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ABSTRACT

Probing into the Robustness of Deep Learning Models in Visual

Recognition Applications

by

Hu Zhang

Past years have witnessed huge progress in a variety of vision tasks, e.g., recog-

nition, segmentation, detection, with the successful application of deep neural net-

works (DNNs). However, in real-world applications, DNNs tend to su↵er from poor

generalization ability and severe degraded performance when the scenarios become

more complex, e.g., some imperceptible perturbations are imposed on the input or

the given data is highly imbalanced. One promising direction to alleviate these

drawbacks could be exploring the model’s robustness. In this thesis, I primar-

ily investigate model robustness from the perspective of adversarial attacks and

long-tailed recognition. Specifically, for adversarial attacks, I design more e�cient

adversarial noise on the input data and study the behaviour of DNN models. I

found the leverage of multiple o↵-the-shelf models in a meta way and the motion

extracted from video frames are key to image- and video-based adversarial attacks.

Then, for datasets that are skewed and exhibit a long-tailed distribution, I found

the alleviation of gradient distortion between di↵erent classes and the excavation

of novel features via self-supervision is of great help in boosting model’s behaviour

in long-tailed setting. Additionally, I study the majorization-minimization (MM)

algorithm on non-convex problem, which paves the way for studying the model’s

robustness under di↵erent training strategies. Throughout the results in this the-

sis, I hope these findings could provide some key insights to further strengthen the



model’s robustness in the future.
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