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Abstract

Language-conditional reinforcement learning refers to the reinforcement learning task where the
language information serves as essential components in the problem formulation. In recent years,
the advances of deep reinforcement learning and language representation learning lead to increasing
research interest in this cross-domain topic, which brings benefits to the studies in both language
learning and reinforcement learning. However, challenges arise along with the premises, hindering
the language-conditional reinforcement learning from being applied in the real world. In this
research, we aim at designing language-conditional RL agent that is capable of handling the major

challenges.

We first address the challenges in state representation learning under partial observability. Motivated
by the premises of the transformer architecture in natural language processing, we design an adapt-
able transformer-based state representation generator featured with reordered layer normalization,
weight sharing and block-wise aggregation. We empirically validate our method on both synthetic
and man-made text-based games with different settings. The proposed method show higher sample
efficiency in solving single synthetic games, better generalizability in solving unseen synthetic

games, and better performance in solving complex man-made games.

Secondly, we study the reasoning process in language-conditional reinforcement learning. The
reasoning ability enables the agent to generate the actions with the support of an explainable
inference procedure. To achieve this ability, we propose an agent featured with the stacked
hierarchical attention mechanism. Through exploiting the structure of the knowledge graph, this
agent is able to explicitly model the reasoning process. Our agent demonstrates effectiveness on a

range of man-made text-based games.

Thirdly, we study the generalization problem in language-conditional RL. We consider the knowl-
edge graph-based observation, and address this challenge by designing a two-level hierarchical
RL agent. In the high level, we use a meta-policy for task decomposition and subtask selection.

Then, in the low level, we use a sub-policy for subtask-conditioned action selection. In a series of 8
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game sets with different generalization types and game difficulty levels, our proposed agent enjoys

generalizability and yields favorable performance.

Finally, we provide solutions to the challenges of low sample efficiency and large action space. We
introduce the world-perceiving modules, which automatically decompose tasks and prune actions
by answering questions about the environment. We then propose a two-phase training framework
to decouple language learning from reinforcement learning, which further improves the sample
efficiency. We empirically demonstrate that the proposed method not only achieves improved
performance with high sample efficiency, but also exhibits robustness against compound error and

limited pre-training data.
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