 (10)

Where ∆T (ij) denotes the total time in which this tran-

sition could have been observed, i.e. the time this area

was inside the field of view. Consequently, the transition

probabilities are computed as

P (s(j)|s(i)) =
N (ij)/∆T (ij)

n
∑

k=0

N (ik)/∆T (ik)

(11)

Where n is the number of outgoing transitions from state

i.

(a) (b)

Fig. 4. a) The IRobot Create in its environment. b) The office space.

IV. EXPERIMENTAL RESULTS

All Experiments were conducted using our IRobot Create

platform, which carries a Hokuyo UTM-30LX laser and a

small size notebook (eeePC) (see Fig. 4(a))for localisation

and people tracking. The environment is an open office space

of approximately 20x25m as shown in Fig. 4(b) and Fig. 8(a).

We first present experiments concerning model learning. To

conclude this section we briefly present possible applications

of a model of motion patterns as we propose it. In the

following figures the robots pose is shown by a green arrow,

states of an SHMM are shown as red ellipses and the state

transitions as red lines between the means of states.

Firstly, Fig. 5 shows a typical human trajectory modeled

as an SHMM. It can be seen, as noted in literature [13], that

human trajectories are usually not straight but curved. Also

when walking around a corner, a smooth curve rather than

a 90 degree turn on the spot can be observed. However,

such detail may not be visible in the model any, when

more observations are added. This can be observed in Fig.

8(c) where in some sections the model describes almost

straight lines (usually in places where many observations

were made).

Fig. 5. A typical curved human trajectory modeled as an SHMM.

The second experiment illustrates the adaptability of the

proposed model of motion patterns. In Fig. 6 the robot

observed people walking from the bottom to the top of the

image. Fig. 6(b) shows the result after 3 trajectories were

perceived. Then an obstacle was put close to the learnt path,

so that people would have to alter their trajectories slightly.

Fig. 6(b) shows how the model slowly adapts to the change

until it converges after a while (Fig. 6(c)).

The third experiment shows a similar situation, however

this time with a larger obstacle blocking the normal path,

forcing people to alter their trajectory more than in the

previous experiment. Due to the substantial difference in the

observations, it can be seen that the new trajectory is added



(a) (b) (c)

Fig. 6. People are movint from the bottom to the top while a robot learns
the patterns. A) The initial model. b) An obstacle is introduced. c) The
model converged to a slightly different shape.

to the model in Fig. 7. Above this it can be seen that initially

the transition from A to C has a lower probability than the

transition from A to B, as indicated by the thickness of the

lines in Fig. 7(b). With more observations the transition from

A to C gets a higher probability as shown in 7(c). Also due

to the change of trajectories the mean of some states shifted

slightly.

(a) (b) (c)

Fig. 7. People are movint from the bottom to the top while a robot learns
the patterns. b) An obstacle is introduced. c) The model converged adapted
according to the new information.

The fourth experiment demonstrates the learning of a large

model of motion patterns. More than 60 trajectories were

observed from various locations in the office environment.

The sequence of figures (Fig. 8(a) - 8(c)) show the evolution

of the learnt model from a single trajectory to complex

motion patterns. Although the model is learnt with respect

to the observations at any time, it may lack completeness.

It happens due to unobserved patterns or tracking failure.

This phenomenon can be seen in Fig. 8(b), where there is a

discontinuity in the model (inside the green rectangle). Once

a trajectory has been observed, the model becomes continu-

ous with observed state transitions (see Fig. 8(c)). Another

interesting observation can be made inside the yellow circle

in Fig. 8(c)). It is an intersection with people arriving from

two directions leading to two clothoid trajectories. Although

these two trajectories seem to have a more complex structure

than necessary, it is a natural phenomenon which often

occurs in such narrow sharp corners due to the phenomenon

described in the first experiment.

Fig. 8(d) shows the learnt Gaussian distributions of trajec-

tories with which the states and transitions are represented.

As the structure (map) of the environment is not taken

into consideration, there are some apparent overlaps of

Fig. 9. The observed traffic density; colours range from green (low traffic
density) to red (high traffic density).

(a) (b)

Fig. 10. a) A path generated using basic A∗. b) Path generated with regard
to motion pattern model, which is significantly longer than the shortest path.

the distributions with obstacles, such as walls. With more

observations this effect would be reduced. Lastly, Fig. 9

shows the traffic density in the model. The expectation is

that there are more people walking in corridors than in desk

areas, which is confirmed in our data.

Finally, we briefly present path planning as a possible

application of a model of motion patterns. The details of

this are within the scope of another publication. Consider a

robot operating in the above office space as a co-worker, i.e.

in long term deployment. When people plan a path they do

not only plan a shortest path but take social requirements

into account as well. One of those is to not disturb co-

workers unnecessarily. Fig. 10(a) shows a planned path using

common A∗ path planning, hence the shortest path is used as

the sole criteria. Using the above learnt model, we extended

A∗ to take the model into account. More precisely, we altered

the cost function to use the information about traffic density

which can even lead to the robot planning a significantly

longer path in order to not cross a desk area as long as the

trade-off is not too high (see Fig. 10(b)).

V. CONCLUSIONS

In this publication we presented a novel method to learn

a SHMM to represent motion patterns on-line and unsuper-

vised with a mobile robot. Motion patterns can be described

as a joint probability distribution over pose and velocity from

which samples can be taken. To avoid the computational

complexity of using a sample distribution the use of a Hidden

Markov Model to represent common motion patterns in an

environment was proposed.



(a) (b)

(c) (d)

Fig. 8. a-d) The green arrow, red ellipses, and red lines denote the robots pose, covariance matrices and state transitions respectively. a) The first observed
trajectory in the model. b) The model after the robot observed 7 trajectories. c) The model after observing 25 trajectories. d) The final model after observing
more than 60 trajectories.

The SHMM obviously has a lower memory footprint than

a sample distribution since we can easily reduce the resolu-

tion of the model. This approach is valid as we are interested

in patterns rather than detailed trajectories. Furthermore, the

ability to change and adapt the model to accommodate new

information was presented.

Finally, the use of such a model for path planning and

motion prediction was briefly outlined. In particular the

ability to use the motion pattern model for prediction of

future poses of moving people is of great interest in mobile

robotics. In future work we will exploit this predictive

potential for improving tracking and interaction with human

peers in the office space. Also the structure of the model can

be analysed to identify intersections.
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