

Parameter Estimation and Hybrid Precoding Design for Millimeter Wave Mobile Networks

by

Zhitong Ni

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of

J. Andrew Zhang and Xiaojing Huang

Australia, Sydney University of Technology Sydney Faculty of Engineering and Information Technology

Oct 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, *Zhitong Ni*, declare that this thesis, is submitted in fulfilment of the requirements for the award of *Doctor of Philosophy*, in the *School of Electrical and Data Engineering, Faculty of Engineering and IT* at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Collaborative doctoral research degree statement

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree at any other academic institution except as fully acknowledged within the text. This thesis is the result of a Collaborative Doctoral Research Degree program with *Beijing Institute of Technology*.

Indigenous Cultural and Intellectual Property (ICIP) statement

This thesis includes Indigenous Cultural and Intellectual Property (ICIP) belonging to *English*, custodians or traditional owners. Where I have used ICIP, I have followed the relevant protocols and consulted with appropriate Indigenous people/communities about its inclusion in my thesis. ICIP rights are Indigenous heritage and will always remain with these groups. To use, adapt or reference the ICIP contained in this work, you will need to consult with the relevant Indigenous groups and follow cultural protocols.

Production Note: Signature: Signature removed prior to publication.

Date: 5th October 2021

ABSTRACT

Parameter Estimation and Hybrid Precoding Design for Millimeter Wave Mobile Networks

by

Zhitong Ni

With the exponential rise of mobile data rates, millimeter wave (mmWave) mobile networks (mmWMNs) have become the trend in the 5th generation mobile cellular networks and beyond. In mmWMNs, the mmWave band can provide the ultra-high data rates due to its extremely wide frequency band resources, and the densely deployed base stations (BS) can significantly improve the network throughput per cell. However, the severe path loss and fading issues of the mmWave band dramatically impair the received signal-to-interference-plus-noise ratio and limit the network throughput. A revolution in the hardware architecture and the signal processing has been occurring for years. Numerous novel channel estimation and precoding techniques were proposed. In particular, angular sparsity is an intensified property for conducting mmWave channel estimations and hybrid precoding is a promising technique to realize mmWave communications. Existing hybrid precoding schemes either require full channel state information (CSI) or use codebook-based design. The former one requires highly accurate estimated channels while the latter has a degraded system performance. On the other hand, mmWave radar sensing has been successfully and commercially adopted for decades. With the number of electric devices increasing rapidly, there exist more and more demands to fuse the radar functions into the mmWave communication mobile networks. The primary issue is to realize a robust mmWave communication system. Issues following this include how to jointly estimate the communication channel and the radar channel, and how to address the interferences between radar waveforms and communication waveforms.

Under this background, this doctoral thesis mainly focuses on signal processing techniques that can realize mmWave channel estimation for both radar and communication purposes, and hybrid beamforming/precoding algorithms that can increase the communication data rates. This thesis will include: 1) Subarray-based angle-of-arrivals (AoAs) estimation, where the AoAs can refer to both the line-of-sight (LOS) angles coming from users and the non-line-of-sight (NLOS) angles coming from targets; 2) Energy-efficient hybrid precoding and sparse precoding (virtual array), where both fully-connected and partially-connected hybrid precoders are optimized based on the metric of energy efficiency; 3) Adaptive hybrid precoding and the quantization of radio-frequency (RF) precoder using minimum subspace distortion (MSD), where the adaptive precoding aims to adjust the precoding matrix based on the transmit power, and the MSD quantization aims to improve the system performance loss caused by the quantization; 4) Uplink radar sensing fused in mmWMNs, where a radar sensing scheme is proposed without requiring synchronization between BS and user equipment.

Dedication

To my beloved family:

During conquering my Ph. D. period, my family give me a lot of supports mentally and financially. Without their supports, I would not live so happily and focus on my study and researches. As I lived in a small city when I was young, people there would not take study so serious. Many people finished their nineyear compulsory education and went to work. Fortunately, I outstood my study capability at that time. My family decided to let me continue my education from high school to university. I was lucky to get the opportunity to study abroad in Australia with the help of my supervisor, Dr. Andrew. Before I came here, my family helped me prepare my ID, supported me to join in a cram study session to improve my English, and gave me allowance monthly for my living. After I came here, I was always alone and couldn't find friends. My family talked with me frequently to make sure everything was fine. Even though Ph. D. has a stipend, I still have worries about my future and keep wondering that if I can support myself and live independently. My family also think that study is like an adventure that has so many uncertainties. Until now, I become relatively positive about my future. Now, I am about to finish my journey of Ph. D. and hope to find a decent job. I would like to thank those who support me to keep studying for this long time of period.

Sincerely,

Zhitong Ni.

Acknowledgements

I pursue my Ph.D. degree from 2017 in School of Information and Electronics, Beijing Institute of Technology, China, and get the opportunity to pursue a dual Ph. D. degree from 2019 in the School of Electrical and Data Engineering, Faculty of Engineering and IT, the University of Technology Sydney (UTS), Australia.

Back in China, I was well nurtured by many good professors, including Jianping An, Kai Yang, and Fei Gao, etc. They helped me acquire the basic expertise so that I can transfer smoothly from undergraduate to Ph. D. candidate. In 2018, I met Dr. Andrew Zhang fortunately who later invited me to study abroad and became my primary supervisor in Australia. I would deeply appreciate his hard work and academic perspective that helped me so much to go on my researches and produce publications. Whenever I have confusion about an academic problem, he can always help me overcome the obstacles. I also thank him for his kindness and recognition of giving me the chance to study abroad. In UTS, I learned many novel ideas from my colleagues and supervisors. The most important thing is that almost all my research publications are born when I study abroad. This could be a coincidence but I could not obtain so many outcomes without the help of Prof. Zhang and other colleagues. I would also thank my Associate supervisor, Dr. Xiaojing Huang, who also helped me a lot with my English writing.

Many thanks to all my co-authors, including all the above-mentioned professors, and Prof. Jinhong Yuan. I was so lucky to meet these good professors who showed me in person how to be a professional researcher. Their ideas and perspectives also show me the right way to keep on exploiting the undiscovered research areas. For all my colleagues both back in China and in Australia, I would like to say I feel honoured to work with you. You all are hardworking and optimistic persons. A special thank to Ms. Yashuang Guo who gave me many supports when I feel anxious when I am not sure that I can go to Australia or not.

I would like to thank my home university and the host university that supply such a great platform for young Ph. D. students to study in a wonderful academic environment. My family is not rich. I even had a tuition loan when I was an undergraduate. I deeply appreciate all the stipends that help me focus on studying. I hope my Ph. D. thesis can be the best present for all the people I thank, all the communities/parties that help me, and all the things that I love.

List of Publications

Journal Papers

- J-1. Z. Ni, J. A. Zhang, K. Yang, F. Gao and J. An, "Estimation of Multiple Angleof-Arrivals With Localized Hybrid Subarrays for Millimeter Wave Systems," in IEEE Transactions on Communications, vol. 68, no. 3, pp. 1897-1910, Mar. 2020.
- J-2. Z. Ni, J. A. Zhang, K. Yang, F. Gao and J. An, "Low-Complexity Subarray-Based RF Precoding for Wideband Multiuser Millimeter Wave Systems," in IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 8028-8033, Jul. 2020.
- J-3. Z. Ni, J. A. Zhang, K. Yang, F. Gao and J. An, "Hybrid Precoder Design with Minimum-Subspace-Distortion Quantization in Multiuser MmWave Communications," in IEEE Transactions on Vehicular Technology, pp. 11055-11065, Oct. 2020.
- J-4. Z. Ni, J. A. Zhang, X. Huang, K. Yang and J. Yuan, "Uplink Sensing in Perceptive Mobile Networks With Asynchronous Transceivers," in IEEE Transactions on Signal Processing, vol. 69, pp. 1287-1300, Feb. 2021.

Conference Papers

- C-1. Z. Ni, J. A. Zhang, K. Yang, F. Gao and Z. Gao, "Codebook Based Minimum Subspace Distortion Hybrid Precoding for Millimeter Wave Systems," 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018, pp. 1-6.
- C-2. Z. Ni, J. A. Zhang, X. Huang, K. Yang and F. Gao, "Parameter Estimation and Signal Optimization for Joint Communication and Radar Sensing," 2020 IEEE

International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020, pp. 1-6.

Contents

Certificate	ii
Abstract	iii
Dedication	V
Acknowledgments	vi
List of Publications	viii
List of Figures	xiv
Abbreviation	xvii
Notation	XX
1 Introduction	1
1.1 Background	
1.2 Research Objectives	
1.3 Thesis Contributions	10
1.4 Thesis Organization	13
2 Literature Review	14
2.1 Characteristics of Millimeter Wave	14
2.2 Key Technologies in mmWMNs	
2.3 Related Work	
2.3.1 Hybrid Precoding Architectures	
2.3.2 Channel Estimation/Sensing Schemes	

	2.3.3 Optimizations for Precoding	30
	2.3.4 6G Applications: Joint Radar and Communications	34
3	Angle-of-Arrivals Estimation for Uplink MmWMNs	37
	3.1 System and Channel Models	. 37
	3.2 Pilot Design	40
	3.3 BS Combiner Design	42
	3.4 Estimation of $N\Omega_{u,l}$	46
	3.5 Associating AoAs to UEs	49
	3.6 Definitions of Performance Metrics	51
	3.7 Simulation Results	55
	3.8 Concluding Remark	62
4	Subarray-based Energy-Efficient Hybrid Precoding	63
4	4.1 System and Channel Models Subarray-based Energy-Efficient Hybrid Precoding	63
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.1	63 63 66
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.3 Proposed RF Precoding Scheme	63 63 66 68
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.3 Proposed RF Precoding Scheme 4.4 Power Allocation	63 63 66 68 71
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.3 Proposed RF Precoding Scheme 4.4 Power Allocation 4.5 Energy Efficiency of Virtual Arrays (Sparse Arrays)	63 63 66 68 71 72
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.3 Proposed RF Precoding Scheme 4.4 Power Allocation 4.5 Energy Efficiency of Virtual Arrays (Sparse Arrays) 4.6 Simulation Results	63 63 66 68 71 72 74
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.3 Proposed RF Precoding Scheme 4.4 Power Allocation 4.5 Energy Efficiency of Virtual Arrays (Sparse Arrays) 4.6 Simulation Results 4.7 Concluding Remark	63 63 66 68 71 72 74 74
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.2 Problem Formulation 4.3 Proposed RF Precoding Scheme 4.4 Power Allocation 4.5 Energy Efficiency of Virtual Arrays (Sparse Arrays) 4.6 Simulation Results 4.7 Concluding Remark Adaptive Hybrid Precoding and Minimum-Subspace	63 63 66 68 71 72 74 74
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.3 Proposed RF Precoding Scheme 4.4 Power Allocation 4.5 Energy Efficiency of Virtual Arrays (Sparse Arrays) 4.6 Simulation Results 4.7 Concluding Remark Adaptive Hybrid Precoding and Minimum-Subspace Distortion (MSD) Quantization	63 63 66 68 71 72 74 77 79
4	Subarray-based Energy-Efficient Hybrid Precoding 4.1 System and Channel Models 4.2 Problem Formulation 4.3 Proposed RF Precoding Scheme 4.4 Power Allocation 4.5 Energy Efficiency of Virtual Arrays (Sparse Arrays) 4.6 Simulation Results 4.7 Concluding Remark Adaptive Hybrid Precoding and Minimum-Subspace Distortion (MSD) Quantization 5.1 System and Channel Models	63 63 66 68 71 72 74 74 77 79 79

xi

	5.3	UE Co	mbining Vector	5
	5.4	BS Ada	aptive Hybrid Precoder	,
	5.5	RF Un	constrained Solutions	
		5.5.1	BS Eigenbeam RF Precoder)
		5.5.2	Optimization of g Using Eigenbeam RF Precoder $\ldots \ldots 87$,
	5.6	RF Cor	nstrained Solutions	,
		5.6.1	MSD Quantization for Practical RF Precoder	,
		5.6.2	Optimization of g Using Practical RF precoder $\ldots \ldots \ldots 91$	
	5.7	Simulat	ion Results	:
	5.8	Conclu	ding Remark	,
6	Up	olink S	ensing in mmWave Mobile Networks 98	
	6.1	System	and Channel Models	,
	6.1 6.2	System Cross C	and Channel Models	
	6.16.26.3	System Cross (Mirrore	and Channel Models	5
	6.16.26.3	System Cross C Mirrore Frequen	and Channel Models	
	6.16.26.3	System Cross C Mirrore Frequen 6.3.1	and Channel Models 98 Correlations for Mitigating TOs and CFOs 103 cd-MUSIC for Estimating Propagation Delays and Doppler 107 ncies 107 Proposed Mirrored-MUSIC Algorithm 107	· · · · · · · · · · · · · · · · · · ·
	6.16.26.3	System Cross C Mirrore Frequen 6.3.1 6.3.2	and Channel Models 98 Correlations for Mitigating TOs and CFOs 103 cd-MUSIC for Estimating Propagation Delays and Doppler 107 ncies 107 Proposed Mirrored-MUSIC Algorithm 107 Pair Matching and Doppler Frequency's Sign Determination 112	· · · · · · · · · · · · · · · · · · ·
	6.16.26.3	System Cross C Mirrore Frequen 6.3.1 6.3.2 6.3.3	and Channel Models 98 Correlations for Mitigating TOs and CFOs 103 cd-MUSIC for Estimating Propagation Delays and Doppler 107 ncies 107 Proposed Mirrored-MUSIC Algorithm 107 Pair Matching and Doppler Frequency's Sign Determination 112 Performance Analysis 113	· · · · · · · · · · · · · · · · · · ·
	6.16.26.36.4	System Cross C Mirrore 6.3.1 6.3.2 6.3.3 Simulat	and Channel Models98Correlations for Mitigating TOs and CFOs103cd-MUSIC for Estimating Propagation Delays and Doppler107ncies107Proposed Mirrored-MUSIC Algorithm107Pair Matching and Doppler Frequency's Sign Determination112Performance Analysis113cion Results116	-
	 6.1 6.2 6.3 6.4 6.5 	System Cross C Mirrore 6.3.1 6.3.2 6.3.3 Simulat Conclu	and Channel Models98Correlations for Mitigating TOs and CFOs103cd-MUSIC for Estimating Propagation Delays and Doppler107ncies107Proposed Mirrored-MUSIC Algorithm107Pair Matching and Doppler Frequency's Sign Determination112Performance Analysis113cion Results116ding Remark118	
7	 6.1 6.2 6.3 6.4 6.5 Co 	System Cross C Mirrore Frequen 6.3.1 6.3.2 6.3.3 Simulat Conclusi	and Channel Models 98 Correlations for Mitigating TOs and CFOs 103 d-MUSIC for Estimating Propagation Delays and Doppler 107 ncies 107 Proposed Mirrored-MUSIC Algorithm 107 Pair Matching and Doppler Frequency's Sign Determination 112 Performance Analysis 113 tion Results 116 ding Remark 118 Ons and Future Work 120	
7	 6.1 6.2 6.3 6.4 6.5 Co 7.1 	System Cross C Mirrore Frequen 6.3.1 6.3.2 6.3.3 Simulat Conclusi Conclusi	and Channel Models 98 Correlations for Mitigating TOs and CFOs 103 cd-MUSIC for Estimating Propagation Delays and Doppler 107 ncies 107 Proposed Mirrored-MUSIC Algorithm 107 Pair Matching and Doppler Frequency's Sign Determination 112 Performance Analysis 113 tion Results 116 ding Remark 118 ons and Future Work 120 sions 120	

xiii

123

8 Appendix

.1	The range of path filter
.2	Proof of Theorem 1
.3	Proof of Theorem 2
.4	Proof of (3.31)
.5	Proof of (5.17)
.6	Proof of Proposition 1
.7	Proof of Proposition 2
.8	The Variance of Ψ

Bibliography

129

List of Figures

1.1	Illustration of mmWave mobile networks. Two key bands in the	
	mmWave spectrum are the V-Band and E-Band. The V-Band is	
	characterized by a continuous block of 9GHz of spectrum between	
	57 and 66GHz, and is most mostly unlicensed or lightly licensed	
	depending on the country. The E-Band is at 71-76GHz and	
	81-86GHz. The E-Band enables gigabit-per-second data rates given	
	the huge amount of available spectrum (10GHz) without any oxygen	
	absorption, thus allowing longer distances compared to V-Band. $$.	2

3.1	The adopted setup of mmWave mobile networks. The base station
	adopts multiple hybrid precoders, each one has $K \ \mathrm{RF}$ chains and N
	antenna elements. There are U mobile users that need to be
	serviced in the cellular networks. The channel shows a great sparsity
	with only one LOS path connected between the base station and
	each mobile user
3.2	Different levels of scanning beams used for UEs. Each line of color
	denotes a scanning beam that aims at a certain direction 41
3.3	Different cases when using different parameters. Note that M
	subarrays consist of one path filter. Here $M = 5. \ldots 35$
3.4	VP and MP for the proposed scheme versus the expected number of
	paths with $\epsilon = 0.001$

3.5	SINR versus SNR, where SNR refers to the pilot power to the	
	variance of $\mathbf{n}(t)$ and SINR refers to (3.30) that directly influences	50
	the estimation accuracy.	58
3.6	CMSE of the proposed scheme versus the expected number of paths with $\epsilon = 0.001$	59
27	MCEs of three A Λ actimation solutions uprove the SND with $U = 1$	00
ə. <i>t</i>	and $L = 1$	60
3.8	Spectral Efficiency versus the SNR in the single user wideband	
	scenario. DGMP and SW-OMP are for the schemes in [1] and [2],	
	respectively	61
4.1	The adopted setup of mmWave mobile networks. The base station	
	adopts OFDM modulations with hybrid precoding structure. $\ . \ . \ .$	63
4.2	System EE versus SNR with using different schemes	75
4.3	System EE versus the number of paths	76
4.4	System EE in virtual array setups.	78
5.1	Comparison of quantization error between the proposed MSD	
	algorithm, DFT codeword search, and element-wise phase solution,	
	with different numbers of phase shifts	94
5.2	Sum rate versus the number of RF chains and the number of	
	quantized phase shifts	95
5.3	Variation of sum rate with the factor g in the adaptive baseband	
	precoder, under different SNRs	96
6.1	Illustration of the system model for uplink sensing	99
6.2	Illustration of transmitted OFDM packets at the UE baseband	99

6.3	An example of the mirrored MUSIC estimates of delay	117
6.4	An example of the 2D spectrum of $\rho_n[m,g]$	118

Abbreviation

- 5G NR the fifth-generation New Radio
- 6G the sixth-generation
- AoA Angle of Arrival
- AoD Angle of Departure
- AWGN Additive White Gaussian Noise
- B5G Beyond the fifth-generation
- BF Beamforming
- BPD Break-point Distance
- BS Base Station
- CACC Cross-antenna Cross Correlation
- CFO Carrier Frequency Offset
- CP Cyclic Prefix
- CRB Cramér-Rao bound
- CS Compressive Sensing
- CSIT Channel State Information at Transmitter
- DAC Digital-to-analog Converter
- DC Dynamic-combined
- DFT Discrete Fourier Transform
- EE Energy Efficiency
- FC Fully-connected
- FS Fixed Subarray
- FFT Fast Fourier Transform
- GHz Gigahertz

IoV - Internet of Vehicle

JRC - Joint Radar and Communication

- LOS Line-of-Sight
- LSF Large Scale Fading
- LTE Long Term Evolution
- MIMO Multi-input Multi-output
- MMSE Minimum Mean Squared Error
- MmWMN Millimeter Wave Mobile Network
- MSD Minimum Subspace Distortion
- MU Mobile User
- MUI Multiuser Interference
- NLOS Non-Line-of-Sight
- OFDM Orthogonal Frequency Division Multiplexing
- PSK Phase-shift Keying
- RF Radio Frequency
- Rx Receive
- SDMA Spatial Division Multiple Access
- SE Spectral Efficiency
- SINR Signal-to-interference-plus-noise Ratio
- SNR Signal-to-noise Ratio
- SSF Small Scale Fading
- SVD Singular Value Decomposition
- THz Terahertz
- Tx Transmit
- TO Timing Offset
- UE User Equipment
- ULA Uniform Linear Array

- UPA Uniform Planar Array
- V2X Vehicle-to-everything

WLAN - Wireless Local Area Network

Nomenclature and Notation

Notations:

Bold lower-case letters denote column vectors.

Bold upper-case letters denote matrices.

Italic Greek letters and alphabets denote scalars.

j denotes $\sqrt{-1}$.

I denotes the identity matrix.

 $(\cdot)^{H}$, $(\cdot)^{*}$, $(\cdot)^{T}$, $(\cdot)^{-1}$, and $(\cdot)^{\dagger}$ denote the Hermitian transpose, conjugate, transpose, inverse, and pseudo-inverse, respectively.

 $\|\cdot\|$ and $\|\cdot\|_F$ denote the Euclidean norm and Frobenius norm, respectively.

|a| is the absolute value of a and $|\mathbf{A}|$ is the determinant of \mathbf{A} .

 $[\mathbf{A}]_{m,n}$ is the (m, n)th entry of \mathbf{A} and $[\mathbf{A}]_n$ is the *n*th column of \mathbf{A} .

 $\angle(\cdot)$ denotes the phase value of a complex scalar, vector, or matrix.

 $\mathbb{E}(\cdot)$ denotes the expected value.

 $\operatorname{diag}(a_1, a_2, \cdots, a_X)$ is a function to form the entries or the matrices into a diagonal matrix, and $\operatorname{diag}(\mathbf{A})$ is a function to form the diagonal entries of \mathbf{A} into a vector.

 \odot is Hadamard product. \otimes is Kronecker product.

- P power
- λ wavelength
- σ^2 variance of noise
- $f_{\rm D}$ Doppler frequency
- f_c carrier frequecy
- **s** baseband symbols
- \mathbf{F}_{BB} $\,$ baseband precoder
- $\mathbf{F}_{\mathrm{RF}} \quad \mathrm{RF} \ \mathrm{precoder}$
 - \mathbf{x} transmitted signals
- $N_{\rm T}$ number of transmit antennas
- $N_{\rm R}$ number of receive antennas
- $N_{\rm P}$ number of RF chains
- ${\bf H} \quad {\rm channel \ matrix} \quad$
- L number of paths
- W BS combiner
- \mathbf{w} UE combiner
- K number of subcarriers
- T time period
- Ω equivalent angles
- au time delays