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Abstract

Compressive Sensing (CS) is an emerging signal pro-
cessing technique where a sparse signal is reconstructed
from a small set of random projections. In the recent lit-
erature, CS techniques have demonstrated promising re-
sults for signal compression and reconstruction [9, 8, 1].
However, their potential as dimensionality reduction tech-
niques for time series has not been significantly explored
to date. To this aim, this work investigates the suitability
of compressive-sensed time series in an application of hu-
man action recognition. In the paper, results from several
experiments are presented: (1) in a first set of experiments,
the time series are transformed into the CS domain and fed
into a hidden Markov model (HMM) for action recognition;
(2) in a second set of experiments, the time series are ex-
plicitly reconstructed after CS compression and then used
for recognition; (3) in the third set of experiments, the time
series are compressed by a hybrid CS-Haar basis prior to
input into HMM; (4) in the fourth set, the time series are
reconstructed from the hybrid CS-Haar basis and used for
recognition. We further compare these approaches with al-
ternative techniques such as sub-sampling and filtering. Re-
sults from our experiments show unequivocally that the ap-
plication of CS does not degrade the recognition accuracy;
rather; it often increases it. This proves that CS can pro-
vide a desirable form of dimensionality reduction in pattern
recognition over time series.

1. Introduction

Human action recognition from camera videos has been
one of the most popular research topics within the com-
puter vision and pattern recognition communities in recent
years, with applications to recognition of primitive actions,
sport actions, human-computer interaction, movie annota-
tion, and others [16, 21, 23, 15, 13, 14].

Recently, we have witnessed a continuous increase in
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the size of typical feature sets in an attempt at providing
“richer” descriptions of the actions which, in turn, could
lead to improved recognition accuracy. For example, in
[12], the author proposes a spatio-temporal feature detector
and uses histograms of the extracted features as the feature
set for activity recognition. A similar idea is also proposed
in [22] where the Speeded Up Robust Features (SURF) [2]
are used to construct local spatio-temporal features. The
volumetric space-time shapes of [10] are also very rich in
attributes. On the other hand, one may want to collect such
feature sets over very short time spans in order to capture
the action dynamics at finer levels of detail. The combined
effect of large feature sets and high sampling frequencies
leads to “fat” representations of an action instance, poten-
tially in the order of tens or hundreds of kilobytes each.
While this is not an issue in isolation, it may become such
for processing, storage and communication, especially in
scenarios such as the rapidly widespreading large camera
networks where the information extracted from each camera
is communicated across the network to infer across-camera
knowledge [3].

At the same time, the novel field of Compressive Sensing
(CS) techniques has provided a new approach to the com-
pression and reconstruction of signals at a rate significantly
below that of Nyquist sampling and have hence raised much
attention in the signal processing community [9, 8, 1]. The
compactness of the CS representation makes it a very ap-
pealing technique also for the compression of time series in
distributed pattern recognition applications. Apart from of-
fering good compression capability, the relevance of CS to
pattern recognition lies in its potential as a dimensionality
reduction technique for series of sampled signals. Differ-
ently from techniques such as Principal Component Analy-
sis (PCA), Linear Discriminant Analysis (LDA) and many
others [4], compressive sensing is not learned from a train-
ing set and therefore does not suffer from limited generali-
sation. On the other hand, other conventional compression
techniques such as the Discrete Cosine Transform (DCT)
and the Discrete Wavelet Transform (DWT) do not provide



a fixed, lower-dimensional feature set suitable for pattern
recognition since the positions of the non-negligible coeffi-
cients occur at different locations for each compressed sam-
ple. In this paper we show that not only compressive sens-
ing of time series does not deteriorate recognition accuracy,
but it can actually lead to improved accuracy compared to
recognition from the original time series.

The rest of this paper is organized as follows: in sec-
tion 2, we describe the theoretical background of compres-
sive sensing. In section 3, we present the principles of ap-
plying compressive sensing to multivariate time series. In
section 4, we describe the action dataset and the feature
set used for the experiments. In section 5, we present the
results on four sets of experiments: 1) recognition in the
compressive-sensed domain; 2) recognition from the recon-
structed time series; 3) recognition in a hybrid compressed
domain; 4) recognition from time series reconstructed af-
ter hybrid compression. Other techniques such as sub-
sampling and averaging are also compared for a broader
comparative analysis. In section 6, we summarise our re-
sults and presents the conclusions.

2. Background on Compressive Sensing

The general theory behind Compressive Sensing can be
summarized as follows: let us assume that we are given a
discrete signal, f, in RN and a N x N matrix, ¥, whose
columns are a set of orthogonal basis vectors. This matrix
is called a sparsifying matrix since, when multiplied by sig-
nal f, it produces a representation w = W7 f which is a
version of f in the ¥ domain. For many naturally occur-
ring signals such as images and audio and an appropriate
choice of U, vector w offers a sparse representation in the
sense that only K of its elements have values significantly
different from zero; the other NV - K elements of w are ei-
ther zero or very close to zero. In such a case, f is said to
be K-sparse. Typical choices for ¥ are the discrete cosine
transform (DCT) matrix and the wavelet basis matrix, both
widely used in image compression applications.

In addition to W, a linear measurement matrix or sam-
pling matrix ® of size M x N is also introduced, with
M < N and M only marginally larger than K such that:

v=0f =dVw = Ow @))

Vector v contains the measurements in R which we can
access directly. When O satisfies the so-called restricted
isometry property (RIP) [9, 8], we can reconstruct w (hence
f) given v exactly. A thorough verification of RIP for © is
prohibitive and requires computations in every M x K sub-
matrix of ©, which involves (I]\(]) combinations [1]. Yet, it
can be shown that if ® is chosen to be a Gaussian random
matrix and condition M > c¢Klog(N/K) is satisfied for
some constant ¢, then it is highly probable that we will be

able to reconstruct w exactly [9].

From (1), it is also immediate that matrix ¢ (and hence
©) has more columns than rows. Therefore, w lies in a solu-
tion space and cannot be reconstructed uniquely. However,
thanks to the sparsity assumption, we can recover signal @
by minimizing its /; norm [8] as follows:

o =argmin(||w|1), st v=06w (2)

where notation ||.||, defines the I, norm. Several other
reconstruction algorithms have been presented in recent
years including Denoising Basis Pursuit and the Lasso [7].
In addition to the estimation of the underlying signal w,
recent works such as [18] have also attempted to incorpo-
rate CS reconstruction in a Bayesian framework where a
full posterior for @ is to be estimated. For example, in [18]
the authors assume the likelihood function to be a Gaussian
distribution:

p(vlw, ) ~ N(dw, 52) 3)

and the prior distribution of w to be a product of Gaus-
sians on its components, w;:

N
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By using the solution offered by the Relevance Vector
Machine (RVM) framework [20] and carefully defining dis-
tributions for all hyper-parameters involved [18], it is pos-
sible to derive the solution for the full posterior p(w|v).

3. Compressive sensing of multivariate time se-
ries

In general terms, we can assume that a K-dimensional
feature set can be extracted from each frame of a video
depicting an action. Such a feature set can be as varied
in nature as the actor’s pixel map, a set of shape descrip-
tors, histograms of special interest points, or others. We
note the sequence of the extracted feature sets as O1.7 =
{01, ..., 0, ..., o7 }, with each o; being a K -variate random
variable, commonly continuous in value. The main idea for
applying compressive sensing to such a time series is to par-
tition it into contiguous windows and compress the samples
in each window by way of a sampling matrix. The sam-
pling matrix, ®, is M x N in size, with M << N, and
its application over each window transforms /N univariate
samples into a single, M -variate sample. Each feature in
the feature set is compressed independently of the others.
As a result, an original action sequence with 7" frames and
K dimensions, i.e.,
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is transformed into a new sequence with 7'/N frames
and K * M dimensions:
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In other words, a reduction in the length of the time se-
ries by a factor N is obtained at the expense of an increase
in the feature set dimensionality of a factor M. The overall
size of the time series decreases from K *7T to K T« M /N.
The intrinsic, overall dimensionality of the time series may
or may not vary as a consequence of this manipulation; in
general, it is not obvious how to assess the extent of the
conditional dependencies between time samples and esti-
mate the intrinsic dimensionality along the time dimension
[5]. In the distributed cameras scenario described in the In-
troduction, the time series are computed at the local camera
level, communicated in compressed form, and recognition
then performed at the received end, either from the com-
pressed time series directly or after reconstruction via in-
verse algorithms.

4. Dataset and feature set

For all experiments described in this paper we have used
the Weizmann dataset!, a simple dataset depicting 10 differ-
ent primitive actions performed by 9 different subjects. Fig-
ure 1 shows examples of an actor’s foreground masks in the
Weizmann dataset. In the near future, we plan to extend our
results to other popular datasets such as KTH and MuHAVi
[19, 11] where segmentation is probing. As feature set, we
decided to use a set of five region centroids extracted from
the foreground mask, hoping that they would prove suf-
ficiently action-discriminative. While more sophisticated
articulated motion models could be fit on the foreground
masks, the chosen feature set is adequate for comparison
and for proving the point of this paper. Figure 2 shows ex-
amples of the feature set.

To extract the feature set, we model the location x; of
every pixel in the foreground mask by using a Gaussian
mixture model (GMM), where each x; is given probability
density:

L
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Figure 1. Examples of foreground masks from the Weizmann
dataset (reduced to 16 x 16 for illustration). From up to bottom,
actions are 'Bend’, "Run’, "Walk’, ’Skip’, *Jumping Jack’, Jump
Forward On Two Legs’, *Jump In Place On Two Legs’, ’Gallop
Sideways’, "Wave With Two Hands’ and *Wave With One Hand’
for one of the actors (’daria’).

where o = {ayq,...qq,...ar} is the set of the compo-
nents’ priors; u = {u1, ..., ...p0r, } are the components’
means, with each y; a two-dimensional mean vector; and
¥ = {%,...5,...X1} are the components’ covariances,
with each X; a 2 x 2 covariance matrix. For the purpose of
this paper, we set the number of Gaussian components L to
five. Future work will address training of an optimal L to
give the best discriminative results for the entire dataset.

The initial set of parameters, (%), 1,(?), $(0) is obtained
in a heuristic way: we first obtain a bounding box contain-
ing the foreground mask. Then, the initial set of means ;(%)
is obtained from equally-spaced positions along the diag-
onal of the bounding box, shown as the dotted circles in
Figure 2. The initial covariance matrices set, >0 is cho-
sen as: EEO) = Eéo) =..= Zg)) = /Apound/L X Naxa,
where Apoyung 18 the area of the bounding box, and I is the
identity matrix.

After the application of an expectation-maximization
(EM) training algorithm, the set of parameters converges
to al), u(f) and (), The final set of means, u(f), is also
plotted in Figure 2 as solid circles. Finally, .(/) is then used
as the feature set for every video frame, with a dimension-
ality of K = dim(o) = 2 x L = 10 in our case.

5. Experiments

In order to test the effectiveness of compressive-sensed
time series for human action recognition, we have con-
ducted several comparative experiments. As time-series
classifier, we have used the hidden Markov model for its
flexibility and easy application [17]. A hidden Markov
model is a latent state model defined by its set of param-
eters, A, which provides a density value, p(O;.7|)\), for



(a) Ido galloping sideways

(b) Denis doing jumping jack

(®)

(c) Eli walking

(d) Ira waving with her two hands

Figure 2. The initial and final set of means are plotted, where the
corresponding means are drawn with the same color. Original
means, in the principal diagonal, are displayed by dotted circles,
whereas the final means are displayed by solid circles

time series O1.7. To prepare the classifier, a hidden Markov
model, A\, is first trained for each of the C classes of inter-

est, c = 1..C, from examples from the class. After training
of the class models, maximum-likelihood classification for
time series Oy.p is simply provided by:

ey = argmax(p(Or.r|Ae)), c¢=1..C. 6)

We carried out a leave-one-actor-out cross-validation so
that the same actor will not be used for training and val-
idation. Every actor in turn is used for validation. With
the purpose of making the comparisons consistent, in all
the experiments we have set the number of hidden states in
the HMM to five, and each emission probability was mod-
elled as a Gaussian mixture model with two components.
In addition, the same set of initial HMM parameters was
used throughout the experiments. The techniques we com-
pared are divided into the following categories: 1) com-
pressive sensing of the original time series; 2) averaging
or sub-sampling of the original time series; 3) reconstruc-
tion of the signals from the compressed domain; 4) hybrid
compression of the original time series by way of a mixed
Haar/compressive sensing compression. Results are com-
pared with recognition accuracy from the original signal.
Each of the following sub-sections describes a category of
techniques.

5.1. Compressed domain

For compressing the original time series, we have used
an M x N sampling matrix, ®, generated from a Gaus-
sian process which is likely to ensure the required restricted
isometry property [9]. Although not reported in the paper,
we have experimented with several instances of ¢ and gen-
erally reported results delivering the highest accuracy. Two
cases were tested in this experiment, where the first one was
set to have M = 4 and the second one M = 2, for a com-
pression ratio of 50% and 25%, respectively. The size of the
time window, N, like for all other experiments in this work,
was set to 8. This experiment is labelled as number 1.

5.2. Averaging and sub-sampling

Another set of experiments was accomplished to com-
press the time series by deterministic techniques: averag-
ing over the N samples or sub-sampling from them. These
two processes were applied in two ways: a) over the origi-
nal signal (experiments labelled as numbers 2 and 3) or b)
over the sparse version of the original signal (experiments
labelled as numbers 4 and 5). For the latter, we used the
Haar wavelet as the N x N orthonormal basis. In the case of
sub-sampling, we also tried to sub-sample at even and odd
indices in the window. For all combinations, the number of
retained samples were set to both M = 4 and M = 2.

Averaging and sub-sampling, too, can be represented as
a compression matrix, with the only difference that ® is no



longer a random matrix, but instead set to take fixed values.
For conciseness, we describe such values as:

1. Sub-sampling:

e forM=2:
®,=[1 0 0 0, ®.=[0 1 0 0]
o for M =4:
(I)o:[l O] > (I)e:[o 1]
2. Averaging:
e forM=2:
® =025 0.25 0.25 0.25]
o for M =4:
®=[05 0.5

The averaged or sub-sampled signals were then fed into
the classifier. Therefore, the classification was directly car-
ried out in the compressed domain.

5.3. Reconstruction

In the next set of experiments, the input to the classi-
fier was obtained by reconstructing the time series after CS
compression. Two approaches were used:

e we first converted the time series into a sparse repre-
sentation by applying a Haar matrix, ¥, and then com-
pressed it by applying ®. The subsequent reconstruc-
tion is achieved by minimizing the /; norm of the so-
lution by a Lasso-type algorithm. We labelled this ex-
periment as number 6.

e in addition, we directly applied ® to the original signal.
The reconstruction step follows Eq. (2). We labelled
this experiment as number 7.

The reconstructed signals, which have the same dimen-
sionality of the original ones, were so fed into the classifier.

5.4. Hybrid compression

In the last set of experiments, we applied hybrid CS, a
technique which compresses the signal by a combination of
sparse coefficients and compressive-sensed coefficients. In
this approach, the original time series are first converted into
the sparse basis; then, a small amount, n, of low-order co-
efficients is retained unchanged; eventually, the remaining
N — n coefficients are compressed by compressive sens-
ing. The rationale for this approach is given by the empiri-
cal observation that the coarse-scale wavelet coefficients are
important for effective signal reconstruction [6]. For the re-
construction process, we proceeded in an inverse way, that
is, reconstructing the compressed part, or highest frequen-
cies of the signal, with the Lasso algorithm, concatenating

the solution with the n unaltered low-order sparse coeffi-
cients, and then applying W7 to reconstruct the signal in
its original domain. The selected window was also N = 8
frames.

For this experiment, we considered two cases: 1) retain-
ing n = 1 low-order coefficients and compressing the re-
maining N —n = 7 into 3 compressed samples and 2) re-
taining n = 2 low-order coefficients and compressing the
remaining N — n = 6 into 2 compressed samples, for an
overall compression ratio of 50% in both cases. This ex-
periment is labelled as number 8. Eventually, we tested re-
taining n = 1 low-order coefficients and compressing the
remaining N —n = 7 into 1 compressed sample, for an
overall compression ratio of 25% (experiment number 9).
In experiment number 8, case n = 3, we also attempted ex-
plicit reconstruction of the time series from its hybrid rep-
resentation.

5.5. Results

The results for all the experiments are displayed in Table
1. The second column of the table indicates if the process-
ing was carried out over the original signal (O) or its sparse
version (S) obtained by the application of a Haar transform.
We report accuracies as the best out of several trials to mol-
lify the risk that they depend on unfortunate parametrisation
of the experiment.

The immediate, stunning result from the table is that
recognition with two different flavours of compression
achieved an accuracy of 95.5% compared to an accuracy
of 77.8% from the original data. This shows at once that
the conversion of some time complexity into feature com-
plexity seems to actually achieve a regularisation in the ac-
tual, intrinsic dimensionality of the time series. Namely, the
equal-highest accuracies are achieved by compressive sens-
ing and by sub-sampling of the Haar coefficients. In the
following, we address detailed comments to the individual
experiments.

For recognition directly in the CS compressed domain
(experiment number 1), we obtained accuracies of 95.5%
and 92.2% at a compression rate of 8 X 2 and 8 x 4, respec-
tively. Such accuracies were the highest across the entire
range of compared techniques. Surprisingly, the accuracy
proved even higher (by 3.3%) for the more reduced size,
8 x 2. For this reason, we report a further analysis of the
impact of the size of the CS compressed data, M, later in
this section.

Recognition by averaging and sub-sampling the original
signal (experiments number 2 and number 3) mildly im-
proved the accuracy compared to recognition from the orig-
inal data, with values ranging between 74.4% and 83.3%
(compared to 77.8% of the original data). Sub-sampling
achieved slightly better results than averaging: however, its
results seem to significantly depend on the arbitrary choice
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8x2, ®, | 83.3
8x2, ®. | 76.6
. 8x4 82.2
4 | S | Averaging 8x2 90.0
. 8x4, @, | 63.3
5 | S | Sub-sampling 8x4. b, | 95.5
8x2, ®, | 42.2
8x2, . | 95.5
8x4 71.1
6 | S | Reconst. CS 3x2 611
8x4 90.0
7 | O | Reconst. CS 8x2 955
. 6x2 78.8
8 | S | Hybrid CS 7x1 711
9 | S | Hybrid Reconst. | 7x3 73.3

Table 1. Accuracy (%) for the 9 experiments carried out: compres-
sive sensing over the original signal (experiment 1), averaging and
sub-sampling over the original and sparse signal (experiments 2-
5), reconstructed CS signal (experiments 6 and 7) and hybrid CS
and hybrid CS-reconstruction (experiments 8 and 9). The second
column shows if the compression has been carried over the origi-
nal (O) or the sparse (S) signal. In the case of experiments number
3 and 5, the two values in the accuracy column show the results
when the first and fifth (result on the left) and second and sixth
(result on the right) coefficients are sampled over a window of 8
frames

of which samples are retained: by retaining samples at odd
indices in the window, accuracy reached 83.3%; by re-
taining samples at even indices, accuracy ranged between
76.6%-78.8%. Such a dependence is certainly not desirable
as it makes hard to generalise results.

However, recognition by averaging and sub-sampling

the Haar coefficients (experiments number 4 and number
5) reported much higher accuracies in some cases and a top
accuracy equal to that of compressive sensing. These re-
sults call for more discussion due to the variations between
different cases. The average of neighbouring Haar coeffi-
cients tries to retain an average value between coefficients
of similar order; for instance, in the 8 x 2 case, the lowest
four coefficients are averaged into one and so are the highest
four coefficients. This simple approach appears effective as
it reaches accuracies of 82.2%-90.0%. However, such val-
ues are lower than those obtained with the CS transform.
On the other hand, sub-sampling selects a sub-set of Haar
coefficients to retain and achieves even more pronounced
accuracies, up to 95.5% on a par with CS. The downside
of this approach is that the accuracy drastically depends on
which coefficients are arbitrarily retained, reaching worst
scores as low as 42.2%.

In the next set of experiments, we performed recognition
from the explicitly reconstructed series after CS compres-
sion (experiments number 6 and number 7). The most inter-
esting outcome of this experiment is the remarkable differ-
ence between compressive sensing from the original signal,
v = ®f, and compressive sensing from its sparse repre-
sentation v = ®UT f = ®w. In the theory of compres-
sive sensing these two approaches are equivalent, as they
both can lead to the reconstruction of w via constrained L1-
norm minimization. However, in practice the choice has
an impact on the reconstruction results. Accuracy results
from reconstruction from the sparse basis were significantly
worse (with accuracy as low as 61.1%). Instead, accuracy
from reconstruction from the original signals were almost
equivalent to those achieved by operating directly in the CS
compressed domain (90.0%-95.5%).

Eventually, the hybrid CS/Haar experiments (number 8
and 9) did not report noteworthy accuracy, in the range of or
worse than the recognition accuracy from the original time
series.

Given that results with compressive sensing and sub-
sampling of Haar coefficients led to equal best accuracy, we
conducted a further experiment to explore the stability of
these results over the parameters. For compressive sensing
(experiment number 1), we computed the accuracy at the
increase of the number of compressed samples, from 1 to
10. Please note that when the number of compressed sam-
ples becomes greater or equal than the length of the time
window, N = 8, the signal can always be reconstructed
without error. However, the original signal is not conducive
to the highest accuracies, and the test is therefore worth-
while. Figure 3 shows the accuracy we obtained after ap-
plying consecutive CS transformation to the original signal,
from ®Pgy 1 to Pgx 10, including Pg.s. We can draw several
comments from this experiment: the first is that we unex-
pectedly achieved the best result with only M = 2 samples,
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Figure 3. Accuracy after applying consecutive CS transformations
to the original signal

for a very favourable compression ratio of 25%. The second
is that the accuracy with M = 8 samples is higher by 11%
(88.8%) than that based on the original signal. In this case,
the size of the two time series is identical, with the only
difference that in the CS case we have converted a certain
extent of time complexity into an equivalent extent of fea-
ture set complexity. The better performance of CS may be
conclusive evidence that CS performs an implicit, desirable
data regularisation which has invariably led to higher recog-
nition accuracy than when recognition is attempted directly
from the original signal.

Table 2 shows expanded results for the experiment where
the feature set is built by sub-sampling the Haar coefficients
(experiment number 5). The highest accuracy (95.5%) is
obtained when the second and sixth frequencies are kept.
However, results vary drastically for different choices of the
two retained coefficients, down to 63.3%. If all coefficients
are kept - for no reduction in size of the time series - ac-
curacy is still only 80%. This proves that this technique is
hard to tune and results not obviously generalisable.
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0 | O | Original 8x8 77.7
. 8x2-(1,5) | 63.3
Sub-sampling 8x2 - (2.6) | 95.5
518 8x2-(3,7) | 86.6
8x2-(4,8) | 82.2
8x8 - (all) | 80.0

Table 2. Sub-sampling technique when only two sparse coeffi-
cients (out of 8) are kept, starting from the first, second, third and
fourth coefficient respectively. The last row refers to retaining all
coefficients.

6. Conclusions

This paper has presented a comparison of several meth-
ods to compress time series from instances of human actions
for action recognition, with special emphasis on the recently
proposed Compressive Sensing (CS) techniques. The com-
parison includes compressing by CS, Haar transforms, hy-
brid CS-Haar, averaging and sub-sampling, and perform-
ing recognition either directly in the compressed domain or
over the reconstructed signals. These techniques are flexible
and can be applied to any type of features other than those
used for this paper’s experiments. As time-series classifier,
we have used the well-known hidden Markov model with
Gaussian mixture outputs.

The main and somehow exciting result stemming from
the comparison is that the accuracy of action recognition
was improved by the application of compressive sensing to
the original time series (95.5% accuracy vs. 77.7%). This
means that compressive sensing not only offers the opportu-
nity to significantly reduce the overall size of the time series
(down to 25% in this work), but also operates some form
of desirable dimensionality reduction which facilitates the
recognition of patterns. Compressive sensing was originally
proposed only for signal compression, under the unques-
tioned assumption that the original signal is the ideal target
to reconstruct. Results reported in this papers seem to sug-
gest that imperfectly reconstructed signals may enjoy other
properties of benefit for pattern recognition. In the near fu-
ture, we plan to expand this analysis to other datasets and
features, and explore the theoretical intertwining between
compressive sensing and recognition.
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