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ABSTRACT

Parameter Estimation and Hybrid Precoding Design for Millimeter

Wave Mobile Networks

by

Zhitong Ni

With the exponential rise of mobile data rates, millimeter wave (mmWave) mo-

bile networks (mmWMNs) have become the trend in the 5th generation mobile

cellular networks and beyond. In mmWMNs, the mmWave band can provide the

ultra-high data rates due to its extremely wide frequency band resources, and the

densely deployed base stations (BS) can significantly improve the network through-

put per cell. However, the severe path loss and fading issues of the mmWave band

dramatically impair the received signal-to-interference-plus-noise ratio and limit the

network throughput. A revolution in the hardware architecture and the signal pro-

cessing has been occurring for years. Numerous novel channel estimation and pre-

coding techniques were proposed. In particular, angular sparsity is an intensified

property for conducting mmWave channel estimations and hybrid precoding is a

promising technique to realize mmWave communications. Existing hybrid precoding

schemes either require full channel state information (CSI) or use codebook-based

design. The former one requires highly accurate estimated channels while the latter

has a degraded system performance. On the other hand, mmWave radar sensing

has been successfully and commercially adopted for decades. With the number of

electric devices increasing rapidly, there exist more and more demands to fuse the

radar functions into the mmWave communication mobile networks. The primary

issue is to realize a robust mmWave communication system. Issues following this

include how to jointly estimate the communication channel and the radar channel,

and how to address the interferences between radar waveforms and communication

waveforms.



Under this background, this doctoral thesis mainly focuses on signal processing

techniques that can realize mmWave channel estimation for both radar and commu-

nication purposes, and hybrid beamforming/precoding algorithms that can increase

the communication data rates. This thesis will include: 1) Subarray-based angle-

of-arrivals (AoAs) estimation, where the AoAs can refer to both the line-of-sight

(LOS) angles coming from users and the non-line-of-sight (NLOS) angles coming

from targets; 2) Energy-efficient hybrid precoding and sparse precoding (virtual ar-

ray), where both fully-connected and partially-connected hybrid precoders are opti-

mized based on the metric of energy efficiency; 3) Adaptive hybrid precoding and the

quantization of radio-frequency (RF) precoder using minimum subspace distortion

(MSD), where the adaptive precoding aims to adjust the precoding matrix based on

the transmit power, and the MSD quantization aims to improve the system perfor-

mance loss caused by the quantization; 4) Uplink radar sensing fused in mmWMNs,

where a radar sensing scheme is proposed without requiring synchronization between

BS and user equipment.
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j denotes
√
−1.

I denotes the identity matrix.

(·)H , (·)∗, (·)T , (·)−1, and (·)† denote the Hermitian transpose, conjugate, transpose,

inverse, and pseudo-inverse, respectively.

‖ · ‖ and ‖ · ‖F denote the Euclidean norm and Frobenius norm, respectively.

|a| is the absolute value of a and |A| is the determinant of A.

[A]m,n is the (m,n)th entry of A and [A]n is the nth column of A.

∠(·) denotes the phase value of a complex scalar, vector, or matrix.

E(·) denotes the expected value.
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