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IdentityDP: Differential Private Identification
Protection for Face Images
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Abstract—Because of the explosive growth of face photos as
well as their widespread dissemination and easy accessibility
in social media, the security and privacy of personal identity
information becomes an unprecedented challenge. Meanwhile,
the convenience brought by advanced identity-agnostic computer
vision technologies is attractive. Therefore, it is important to
use face images while taking careful consideration in protecting
people’s identities. Given a face image, face de-identification, also
known as face anonymization, refers to generating another image
with similar appearance and the same background, while the real
identity is hidden. Although extensive efforts have been made,
existing face de-identification techniques are either insufficient in
photo-reality or incapable of well-balancing privacy and utility. In
this paper, we focus on tackling these challenges to improve face
de-identification. We propose IdentityDP, a face anonymization
framework that combines a data-driven deep neural network
with a differential privacy (DP) mechanism. This framework
encompasses three stages: facial representations disentanglement,
ϵ-IdentityDP perturbation and image reconstruction. Our model
can effectively obfuscate the identity-related information of faces,
preserve significant visual similarity, and generate high-quality
images that can be used for identity-agnostic computer vision
tasks, such as detection, tracking, etc. Different from the previous
methods, we can adjust the balance of privacy and utility
through the privacy budget according to pratical demands and
provide a diversity of results without pre-annotations. Extensive
experiments demonstrate the effectiveness and generalization
ability of our proposed anonymization framework.

Index Terms—Face de-identification, face anonymization, dif-
ferential privacy, generative adversarial networks, privacy pro-
tection, utility-privacy tradeoff.

I. INTRODUCTION

TODAY’S popularity of smartphones allows people to take
their face photos conveniently. Particularly, the blooming

development of media and network techniques makes a vast
amount of photos more approachable. At the same time, how-
ever, advanced image retrieval and face verification models
allow to index and examine privacy relevant information more
reliably than ever. Consequently, among those image sources
exposed to the public with or without our awareness, the wide
range of private information inadvertently leaked is severely
under-estimated [1].

Opportunities for misuse of the unprotected face image
and advanced computer vision technologies are numerous and
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potentially disastrous [2]. Restrictive laws and regulations
such as the General Data Protection Regulations (GDPR) [3]
has taken effect. GDPR requires regular consent from the
individual for any use of their personal data to guarantee data
privacy, however, it also makes the creation of high-quality
datasets that include people becoming extremely challenging.
Fortunately, if the data does not allow to identify the corre-
sponding individual, entities are free to use the data without
consent. what’s more, many computer vision tasks in practice
such as detection, tracking, or people counting, do not need
to identify the people, but to detect them.

All the troubles and dilemmas mentioned above can be
summarized to one issue: given a face image, how can we
create another image with similar appearance and the same
background, while the real identity is hidden and face detectors
are still allowed to work? Traditional anonymization tech-
niques are mainly obfuscation-based and always significantly
alter the original face. Other previous work in this field
is sparse and limited in both practicality and efficacy: k-
same algorithm-based methods [4–8] fail to make full use of
existing data and deliver fairly poor visual quality; adversarial
perturbation-based methods [9–14] usually depend highly on
the accessibility of the target system and require special
training; recent GAN-based methods[15–25] have trouble gen-
erating visually similar de-identified faces as well. Note that
there exists a trade-off between privacy protection and dataset
utility [26, 27], and previous methods are unable to balance
this matter.

To tackle these challenges, we propose IdentityDP, a frame-
work that anonymize face images without significantly dis-
torting the original images, nor destroying the availability of
face detectors (see Fig. 1). Especially, individuals are allowed
to have control over the anonymization procedure to get the
most suitable results in practice. IdentityDP achieves this by
helping users adding well-designed obfuscation to photos’
high-level identity representations. For example, a user who
wants to share photos on social media or the public web can
add adjustable perturbations according to his demands through
our framework before uploading them. The uploaded photos
will look similar to the original ones, but when an adversary
employs a general face verificator to compare the user’s face
images with the altered ones, it will indicate that they are from
different people.

The proposed IdentityDP framework consists of three
stages. Stage-I aims to perform facial representations dis-
entanglement. We train a specially designed GAN for dis-
entanglement between high-level identity representation and
multi-level attribute representations in the feature space. Here
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Fig. 1. IdentityDP for face anonymization. In each pair, left is the original image and right is the synthesized result with an altered identity. The results
show that face identities are changed in a perceptually natural manner, and in the meantime, each pair of images still shares most of the non-identity related
information.

the identity representation affects face verification systems
to judge whether it is the same person, and the attribute
representation guarantees the visual similarity. Stage-II carries
out an ϵ-IdentityDP mechanism, where adjustable differential
privacy (DP) [28] perturbations are applied to the identity
representation. Stage-III implements the image reconstruction.
In more detail, we fix the well-trained GAN network in Stage-
I, and generate de-identified face images utilizing the perturbed
identity representation as well as the original attribute repre-
sentations. IdentityDP leverages both the GAN’s outstanding
ability to disentangle images’ representations in the latent
space and differential privacy theory, managing to balance
the trade-off between image quality and privacy protection
according to practical needs. In addition, our framework
requires neither pre-annotation nor pre-detection of faces, but
can generate numerous anonymous results.

Our contributions in this work are as follows:
• We propose a general framework that is suitable for the

de-identification of people in face images.
• As far as we know, we are the first to introduce the

rigorously formulated DP theory into the face-anonymous
task. The users are able to get not only high-quality
anonymous images but also an adjustable privacy pro-
tection mechanism.

• We demonstrate that our method does not require special
training or targeted adjustments for many unauthorized

identity verification systems or face datasets that never
seen before.

• We show that images anonymized by our method can
be detected by common face detection models, so the
processed images are still usable for identity-agnostic
computer vision tasks (such as monitoring and tracking).

• We show that our de-identified method is significantly
less computationally complex and consumes a small
amount of computing resources.

The remainder of this paper is organized as follows. In
Section II, we summarize related work. Section III formalizes
the face de-identification problem, introduces relevant DP
theory and proposes our assumptions. Section IV outlines the
three-stages IdentityDP framework. Results of experiments
analysing the proposed IdentityDP method and comparisons
with existing methods are reported in Section V. we conclude
in Section VI with discussions of future research direction.

II. RELATED WORK

In this section, we introduce the related work on face
de-identification. We classify face anonymous methods into
four categories: traditional obfuscation-based methods, k-
same algorithm-based methods, adversarial perturbation-based
methods and GAN-based methods.
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A. Traditional Obfuscation-Based Methods

In traditional computer vision studies, face de-identification
technologies are mainly obfuscation-based. To be more spe-
cific, individuals can obfuscate privacy sensitive face area in
an image by using approaches including blurring, pixelation,
masking and so on. These traditional methods are widely
used in daily life because of their simplicity and ease of
operation. However, researchers have shown these techniques
are vulnerable, and the private information in obfuscated
images is still in danger of being leaked [29]. McPherson et
al. [30] showed that deep learning methods especially CNN-
based recognition models can successfully identify faces in
images encrypted with these techniques with high accuracy.
To make matters worse, obfuscation-based approaches towards
manipulating images always tend to destroying the usability
of images. Vishwamitra et al. [31] indicated that both blurring
and blocking would impact image perception scores, and
even lower scores were observed for images obfuscated by
blocking. Moreover, how to conduct a sufficient blur itself is
non-trivial [32].

B. k-Same Algorithm-Based Methods

To improve the performance of traditional methods, Newton
et al. [4] introduced the first privacy-enabling algorithm, k-
same [33], to the context of image databases. By applying
the k-same algorithm, a given image is represented by an
average face of k-closet faces from the gallery. This procedure
theoretically limits the performance of recognition to 1/k, but
the resulting images usually suffer from ghosting artifacts due
to small alignment errors. Many variants of k-same [5–8] were
then proposed to improve the data utility and the naturalness
of de-identified face images. Although these methods are
once a mainstay of anonymous technology, they have notable
limitations. Firstly, the k-same assumes that each subject is
only represented once in the datasets, but this may be violated
in practice. The presence of multiple images from the same
subject or images sharing similar biometric characteristics can
lead to lower levels of privacy protection. Secondly, the k-same
operates on a closed set and produces a corresponding de-
identified set, which is not applicable in situations that involve
processing individual images or sequences of images. Thirdly,
their de-identified results always do not look natural enough,
let alone resemble the original image. The above limitations
indicate that there is still plenty of room for improvement in
face de-identification research.

C. Adversarial Perturbation-Based Methods

New techniques and mechanisms are being applied to en-
hance image obfuscation. A fundamental idea is to generate
a small but intentional worst-case disturbance to an original
image, which misleads CNN-based recognition models with-
out causing a significant difference perceptible to human eyes.
Komkov and Petiushko [9] showed that carefully computed
adversarial stickers on a hat could reduce its wearer’s likeli-
hood of being recognized. Oh et al. [10] introduced a general
framework based on game theory to conduct adversarial image

perturbations and enforce guarantees on the user’s level of
privacy. An alternative to evading models is to disrupt their
training via a data poisoning attack. Shafahi et al. [11]
presented an optimization-based method for crafting poison
images, in which just one single poison image could control
classifier behavior. Liu et al. [12] proposed to use adversarial
perturbation to protect image privacy from both humans and
AI. Zhu et al. [13] introduced a new ”polytope attack” in
which poison images were designed to surround the targeted
image in the feature space. Taking both ideas into account,
Fawkes [14], the state-of-the-art method, helped users wearing
imperceptible ”cloaks” to their own photos before releasing
them. When used to train facial recognition models, these
”cloaked” images produce functional models that consistently
cause normal images of the user to be misidentified. Though
their obfuscation performances are superb even at impercepti-
ble perturbation level, these methods depend highly upon the
accessibility to target systems, so can only be guaranteed for
target-specific recognizers. In contrast, we hope to obfuscate
identities against general face verification systems, and we are
interested in gaining good generalization ability.

D. GAN-Based Methods
GANs represent an inspiring framework for generating

sharp and realistic natural face image samples via a minimax
game [34]. It has therefore become popular in recent face
de-identified techniques, which can be divided into three
categories.
Attribute manipulation-based methods. Face attributes are
crucial to face identification for human beings, and some
methods achieve de-identification by manipulating attributes.
Li et al. [15] proposed the Privacy-Preserving Attribute Se-
lection (PPAS) algorithm to select and update facial attributes
such that the distribution of any attribute was close to its
real-life distribution, and provided measurable privacy for
face anonymization with privacy guarantees. Wang et al. [16]
introduced a bi-directional discriminator to alleviate issues of
partial inversion of attributes, and executed attribute inversion
and obfuscation in a two-stage manner.
Conditional inpainting-based methods. Since face is one
of the strongest cues to infer a person’s identity, a lot of
studies cover up sensitive identity information by conditional
inpainting face area. Sun et al. [17] generated a realistic
head inpainting based on 68 facial keypoints landmarks.
Ren et al. [18] trained a face modifier to remove privacy-
sensitive information, while an action detector was trying to
maximize spatial action detection performance. DeepPrivacy
[19] directly removed the whole face area and generated new
faces based on a sparse pose estimation, which ensured 100%
removal of privacy-sensitive information in the original face.
Wu et al. [20] designed a verificator to help remove biometric
information and a regulator to maintain similar image utility.
The involvement of these two types of prior knowledge was
proved to significantly improve the model performance.
Conditional ID-swapping-based methods. Replacing the
identity in a face image with someone else is a direct but
effective idea of face anonymization. Meden et al. [21] pro-
posed an de-identification pipeline that each generated face
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is a combination of k identities. Sun et al. [22] explicitly
manipulated the identity through identity parameters provided
by 3DMM [23]. Gafni et al. [24] maximally decorrelated the
identity conditioned on the high-level descriptor of a person’s
facial image, while having the perception (pose, illumination
and expression) fixed. CIAGAN [25] leveraged facial land-
mark and identity one hot-vector to remove the identification
characteristics of people, while still keeping necessary features
to allow face and body detectors to work.

Although GAN-based methods account for a substantial
part of face de-identification study, they suffer from various
conditional information requiring either manually annotations
or computational resources, not to mention changed expres-
sions, distorted shape, and loss of accessories. In this paper,
we introduce a hybrid framework to try to solve the above
problems.

III. PRELIMINARIES

A. Problem Formulation

A face de-identification model can be viewed as a trans-
formation function δ that maps a given face image X to a
de-identified image X̂ , aiming to mislead face verification
systems. Essentially, we are generating a new fake identity
out of the input image. The problem can be formulated as
follows:

δ(X) = X̂ (1)

s.t. : Identity{X} ≠ Identity{X̂}.

Meanwhile, considering image utility, X̂ should look similar
to X as much as possible and be detectable by general face
detectors.

B. Differential Privacy Theory

1) Differential Privacy: Differential Privacy (DP) [28], a
cryptography-inspired privacy-preserving model, guarantees
that the likelihood of seeing an output on a given original
datasets is close to the likelihood of seeing the same output on
another datasets that differs from the original one in any single
row. Here, the output could be another datasets, a statistical
summary table, or a simple answer to a query, etc. Generally
speaking, the basic idea of a DP mechanism is to introduce
randomness into the original datasets, so that any individuals’
information cannot be inferred by an adversary looking at the
released output.

A formal definition of DP is shown below:
Definition 1: (ϵ-DP) [35]: A randomized mechanism T

gives ϵ-differential privacy if for any neighboring datasets D
and D′ differing on one element, and all transcripts t:∣∣∣∣ln( Pr[T (D) = t]

Pr[T (D′) = t]
)

∣∣∣∣ ≤ ϵ. (2)

This parameter ϵ, which is usually referred to as a privacy
budget, is a bound on the ratio of the likelihood probabilities of
seeing the same output on neighbouring datasets. The smaller
the value of ϵ, the stronger the privacy guarantee.

A random perturbation can be added to achieve the differ-
ential privacy. Sensitivity calibrates the amount of noise for a

specified query f of dataset D. ∆f is the l1−norm sensitivity
defined as

Definition 2: (l1−norm sensitivity) [35]: For any query f :
D → R, l1−norm sensitivity is the maximum l1− norm of
f(D)− f(D′), i.e.,

∆f = max
D,D′

||f(D)− f(D′)||1. (3)

The Laplace mechanism is one of the most generic mech-
anism to guarantee differential privacy [36].

Definition 3: (Laplace Mechanism) [35]: Given a function
f : D → R, the following mechanism T provides the ϵ-
Differential Privacy:

T (D) = f(D) + Lap(
∆f

ϵ
). (4)

2) Local Differential Privacy: In traditional DP setting,
there is a trusted curator who applies carefully calibrated
random noise to the real values returned for a particular
query. However, in many practical scenarios, the curator might
not be trustworthy. In the local setting, there is no trusted
third party and the data needs to be randomised without the
global knowledge. Local differential privacy (LDP) [37–39]
is applicable to this case. It is considered to be a strong and
rigorous notion of privacy that provides plausible deniability
and deemed to be a state-of-the-art approach for privacy-
preserving data collection and distribution.

Definition 4: (ϵ-LDP) [40]: A randomized mechanism A
satisfies ϵ-LDP, if for any two inputs v, v′ and the set of all
possible outputs y ∈ Y , Y = Range(A), A satisfies:

Pr[A(v) = y] ≤ eϵ · Pr[A(v′) = y]. (5)

And the sensitivity in this case equals to

∆f = max
v,v′∈V

||f(v)− f(v′)||1. (6)

3) Two Important Properties: Our approach relies on two
key properties of DP. First is the widely used parallel compo-
sition property when designing mechanisms:

Property 1: (Parallel composition) [41]: Suppose we have
a set of privacy mechanisms M = {M1,. . . ,Mm}, if each Mi

provides ϵi privacy guarantee on a disjointed subset of the
entire dataset, M will provide (max{ϵ1,. . . ,ϵm})-differential
privacy.

Second is the well-known post-processing property:
Property 2: (Post-processing property) [42]: Any compu-

tation applied to the output of an (ϵ,δ)-DP algorithm remains
(ϵ,δ)-DP.
For example, averaging, rounding or any change to the output
will not impact the privacy of the data. This means that an
analyst can conduct any data post-processing on a released
DP dataset and cannot reduce its privacy guarantee.

C. Face Verification and Our Assumptions

The key idea of face verification is to develop effective rep-
resentations in feature space for reducing intra-personal varia-
tions while enlarging inter-personal differences [43]. The most
ideal state is directly learning a mapping from face images to
a compact feature space where distances precisely correspond
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Fig. 2. Architecture of the proposed 3-stages IdentityDP framework, which based on a data-driven deep neural network and a Laplace ϵ-IdentityDP mechanism.
Stage-I: training a network to extract the disentangled high-level identity as well as attributes representations and restore the original faces; Stage-II: generating
the perturbed identity representation under the Laplace ϵ-IdentityDP mechanism; Stage-III: crafting anonymous faces from perturbed identity representation
and original attribute representations through the frozen network.

to a measure of identity similarity. There are currently two
main types of solutions: one is metric learning-based, and
contrastive loss [44], center loss [45], triplet loss [46] are
proposed to enhance the discrimination power of features; the
other is angular margin-based, and many efforts [47–50] about
angle margin penalty have greatly improved the verification
accuracy. To some extent, anonymization can be considered
as a task to protect someone’s identity representations from
being correctly classified.

Here we have an assumption that identity representations
of one person in different feature spaces are interrelated.
Once a face image’s high-level representation in one feature
space is disturbed into the wrong identity category, its identity
representations in other feature spaces would also be classified
incorrectly.

IV. THE PROPOSED IDENTITYDP FRAMEWORK

For a given original clean face image X , our proposed
IdentityDP framework can be used to generate its anonymous
face images X̂ in a controllable manner. We factor the face
de-identification task into three stages. In the first stage, we
use a person’s image as input and disentangle the latent space
information into two main representations, namely identity
and attribute. Among them, identity representation is modeled
by embedding features through an encoder, while attribute
representations are modeled by multi-level embedding features
through a decoder, then the original face image is restored
in an adaptively manner. In the second stage, we impose ϵ-
IdentityDP perturbations on identity representation according
to practical demands. In the third stage, we freeze all the

parameters of the network, and reconstruct anonymous face
image with the perturbed identity representation. The overall
architecture of the IdentityDP framework is shown in Fig. 2.

A. Stage-I: Facial representations disentanglement

In stage I, given an input face image, our goal is to represent
the image using two disentangled representations, rid and
rattr. rid is expected to contain all the information relevant to
the identity, and rattr contains the rest of information carried
by the image. We investigate how to generate satisfactory face
images with a specific disentanglement intention (i.e. identity
and attribute) in mind. The key idea is to explicitly guide the
generation process by an appropriate representation of that in-
tention. Therefore, our network consists of 3 components: (1)
Identity Encoder; (2) Attribute Encoder; (3) Fusion Generator.
Identity Encoder: As mentioned before, studies on face
verification and recognition have made arduous efforts in
finding suitable face features that can reduce intra-personal
variations while enlarging inter-personal differences, which is
in line with our requirement of identity representation. There-
fore, we choose a pre-trained state-of-the-art face recognition
model [50] as our identity encoder, so as to exploit the existing
technology to extract high-level identity representations in
latent space. This pre-trained model [50] can provide highly
discriminative features for face recognition, and has a clear
geometric interpretation due to the exact correspondence to the
geodesic distance on the hypersphere. The identity representa-
tion rid(X) is defined to be the last feature vector before the
final FC layer, which can present off-the-shelf precise facial
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identity features to avoid training from scratch and denoted
as:

rid(X) = f(X). (7)

Attribute Encoder: Attribute representation, which deter-
mines pose, expression, illumination, background and so on,
intuitively carries more spatial information than identity. John-
son et al. [51] illustrate that low-level features tend to preserve
image content and overall spatial structure, and high-level
features tend to preserve color, texture, and exact shape. In
order to preserve different level details, we employ multi-level
feature maps to represent the attributes. In specific, we feed
the input image X into a U-Net-like structure, and then use
the feature maps generated from the U-Net decoder as the
attributes representations. More formally, we denote

ratt(X) = g(X) =
{
r1att(X), r2att(X), · · · , rnatt(X)

}
, (8)

where rkatt(X) represents the k-th level feature map from the
U-Net decoder, n is the number of feature levels.

This attributes encoder does not require any artificial anno-
tations, it extracts the attributes using self-supervised training:
we require that the generated de-identified face X̂ and the
original face X have the same attributes embedding. The loss
function will be introduced later in Eq. (16).
Fusion Network: After obtaining the disentangled identity
and attribute representations, we would like to learn a way
to integrate them to reproduce the original face image, which
will be used in our subsequent steps. Through a simple trial,
we find that direct feature concatenation can easily lead to
blurry results and is not expected to be used. Fortunately, Li
et al.[52] used Adaptive Attentional Denormalization (AAD)
ResBlk to achieve remarkable feature integration in multi-
ple feature levels. They argue that the attention mechanism
with denormalizations make the effective regions of features
more adaptive to adjust; this is an appealing property for
fusion network, since identity and attribute representations
can participate in synthesizing different parts of the face.
We integrate n AAD ResBlks to the body of our fusion
network. As illustrated in Fig. 2, in stage-I, after extracting the
identity representation rid, and encoding multi-level attribute
feature maps ratt, the fusion generator integrates them through
cascaded AAD ResBlks to restore the original face image X:

X = h(rid, ratt). (9)

The training of h(.) will be discussed in the following sections.

B. Stage-II: ϵ-IdentityDP perturbation

Stage-II generates the perturbed identity representation un-
der a novel Laplace ϵ-IdentityDP mechanism, which is defined
as follows:

Definition 5: (ϵ-IdentityDP Mechanism): A randomized
mechanism M satisfies ϵ-IdentityDP, i.e. if for any two inputs
face images X,X ′ and the set of all possible outputs y ∈ Y ,
M satisfies: Pr[M(X) ∈ Y] ≤ eϵ · Pr[M(X ′) ∈ Y]. For a
face image X , if:

f(X) = rid(X), (10)

and

M(X) = rid(X) + Lap(
∆f

ϵ
) = r̃id, (11)

We say that M(X) satisfies ϵ-IdentityDP.
And the sensitivity is calculated as follows:

∆f = max
X,X′

||rid(X)− rid(X
′)||1. (12)

To achieve ϵ-IdentityDP mechanism, we employ a noise
generator to generate suitable Laplace noise whose size equals
to the high-level identity representation according to specific
privacy budget ϵ. Then we directly add the noise on the identity
representation from Stage-I, intending to obfuscate people’s
identity.

C. Stage-III: Image reconstruction

Stage-III is conditioned on the obfuscated identity repre-
sentation from Stage-II and the original multi-level attribute
features from Stage-I. In order to achieve good de-identified
results, we freeze all the parameters of the well-trained fusion
network in Stage-I, and generate anonymous face image X̂
through the fusion network using obfuscated identity repre-
sentation and multi-level attribute representations:

X̂ = h(M(X ), g(X)) = h(r̃id, ratt). (13)

It can be approved that the generated image X̂ follows ϵ-
IdeneityDP.

Proof 4.1: First, according to definition in Eq. (11), M(X )
satisfies ϵ-IdentityDP:

Pr(r̃id|f(X))

Pr(r̃id|f(X ′))
=

m∏
i=1

exp(−|rid(i) − f(X)i|/∆f
ϵ )

exp(−|rid(i) − f(X ′)i|/∆f
ϵ )

=

m∏
i=1

exp(
ϵ(|rid(i) − f(X ′)i| − |rid(i) − f(X)i|)

∆f
)

≤
m∏
i=1

exp(
ϵ|f(X)i − f(X ′)i|

∆f
)

= exp(
ϵ ·

∑m
i=1 |f(X)i − f(X ′)i|

∆f
)

= exp(
ϵ · ∥f(X)− f(X ′)∥1

∆f
)

≤ exp(ϵ),

where the first inequality follows from that |a| − |b| ≤ |a− b|
for any a, b ∈ R. The rest of proof follows from the post-
processing property of DP. Hence, we can conclude that if
the identity representation is treated with DP noises, then the
reconstructed face image X̂ also satisfies the ϵ-IdentityDP
defined in Definition 5.

D. Training Process

In Stage-I, we need to build a network which can not
only disentangle identity and attribute representations, but
also restore the original input face image from these two
representations.

We utilize adversarial training for this framework. Let
Ladv be the adversarial loss for making X̂ realistic. It is
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implemented as a multi-scale discriminator [53] on the down-
sampled output images:

Ladv(X̂,X) = logDimg(X) + log(1−Dimg(X̂)). (14)

An identity preservation loss is used to preserve the identity
of the source. It is formulated as:

Lid = 1− cos(rid(X̂), rid(X)), (15)

where cos(·, ·) represents the cosine similarity of two vectors.
We also use the attributes preservation loss, which is defined
as half of the sum of the squared Euclidean distances between
the multi-level attributes representations from X and X̂ . More
formally, we denote

Latt =
1

2

n∑
k=1

∥∥∥rkatt(X̂)− rkatt(X)
∥∥∥2
2
. (16)

The reconstruction loss as pixel level L-2 distances between
the target image X̂ and X:

Lrec =
1

2

∥∥∥X̂ −X
∥∥∥2
2
. (17)

The full objective to train our network in the first stage is
a weighted sum of above losses as:

Ltotal = Ladv + λattLatt + λidLid + λrecLrec, (18)

where λatt, λid and λrec are the weight parameters for
balancing different terms.

In practice, GAN is hard to train, so adjusting the training
strategy according to real-time generation effect is necessary.
In order to use visualization tools to judge our training effect
and make appropriate adjustments in time, we extract identity
and attribute representations from two faces randomly sampled
from the training dataset and then fuse them together in stage-
I. It is worth noting the reconstruction loss should be set to
Lrec = 0 when the two faces are different.

E. Some discussions about our research topic

1) The motivation of using differential privacy (DP) for face
de-identification.

The reason we need to perform de-identification is that
face image is a personal identifier which should be properly
protected from the privacy perspective. In more detail, we want
to prevent the information leakage of personal identities from
releasing face images, and we hope that the privacy protection
level can be measured by a formal criterion. Meanwhile,
although DP is the most widely used notion for privacy
protection, there is no effective and formal DP definition or
mechanism in the context of image. This motivates us to use
DP to prevent identity information leakage from face images,
and we propose the IdentityDP method which makes an initial
contribution to this meaningful research topic.
2) Are we just doing adversarial attack-based privacy protec-
tion?

Initially, an adversarial attack is perceived as an “attack”
method to mislead AI models, i.e., adding small (often human
invisible) perturbation to the input data sample so as to corrupt
the prediction of a deep learning model. Although there have
been a few recent studies [14, 54] that explored the idea of
adversarial attack for privacy protection. These methods are
distinctively different from our proposed method from the
following two aspects:

• Adversarial attack-based privacy protection methods usu-
ally assume a machinery adversary, e.g., a deep learning
model from previous work. As the adversarial pertur-
bation is often small, the provided protection is not
necessarily effective against human eyes. In contrast,
our proposed method consider both human and machine
as adversaries, and provide effective privacy protection
against both types of adversaries.

• There is no formal and strict privacy guarantee provided
by the adversarial attack-based privacy protection meth-
ods, while the privacy level of our proposed IdentityDP
is clearly defined and rigorously guaranteed by the DP
criterion.

3) Are we just doing differentially private machine learning?
Researchers in the field of differentially private deep learn-

ing [55, 56] are work on preventing model itself from releasing
private information of its training datasets, and maintaining a
manageable cost in software complexity, training efficiency,
and model quality at the same time. However, it is differ-
ent from our research topic of face de-identification. De-
identification is a process which aims to remove all identifica-
tion information of the person from an image or video, while
maintaining as much information on the action and its context
with a similar looking appearance [24, 57]. Our concentration
is to protect the private identity information of face images, but
not to prevent our model from releasing private information of
our training face datasets. In more detail, the role of machine
learning in this two tasks is different: their topic is to make
machine learning system private, i.e., machine learning system
is the target of privacy protection; however, our topic is to
use machine learning techniques to enhance privacy protection
(i.e., prevent the information leakage of personal identifiers
from releasing face images). Therefore, these are two different
research topics.
4) Recent researches on DP-based face de-identification.

Applying DP in images is a promising research topic
because of the increasing concerns on image privacy especially
face privacy, and there are a few recent work [58, 59] to study
this problem. They all try to implement DP into images, but in
different ways. The main idea of these methods is to inject DP
noise in the whole feature (latent) space. The disadvantage is
that the photo’s quality is very sensitive to the amount of noise,
and even a small noise perturbation (large epsilon value) will
make the photo distorted. Our work solves this problem by
only adding noise to the disentangled identity representation.
The essential point of our proposed method is that the noise
needed for de-identification is much smaller than the existing
methods, as the disentangled identity vector has a much
smaller norm than the whole latent space vector. In addition,
Laplace mechanism is the most often used mechanism to
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Fig. 3. Network structure of the proposed neural network in stage-I. Conv k,s,p represents a Convolutional Layer with kernel size k, stride s and padding p.
ConvTranspose k,s,p represents a Transposed Convolutional Layer with kernel size k, stride s and padding p. All LeakyReLUs have α = 0.1. AAD ResBlk
(cin, cout) represents an AAD ResBlk with input and output channels of cin and cout.

achieve a strict DP privacy guarantee. While other mechanisms
such as Gaussian mechanism and Exponential mechanism may
also be used, they are not as popular as Laplace mechaism.
Hence, the existing methods [58, 59] that implement DP for
images all adopt the Laplace mechanism, and we select the
Laplace DP mechanism in our method at the second stage
too.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets: We choose the CelebA-HQ datasets, which
contains 30K high-resolution celebrity images with diverse
demographic information like age, gender, and race [60],
to train our network in stage-I. We randomly select 27K
images for training and 3K for testing. Moreover, in order
to demonstrate our generalization ability and compare with
conditional comparisons conveniently, we also test IdentityDP
on the CelebA [61] datasets. All images are aligned and
cropped to size 256× 256 covering the whole face, as well as
some background regions.

2) Comparison methods: To validate the effectiveness of
the proposed IdentityDP framework, we compare to traditional
anonymization methods as well as state-of-the-art methods.

• Traditional Anonymization methods. We use Pixelization,
Noise and Blur of faces.

• State-of-the-art methods. We select 4 methods: Anony-
mousNet [15], DeepPrivacy [19], CIAGAN [25] and
Fawkes [14].

B. Evaluation Metrics

We evaluate all methods in privacy metrics as well as utility
metrics.

1) Privacy metrics. Two different metrics are used to mea-
sure the performance of privacy protection.

• Identity Distance ID DIS. We employ FaceNet identi-
fication model [46] based on Inception-Resnet backbone,
pre-trained on two public datasets: CASIA-Webface [62]
and VGGFace2 [63], whose LFW accuracy can reach
99.05% and 99.65% individually. The output distance of
FaceNet can indicate the pairs of input faces’ identity
difference.

• Protection success rate PSR. Besides publicly available
datasets and known model architectures for academic
usage, we also wish to understand the performance of
IdentityDP on public facial verification services that
people may touch in daily life. Therefore Microsoft Azure
Face [64] is employed to evaluate real-world effectiveness
of a method. It gives judgement of whether the input pairs
are of the same people. The protection success rate is the
proportion of faces that are judged as different from the
original ones.

2) Utility metrics. Two different metrics are used to evaluate
the utility of processed images.

• PSNR and SSIM. We choose peak-signal-to-noise ratio
(PSNR) as well as structural similarity index measure
(SSIM) as two objective measures of similarity between
anonymous results and original faces.

• Face detection rate FDR. We evaluate whether the
processed images are still usable for identity-agnostic
computer vision tasks by performing face detection using
HOG [65] Detector, and we calculate the proportion of
faces that can be detected in the protected images.

C. Implementation Details

We implement our framework as shown in Fig. 2. The
number of attribute representation is set to n = 8 (Eq.
(8)). The detailed network structure is given in Fig. 3. In
the training process, we use the Adam optimizer [66] with
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momentum parameters β1 = 0, β2 = 0.999. The learning
rate is set to 0.0004. The parameters in Eq. (18) are set to
λatt = λrec = 10, λid = 5.

D. ϵ-IdentityDP Mechanism Analysis

To explicitly understand the differential privacy mechanism
in our proposed IdentityDP, we design an experiment to ex-
plore how the privacy budget ϵ affects the face anonymization
performance. First of all, we extract every test image’s identity
representation and calculate the l1−norm sensitivity ∆f , i.e.,
∆f = max

X,X′
||rid(X) − rid(X

′)||1, X,X ′ ∈ test datasets.

Then we increase ϵ from 1.1 to 800, and accordingly adjust
the IdentityDP framework. Since our ϵ-IdentityDP mechanism
M(X) is M(X) = rid(X) + Lap(∆f

ϵ ), we double ϵ for
better display effect and 100 anonymous faces are generated
for every test face under each ϵ. Finally, various statistical
mean metric values are calculated at each ϵ value.
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Fig. 4. Identity protection performance: (a) the identity distance calculated
by FaceNet model trained on CASIAWebface and VGGFace2 datasets re-
spectively; (b) the Protection success rate calculated through public facial
verification service [64].

For privacy protection, when ϵ increase from 0.01 to 800,
Fig. 4 (a) shows that the average identity distance decreases
gradually and Fig. 4 (b) shows that the protection success rate
decrease from 97.367% to 1.125%, illustrating that a smaller
privacy budget guarantees better de-identified results. We show
anonymous image whose identity distance is closest to the
mean distance under every ϵ in Fig. 6 for visual observation,
which also implies the diversity of our de-identified results.
For data utility, Fig. 5 (a) plots PSNR and SSIM vs. ϵ,

indicating that the visual similarity gets better as the privacy
budget increases. Fig. 5 (b) shows that our face detection rate
always remains at a high level, demonstrating that identity-
agnostic computer vision technologies can still work on our
processed faces. Specially, when the privacy budget ϵ is
small (i.e., a strong privacy protection), the subtle differences
between the de-identified faces and the corresponding original
ones can be perceived by humans easily (e.g., e.g., dfferent
eyebrow shapes, different iris colors, and different lip shapes),
while they still share a great visual similarity on the whole.
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Fig. 5. Image utility performance: (a) PSNR and SSIM; (b) the Face detection
rate calculated through HOG detector.

Furthermore, an unexpected issue is that the face detection
rate decreases slightly as ϵ increases. After research, we find
the reason is that partially severely blocked faces in test
datasets can recover some facial features in the blocked area
using our framework, resulting in the detection of originally
undetectable faces.

Fig. 1 illustrates some de-identified results in pairs, where
left is the original image and right is the result generated
by our framework. It demonstrates that human identities are
obfuscated in a perceptually natural manner, in the meantime,
each pair of images still shares similar appearance, as well as
the same expression and background. It is worth noticing that
our results can well retain the unique attributes of characters,
such as rare hairstyles, beards, glasses and other accessories,
which is hard to achieve in previous GAN-based methods.

Based on a large number of experiments, we get some
experience in choosing a suitable privacy budget value: if
the image’s hue is light or the people’s expression is exag-
gerated, a smaller privacy budget should be chosen. In fact,
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Original Face ε = 1.1 ε = 3.125 ε = 6.25 ε = 12.5 ε = 25 ε = 50 ε = 100 ε = 200 ε = 400 ε = 800

Fig. 6. Qualitative comparison of the influence of parameter ϵ. The first column shows the original face images. The rest columns demonstrate anonymous
face whose identity distance is closest to the mean distance under every ϵ.

we believe that setting the privacy budget to any positive
number less than 10 will get the advanced anonymization
effect successfully, and We recommend the user to set their
privacy budget between 0.5 and 7 to obtain anonymous face
efficiently with quite well-preserved appearance. Specifically,
during the subsequent experiments, we set privacy budget to
6 and 0.57.

E. Comparisons with Traditional Methods

In this subsection, the following traditional methods are
implemented: (1) Pixelization: we cluster face region’s pixels
that are close in 2D space and color space, and then replace
each cluster (8×8, 16×16) with its average value. (2) Noise:
we add Gaussian noise (σ = 9, 49) on each pixel’s RGB value
of the face region; (3) Blur: following Ryoo et al. [67], we
downsample the face region to extreme low-resolution (7× 7,
19× 19) and then upsample back. We set the privacy budget
to 6. It can be seen that for the fairness of comparison, we
select two parameters for each traditional method: one aims
to make the identity distance close to our approach, at this
time, the utility metrics are mainly compared; the other aims
to make PSNR or SSIM close to our method, at this time, the
privacy metrics are mainly compared.

Fig. 7 shows the qualitative results. It is obvious that our
approach achieves a great advantage in visual similarity as

TABLE I
QUANTITATIVE EVALUATION ON CELEBA-HQ DATASETS

UNDER DIFFERENT METRICS

Method ID DIS PSR PSNR SSIM FDR
CASIA VGGFace2

Pixelization(8× 8) 0.8646 0.8993 0 26.735 0.7671 0.923
Pixelization(16× 16) 1.1541 1.2195 0.017 23.926 0.7223 0.058

Noise(σ = 9) 0.3317 0.2723 0.002 23.831 0.8312 0.986
Noise(σ = 49) 1.1267 1.0280 0.012 14.370 0.5533 0.425

Blur(7× 7) 0.8491 0.8380 0 27.405 0.806 0.888
Blur(19× 19) 1.1102 1.1857 0.669 24.829 0.7719 0.518
DeepPrivacy 1.0860 1.1829 0.961 21.012 0.7808 0.989

Fawkes 0.7267 0.8585 0 35.898 0.9487 0.985
Ours(ϵ=6) 1.1403 1.2012 0.908 24.640 0.8606 0.997

Ours(ϵ=0.57) 1.1644 1.2307 0.967 23.909 0.8519 0.997

well as realism. The detailed quantitative results are shown in
Table I, illustrating that the traditional methods fail to improve
the privacy-utility trade-off and perform poorly in preventing
practical face verification.

F. Comparisons with State-of-the-art Methods

In this subsection, we compare our IdentityDP with state-
of-the-art face de-identification methods. Among them, Deep-
Privacy and Fawkes are trained and tested on CelebA-HQ
datasets. Anonymousnet and CIAGAN require pre-annotations
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Original Face Blur (7×7) Blur (19×19)Pixelization (8×8) Pixelization (16×16) Noise (σ=9) Noise (σ=49) Ours(ε=6) Ours(ε=0.57)

Fig. 7. Qualitative comparison with traditional methods. From left to right: original faces, faces obfuscated by Pixelization(4× 4, 8× 8), Noise(σ = 9, 18),
Blur(8× 8, 16× 16), faces generated by our method(ϵ=6 and ϵ=0.57).

and are trained on CelebA datasets, so we transfer our frame-
work on CelebA and compare with them for fairness. We
evaluate performance with these methods respectively.

1) Comparisons with Attribute manipulation-based
Anonymization: Facial attributes, including gender, age,
haircut and so on, should be an important reference for
identifying faces’ identities, especially affecting human’s
subjective judgment. Therefore, manipulating face attributes
to make faces anonymous seems reasonable. AnonymousNet,
a privacy-preserving attribute selection algorithm for facial
image obfuscation, is a typical representative.

Fig. 8 shows the anonymous faces generated from our
framework and those from AnonymousNet. Due to the change
of several face attributes, the anonymous face generated by
AnonymousNet is often visually different from the original
face, especially when modifying gender, which is not con-
ducive to the normal use of the images. In contrast, our method
achieves significant improvement in visual similarity. As can
be seen from Table II, our method performs better under
both privacy metrics and utility metrics, not to mention that
AnonymousNet requires detailed data annotations. Moreover,
it is worth noticing that although anonymous faces generated
by AnonymousNet are visually very different from the orig-
inal one, face verification service API can still judge them
correctly, which suggests that general face attributes are not
directly related to human identity.

2) Comparisons with Conditional inpainting-based
Anonymization: Exposure of faces is the source of private
information leakage. Therefore, some methods directly feed
their networks with face-removing images as well as auxiliary
annotations to automatically generate anonymous human
faces. In this way, the generator never touches original faces,
ensuring the removal of any privacy-sensitive information.
DeepPrivacy is such a method which requires two annotations:
a bounding box to identify the privacy-sensitive area and
a sparse seven keypoints pose estimation of the face. It
generates de-identified faces considering the original pose
and image background. We compare our method with it.

Fig. 9 reports the difference of methods. We can see that
the face generated by DeepPrivacy can maintain the facial pose
well, but is not visually similar to the original image. Besides,
distortions and artifacts often occur. Our method produces
more visual-pleasing anonymous faces which look similar to
the original one. Table I shows quantitative results, when ϵ
is set to 6, our method is slightly inferior to DeepPrivacy in
terms of privacy protection, but has remarkable data utility
improvement, moreover, when ϵ is set to 0.57, our method
outperforms DeepPrivacy with almost no distortion or artifact.

TABLE II
QUANTITATIVE EVALUATION ON CELEBA DATASETS UNDER

DIFFERENT METRICS

Method ID DIS PSR PSNR SSIM FDR
CASIA VGGFace2

AnonymousNet 0.8896 1.0589 0.295 18.892 0.7192 0.892
CIAGAN 0.8155 1.0271 0.945 21.863 0.7401 0.958
Ours(ϵ=6) 0.9345 1.0918 0.905 23.353 0.8188 0.986

Ours(ϵ=0.57) 0.9622 1.1176 0.961 22.7639 0.8005 0.987

3) Comparisons with Conditional ID-swapping-based
Anonymization: Since anonymizing a face is intended to hide
its original identity, swapping the original ID with others
may be a straightforward idea. Conditioned on face landmark
and masked background image of the input image, CIAGAN
generates a new fake identity out of the input image to achieve
anonymization.

We compare images generated from our proposed frame-
work and those from [25]. From Fig. 8 we can see that the two
methods produce comparable results, while ours enjoy a better
visual similarity and less artifacts. Table II shows quantitative
results. When ϵ is set to 6, CIAGAN protects privacy better
from the perspective of PSR, however, when setting ϵ to 0.57,
we outperform CIAGAN from all metrics and maintain a better
visual similarity on the whole.

Moreover, CIAGAN has some notable flaws: 1) It needs
to borrow someone else’s identity as operation guidance,
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Fig. 8. Qualitative comparison of our method with AnonymousNet [15] and
CIAGAN[25]. The top row shows original faces, the second row and the third
row show corresponding anonymous faces generated by AnonymousNet and
CIAGAN. The last two rows shows our results(ϵ=6 and ϵ=0.57).

which may affect the privacy and security of the identity
provider; 2) Faces de-identified by CIAGAN is visually similar
to original ones only when the fake ID provider shares the
same gender, a similar age as well as similar makeup with
the person with the original ID, which makes it not very
convenient to use in practice; 3) CIAGAN cannot maintain
certain special attributes, such as glasses, heavy makeup, and
thick beard, unless the identity provider also has; 4) CIAGAN
depends on landmark detection to provide pre-annotations,
which tends to miss any face that has not been detected in
the anonymization process. In contrast, our approach does not
have these problems, as ours does not need the assistance of
other identities, can retain the special attributes of original
faces, and does not need pre-annotations.

In summary, our method can surpass the privacy preserva-
tion ability of CIAGAN while maintaining a similar appear-
ance to their original ones, and our proposed method signif-
icantly performs better in terms of the utility metrics, which
is preferable for real-life applications. Hence, our proposed
method is superior to CIAGAN in terms of the privacy-utility
tradeoff and the capacity for providing provable and strict
privacy guarantee.

4) Comparisons with Adversarial Perturbation-Based
Anonymization: De-identified methods based on adversarial
examples are continuously popular because of their almost the
same anonymous results. However, their performance depends
largely on the accessibility of the target system’s internal
parameters, or special training on the target system. Fawkes, as
one of the latest representatives, is selected as our comparison.

Fig. 9 demonstrates that Fawkes can generate faces that look
extremely like the original one, except for a few strange spots
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Fig. 9. Qualitative comparison of our method with DeepPrivacy [19] and
Fawkes [14]. The top row shows original faces, the second row and the
third row show corresponding anonymous faces generated by DeepPrivacy
and Fawkes. The last two rows show our results(ϵ=6 and ϵ=0.57).

that sometimes appear. We just provide a comparable result.
However, Table I shows that Fawkes performs poorly under
privacy metrics, which means that faces processed by Fawkes
are unable to obfuscate the previously inaccessible systems.
In contrast, although our method suffers less visual similarity,
it works significantly better in preserving face privacy.

TABLE III
ADDITIONAL QUANTITATIVE EVALUATION WITH
STATE-OF-THE-ART METHODS ON LFW DATASETS

Method FaceNet model FID
CASIA VGGFace2

Original 0.965 ± 0.016 0.986 ± 0.010 0
AnonymousNet 0.037 ± 0.015 0.044 ± 0.016 6.8479

DeepPrivacy 0.029 ± 0.012 0.039 ± 0.014 2.7122
CIAGAN 0.019 ± 0.008 0.034 ± 0.015 2.1756
Fawkes 0.898 ± 0.010 0.917 ± 0.012 1.2681

Ours(ϵ=6) 0.019 ± 0.010 0.031 ± 0.015 2.0201
Ours(ϵ=0.57) 0.016 ± 0.011 0.024 ± 0.014 2.0401

5) Additional Discussion: To make the comparison more
convincing and fairer, we follow the evaluation protocol that
has been used in CIAGAN, and add two experiments with the
state-of-the-art methods to evaluate the performance of privacy
and utility respectively.

Firstly, we use the evaluation method for privacy protection,
which is conducted on the LFW benchmark. In this exper-
iment, we employ two FaceNet identification models (pre-
trained on CASIA-Webface [62] and VGGFace2 [63]), and
the main evaluation metric is the true acceptance rate. Tab. III
presents the results on de-identified LFW image pairs for a
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Fig. 10. Our de-identification results on examples labeled as challenging
or very challenging in the NIST Face Recognition Challenge [68]. The first
row shows original faces, and the following row shows our corresponding
de-identified results.

given person, while the de-identification method is applied to
the second image of each pair. It can be seen that all the state-
of-the-art methods can let the true positive rate drop from
almost 0.99 to less than 0.05 except Fawkes. In particular,
when ϵ is 0.57, our method yields the lowest true positive rate
when two FaceNet models pre-trained on CASIA dataset and
VGGFace2 dataset are employed.

Then we evaluate the utility of the images by using the
FID score on LFW dataset, as it can measure the distance
between the generated distribution and the real distribution.
The results are shown in Table III. Among the methods that
can effectively drop the true acceptance rate and well protect
the identity information, our method achieves the best FID
score. It demonstrates that our de-identified images exhibit
a closer similarity to the original ones in terms of data
distribution, which is consistent with our intuitive expectation.

Besides, there is no formal and strict privacy guarantee pro-
vided by the state-of-the-art privacy protection methods, while
the privacy level of our proposed IdentityDP is clearly defined
and rigorously guaranteed by the DP criterion. Therefore, our
method has the advantage of providing provable and strict
privacy guarantee.

G. Generalization Ability
Our IdentityDP provides great generalization to various

face images. In previous experiments, it has been proved
by showing remarkable qualitative and quantitative results on
CelebA, a datasets that our IdentityDP has never trained on
before. To further demonstrate the robustness of our method,
we apply our framework to face images from the very difficult
inputs of [68]. As can be seen in Fig. 10, our method is robust
to very challenging illuminations.

In addition, we apply our framework on artistic portraits.
All artworks are taken from Wikiart.org. Fig. 11 shows the
interesting results, illustrating that faces in different styles are
anonymized successfully without causing significant distor-
tions or artifacts.

H. Computational Overhead
In this subsection, we evaluate our computational overheads

for anonymizing faces. IdentityDP adds little overhead for
processing, as the only additions are a random noise tensor. On
an NVIDIA GTX 1080 Ti, IdentityDP takes on average 0.329s
per image. The low computational overhead is beneficial to
process a large amount of face images.

Fig. 11. Our anonymization results on challenging artistic portraits. The first
and the third row show the artistic portraits, while the second and the fourth
row show our corresponding anonymous results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the IdentityDP framework that
combines differential privacy mechanisms with deep neural
networks to achieve image privacy protection for the first time.
Our framework consists of three stages: deep representations
disentanglement, ϵ-IdentityDP perturbation and image recon-
struction. In our framework, DP perturbation is directly added
on to the identity representation to ensure privacy protection,
while the attribute representation is unchanged and it preserves
visual similarity well. Furthermore, the adjustable privacy
budget guarantees the diversity of anonymization results. Ex-
periments demonstrate the effectiveness of our framework in
terms of privacy protection and image utility, and produce
satisfactory results compared with the traditional as well as
state-of-the-art methods. Moreover, our framework has a good
generalization ability. In the future, we will further explore the
trade-off between user privacy and authorized use of work. In
addition, extending this work to videos and achieving temporal
consistency would be an interesting direction.
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