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Abstract

Language-conditional reinforcement learning refers to the reinforcement learning task where the

language information serves as essential components in the problem formulation. In recent years,

the advances of deep reinforcement learning and language representation learning lead to increasing

research interest in this cross-domain topic, which brings benefits to the studies in both language

learning and reinforcement learning. However, challenges arise along with the premises, hindering

the language-conditional reinforcement learning from being applied in the real world. In this

research, we aim at designing language-conditional RL agent that is capable of handling the major

challenges.

We first address the challenges in state representation learning under partial observability. Motivated

by the premises of the transformer architecture in natural language processing, we design an adapt-

able transformer-based state representation generator featured with reordered layer normalization,

weight sharing and block-wise aggregation. We empirically validate our method on both synthetic

and man-made text-based games with different settings. The proposed method show higher sample

efficiency in solving single synthetic games, better generalizability in solving unseen synthetic

games, and better performance in solving complex man-made games.

Secondly, we study the reasoning process in language-conditional reinforcement learning. The

reasoning ability enables the agent to generate the actions with the support of an explainable

inference procedure. To achieve this ability, we propose an agent featured with the stacked

hierarchical attention mechanism. Through exploiting the structure of the knowledge graph, this

agent is able to explicitly model the reasoning process. Our agent demonstrates effectiveness on a

range of man-made text-based games.

Thirdly, we study the generalization problem in language-conditional RL. We consider the knowl-

edge graph-based observation, and address this challenge by designing a two-level hierarchical

RL agent. In the high level, we use a meta-policy for task decomposition and subtask selection.

Then, in the low level, we use a sub-policy for subtask-conditioned action selection. In a series of 8



vi Abstract

game sets with different generalization types and game difficulty levels, our proposed agent enjoys

generalizability and yields favorable performance.

Finally, we provide solutions to the challenges of low sample efficiency and large action space. We

introduce the world-perceiving modules, which automatically decompose tasks and prune actions

by answering questions about the environment. We then propose a two-phase training framework

to decouple language learning from reinforcement learning, which further improves the sample

efficiency. We empirically demonstrate that the proposed method not only achieves improved

performance with high sample efficiency, but also exhibits robustness against compound error and

limited pre-training data.



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors, Prof. Ling Chen

and Prof. Chengqi Zhang for their continuous and unconditional assistance throughout the journey

in pursuing this degree. They supported me at every stage of my PhD studies, such as leading me

to the area of language-conditional reinforcement learning, encouraging me to develop not only

the in-depth knowledge in my research topic but also broad research interests in machine learning,

helping me to establish connections with academic and industrial bodies, and providing me with

valuable career & life advice. Without your patience, encouragement and persistent help, I will

never grow into a professional researcher.

Besides my supervisors, I would like to offer my special thanks to Dr. Meng Fang, for providing me

with hand in hand guidance to deliver high quality research. Thank you for aiding me to formulate

a project management-like research schedule. I benefit from the close and inspiring discussions,

which cover almost every aspect of details about how to conduct a research project, such as the

problem formulation, model development, experiment design, and the manuscript preparation.

Without your help, I probably waste a lot of time on detours.

I would like to acknowledge Dr. Yali Du, Dr. Gangyan Xu, Dr. Joey Tianyi Zhou, Dr. Yang Wang,

Dr. Binbin Huang, for providing helpful suggestions throughout our collaboration. I would also

like to mention those I met at UTS, specifically Dr. Wei Wu, Dr. Hong Yang, Dr. Yaqiong Li, Dr.

Jiamiao Wang, Dr. Jun Li, Mr. Yu Liu, Mr. Shaoshen Wang, Mr. Yayong Li, Ms. Yang Zhang, and

Mr. Zihan Zhang. It’s my pleasure to work with all of you. In particular, I would like to thank Prof.

Yi Yang, for introducing me to Prof. Ling Chen.

I am proud of my parents and grandparents. Thank you for raising me up, providing me with a

joyful childhood, and inspiring my curiosity in science and engineering. Thank you for expressing

your endless love and support across the ocean. This thesis is dedicated to my grandfather, a veteran

passed away in the last year of my PhD study. Thank you, for fostering me a rigorous attitude, and

teaching me to be tough to survive hardships.

Last but not the least, I would like to thank my wife, Ms. Yang Liu, for accompanying me through

thick and thin.

vii





Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 9
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Value-based RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Policy-based RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Model-based RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Language-conditional RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Language-based Observation and Action Space . . . . . . . . . . . . . . 14
2.2.2 Language-based Instruction Following and Reward Function . . . . . . . 17

2.3 DRL’s Real World Applications and Challenges . . . . . . . . . . . . . . . . . . 18

3 Preliminaries 21
3.1 Text-based Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Partially Observable Markov Decision Process . . . . . . . . . . . . . . . . . . . 22
3.3 Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Transformer-based State Representation Generator 25
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



x Contents

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Weight Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Block-wise Gate Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.4 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.1 Synthetic Games: Single Game Setting . . . . . . . . . . . . . . . . . . 33
4.5.2 Synthetic Games: Multiple Unseen Games Setting . . . . . . . . . . . . 35
4.5.3 Jericho-supported Games . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Stacked Hierarchical Attention Mechanism 39
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Reinforcement Learning Agents for Solving Text-based Games . . . . . 40
5.2.2 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.3 Reasoning upon the KGs . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Sub-graph Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.2 Stacked Hierarchical Attention . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.3 Action Selection and Model Optimization . . . . . . . . . . . . . . . . . 46

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6.2 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6.3 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Hierarchical Knowledge Graph Agent 53
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Generalization in Text-based Games . . . . . . . . . . . . . . . . . . . . 55
6.2.2 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . . . . 55

6.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



Contents xi

6.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4.2 Meta-policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4.3 Sub-policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.4 Training Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5.1 Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5.3 Implementation and Training Details . . . . . . . . . . . . . . . . . . . 64
6.5.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.6.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.6.2 The Influence of the BeBold Method . . . . . . . . . . . . . . . . . . . . 68
6.6.3 The Influence of the MTL Training Techniques . . . . . . . . . . . . . . 69

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Question-guided World-perceiving Agent 71
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 Hierarchical RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.2 Pre-training Methods for RL . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4.2 Task Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4.3 Action Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4.4 Action Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.5.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.6.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.6.2 Performance on the Simple Games . . . . . . . . . . . . . . . . . . . . . 83
7.6.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.6.4 Pre-training on the Partial Dataset . . . . . . . . . . . . . . . . . . . . . 85

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Conclusions and Future Work 87
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Appendices 89



xii Contents

A Appendix for Chapter 6 91

B Appendix for Chapter 7 95
B.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Pre-training Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
B.3 Baseline details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.3.1 GATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.3.2 IL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.4 More experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 109



List of Figures

2.1 The interaction process in the RL problem . . . . . . . . . . . . . . . . . . . . . 10
2.2 The schema of different RL algorithms. . . . . . . . . . . . . . . . . . . . . . . 11

3.1 The interface example of a man-made game “Zork: The Undiscovered Under-
ground”. The observation (black) can be the description of environment status, or
the feedback of the previous action. The action (blue) is a textual command. . . 22

4.1 Our agent, which contains a representation generator for constructing representation
from st, and an action scorer for computing the Q values. We concentrate on the
representation generator, which is shown in the dashed box. . . . . . . . . . . . 28

4.2 (a) Our transformer-based representation generator. (b) The transformer encoder,
which consists of L transformer blocks. In each transformer block, we reorder the
layer normalization operation by putting it inside the residual connections. We share
the learnable weights across all transformer blocks (blue region). We then propose
gate modules to aggregate the input flow and output flow of each transformer block. 28

4.3 The vanilla transformer block (a) and the proposed transformer block (b), where
the layer normalization operation is put inside each residual connection. . . . . . 29

4.4 The models’ performance in synthetic games under the single game setting. The
shaded area indicates standard deviations over 3 independent runs. . . . . . . . . 34

4.5 The models’ performance in synthetic games under the multiple unseen games setting. 35
4.6 The models’ learning curves on the game “zork1”. . . . . . . . . . . . . . . . . . 37

5.1 (a) ot,text in our work, which consists of four parts. (b) The KG-based observation
ot,KG, where those derived from current ot,text are in yellow. (c) The sub-graphs. . 42

5.2 Overview of the SHA-KG’s encoder. . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 The result with respect to the update steps for SHA-KG variants with different

encoding methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 The result with respect to the update steps for SHA-KG variants with different

sub-graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 An example of the reasoning process for game “ztuu”. . . . . . . . . . . . . . . 51

6.1 An overview of the proposed H-KGA, where the high level decision making process
is in red (goal set generation and goal selection), and the low level decision making
process is in blue (action selection). . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 The performance of agents on Dseen
test (“S4”, “Avg Seen”) and Dunseen

test (“US4”, “Avg
Unseen”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 The performance of agents with or without the BeBold method. . . . . . . . . . . 68

xiii



xiv List of Figures

6.4 The performance of agents with or without the scheduled task sampling strategy
(Sch) / level-aware replay buffer (LR). . . . . . . . . . . . . . . . . . . . . . . . 69

7.1 (a) An example of the observation, which can be textual, KG-based, or hybrid. (b)
The decision making process. Through question answering, the agent is guided to
first decompose the task as subtasks, then reduce the action space conditioned on
the subtask. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Subtasks for solving (a) 3 simple games and (b) 1 complex game. . . . . . . . . . 75
7.3 The overview of QWA. The blue modules will be trained in the pre-training phase,

while the red module will be trained in the RL phase. . . . . . . . . . . . . . . . 76
7.4 The RL testing performance w.r.t. training episodes. The red dashed line denotes

the IL agent without fine-tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5 The performance of our model and the variant without time-awareness. . . . . . . 84
7.6 The performance of our model and the variants with expert modules. . . . . . . . 84
7.7 The performance of our model with varying amounts of pre-training data. . . . . 85

A.1 The initial observation of four games, where “S1 Game1” and “S1 Game2” belong
to level “S1”, “S2 Game1” and “S2 Game2” belong to level “S2”. . . . . . . . . 92

A.2 The initial observation of two games belonging to level “S3”. . . . . . . . . . . 93
A.3 The initial observation of one game belonging to level “S4”. . . . . . . . . . . . 94

B.1 The construction process of the subtask set T , and the pre-training dataset for task
decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B.2 The construction process of the pre-training dataset for action pruning. . . . . . . 101
B.3 The architecture of GATA baseline. . . . . . . . . . . . . . . . . . . . . . . . . 102
B.4 The architecture of GATA for action prediction. . . . . . . . . . . . . . . . . . . 102
B.5 The architecture of IL baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.6 The pre-training performance of QWA’s task selector. The results are averaged by 3

random seeds, we omit the standard deviation as the performance is relatively stable.105
B.7 The pre-training performance of QWA’s action validator. . . . . . . . . . . . . . 105
B.8 The pre-training performance of IL’s task selector and action selector. . . . . . . 105
B.9 The RL performance of our GATA baseline and the original GATA without AP

initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.10 The RL performance w.r.t. the training episodes (the full result of Fig. 7.4). . . . 106
B.11 The RL performance of our agent and the variant without time-awareness (the full

result of Fig. 7.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.12 The performance of our agent and the variants with expert modules (the full result

of Fig. 7.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.13 The performance of our agent with varying amounts of pre-training data (the full

result of Fig. 7.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



List of Tables

1.1 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The DRL agents for text-based games. . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 The details of the synthetic games in the CoinCollector domain. . . . . . . . . . 31
4.2 The number of epochs required to solve the single games. . . . . . . . . . . . . 34
4.3 The performance of models with different modifications. . . . . . . . . . . . . . 34
4.4 The maximum rewards obtained in synthetic games under the multiple unseen

games setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 The performance of models on man-made games. . . . . . . . . . . . . . . . . . 36

5.1 The main result in 20 games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 The game statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 The testing result at the end of the training process. . . . . . . . . . . . . . . . . 66

7.1 Game statistics. We use the simple games to provide human labeled data during
pre-training, and use the medium & hard games during reinforcement learning. . 79

7.2 The testing performance at 20% / 100% of the reinforcement learning phase. . . . 81
7.3 The RL testing performance on simple games. . . . . . . . . . . . . . . . . . . . 83

B.1 The observations ot, subtask candidates T and action candidates A of a simple
game and a medium game. The underlined subtask candidates denote the available
subtask set Tt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.2 The observations ot, subtask candidates T and action candidates A of a hard
game. The underlined subtask candidates denote the available subtask set Tt. The
underlined action candidates denote the refined action set At after selecting the
subtask “roast carrot”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.3 Examples of subtasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B.4 Examples of actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xv





Chapter 1

Introduction

1.1 Background and Motivations

The sequential decision making is a core topic of machine learning and artificial intelligence. It is

related to a situation where the current decision can have both immediate and long-term effects.

For many environments, the dynamics is inaccessible and the outputs, such as the labels, are

not well-defined. To achieve the final goal (e.g., solving a game, or completing a manipulating

task), the decision maker (agent) has to learn from the experience, which is collected through

trial-and-error. The Reinforcement Learning (RL) [190], whose goal is to map the environment

states to appropriate actions to maximize the feedback signals, is a principal framework for such

problems. The traditional RL methods are limited within tabular cases, where both the action

space and state space are small and of low dimension. In the past few years, the deep learning

techniques help RL to build state representation from high dimensional inputs, and perform stable

function approximation over a large state and action space. The resulted method, known as the

Deep Reinforcement Learning (DRL), has proven its effectiveness in a large set of challenging

tasks including game playing [144, 145, 182], robotics control [68, 111, 115] and many other real

world applications [125].

One of the most crucial factors in human evolution is the development of language. Through

using language to control the complex social coordination, humans have formulated a modern

society that has achieved domination over other life on earth [155, 168]. The abilities of learning

1



2 Chapter 1. Introduction

and understanding the language, which are fundamental to humans, are essential in pursuing the

human-level AI. The related research topics, such as the Natural Language Understanding (NLU)

and Natural Language Processing (NLP) techniques, have been studied for decades [4, 24, 136].

While the past research in language learning focused more on supervised learning and unsupervised

learning, recent years have witnessed increasing research interests in integrating language learning

with reinforcement learning. Apart from those adopting RL in NLP tasks [38, 124, 161, 170], the

language-conditional RL attracts a lot of attentions in the RL research community [133]. The

language-conditional RL aims at grounding natural language into reinforcement learning, that it

follows RL’s problem formulation with the language information serves as unavoidable components.

For example, in the text-based games [53, 196], both the observation space and the action space are

in the context of texts, that the agent observes textual descriptions and generates textual commands

as the actions. Another example is the instruction following tasks, where the language serves as the

instructions or subgoals to guide the agent towards the final goal [44, 142, 205].

The earlier attempts of language-conditional RL have been limited to synthetic language [103], small

vocabulary space [90], and tabular-wise RL algorithms [34, 35]. The advances in deep reinforcement

learning [84, 143, 145] and language representation learning [37, 59, 164] techniques make it

possible to scale up the task towards more difficult scenarios, which are closer to the real world

applications. Most of the existing works have focused on instruction following and reward modeling,

while the tasks with language-based observation space and action space, are far less studied, which

is partly due to the lack of suitable platforms. In light of the video game platforms [27, 106], which

significantly boost the development of visual-based RL, some text-based games platforms have

been recently proposed to facilitate the agent design and performance measurement [53, 85, 196],

making it worthwhile to revisit this branch of studies.

As a cross-domain research topic, studying language-conditional RL brings benefits to both NLP

and RL. From the perspective of NLP, it enables language learning in an interactive way, which has

been proven to be more effective than learning with static data [23, 66, 121]. From the perspective

of RL, incorporating language learning helps to address some challenges in reinforcement learning,

thus promoting RL’s application in the real life. For example, existing works have leveraged the

compositional nature of language to improve RL agent’s generalizability to unseen instructions [52,

105].
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1.2 Research Challenges

Along with the premises, new challenges have appeared in studying language-conditional RL [63,

85]. The research challenges include, but are not limited to learning effective presentations from

the language, partial observability, commonsense reasoning, generalization to unseen scenarios,

long-term credit assignment with sparse reward, exploration v.s., exploitation trade-off, combinato-

rial action space, and low sample efficiency. Some of these challenges inherit from either language

learning (e.g., language representation learning) or reinforcement learning (e.g., low sample effi-

ciency), while some challenges arise from combining these two areas (e.g., combinatorial action

space). These challenges are not strictly exclusive, that addressing one challenge will be helpful in

handling other challenges. For example, studying language representation learning not only helps

to construct effective state representations, but also helps to alleviate partial observability [8]. Our

goal for this research is to design language-conditional RL agent that is capable of handling the

major challenges summarized as follows:

1. Language-based state representation learning: While the convolutional neural networks and

the multilayer perceptrons are commonly used for processing the visual-based observations,

how to build good state representations upon the language-based observations?

2. Partial observability: How to design the state representation learning process as well as the

algorithmic optimizing process to address the partially observable settings, where the state

can not be directly observed from the environment?

3. Reasoning: How to empower RL agents with the reasoning abilities to extract supporting

facts from the language-based inputs, thus yielding better performance and interpretability?

4. Generalization: The RL agents tend to overfit the training environment, how to improve their

generalizability towards unseen environments?

5. Combinatorial action space: Different from the video games, where there typically exists a

small set of actions, the language-conditional RL settings may involve a large, combinatorial

action space. Under such condition, how to reduce the action space to prevent the agent from

attempting irrelevant or inferior actions?
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6. Low sample efficiency: The low sample efficiency is a crucial limitation of RL, that a huge

amount of interaction data is required for training an RL agent. How to improve the sample

efficiency to promote RL’s practical usage?

1.3 Contributions

This thesis studies the language-conditional reinforcement learning. We pay more attention to the

settings where both the observation space and the action space are language-based, while other

settings, such as instruction following and language-based reward modeling, will also be involved.

We leverage the recent proposed text-based games platforms as our test-beds to analyse and design

RL agents, thus providing solutions to the above-mentioned challenges. First, this thesis studies

state representation learning for language-conditional RL, that we design an adaptable transformer-

based state representation generator featured with reordered layer normalization, weight sharing and

block-wise aggregation. Second, this thesis studies RL reasoning, and proposes an agent featured

with the stacked hierarchical attention mechanism to achieve the reasoning ability. Third, this thesis

addresses the generalization problem by designing a two-level hierarchical RL agent. Finally, this

thesis addresses the challenges of low sample efficiency and large action space by introducing the

world-perceiving modules, which are capable of automatic task decomposition and action pruning

through answering questions about the environment.

The contributions of our research are summarized as follows:

• Transformer-based State Representation Generator: This work is one of the first to study

the transformer architecture for language-conditional RL tasks. In this work, we show the

effectiveness of the transformer architecture in building state representations from the textual

observations. We propose a simple transformer-based state representation generator, which

could be treated as a plugin for different agents & frameworks. We empirically validate our

model in text-based games with different settings, and show that our model outperforms both

the vanilla transformer and strong baselines.

• Stacked Hierarchical Attention Mechanism: This work is the first step to explore the

reasoning ability in language-conditional reinforcement learning. In this work, we introduce
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the reasoning process in decision making through considering a knowledge graph as multiple

sub-graphs. We design an RL agent, which is equipped with the stacked hierarchical attention

mechanism for reasoning. We empirically validate the effectiveness of our agent in a set of

man-made games. Our proposed agent achieves favorable performance in comparison with

the state-of-the-art baselines.

• Hierarchical Knowledge Graph Agent: This work is the one of the first to address the

generalization problem in language-conditional reinforcement learning from the perspective

of hierarchical RL. In this work, we propose a hierarchical agent upon the knowledge graph-

based observation for adaptive subtask decomposition and subtask selection. We show that

our agent improves generalizability in solving multiple sets of games with various difficulty

levels.

• Question-guided World-perceiving Agent: This work addresses the challenges in low

sample efficiency and large action space in language-conditional RL. We introduce the world-

perceiving modules, which are capable of automatic task decomposition and action pruning

through answering questions about the environment. We then propose a two-phase training

framework to decouple language learning from reinforcement learning to further improve

training efficiency with limited data. We empirically validate the effectiveness and robustness

of the proposed method in complex games.

1.4 Thesis Outline

Table 1.1 displays the structure of this thesis. The detailed research roadmap is organized as follows:

Chapter 2: This chapter provides comprehensive literature review about the reinforcement learning

as well as language-conditional reinforcement learning.

Chapter 3: This chapter provides preliminaries about the text-based games, which are our test-beds

in this thesis

Chapter 4: This chapter provides solution to Challenge 1 and Challenge 2. In order to build

effective state representation, thus facilitating decision making and alleviating the problem of partial
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TABLE 1.1: Thesis structure

Chapters Research Tasks
2 Literature Review
3 Preliminaries
4 Transformer-based State Representation Generator
5 Stacked Hierarchical Attention Mechanism
6 Hierarchical Knowledge Graph Agent
7 Question-guided World-perceiving Agent
8 Conclusions and Future Work

observability, we design an adaptable transformer-based state representation generator featured

with reordered layer normalization, weight sharing and block-wise aggregation.

Chapter 5: This chapter studies Challenge 3. The reasoning ability enables the agent to generate

the actions with the support of an explainable inference procedure. To achieve this ability, we

propose an agent featured with the stacked hierarchical attention mechanism. Through exploiting

the structure of the knowledge graph, this agent is able to explicitly model the reasoning process.

Chapter 6: This chapter investigates Challenge 4. We consider the knowledge graph-based

observation, and address this challenge by designing a two-level hierarchical RL agent. In the high

level, we use a meta-policy for task decomposition and subtask selection. Then, in the low level,

we use a sub-policy for subtask-conditioned action selection.

Chapter 7: This chapter addresses Challenge 5 and Challenge 6. We introduce world-perceiving

modules to automatically decompose tasks and prune actions through answering environment-

related questions. We then propose a two-phase training framework to decouple language learning

from reinforcement learning to further improve the sample efficiency.

Chapter 8: This chapter concludes the thesis, and identifies future directions.

1.5 Publications

The main body of this thesis has been published in (or submitted to) major artificial intelligence

conferences:
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• Chapter 4 is based on the paper [214] titled as “Deep Reinforcement Learning with Trans-

formers for Text Adventure Games”, which has been published in CoG-2020;

• Chapter 5 is based on the paper [216] titled as “Deep Reinforcement Learning with Stacked

Hierarchical Attention for Text-based Games”, which has been published in NeurIPS-2020;

• Chapter 6 is based on the paper [215] titled as “Generalization in Text-based Games via

Hierarchical Reinforcement Learning”, which has been published in EMNLP-Findings-2021;

• Chapter 7 is based on the paper titled as “Perceiving the World: Question-guided Reinforce-

ment Learning for Text-based Games”, which has been submitted to ACL-2022;

During my PhD studies, I have published 6 research papers, and have 3 manuscripts in submission:

1. Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, and Chengqi Zhang,

“Perceiving the World: Question-guided Reinforcement Learning for Text-based Games”,

submitted to the Annual Meeting of the Association for Computational Linguistics (ACL),

2022. (CoRE A*)

2. Dongwon Kelvin Ryu, Ehsan Shareghi, Meng Fang, Yunqiu Xu, Shirui Pan and Reza Haf,

“Fire Burns, Swords Cut: Commonsense Inductive Bias for Exploration in Text-based Games”,

submitted to the Annual Meeting of the Association for Computational Linguistics (ACL),

2022. (CoRE A*)

3. Meng Fang, Yunqiu Xu, Yali Du, Ling Chen and Chengqi Zhang, “Goal Randomization

for Playing Text-based Games without a Reward Function”, submitted to the International

Conference on Learning Representations (ICLR), 2022. (CoRE A*)

4. Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, and Chengqi Zhang, “Generalization in Text-

based Games via Hierarchical Reinforcement Learning”, in Proceedings of the Conference

on Empirical Methods in Natural Language Processing: Findings (EMNLP-Findings), 2021.

(CoRE A)

5. Yunqiu Xu, Meng Fang, Ling Chen, Gangyan Xu, Yali Du, and Chengqi Zhang, “Reinforce-

ment Learning With Multiple Relational Attention for Solving Vehicle Routing Problems”,

in IEEE Transactions on Cybernetics, 2021. (CoRE A)
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6. Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey Tianyi Zhou, and Chengqi Zhang, “Deep

Reinforcement Learning with Stacked Hierarchical Attention for Text-based Games”, in

Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 16495-

16507, 2020. (CoRE A*)

7. Yunqiu Xu, Ling Chen, Meng Fang, Yang Wang, and Chengqi Zhang, “Deep Reinforcement

Learning with Transformers for Text Adventure Games”, in IEEE Conference on Games

(CoG), pages 65-72, 2020. (CoRE C)

8. Binbin Huang, Zhongjin Li, Yunqiu Xu, Linxuan Pan, Shangguang Wang, Haiyang Hu and

Victor Chang, “”, in Wireless Communications and Mobile Computing, 2020. (CoRE B)

9. Binbin Huang, Yangyang Li, Zhongjin Li, Linxuan Pan, Shangguang Wang, Yunqiu Xu

and Haiyang Hu, “Security and cost-aware computation offloading via deep reinforcement

learning in mobile edge computing”, in Wireless Communications and Mobile Computing,

2019. (CoRE B)



Chapter 2

Literature Review

The literature review is organized as follows. Section 2.1 introduces the background and the basic

concepts about reinforcement learning. Section 2.2 focuses on the language-conditional RL, which

is the core domain of this thesis. Section 2.3 reviews the RL (especially DRL) techniques from the

perspective of real world applications, and identifies the challenges.

2.1 Reinforcement Learning

Reinforcement learning is the area of machine learning where an agent learns to perform sequential

decision-making in an environment. Generally, RL is assumed to obey the Markov property, that

the future of decision making depends on the current state only. Following this assumption, RL can

be formulated as a Markov Decision Process (MDP) [28], which is a 5-tuple consisting of the state

set S, the action set A, the transition function T (st+1|st, at), the reward function R(st, at, st+1)

and discount factor γ ∈ (0, 1]. Fig. 2.1 shows the interaction process. At each time step t, the agent

will be presented with a state st ∈ S . By selecting an action to interact with the environment, the

state will transit to a new one st+1, and the agent will receive a reward rt+1 as the feedback. The

objective of reinforcement learning is the maximization of the future cumulative return Rt, which

is the γ-discounted sum of rewards:

Rt = E[
∞∑
t=0

γtrt] (2.1)

9
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FIGURE 2.1: The interaction process in the RL problem

The RL agent is designed to be with one or more of following components: the policy function,

the value function and the environment model. The policy function, which is the agent’s behavior

function, maps a state to an action π : S → A. The value function is the estimation of future return

given a state. The environment model is the estimation of environmental components, such as the

reward function and the transition dynamics function. The goal of the agent is to learn an optimal

policy π∗ to maximize the expected return Rt.

According to [70, 190], the RL algorithms can be categorized as different classes. One main

classification approach is to divide them as the value-based methods, the policy-based methods,

and the hybrid of them. The value-based algorithms estimate the optimal value function, and guide

the RL agent towards the state with maximum future value. The policy-based algorithms optimize

the policy function directly. The Actor-Critic is a category of algorithms that combine the policy

functions with the value functions. By default, the value-based methods and the policy-based

methods are model-free. An RL algorithm is regarded as model-based, if the environment model

is used to simulate the transition dynamics and perform planning, otherwise model-free. Figure

2.2 displays the schema of different RL methods, where the experience denotes the interaction

data for training. There are other classification criteria. Depending on whether the policies for

evaluating and decision making are same, these algorithms can be classified as on-policy algorithms,

or off-policy algorithms. Another division is the online learning v.s., offline learning, which depends

on whether the agent has access to the environment, or just be provided with a static dataset of

transitions [123]. The rest of this section reviews the commonly used RL algorithms with the

division of value-based, policy-based and model-based. Besides the traditional RL algorithms

designed for the tabular cases, this section also demonstrates how the deep learning techniques

could be applied in solving more complex scenarios.



Chapter 2. Literature Review 11

FIGURE 2.2: The schema of different RL algorithms.

2.1.1 Value-based RL

The value-based RL methods aim at estimating the value (e.g. the expected return) of all states

accurately. The optimal policy π∗ corresponds to the optimal state-value function:

V ∗(s) = max
π

E[R|s, π], ∀s ∈ S (2.2)

The action leading to next state st+1 with largest value will then be selected. Since the agent usually

does not have the access to the transition dynamics function, the state-value function is extended

to the state-action-value function, i.e., the Q value function Qπ(s, a) = E[R|s, a, π]. One of the

most widely used value-based methods is Q learning [208], which follows the Bellman optimality

equation to estimate the Q values:

Q∗(st, at) = rt+1 + γE[max
a′∈A

Q∗(st+1, a
′)] (2.3)

The Q-learning is limited to the tabular cases, since the agent need to traverse all of the state-

action pairs to estimate the Q-value. Through deep learning-based representation learning and

value function approximation, the Deep Q-network (DQN) [144, 145] extends Q-learning to high-

dimensional state space. Specifically, DQN uses the neural networks to extract state representation

from visual observations, so that the curse of dimensionality is alleviated. Besides, the value

function is parameterized via neural networks, so that there’s no need for estimating the Q values

of all state-action pairs. In order to handle the instability during function approximation, DQN

further considered two techniques, the experience replay and the target network. The experience

replay [128] is a memory buffer to store the transitions collected from the environment. During

training, a batch of transitions will be sampled from this buffer to optimize the algorithm. In this
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way, the temporal correlations between transitions, which may affect learning, are broken. The

target network is another way to stabilize learning. It’s a copy of the policy network to estimate the

Q value for the next state. Different from the policy network, the target network is updated less

frequently to handle non-stationary. DQN has achieved human-level performance and surpassed

previous methods in playing a large number of Atari 2600 games [27]. Going beyond DQN,

some further improvements have been recently proposed, including handling over-estimation via a

double estimator [84], decoupling value and advantage function [207], pritorizing transitions [172],

estimating the value distribution [54], introducing the noisy parameters to help exploration [69],

and the integration of these improvements [91]. While these extensions mainly focus on the

Q value estimation, there are also works enhancing the value-based framework by introducing

hierarchy [120, 199], auxiliary rewards [26, 158], memory modules [87], and action elimination

techniques [62, 227].

2.1.2 Policy-based RL

Compared to the value-based RL, which maintains a value function, the policy-based RL directly

searches for the optimal policy. The search strategies can be either gradient-free or gradient-based.

While the gradient-free strategies, such as the evolutionary algorithms [171], require running large

populations of agents in parallel, most DRL-related methods are in favor of the gradient-based

strategies. For a policy π parameterized by θ, the objective function can be formulated as:

L(θ) = E[R|π(s0, θ)] (2.4)

where R is the total discounted return. The policy can be either stochastic or deterministic. A

stochastic policy is defined as the probabilities of taking actions given a state:

π(s, a) = P[a|s] (2.5)

A deterministic policy outputs the action with largest probability:

π(s) = argmax
a∈A

π(a|s) (2.6)
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For a stochastic policy, the gradient can be estimated via the REINFORCE method [211]. In this

method, the estimation of R is obtained through Monte Carlo sampling over the whole episode,

which incurs high variance. One general way for variance reduction is to subtract the return with a

baseline, which can be represented as the average episodic return [211], or the value estimated by a

critic network [144].

Both the stochastic policy and the deterministic policy can be cast into the Actor-Critic frame-

work [117] that the “Actor” denotes the policy and the “Critic” denotes the state-value estimator.

The learning process can be accelerated through estimating the Q values using n-step bootstrapping.

If π is deterministic, and the value Q(s, a) is differentiable (e.g., for tasks with the continuous

action space), the policy gradient can be estimated via the Deep Deterministic Policy Gradient

(DDPG) method [126]. The Asynchronous Advantage Actor-Critic (A3C) framework [143] is

another famous extension of Actor-Critic. In A3C, multiple actors are executed in parallel and

trained asynchronously, and the value estimated by the critic network also serves as the baseline for

variance reduction. Recently, some other practices, such as enhancing DDPG with delayed policy

updates [72], and integrating the actor-critic with energy-based regularization [80, 81], have been

proposed and achieved promising performance.

To stabilize the policy updating process, the trust region-based methods, are introduced to restrict

the updating steps within a region. In this way, the updated policy is prevented from deviating

too wildly from the previous policy. For example, the Kullback-Leibler divergence (KLD) can be

utilized to measure the difference between the current and proposed policies, thus constraining the

update step length [109, 110, 174]. The recent advances include introducing a generalized advantage

estimator for variance reduction [175], conducting the optimization using the Kronecker-factored

approximate curvature [212], simplifying the second-order approximation of the KL divergence to

first-order [176], and constraining the optimization using a constrained MDP [1].

2.1.3 Model-based RL

The value-based and policy-based methods are generally model-free, that the agent learns by directly

interacting with the environment. Different from these model-free algorithms, the model-based

RL algorithms are equipped with the environment model to simulate the transitions and perform

planning, leading to higher sample efficiency. This is particularly important to the real world
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deployments, in which the transition data is limited and expensive to collect. Dyna-Q [189] is a

classic model-based framework, which combines learning and planning in tabular case. The PILCO

algorithm [58] addressed the continuous action space through learning a probabilistic dynamics

model with the Gaussian process. The rise of deep learning makes it available to design environment

models for high-dimensional scenarios, such as the video games and the robotics control tasks,

leading to a wide range of related studies [68, 79, 82, 108, 111, 150, 156, 163, 186]. Typically,

these works leverage an encoder to encode the input as latent representation for decision making,

and a decoder to decode the representation for training or planning. The encoder can either be

trained via unsupervised learning, or self-supervised learning. The model predictive planning can

be performed within the latent space, or upon the decoded high-dimensional observations. For the

model-based RL methods, how to make the model accurate enough to reflect the environmental

dynamics is of vital importance, since the both decision making and planning process are based on

the model. Besides the planning-based methods, there are also works utilizing the model predictive

error to guide exploration [39, 160].

2.2 Language-conditional RL

The language-conditional RL still follows the problem formulation of reinforcement learning, while

one or more components, such as the observation space, the action space, the instruction and

the reward function, are represented by natural language. There also exists another non-strictly

exclusive branch of works being named as the language-assisted RL, which shares similar settings

with the language-conditional RL, except that the language information is not essential in solving

the tasks. For example, the language can be used for providing additional environment information

(e.g., textual descriptions of the entities) [35, 64, 151], or providing a prior to modularize the

structure or representations of an agent [13, 14]. We focus on the language-conditional RL in this

research.

2.2.1 Language-based Observation and Action Space

We first review language-conditional RL in the context of language-based observation and action

space. A classic type of games, the text-based games, are suitable test-beds for this scenario [154].
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TABLE 2.1: The DRL agents for text-based games.

Name Game Observation Action Algorithm
LSTM-DQN [152] man-made textual parser DQN
DRRN [88] man-made textual choice DQN
SSAQN [229] man-made textual parser DQN
LSTM-DRQN [226] synthetic textual parser DRQN
AEN [227] man-made textual parser DQN
TDQN [85] man-made textual template DQN
KG-DQN [8] synthetic KG parser DQN
CNN-DQN [220] man-made textual parser DQN
Trans-v-DRQN [214] synthetic textual parser DRQN
Trans-v-DRRN [214] man-made textual choice DQN
SC [102] both textual parser DRQN
LeDeepChef [3] synthetic textual parser A2C
KG-A2C [7] man-made KG template A2C
GoExplore Seq2Seq [135] synthetic textual parser Go-Explore
SHA-KG [216] man-made KG template A2C
CALM [219] man-made textual choice DQN
MPRC-DQN [78] man-made textual template DRQN
Q*BERT [10] man-made KG template A2C
GATA [2] synthetic KG choice DDQN
TWC [147] synthetic KG parser A2C
H-KGA [215] synthetic KG choice DDQN
CREST [45] synthetic textual parser DRQN

In the text-based games, the game player observes textual descriptions of the environment state

at each time step, and enter a textual command as the response. Due to the lack of effective

methods and computing power, early attempts on the text-based games are limited in tabular RL or

non-RL methods [34, 35]. Besides, assumptions have been made to reduce the challenges, such as

representing the observation via logic programming language instead of natural language [5, 94].

Since 2016, the Text-Based Adventure AI Competition has been launched to promote the research

in this domain [20]. By introducing game playing heuristics, some non-RL competitors, such as the

BYU16Agent [73], the Golovin agent [119], the CARL agent [20] and the NAIL agent [86], have

achieved competitive performance in solving multiple games. For example, the NAIL agent [86]

is designed with pre-defined rules for interacting with the objects, exploring the state space, and

building the game map to track the states. Despite being effective as game solvers, these agents are

hard to be extended to more practical scenarios, since designing those rules requires a huge amount

of expert knowledge [85].

The deep reinforcement learning and language representation learning techniques have recently
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been applied to the text-based games. Besides, some game platforms have been proposed, making it

easier to design game agents and measure their performance. The Jericho platform [85] is designed

in light of the OpenAI-Gym [36], that it provides an RL interactive interface for the man-made

games, such as Zork 1 [31]. Being originally designed for the human players, the man-made games

have more complex logic, and contain much larger state space and action space. The TextWorld

platform [53] provides a sandbox-like game interface, that it supports generating multiple games

with customizable difficulties and vocabularies, thus facilitating studying generalization [51] and

curriculum learning [29]. Another commonly-used platform is LIGHT [196], which supports

interacting with multiple players.

Table 2.1 shows the DRL agents designed for solving the text-based games. We classify the

agents by the type of games they are applied on, the forms of the observations and actions, and

the RL algorithms for optimization. We regard those initially designed for the human players as

man-made games (e.g., those supported by Jericho), and those generated by TextWorld or LIGHT

as synthetic games. By default, the observation are textual descriptions [152, 226]. Some work

also considered constructing knowledge graph from the raw textual observation, thus organizing

the information in a structural way [7, 8, 230]. Regarding the form of actions, the parser-based

agents generate actions word by word, leading to a huge combinatorial action space [116]. The

choice-based agents circumvent this challenge by assuming the access to a set of admissible actions

at each game state [88]. The template-based agents achieve a trade-off between the huge action

space and the assumption of admissible action set by introducing the template-based action space,

where a template is selected first, then be filled with verbs and / or objects [7, 85]. According to

[88], there also exists hypertext-based action space, which is seldom considered in studying the

language-conditional RL. Existing methods (including our work discussed in this thesis) have been

proposed for addressing challenges such as state representation learning [78, 214, 220], partial

observability [8, 234], combinatorial action space [219, 227], reasoning [147, 216, 224], and sparse

reward [10, 135]

Besides the text-based games, the RL with language-based observation and / or action space can

also be conducted upon other domains, such as the dialogue systems and the Question Answering

systems (QA). The dialogue systems have been extensively studied, and the reinforcement learning

becomes promising in recent years [47]. Compared with the supervised learning-based methods,

where a large training dataset has to be collected and may still lack coverage, RL enables the
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agent to learn through interacting with the environment, eliminating the need for labeled data [41].

The QA systems can also be conducted in the context of RL, and the form of observation can be

extended to visual-based in the Visual QA [17] and Embodied QA tasks [56].

2.2.2 Language-based Instruction Following and Reward Function

In the instruction following tasks, the agent is presented with a sequence of high-level instructions,

and executes actions in response to those instructions. Some typical instruction following tasks

include navigation [71, 206] and robotics manipulation [142, 202]. In the language-based RL

setting, the instructions are represented by natural language, such as the description of a task [105]

(e.g., guidance about how to order a set of balls with different colors), or a specific entity [52]

(e.g., “pick up the larger blue cat”). The agent is required to understand the instruction, its

connection with the environment state, and the actions. This branch of works emphasizes on

generalization towards unseen instructions, such as unseen entities, unseen verbs, and unseen

verb-entity combinations [169]. The early attempts simplified the natural language as the formal

language, that an instruction is decoupled as a combination of entities and their relation, which

will be modeled in the object-level [18, 46]. Recently, the deep learning techniques enable directly

embedding the human-generated natural language instructions [44, 76, 103, 142, 180]. The cross-

modal learning techniques are also involved in the representation learning process to combine the

instruction with the state [166, 205, 239].

The language-based instruction following is always accompanied by reward modeling. If we treat

the instruction as the goal, or link it to a goal state, the agent will receive reward conditioned on

whether it successfully accomplishes the instruction, or whether it observes the goal state [107].

Modeling the reward function is helpful when the environmental reward is sparse or not well

defined [21, 52](e.g., no reward function is provided by the environment). A commonly-used

reward modeling method is the Inverse Reinforcement Learning (IRL), which models an “intrinsic”

reward function to map an instruction to a goal state, and provide the reward [95, 153]. The

reward function could be learnt through a joint generative model of the reward, the action and the

instruction given the full demonstrations [71, 134], or be learnt through an adversarial process if

only the goal-instruction pairs are provided [21]. Such reward modeling can also be conducted

through non-RL methods. For example, the ELLA framework [140] trained two classifiers through
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supervised learning, where one classifier checks whether an instruction has been accomplished at

current state, and another classifier checks whether this instruction is relevant to solving the task.

The reward will then be assigned based on whether a relevant instruction is accomplished.

2.3 DRL’s Real World Applications and Challenges

Besides achieving great breakthroughs in game playing, the DRL methods have been adopted to a

broad range of domains such as robotics, recommendation systems, natural language processing,

computer vision, combinatorial optimization, transportation, finance, healthcare, energy and educa-

tion area. The usage of DRL techniques can be divided as: 1) directly training a decision making

policy (e.g., in robotic grasping and manipulation [115]); 2) optimizing the system where it’s hard

to collect optimal solutions as labels for supervised learning (e.g., in combinatorial optimization

tasks [118]); and 3) generating diverse outputs (e.g., in recommendation systems [238] and dialogue

systems [124]). Different from the game playing benchmarks, where the environment as well as

the components of MDP has been well-defined, in order to apply deep reinforcement learning

techniques in real world, one has to pay more attention to how to appropriately formulate the

RL problem. According to [125], the pipeline of building an RL application includes problem

formulation, data preparation, feature engineering, representation selection, algorithm selection,

experiment in simulated environment and final deployment in real environment.

Despite the promises, the DRL techniques still face challenges when being deployed for real life

tasks. One typical challenge is how to transfer the trained agent from the simulated environment

to real system. Different from the simulation system, in the real system it may be expensive to

collect enough data for training, and there are safety concerns for trial-and-error. Recent studies

to tackle this challenge include meta learning [67, 165], model-based RL [68, 111], and learning

from demonstrations [92, 167]. Another challenge is the large action space. Different from the

Atari games, whose action set only contains 18 discrete actions, in the application areas such as

the recommendation systems, the action set could be extremely large and changing overtime. For

example, in recommendation system there exist millions of recommendable items. While the new

items can not be given discrete action indices beforehand, there are also out-dated ones that should

not be recommended. Currently, the solutions for this challenge consist of action embedding that

embeds the discrete action set to continuous action space [42, 62, 194], building criteria to eliminate
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actions with low ranking scores [8, 227], and formulating the MDP to be with stochastic action

sets [33, 43]. Other challenges for DRL’s real world deployment include system delays, satisfying

environmental constraints, partial observability and non-stationarity, multi-objective reward design

and credit assignment, and real-time inference [63].





Chapter 3

Preliminaries

We study the language-conditional RL in this thesis. In particular, we center on the setting where

the observation and action space are language-based (Chapter 4, Chapter 5, Chapter 6 and Chapter

7). Under this setting, our research also involves language-based instruction following and reward

function (Chapter 6 and Chapter 7). Since the text-based games are consistent with our settings,

we use these games as the test-beds, and aim at designing RL agents in solving these games. For

simplicity, we denote the proposed agents as text-based game agents. In this chapter, we provide the

common problem formulations of the text-based games, which will be used throughout the thesis.

3.1 Text-based Games

Text-based games (could also be called “Text Adventures” or “Interactive Fictions”) are simulated

systems where the agent observes textual descriptions, and generates textual commands to interact

with the environment. The man-made games (originally designed for human players) have different

themes, vocabularies and objectives [85]. For example, in the Sword & Sorcery game “Zork: The

Undiscovered Underground” [30], the agent is a warrior being trapped in the dungeon, and the

objectives consist of getting the treasure, killing the monsters, and escaping from the dungeon.

Another example, “PlanetFall” [138], is a Science Fiction game, where the agent is an astronaut

surviving from a spaceship crash, and the objectives include getting out of the spaceship before

explosion, finding the food and weapons, beating the aliens, and finally escaping from this strange
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FIGURE 3.1: The interface example of a man-made game “Zork: The Undiscovered Underground”.
The observation (black) can be the description of environment status, or the feedback of the

previous action. The action (blue) is a textual command.

planet. Apart from the man-made games, the existing platforms make it possible to generate a set

of synthetic games, which are with similar vocabulary and customizable difficulties [53, 196].

Fig. 3.1 shows an interface example of a man-made game “Zork: The Undiscovered Underground”.

The action is a textual command. The observation can be either the description of the environment

status, or the feedback of the previously executed action. The text-based games provide a safe

and interactive way to study language-conditional reinforcement learning, language grounding,

systematic generalization, and dialogue systems. Solving these games requires the agent to deduct

the goals and solving strategies from the natural language, and address the before-mentioned

challenges.

3.2 Partially Observable Markov Decision Process

Since the agent can not directly observe the true environment states, these games are formulated

as a Partially Observable Markov Decision Process (POMDP) [53]. A POMDP can be described

by a 7-tuple G = ⟨S,A, T, r,Ω, O, γ⟩. S represents the state set, A represents the action set,

T (s′|s, a) : S × A × S 7→ R+ represents the state transition probabilities, r(s, a) : S × A 7→ R

represents the reward function, Ω represents the observation set, O represents the conditional

observation probabilities, and γ ∈ (0, 1] represents the discount factor. For each step, the agent

receives an observation ot ∈ Ω based on the probability O(ot|st, at−1), and chooses an action at

from the action space A. Then, based on the probability T (st+1|st, at), a new state will be devised

by the environment, and a reward rt+1 will be returned to the agent. Similar to the MDP, the agent

selects the action with the aim of maximizing the expectation of the discounted cumulative rewards:

Rt = E[
∑∞

t=0 γ
trt].
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3.3 Knowledge Graph

Besides the textual observation, we also consider the setting where the observations are represented

by Knowledge Graphs (KGs) in Chapter 5, Chapter 6 and Chapter 7. We define a graph G as a

combination of two sets (V,E), where V is the set of nodes, and E is the set of edges. Then we

define a triple as ⟨Subj , Rel , Obj ⟩, meaning that a node Subj ∈ V has a relation Rel ∈ E to

another node Obj ∈ V . For instance, ⟨Grue , In , ConventionHall⟩ indicates that there is a Grue

In the ConventionHall . We then formulate the KG as a set of such triples. Depending on different

experimental settings, the KGs could either be built from the textual observation, or be directly

provided by the environment.





Chapter 4

Transformer-based State Representation

Generator

In this chapter, we study the transformer architecture for state representation learning in language-

conditional RL. The transformer architecture has proven to be more effective than the recurrent

modules in the language processing tasks. However, in generating state representations for the

RL tasks, its potential is seldom exploited, and might be hindered by the huge amount of weight

parameters. In this work, we design an adaptable transformer-based state representation generator

featured with reordered layer normalization, weight sharing and block-wise aggregation. We

empirically validate our method on both synthetic and man-made text-based games with different

settings. The proposed method show higher sample efficiency in solving single synthetic games,

better generalizability in solving unseen synthetic games, and better performance in solving complex

man-made games.

4.1 Introduction

For solving the RL especially the DRL tasks, building an effective representation generator is

one of the most crucial steps. In the domain of language-conditional RL, such as the text-based

games, existing methods have been targeting at language-based state representation learning [152],

large action space [227], delayed credit assignment [226], and partial observability [8]. In order
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to process the language-based states, the state representation generator is usually implemented

through recurrent modules, such as the Long Short-Term Memory (LSTM) [88, 152, 226] and the

Gated Recurrent Unit (GRU) [7, 85]. Recently, the transformer architecture, which is featured

with the self-attention mechanism [197], has empirically proven to be more effective than the

recurrent modules in a wide range of natural language processing tasks[59, 164, 223]. However,

such architecture is seldom investigated as the state representation generator in the RL tasks.

In this work, we aim at designing a state representation generator in solving the language-conditional

RL tasks. We are motivated by the premises of the transformer architecture in natural language

processing, and believe that such architecture could be effective in obtaining language-based state

representation for RL. We first propose a generator upon the vanilla transformer (i.e., the original

version without further modifications) to investigate whether this module is more powerful than the

recurrent modules. Then we consider three modifications on this module to further improve the

performance. Firstly, we reorder the layer normalization operation by putting it inside the residual

connections[89], providing an identity map between the input and the output. Secondly, for the

purpose of reducing the number of weights, we conduct weight sharing among all transformer

blocks. Thirdly, we apply the gating mechanism [96, 187] to aggregate each transformer block’s

input flow and output flow, thus further enhancing the residual connection.

We conduct experiments on both synthetic and man-made text-based games with different settings.

In the single game setting, the proposed method achieves higher sample efficiency that it spends

fewer training interactions on learning to solve the games. In the multiple unseen games setting, the

proposed method achieves improved generalizability in solving games with unseen layouts. Our

model also outperforms the baselines in multiple complex man-made games.

Our contributions through this work are summarized as following aspects:

1. Our work is one of the initial studies to exploit the potential of the transformer architecture

for language-conditional RL tasks.

2. We show the effectiveness of the transformer architecture in building state representations

from the textual observations.

3. We propose a simple transformer-based state representation generator, which could be treated

as a plugin for different agents & frameworks.
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4. We empirically validate our model in text-based games with different settings. The results

indicate that our model surpasses both the vanilla transformer and strong baselines.

4.2 Related Work

The transformer architecture has been proved to outperform the recurrent modules in multiple

language processing scenarios, such as language modeling [59], text summarization [131], text

generation [112], and machine translation [197]. However, this architecture is much less investigated

in the area of reinforcement learning, where the recurrent modules such as LSTM are still adopted

dominantly. In the multi-agent reinforcement learning tasks, the self-attention mechanism has

been applied for modeling the objects and their relationship [228]. Parisotto et al. [159] replaced

the recurrent module with the transformer architecture, and tackled the problem in optimizing the

vanilla transformer. However, other than building the state representation, both the transformer

architecture and the recurrent modules are used for storing the historical information. Although

Zelinka et al. [230] applied the transformer architecture as a part of the state representation generator,

neither analysis nor modification is conducted upon the vanilla transformer. Different from those

existing works, we emphasize on digging the potential of the transformer architecture to be the

representation generator for language-conditional RL tasks. Particularly, we try to give answers to

following research questions:

• Whether we can utilize the transformer in building the state representations?

• Whether the vanilla transformer’s optimization problem [141] still exists in our tasks?

• How to further improve the transformer’s performance in language-conditional RL?

4.3 Methodology

Fig. 4.1 shows our agent, which contains a representation generator for building the representation

from st, and an action scorer for computing the Q values. We concentrate on the generator module,

which is shown in the dashed box. Fig. 4.2 displays our proposed transformer-based representation
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FIGURE 4.1: Our agent, which contains a representation generator for constructing representation
from st, and an action scorer for computing the Q values. We concentrate on the representation

generator, which is shown in the dashed box.

FIGURE 4.2: (a) Our transformer-based representation generator. (b) The transformer encoder,
which consists of L transformer blocks. In each transformer block, we reorder the layer normaliza-
tion operation by putting it inside the residual connections. We share the learnable weights across
all transformer blocks (blue region). We then propose gate modules to aggregate the input flow

and output flow of each transformer block.

generator, which consists of a word-level embedding layer, the transformer encoder and the mean

pooling operation. Built upon the vanilla transformer [197], the transformer encoder consists of L

blocks with three enhancements for the language-conditional reinforcement learning. Firstly, we

reorder the layer normalization operation by putting it inside the residual connections. Secondly,

we conduct weight sharing between the transformer blocks. Thirdly, we apply gating modules to

aggregate the input flow and output flow of a transformer block.
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FIGURE 4.3: The vanilla transformer block (a) and the proposed transformer block (b), where the
layer normalization operation is put inside each residual connection.

4.3.1 Layer Normalization

Fig. 4.3 compares the blocks for the vanilla transformer (a) and our proposed transformer (b). LN

denotes the layer normalization, FFN denotes the feed-forward networks, and MHA denotes the

multi-head self-attention. Motivated by the similar operation in the question-answering tasks [223],

where an identity map is formed between a sub-module’s input and output, we conduct layer

normalization reordering by putting LN inside each residual connection. We denote the input

embedding of the l-th transformer block (l ∈ [1, L]) as e(l−1) ∈ RT×D, where T and D denote

the sequence length and the embedding dimension, respectively. For the MHA sub-module, the

input embedding e(l−1) will be first processed by the layer normalization operation followed by the

multi-head attention to obtain the output embedding e
(l)
MHA:

e
(l)
MHA = MHA(LN(e(l−1))). (4.1)

Then e(l−1) and e
(l)
MHA will be aggregated by a residual connection:

ẽ(l)MHA = e(l−1) + ReLU(e
(l)
MHA). (4.2)

For the FFN sub-module, ẽ(l)MHA is treated as the input embedding, and similar operations will be

conducted: ẽ(l)MHA will first be processed by the layer normalization operation and some linear

layers, then a residual connection is applied to obtain the final output e(l) ∈ RT×D:

e(l) = ẽ(l)MHA + ReLU(FFN(LN(ẽ(l)MHA))). (4.3)
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4.3.2 Weight Sharing

Our second modification is to reduce the learnable weights through weight sharing, yielding a

lightweight transformer. Typically, the transformer-based models used in language processing tasks

(e.g., question answering, machine translation) are less efficient to be trained from scratch, as they

have large amounts of learnable weights [59]. Such a problem might be even more noticeable in

reinforcement learning, in which the low sample efficiency remains a long-standing challenge [63].

The idea of weight sharing originates from some similar operations in the large-scale language

models, for example, the ALBERT [122]. Specifically, as shown in the blue region of Fig. 4.2 (b),

the weights are shared among all of the transformer blocks, as well as all of the block-wise gate

layers. By doing this, we can make the number of the learnable weights friendly to optimize even if

we increase the number of blocks.

4.3.3 Block-wise Gate Layer

Our third modification is to conduct block-wise aggregation after each transformer block, thus

enhancing the intra-block residual connections. Similar gating operations can be found in GTrXL

[159] with the aim of stabilizing learning. However, while their work conducted gating within

the transformer block, we differently apply the gating operations between the blocks. For the l-th

transformer block, we aggregate the input flow e(l−1) and output flow e(l) through a gated output

connection:

e(l) = e(l−1) + σ(Wge
(l−1) + bg)⊙ e(l), (4.4)

where Wg and bg are learnable parameters, and σ denotes the Sigmoid operation.

4.4 Experiments

4.4.1 Experiment Setting

We carry out experiments upon both synthetic and man-made text-based games. The synthetic

games are generated based on the TextWorld’s CoinCollector Challenge [53]. In each game, the

agent is located in a house, and its objective is to explore the rooms to find the unique coin within
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TABLE 4.1: The details of the synthetic games in the CoinCollector domain.

the step limit. We measure the difficulty of a game by its level (the quest length, i.e. the number

of steps required by an optimal agent to solve the game) and difficulty mode (the existence of

distracting rooms leading to the dead end). A game is considered as easy if there’s no distracting

room (e.g., “L30E”), otherwise hard (e.g., “L30H”). We consider two different experiment settings

for the synthetic games: the single game setting and the multiple unseen games setting. Similar

to the RL settings in those Atari games [27], we train and evaluate the agent on a same game in

the single game setting. In the setting of multiple unseen games, we aim to evaluate the agent’s

generalizability towards unseen games, that we build two non-overlapping training and evaluating

game sets. Table 4.1 shows the details of the synthetic games and their settings. For the man-made

games, we select a set of 15 games from the Jericho platform [85], and consider the single game

setting.

4.4.2 Baselines

For the synthetic games, we build our agent based on LSTM-DRQN [226], and consider following

baselines:

• LSTM-DRQN [226], which is our backbone model. The representation generator is built

with LSTM.

• CNN-DRQN, which is modified from CNN-DQN [220]. The representation generator is

built with CNNs.

• Trans-DRQN, which modifies LSTM-DRQN by replacing the LSTM with the vanilla trans-

former encoder.
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• Trans-v-DRQN, which is our proposed agent. The representation generator is built with the

modified transformer.

For the man-made games, we build our agent based on DRRN [88], and consider following

baselines:

• DRRN [88], which is our backbone model. It’s a choice-based agent that the set of admissible

actions is assumed to be available at each time step.

• TDQN [85], which extends LSTM-DQN with template-based action space.

• KG-A2C [7], which takes advantage of the knowledge graph-based observation to address

the partial observability.

• Trans-v-DRRN, which is our proposed model with the modified transformer as the state

representation generator.

4.4.3 Implementation Details

For the synthetic games, we follow similar parameter settings of LSTM-DRQN [226] to implement

the models. The transformer architecture is modified based on Pytorch’s official example, with the

encoder being simplified. Our Trans-v-DRQN consists of L = 4 transformer blocks. We set the

MHA part as single-head, and set FFN part as a linear layer with 100 hidden units. All models

adopt DRQN [87] as the action scorer. Besides, we use reward shaping to encourage exploration -

the agent will be assigned 1.0 additional reward if it encounters a state for the first time.

For the man-made games, we follow similar parameter settings of DRRN implemented by [85].

We replace the 3 GRU encoders, which are used for processing the description of current location,

the player’s inventory and the feedback of previous action, with a shared transformer-based encoder

with 4 blocks, 4 heads in the MHA part, and 128 hidden units in the FFN part.

4.4.4 Training Details

For the synthetic games, we set one episode as 50 time steps. We run multiple environments in

parallel, and denote the model finishing an episode on all the environments as an epoch. For the
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single game setting, we generate 10 environments for a same game. For the multiple unseen games

setting, we use 200 training games with one environment per game, and use another 20 games

for testing. We apply the ϵ-greedy approach with ϵ being annealed from 1 to 0.2 in 1000 epochs

(50 epochs) for the single game setting (multiple unseen games setting). We use the prioritized

experience replay with buffer size 5000 and updating batch size 32. We update the models using

the Adam optimizer, with learning rate being set as 0.001.

For the man-made games, we set one episode as 100 time steps. Similar to the baselines, we conduct

parameter tuning on the game “zork1”. We generate 8 environments for each single game. We

apply the experience replay with buffer size 500,000 and updating batch size 64. The models are

trained for 100,000 steps, where the optimizer is same to that of the agents for the synthetic games.

4.4.5 Evaluation Metrics

We measure the performance using the sum of collected rewards in an episode. Besides, for the

single game setting in the synthetic games, we also compare the training epochs required to solve

the games (i.e., achieving the maximum reward sum 1.0).

4.5 Results and Discussions

4.5.1 Synthetic Games: Single Game Setting

Fig. 4.4 shows models’ performance in synthetic games under the single game setting. The

LSTM-DRQN baseline learns slowly, while the other models have higher learning speed. Table 4.2

compares the training epochs required to solve the games, that our Trans-v-DRQN model shows

high sample efficiency. In hard games where there exist distracting rooms, our modified transformer

helps to extract the navigational information (e.g., “the kitchen is connected to the living room”)

from the state, yielding more obvious advantage.

We then systematically study the contribution of the modifications. Table 4.3 shows the ablation

results, where “X” denotes that the modification “X” is removed from our model. The weight

sharing modification contributes the most, that removing it leads to most significant performance
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FIGURE 4.4: The models’ performance in synthetic games under the single game setting. The
shaded area indicates standard deviations over 3 independent runs.

TABLE 4.2: The number of epochs required to solve the single games.

TABLE 4.3: The performance of models with different modifications.

decrease (by comparing “-gate” with “-gate -shareW”). The modification of gating operation

also contributes to the performance improvement (by comparing “Trans-v” with “-gate”). The

modification of layer normalization reordering contributes the least, that it only slightly improves

the performance when being used together with the modification of weight sharing (by comparing

“-gate -reorderLN” with “-gate”). Furthermore, the performance even decreases when applying this

modification alone (by comparing “-gate -shareW” with “-gate -reorderLN -shareW”).
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FIGURE 4.5: The models’ performance in synthetic games under the multiple unseen games
setting.

TABLE 4.4: The maximum rewards obtained in synthetic games under the multiple unseen games
setting.

4.5.2 Synthetic Games: Multiple Unseen Games Setting

Fig. 4.5 shows models’ performance in synthetic games under the multiple unseen games setting.

In “L30E”, the transformer-based models (Trans-DRQN, Trans-v-DRQN) show higher sample

efficiency, that they make progress faster than the other two baselines. However, as the training

goes on, the Trans-DRQN baseline starts to degrade and ends up with worst performance, which is

possibly due to overfitting. Instead, our Trans-v-DRQN, which is with the modified transformer

encoder, is more robust in solving the unseen games. In “L40E”, which requires more steps to solve,

its advantage is more obvious: while its performance exceeds 0.8 within 55 epochs, the other models

require more training epochs and end up with worse result. We also compare the the maximum

rewards that can be obtained by the models. Table 4.4 shows the result, that Trans-v-DRQN

outperforms the other baselines.
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TABLE 4.5: The performance of models on man-made games.

4.5.3 Jericho-supported Games

Table 4.5 compares the performance of models on man-made games. In 10 out of all 15 games,

our Trans-v-DRRN surpasses all the other models. In comparison to the building backbone DRRN,

Trans-v-DRRN brings further improvements in eight games, and achieves comparable performance

in another four games. Fig. 4.6 shows the learning curve of the game “zork1”. At the early stage of

training, Trans-v-DRRN learns a little slower than the backbone model. However, it starts to learn

the solving strategy at about 20,000 updating steps, and eventually outperforms all other baselines.

In addition, it can be observed that the transformer architecture helps to overcome the fluctuation

problem encountered by the backbone model, leading to better performance at the end of learning.

4.6 Conclusion

In this chapter, we exploited the potentiality of the transformer architecture for building state

representations in solving the language-conditional reinforcement learning tasks. We designed an

adaptable transformer-based representation generator equipped with three modifications. We first

conducted layer normalization reordering within the blocks. Then we shared weights among the

blocks. Finally, we applied the gate aggregation between the blocks. We empirically validated our
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FIGURE 4.6: The models’ learning curves on the game “zork1”.

method on both synthetic and man-made text-based games with different settings. The proposed

method showed higher sample efficiency in solving single synthetic games, better generalizability

in solving unseen synthetic games, and better performance in solving complex man-made games.

With respect to the limitations & future directions, currently we only investigate generalizability on

simple CoinCollector games, and we would like to extend this study towards more complex games.

While current model is trained from scratch using largely simplified transformer architecture, in the

future we would like to integrate our model with pre-trained language models [59, 122] to obtain

better representation learning ability, thus further exploiting its potential.





Chapter 5

Stacked Hierarchical Attention

Mechanism

In this chapter, we study the reasoning process in the language-conditional reinforcement learning.

The reasoning ability enables the agent to generate the actions with the support of an explainable

inference procedure. To achieve this ability, we propose an agent featured with the stacked

hierarchical attention mechanism. Through exploiting the structure of the knowledge graph, this

agent is able to explicitly model the reasoning process. Our agent demonstrates effectiveness on a

range of man-made text-based games.

5.1 Introduction

While existing studies have been conducted with the aim of building representations from text

observations [7, 8, 152] and reducing the combinatorial action space [85, 227], few of them

addresses the reasoning process, which we believe that the language-conditional RL agent could

benefit from. The human beings are inherently armed with the reasoning ability, that they are able

to interpret the decision making process through composing the supporting facts from the context

and the knowledge base [32, 114], and reuse the learnt knowledge in the future [209]. For the RL

agent, such reasoning ability could be acquired through exploiting the knowledge graphs. Some RL

agents have utilized the KG-based observation in the partially observable scenarios, such as the
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text-based games [2, 7, 8]. However, the knowledge graph’s potential for reasoning is overlooked,

and narrowed by two issues [50, 104]. Firstly, most agents consider only one graph, which is hard

to maintain the fine-grained information, such as the historical information and different types of

object relationship. Secondly, existing agents simply concatenate the inputs (e.g., the KG-based

observations and the textual observations) to build the state representation, ignoring the benefits of

exploiting the multimodality.

In this work, our aim is to enhance the agent with the reasoning ability in solving language-

conditional RL tasks. We design an agent, Stacked Hierarchical Attention with Knowledge Graphs

(SHA-KG)1, which is able to conduct multi-step and multl-level reasoning process. We first make

the agent aware of the relation and temporal information through dividing the KG as sub-graphs by

their semantic meanings. Then, we design a stacked hierarchical attention module to encode the

multi-modal observations as the state representation.

Our contributions are summarized as following aspects:

1. Our research is a first step to explore the reasoning ability in language-conditional reinforce-

ment learning.

2. We introduce the reasoning process in decision making through considering a knowledge

graph as multiple sub-graphs.

3. We design an RL agent, which is equipped with the stacked hierarchical attention mechanism

for reasoning.

4. We empirically validate the effectiveness of our agent in a set of man-made games. Our pro-

posed agent achieves favorable performance in compason with the state-of-the-art baselines.

5.2 Related Work

5.2.1 Reinforcement Learning Agents for Solving Text-based Games

As demonstrated in Chapter 2, existing works have augmented the RL agent with the knowledge

graphs, which could be built and updated based on the textual observations. The KGs have been
1We release the code at https://github.com/YunqiuXu/SHA-KG.

https://github.com/YunqiuXu/SHA-KG
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leveraged to reduce action space [7, 8], handle partial observability [7, 8, 230], and improve

generalizability [2, 9]. However, the KG’s potential for reasoning is seldom addressed. While

some works [148] studied commonsense reasoning through incorporating large-scale knowledge

base [185], we reduce the usage of such external knowledge by constructing the graph upon the

domain information. Furthermore, going beyond the simple synthetic games, we study the reasoning

ability in more complex scenarios.

5.2.2 Attention Mechanism

The studies on the attention mechanism have been conducted in areas such as neuroscience, artificial

intelligence, and cognitive science [129]. For RL tasks with pixel-based observations, some works

have been utilized the attention mechanism for interpreting the action selection [77, 146]. For

language-conditional RL, some KG-based agents have adopted the attention mechanism in building

state representations. For example, the KG-A2C [7] encoded the graph-based observation via the

Graph Attention Networks (GATs) [198]. Some supervised learning works have also employed the

attention mechanism to aggregate multi-modal inputs [98, 99, 113, 114, 132, 137]. In our work, we

design a new attention mechanism for the purpose of constructing the state representation from the

multi-modal observations.

5.2.3 Reasoning upon the KGs

The knowledge graph has been widely applied to provide structural information and the com-

monsense reasoning ability. While a lot of works have been proposed in domains such as the

recommendation systems [201, 203, 213, 232] and question answering tasks [25, 60, 127, 235],

we are the first to exploit the KGs to equip the agents with the reasoning ability in solving the

language-conditional RL tasks.

5.3 Problem Statement

Compared with the synthetic games [53], the man-made text-based games [85] are much more

complex, making them even challenging for human players. In order to solve these games, an agent
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FIGURE 5.1: (a) ot,text in our work, which consists of four parts. (b) The KG-based observation
ot,KG, where those derived from current ot,text are in yellow. (c) The sub-graphs.

is required to make automatic responses based on some textual information to achieve specific

goals, such as finding the treasure and escaping from the dungeon. The input st2 consists of

three components: a textual observation ot,text, a knowledge graph-based observation ot,KG, and a

collected raw score ot,score. As shown in Fig. 5.1 (a), the ot,text can be further divided as four parts:

the description of the current environment status ot,desc, the objects collected within the inventory

ot,inv, the action chosen in the past time step at−1, and the feedback ot,feed after executing at−1.

ot,text and ot,score represent the current information. ot,KG helps to address the partial observability

through recording the historical knowledge. As shown in 5.1 (b), the knowledge graph ot,KG is

updated using the triples extracted from ot,text:

ot,KG = GraphUpdate(ot−1,KG, ot,text) (5.1)

We detail the process about the knowledge graph construction in Sec. 5.5.2.
2Note that we should not regard st as the environment state, which is not provided to the agent.
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5.4 Methodology

5.4.1 Sub-graph Division

Different from most existing works [2, 7, 8, 230], which consider only one KG, we divide the

knowledge graph as a set of sub-graphs for the purpose of introducing the relational-awareness and

temporal-awareness. We get inspiration from the heterogeneous graph [204, 231], where the nodes

/ edges within a graph may have different types. We first classify the edge types. For example, we

can treat “Have” and “West of ” as different categories. Then, based on the edge types, multiple

sub-graphs will be constructed with the relational awareness. We consider the sub-graph division in

the level of graph semantics. That is, each sub-graph may contain multiple types of edges, and edges

with the same type may appear in different sub-graphs. Since the single KG can not distinguish the

current information from the global information, we further construct sub-graphs with / without the

historical information, thus introducing the temporal awareness to the KG. For example, we can

build a sub-graph from ot,text only, and build another sub-graph from ot,text and ot−1,KG. Fig. 5.1

(c) displays some sub-graphs derived from ot,KG. For more details of the sub-graph division, please

refer to Section 5.5.2.

The full KG can be regarded as the union of all m sub-graphs:

ot,KG = ot,KG,1 ∪ ot,KG,2 ... ∪ ot,KG,m-1 ∪ ot,KG,m (5.2)

Through dividing the KG as sub-graphs, a two-level hierarchy is established upon the observa-

tions [218, 236]. In the high level, the global information is captured by the full knowledge graph. In

the low level, the relational as well as the temporal information is modeled by different sub-graphs.

5.4.2 Stacked Hierarchical Attention

Motivated by the Visual Question Answering (VQA) tasks [113, 132], we design a stacked hier-

archical attention mechanism for effective aggregation among the textual observation, score and

KG-based observation. Considering a query and the context, the query representation will first be

constructed from one modal (or two), then be used for obtaining the attention values across another

modal (the context). Fig. 5.2 provides an overview of our proposed two-level encoder, where the
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FIGURE 5.2: Overview of the SHA-KG’s encoder.

subscript “t” is omitted during encoding, and oKG,full is the full knowledge graph before sub-graph

division. In the high level, the query representation is built upon the knowledge graph and the score,

then multiple groups of attention values will be obtained across the modal of textual observations.

The output of the high level is used to build the query representation in the low level. The low level

attention values will then be obtained through querying across the modal of sub-graphs.

High-level encoding We use a similar way of KG-A2C [7] to obtain the graph representation

vKG, full ∈ RdKG - oKG,full will be first processed via GATs [198], then aggregated using fully-

connected layers. For the score, we obtain the representation vscore ∈ Rdscore through binary

encoding. While previous works [7, 85] obtain the state representation via concatenating all

observational vectors, we build the query vector qhigh ∈ Rdhigh by concatenating vKG, full and vscore

followed by a linear layer:

qhigh = WInitconcat(vKG, full,vscore) + bInit (5.3)

where WInit ∈ Rdhigh×(dKG+dscore) denotes the weight, and bInit ∈ Rdhigh denotes the bias. The

different parts of the textual observation will be encoded separately using c different GRUs, where c

denotes the number of parts 3. Then the c encoded parts will be stacked as the representation vector
3As discussed in Section 5.3, c is 4 in this work.
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vtext ∈ Rdhigh×c, which can be treated as either the different regions of an image, or a multi-channel

image representation. The attention value is computed in channel-wise. Similar operations can

be observed in SCA-CNN [48], where one single attention value is assigned for each channel.

However, in order to extract more fine-grained knowledge, we make a difference by assigning

each channel with multiple groups of attention. For each position along the channel, one group of

attention values is computed as:

αhigh = softmax(WA,highhhigh + bA,high) (5.4)

where the intermediate representation hhigh is computed as:

hhigh = tanh(WI,highvtext ⊕ (WQ,highqhigh + bQ,high)) (5.5)

WI,high ∈ Rdhigh×dhigh , WQ,high ∈ Rdhigh×dhigh and WA,high ∈ Rdhigh×dhigh are learnable weights.

bQ,high ∈ Rdhigh and bA,high ∈ Rdhigh denote biases. The operation of computing multiple groups of

attention is similar to that we first divide vtext as dhigh vectors vtext,sub ∈ R1×c, then assign single

attention in channel-wise for each of these vectors. The resulted attention vector αhigh ∈ Rdhigh×c,

which indicates the attentive focus for each part of the textual observation, will be finally aggregated

with the query vector. Motivated by the recent progress in the attention mechanism [74, 217, 225],

we propose to update the query vector iteratively, thus enabling multi-step reasoning. vtext is first

multiplied with αhigh using dot-product, followed by the channel-wise summing operation. The

resulted vector will then be aggregated with qhigh for obtaining the query vector qlow ∈ Rdhigh :

qlow = qhigh +
c∑
i

αhigh,i ⊙ vtext,i (5.6)

Low-level encoding We use a similar way of the high level encoding to compute the attention.

Firstly, we build the query vector using the output of the high-level encoding, where the linear

mapping operation is performed to make sure qlow ∈ Rdlow . Then sub-graphs are encoded by

different graph encoders, and stacked to form the representation vector vKG ∈ Rdlow×m. Then we

compute the multiple groups of attention αlow ∈ Rdlow×m as:

αlow = softmax(WA,lowhlow + bA,low) (5.7)
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where the intermediate vector hlow is computed as:

hlow = tanh(WI,lowvKG ⊕ (WQ,lowqlow + bQ,low)) (5.8)

WI,low ∈ Rdlow×dlow , WQ,low ∈ Rdlow×dlow and WA,low ∈ Rdlow×dlow are learnable weights. bQ,low ∈

Rdlow and bA,low ∈ Rdlow denote biases. Finally, the state representation vector vt ∈ Rdlow is obtained

by attentively aggregating qlow and vKG:

vt = qlow +
m∑
i

αlow,i ⊙ vKG,i (5.9)

5.4.3 Action Selection and Model Optimization

Arbitrary approaches could be used for selecting the action, such as recurrent decoding [7] and

template-based scoring [85]. In our work, the action is obtained through a two-GRU decoding

process. Firstly, a GRU is used to select a template u conditioned on vt from a set of template

candidates T . Then, another GRU is executed for k times to select objects {pi ∈ P , i ∈ [1, ..., k]}

recurrently, where the selecting probability pi is conditioned on both the state representation vt and

the previous prediction (u or pt−1). The set of object candidates P is defined as the intersection

of two sets: the set of interactive objects extracted from oKG,full, and the set of vocabulary V .

Finally, we combine the predicted objects and the template as an action at. Regarding the model

optimization, we follow [7] to train the agent using the Advantage Actor Critic (A2C) method [143].

5.5 Experiments

We conduct experiments on 20 man-made text-based games supported by the Jericho platform [85].

We consider following three research questions:

1. Whether the sub-graph division as well as the stacked hierarchical attention helps to introduce

the reasoning process?

2. Whether equipping the agent with the reasoning ability helps it to solve the complex text-

based games?
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3. How to interpret the reasoning process in decision making?

5.5.1 Baselines

Our model and the baselines are shown as follows:

• NAIL [86], which is a non-RL agent with pre-trained language models and hand-crafted

rules.

• DRRN [85, 88], which is a choice-based agent, where a set of valid actions will be provided

per time step.

• TDQN [85], which is a template-based agent.

• KG-A2C [7], which extends TDQN with the knowledge graph-based observation.

• SHA-KG, which is our proposed model featured with the stacked hierarchical attention.

5.5.2 Experimental Setup

Graph construction We use Stanford Open Information Extraction (OpenIE) [16] to extract the

triples from the textual observations. In addition, we adopt two simple rules from [7]: 1) In the

current observation, we link the interactive objects within the inventory to the node “you”, and

link other interactive objects to current location. 2) We infer the location connectivity from the

navigational actions (e.g., “go east”). There are 11 edge types: “north”, “south”, “east”, “west”,

“northeast”, “northwest”, “southeast”, “southwest”, “in” (indicating the player’s location), “have”

(indicating an object’s location, including the player’s inventory), and “is” (indicating an object’s

status). We define four graph types for sub-graph division. oKG,1 denotes the connectivity of visited

locations, oKG,2 denotes the interactive objects at current location, oKG,3 denotes the collected items,

and oKG,4 contains those not connected to the node “you”. oKG,1 and oKG,4 represent both current

and historical knowledge, while oKG,2 and oKG,3 represent the current knowledge only. We leave

the automatic graph partitioning methods as future work.

Training details We implement SHA-KG upon the KG-A2C with similar hyper-parameter set-

tings [7]. We set the node dimensionality in GATs as 25, the query dimensionality in the high level
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TABLE 5.1: The main result in 20 games.

encoding dhigh as 50, and the query dimensionality in the low level encoding dlow as 50. We define

an episode as 100 interaction steps. For each game, we train a single agent for for 106 interaction

steps. For every 8 interaction steps, we update the model using Adam optimizer with the learning

rate being set as 0.003. We implement all baseline models based on their original paper [7, 85, 86].

We measure the performance using the mean score of the last 100 training episodes.

5.6 Results and Discussions

5.6.1 Main Results

Table 5.1 displays the main result in 20 games. Different games have different sizes of template

set |T | and vocabulary set |V|. MaxR is the highest result that could be achieved by the human

expert player, which could be treated as the upper bound for this benchmark. Although according to

MaxR, there is still a long way to go for the game agents to achieve the human-level performance,

our SHA-KG achieve promising performance among the baselines. It surpasses the current best
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FIGURE 5.3: The result with respect to the update steps for SHA-KG variants with different
encoding methods.

FIGURE 5.4: The result with respect to the update steps for SHA-KG variants with different
sub-graphs.

result in 8 games, and obtains equivalent performance of the best-performed agents in another

7 games. In particular, the strength of incorporating the reasoning ability could be validated by

comparing SHA-KG with other baselines with the template-based action space, such as TDQN and

KG-A2C, that SHA-KG achieves comparable or better result in all of the 20 games. It can also

be observed that SHA-KG still can not beat another two baselines, NAIL and DRRN, in 5 games.

As a non-RL agent, NAIL is equipped with engineering tricks and pre-defined solving procedures.

For example, when entering a new location, it will try to interact with all of the observed objects

until reaching the step limit. Although such external knowledge might be helpful in solving some

specific games, it is less flexible, leading to worse performance than the RL baselines in most of

the games. Another baseline, DRRN, is with a strong assumption that the set of admissible actions

are provided per time step. This assumption prevents the agent from wasting time in choosing

meaningless actions (e.g., selecting “take knife” when the object “knife” does not exist, or selecting

a wrong word combination “eat knife”). Although this assumption is relaxed by using the templates,

the challenge of large action space still exists (O(T P2)), making it difficult to learn the solving

strategy quickly. However, compared with our backbone model KG-A2C, the reasoning ability still

brings significant improvement. SHA-KG exceeds DRRN in 6 out of 9 games where KG-A2C is

defeated by DRRN. In another 3 games, the performance of SHA-KG is close to that of DRRN.
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5.6.2 Ablation Studies

With the aim of studying the contributions of the components, we carry out two branches of ablation

studies. We first consider SHA-KG variants with different encoding methods:

• “w/o GroupAttn”, where each channel is assigned with a single attention value, i.e., αhigh ∈

R4, αlow ∈ R4.

• “w/o high-level”, which does not use the full KG - the query representation is constructed

upon vtext and vscore, then the attention values for different sub-graphs are computed.

• “w/o low-level”, which does not use the sub-graph division - the query representation is

constructed upon vKG, full and vscore, then the attention values for different textual observation

parts are computed.

Fig. 5.3 compares the result with respect to the update steps, where the result from [7] is represented

as the dashed line. In all games, our SHA-KG outperforms, or at least has similar performance to the

model variants. This can be explained from the perspective of our two-level attention mechanism,

that the high level attention guides the agent to target at important parts of the textual observation,

and the low level attention helps it to focus on important sub-graphs. We observe that considering

the sub-graphs helps to improve the data efficiency for the variant “w/o high-level” in some games

such as “zork1”. However, without the full KG this variant is with bad performance in the other

games such as “inhumane” and “zork3”. In contrast, if we consider the full knowledge graph only,

the agent learns slowly (e.g., “w/o low-level” in game “zork1”). Similar to the full model, the

variant “w/o GroupAttn” also considers the full KG as well as the sub-graphs. However, through

capturing the textual / graph information in a more fine-grained level, the full SHA-KG outperforms

“w/o GroupAttn” by a large margin, indicating the effectiveness of computing multiple groups of

attention.

We then compare SHA-KG variants with different kinds of sub-graphs:

• “w/o relational-awareness”, where oKG,2 (objects within current location) is combined with

oKG,3 (collected objects).
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FIGURE 5.5: An example of the reasoning process for game “ztuu”.

• “w/o temporal-awareness”, where oKG,4 is combined with oKG,2 and oKG,3, respectively. In

other words, this variant can not distinguish the historical information from the present

information.

• “w/o history”, where the historical information is removed from the sub-graphs.

Fig. 5.4 compares the result with respect to the update steps. We observe that in different games,

these sub-graph variants have different effects on the agent. For example, in two games “zork1”

and “zork3”, the variants “w/o relational-awareness” and “w/o temporal-awareness” demonstrate

different behaviors. While it is hard to conclude which sub-graph division method has the most

significant contribution, we suggest collectively considering different sub-graphs, which leads to

the promising performance of the full model.

5.6.3 Interpretability

Besides the quantitative results, we use the attentive focus to interpret the reasoning and decision

making process. Although controversial opinions have been raised regarding whether the word-level

attention can be used to explain the predictions [101, 210], the proposed attention mechanism is

operated in a way closer to the region/channel-level attention, whose effectiveness in explanation

has been validated in the RL domains with pixel-based inputs [77, 146]. Since the agent computes

multiple groups of attention values (e.g., dhigh attention values are assigned for each part of the

textual observation), we conduct aggregation to facilitate the interpretation. For each “channel” (a

part of the textual observation, or a sub-graph), a single attention value is first obtained by summing

the top 25 highest group values. Then, the softmax operation is conducted across the channels for
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normalization. As displayed in Fig. 5.5 (left), αhigh,top25sum corresponds to the textual parts in the

high level (otext,desc, otext,inv,otext,feed and at-1), and αlow,top25sum corresponds to the sub-graphs in the

low level (oKG, 1, oKG, 2, oKG, 3 and oKG, 3). It can be observed that three textual parts containing

the word “implement” attract more attention in the high level (i.e., the description of the current

environment status otext, desc followed by the feedback part otext, feed and the previous action part at-1).

In terms of αlow,top25sum, oKG,2, which records the interactive objects at current location, attracts the

most attention. By taking the attention focuses from the both levels into consideration, the agent

eventually chooses “lower implement”, which leads to a “+1” reward. Fig. 5.5 (right) visualizes

three sub-graphs and their graph-level attention, where the agent will pay more attention to oKG,2.

We also provide the node-level attention, despite the fact that the GATs in SHA-KG are not for

computing the attention values, but serving as the graph encoder. In each sub-graph, those with

top three largest node-level attention are highlighted in yellow, helping the agent to further refine

the information in selecting the actions. To summary, the two-level stacked hierarchical attention,

as well as the node-level attention, aids our SHA-KG agent to derive decisions in an efficient and

interpretable way.

5.7 Conclusion

In this chapter, we probed the reasoning process in the language-conditional reinforcement learning.

We designed the SHA-KG agent, which is empowered with the reasoning ability over multi-modal

inputs through two techniques: the knowledge graph division, and the stacked hierarchical attention

mechanism. Besides demonstrating the effectiveness of our agent in solving a range of man-made

text-based games, we also interpreted how the reasoning process is conducted by SHA-KG in

deriving the actions.

With respect to the limitations & future directions, the KG construction in our work is still task-

dependent, and we would like to study a more generalizable construction approach. Besides, we

only consider some simple sub-graph division approaches, while more types of KGs, such as

sub-graphs with fine-grained temporalities, could be investigated in the future.
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Hierarchical Knowledge Graph Agent

In this chapter, we study the generalization problem in language-conditional RL. We consider

the knowledge graph-based observation, and address this challenge by designing a two-level

hierarchical RL agent. In the high level, we use a meta-policy for task decomposition and subtask

selection. Then, in the low level, we use a sub-policy for subtask-conditioned action selection. In a

series of 8 game sets with different generalization types and game difficulty levels, our proposed

agent enjoys generalizability and yields favorable performance.

6.1 Introduction

In pursuing the strong AI, it is crucial to make agents generalizable to be adapted to different

scenarios. In reinforcement learning, nevertheless, the generalization still remains challenging −

the agent tends to overfit the training environment, and fails to generalize to new environments [51].

Recently, the TextWorld [53] platform facilitates studying generalizability in language-conditional

RL through generating non-overlapping training and testing game sets with customizable domain

gaps (vocabulary sets, themes, layouts, complexities, etc.). Most existing works consider two

types of generalization: 1) generalization across different games within a same level [8] (e.g.,

games have same number of rooms, but are different in room connectivity), and 2) generalization

across games from a series of multiple difficulty levels [3] (e.g., by varying the number of rooms).

While performing well on some relatively easy games, it’s hard for the existing agents to achieve

53
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satisfactory results in solving more complex games [2]. Our aim in this work lies in developing

agents with generalizability towards both generalization types. In addition, we propose to extend

the generalization across games to more challenging settings, where the testing games come from

unseen difficulty levels.

Due to long-term temporal dependencies, it might be difficult to learn to solve a whole task (e.g.,

solving a game). Furthermore, there exists large domain gap between the games (e.g., two cooking

games might have completely different recipes), making it difficult to transfer the learnt solving

strategy across them. The problem in solving a whole task could be alleviated by treating the task

as a sketch of subtasks, which are easier to complete, since they have shorter term of temporal

dependencies [12, 157]. Besides, it would be more feasible to solve an unseen task through

recomposing the strategies learnt from solving subtasks. Drawn inspiration from such task sketches,

we propose to first decompose the task as subtasks, then make decisions conditioned on a subtask.

We leverage the Hierarchical Reinforcement Learning (HRL) framework [191] to eliminate the

requirement for hand-crafting the task sketches, and improve generalizability through exploiting

the compositional nature of language [105].

We develop an RL agent, Hierarchical Knowledge Graph-based Agent (H-KGA)1, which consists

of a meta-policy in the high level, and a sub-policy in the low level. The meta-policy will be

used for subtask generation and selection, that it first obtains a set of available subtasks identified

by language-based goals, and selects one from them. The sub-policy will then be used to select

actions conditioned on the selected subtask. Besides the agent, we propose two techniques, the

scheduled task sampling and the level-aware replay buffer, to facilitate training in games from

multiple levels. The experiments are conducted on 8 sets of text-based games with different levels,

and different generalization types. In comparison to the baselines, the proposed method enjoys

improved generalizability, which leads to promising performance.

Our contributions are summarized as following three phases:

1. Our research is a first step to address the generalization problem in language-conditional

reinforcement learning from the perspective of hierarchical RL.
1We release the code at: https://github.com/YunqiuXu/H-KGA

https://github.com/YunqiuXu/H-KGA
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2. Upon the knowledge graph-based observationm, we propose a hierarchical agent, which is

featured with adaptive subtask decomposition, subtask selection, and subtask-conditioned

action selection.

3. We show that our agent improves generalizability in solving multiple sets of games with

various difficulty levels.

6.2 Related Work

Existing works have studied how to construct the knowledge graph from the textual observation [7,

147, 216]. Our work, which focuses on improving the generalizability through exploiting the

KG-based observation, complements them.

6.2.1 Generalization in Text-based Games

The man-made text-based games are still challenging for the existing RL agents even under the

single game setting [219]. Furthermore, it’s hard to determine the domain gap between these games,

as they vary largely in their themes, vocabularies and logics [9]. The synthetic games [53, 196],

instead, provide a more natural way to study generalization - multiple games can be generated with

controllable domain gaps. According to previous works, the games in the training set and the testing

set either have the same difficulty [8, 147], or come from a mixture of various difficulties [3, 221], or

have both settings [2]. In our work, we also consider the multi-difficulty setting. Besides, our work

extends this setting towards unseen difficulties - the agent will be tested on games whose levels are

not encountered during training. Additionally, we emphasize on enhancing agent’s generalizability

for games from more difficult scenarios.

6.2.2 Hierarchical Reinforcement Learning

The hierarchical reinforcement learning [57] has been studied in robotic control tasks [149], video

games [120, 181, 199], and dialogue systems [161, 170]. However, to the best of our knowledge,

our research is one of the initial steps to consider the HRL framework in solving text-based games
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with the KG observations. The idea of characterizing a task by language-based specifications has

been investigated in instruction following tasks [21, 71]. Such insight has also been considered by

some text-based game agents, for the propose of generating quests [6, 11]. In our research, we use

the goal to identify a subtask. However, instead of pre-specifying a goal, or directly generating the

goal from the observation, we introduce a hierarchical framework, where the goal set generation and

goal selection are disentangled. Another work similar to ours is HIN [105], which also considered

a meta-policy for goal selection, and a sub-policy for goal-conditioned action selection. However,

there are two major differences between their work and ours. Firstly, we study the scenario with

language-based observation and action space, while HIN focuses on visual scenarios. Secondly,

while the two policies in HIN are trained separately, and the joint training schema is left as a future

direction, our framework enables joint training of the policies. We further compare the joint training

with the individual training in Sec. 6.6.

6.3 Problem Statement

Different from Chapter 4 and Chapter 5, where the textual observations are used, in this chapter

we consider the KG-based observation oKG
t . Besides, we assume the accessibility of the set of

admissible actions At ⊆ A. Both oKG
t and At are provided by the environment for each time step.

Fig. 6.1 shows an example of oKG
t .

We aim at improving agent’s generalizability for the language-conditional RL tasks. For simplicity,

we only consider games having similar themes, but are different in their layouts as well as difficulty

levels, so that there’s no need for acquiring external knowledge from the pre-trained language

models [37, 59]. Taking the cooking theme [53] as an example, the overall objective is to prepare

the meal, which is shared by all games. Accomplishing this objective requires the agent to gather all

the ingredients, then correctly prepare each of them. A game’s layout consists of the connectivity of

rooms, and the preparing steps for each ingredient (roast, fry, dice, etc.). A game’s difficulty level

depends on the recipe (the number of the ingredients, the preparing steps per ingredient, etc.) and

the map’s complexity (the number of rooms) - if two games come from different difficulty levels,

they will naturally have different layouts. We define the training / validation / testing sets to be

with multiple games, where the games within a set may have different layouts and / or different

difficulty levels. We study two types of generalization: 1) Generalization across seen difficulty
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FIGURE 6.1: An overview of the proposed H-KGA, where the high level decision making process
is in red (goal set generation and goal selection), and the low level decision making process is in

blue (action selection).

levels, where the training games and the testing games belong to a same set of levels, but are

different in layouts. 2) Generalization across unseen difficulty levels, where training games and

testing games are different in both layouts and levels.

6.4 Methodology

6.4.1 Overview

Fig. 6.1 displays an overview of the proposed H-KGA agent, where the policies are executed in a

hierarchy of two levels. In the high level, we consider a meta-policy πmeta to get the set of currently

available subtasks identified by the goals Gt from oKG
t , and select a goal gt ∈ Gt. Then, based on g

and the observation oKG
t , we consider a sub-policy πsub to choose an action at ∈ At. We omit the

subscript “t” for g, since a goal might be picked in the past. Fig. 6.1 shows an example, that once

chosen, the same goal gt will be used by πsub for N steps until being failed or accomplished. The

rest of this section is organized as follows: Sec. 6.4.2 demonstrates how to use πmeta to get Gt, and
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select a goal gt from Gt. Sec. 6.4.3 illustrates how to use πsub for selecting the action at from At.

And Sec. 6.4.4 illustrates how to train H-KGA under the setting of multi-task learning.

6.4.2 Meta-policy

As illustrated before, decomposing a while task into subtask sketches will be helpful to deal with

the problem of long-term temporal dependency, thus reducing the difficulty in solving it [179, 184].

Moreover, if the strategy for solving a subtask can be treated as a skill, through recomposing the

learnt skills the agent can also improve its generalizability towards unseen tasks. Therefore, inspired

by the HRL framework [120, 191], we consider a hierarchical framework to incorporate such task

decomposition. We denote a policy, which is executed in the high level, as meta-policy πmeta. This

policy will first generate a set of subtasks, and then take one subtask from them. By characterizing

a task with its goal, the subtask selection can be transformed into goal selection. Instead of using

a state as the goal, we make the goal be in the form of language-based instructions (“dice yellow

banana”, “roast red apple”, etc.), yielding better flexibility and interpretability [15]. Fig. 6.1 (red)

shows the overview of πmeta , which consists of four parts: the goal set generator, the graph encoder,

the text encoder and the goal scorer. We regard the set containing the goals essential for solving a

task as G. A goal is regarded as “available” if it does not have any prerequisite goals at the current

time step. For example, the goal “cook red potato” is not available in Fig. 6.1, as the agent should

accomplish another one “find red potato” first. Regarding the goal set generator, we consider two

usages: 1) obtaining the set of goals that are currently available Gt ⊆ G, and 2) checking if a goal is

accomplished. Different approaches can be used for implementing the goal set generator, such as

functional programs, human supervisors and pre-trained language models [105]. We consider a

non-learning-based goal set generator for obtaining Gt, please refer to Sec 6.5.3 for details.

After obtaining the available goal set Gt, πmeta will then be used for goal selection. We first obtain

the high level state representation smeta
t from oKG

t via the graph encoder. In our work, the graph

encoder is implemented upon the Relational Graph Convolutional Networks (R-GCNs) [173], that

both nodes and edges will be taken into consideration. We then obtain a stacked goal representations

from Gt via the text encoder. Since we use short texts to describe a goal, it’s sufficient to implement

the text encoder based on a simple single-block transformer [197]. Regarding the goal scorer, we

score the goals in a manner similar to DRRN [88]: we first pair the state representation smeta
t with
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the representation of each goal candidate, then process these representation using fully-connected

layers. We follow the Q-learning setting to treat the score as Q value, that the candidate with the

maximum score will be chosen.

Following the Semi-Markov Decision Process (SMDP) [191], πmeta will be re-executed once a goal

is accomplished / failed. πmeta receives the environmental reward renv
t . For a high level transition,

the reward is defined as the sum of environmental rewards:

rmeta =
T∑
i=1

renv
t+i (6.1)

where T is the number of time steps spent on accomplishing gt.

6.4.3 Sub-policy

The sub-policy πsub follows the setting of goal-conditioned RL [107], where at is conditioned on

both oKG
t and g. As shown in Fig. 6.1, the architecture of πsub (blue) is similar to πmeta, except that

the state ssub
t is constructed based on both oKG

t and g. The graph encoder and text encoder πsub

can be implemented independently, or re-using those in πmeta. As this work does not address the

challenges of large action space, we assume the availability of a subset of currently admissible

actions At ⊆ A, where an action is “admissible” if executing it doesn’t result in meaningless

feedback such as “I don’t understand this command”. The action scoring process is conducted in

a way similar to the scoring process in πmeta, that each action candidate ai ∈ At is pair with the

low level state representation ssub
t , then the action scores will be computed through fully-connected

layers.

Depending on whether a goal is accomplished, πsub receives binary reward r
goal
t ∈ {rmin, rmax}.

We reuse the goal set generator to realize such intrinsic reward function. In Fig. 6.1, for instance, if

the agent has the goal “find knife” before observing oKG
t , it will be assigned with the maximum

reward r
goal
t = rmax, since “find knife” is successfully finished at time t. In the complex scenarios,

such goal-conditioned binary reward is still inadequate, even though the knowledge graph can

be treated as a “map” to guide the agent. For example, some cooking games may have a large

number of rooms, that the agent has to spend time on looking for the ingredients, while the intrinsic

reward is assigned sparsely in this process. In order to conduct efficient exploration, thus further
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improving the performance of πsub, we enhance sub-policy’s reward function with the count-based

reward shaping [26]. In particular, we adopt the BeBold method [234]. During the training process,

we not only count the state visitation within each episode, but also record the accumulated state

visitation throughout the whole training process. We compute the reciprocal of the accumulated

state visitation for the states before and after executing the action, then regularize their difference

through the episodic state visitation:

rcount
t+1 = max(

1

Nacc(o
KG
t )
− 1

Nacc(o
KG
t+1)

,

0) · I{Nepi(o
KG
t+1) = 1}

(6.2)

where Nepi is the episodic state visitation, and Nacc is the accumulated state visitation. The I

function returns 1 if oKG
t+1 is observed for the first time within current episode, otherwise 0. Finally,

we combine r
goal
t+1 with rcount

t+1 as the reward for πsub:

rsub
t+1 = r

goal
t+1 + λ · rcount

t+1 (6.3)

where the coefficient λ is used to balance these two components.

6.4.4 Training Strategies

We train H-KGA via Double DQN [84] with prioritized experience replay [172]. Algo. 1 demon-

strates the training process. The training set Dtrain consists of games from L levels, that a game

x ∈ Dtrain is sampled per episode (lines 2-22). The goal g is regarded as terminated and will be

re-selected by πmeta if the agent 1) completes it successfully, 2) fails to accomplish it, or 3) exceeds

the total step limit NUM STEPS. Supposing that the game x belongs to level l ∈ L, the transition

for the high level decision making will be formulated as ⟨oKG
t , g, rmeta, oKG

t+T , l⟩, and the transition

for the low level decision making will be formulated as ⟨(oKG
t , g), at, r

sub
t+1, r

goal
t+1, (o

KG
t+1, g), l⟩. For

every Fmeta
up (F sub

up ) time steps, we sample a batch of transitions from the corresponding replay buffer

Bmeta (Bsub) to update the policy πmeta (πsub). We adopt two additional training strategies, whose

effectiveness have been empirically validated by previous work [2]. Firstly, for the transitions

collected within an episode, instead of directly adding them to the replay buffer, we only store them

if the agent works well enough in this episode. We compute the average reward among the new
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Algorithm 1 The Training Process
Input: game sets {Dtrain,Dval}, replay buffers {Bmeta, Bsub}, update frequencies {Fmeta

up , F sub
up }, validation

frequency Fval, threshold P coefficients β, λ, τ ,
Initialize: counters Nacc ← ∅, Nepi ← ∅, k ← 1, p← 0, best validation score Vval ← 0, rmeta ← 0, caches
{Cmeta, Csub}, policies {πmeta, πsub}, {Πmeta,Πsub}

1: for e← 1 to NUM EPISODES do
2: l← SampleLevel(L, pl)
3: x← SampleGame(Dtrain, l)
4: oKG

0 ← reset x
5: Cmeta ← ∅, Csub ← ∅, Nepi ← ∅,
6: Update Nacc, Nepi with oKG

0

7: for t← 0 to NUM STEPS do
8: g ← πmeta(g|oKG

t )
9: rmeta ← 0

10: while g is not terminated do
11: at ← πsub(a|oKG

t , g)

12: Execute at, receive oKG
t+1, renv

t+1, obtain rgoal
t+1

13: Update Nacc, Nepi with oKG
t+1

14: Compute rsub
t+1 using Eq. (6.2) and Eq. (6.3)

15: Push the low level transitions into Csub

16: rmeta ← rmeta + renv
t+1

17: t← t+ 1
18: k ← k + 1
19: if k%Fmeta

up = 0 then
20: Update(πmeta, Bmeta)

21: if k%F sub
up = 0 then

22: Update(πsub, Bsub)

23: Push the high level transitions into Cmeta

24: Update pl using Eq. (6.4)
25: if Avg(rmeta|Cmeta, l) > τ · Avg(rmeta|Bmeta, l) then
26: Store all high level transitions in Cmeta into Bmeta

27: if Avg(rgoal|Csub, l) > τ · Avg(rgoal|Bsub, l) then
28: Store all low level transitions in Csub into Bsub

29: if e%Fval = 0 then
30: vval ← Validate(πmeta, πsub,Dval)
31: if vval ≥ Vval then
32: Vval ← vval, Πmeta ← πmeta, Πsub ← πsub

33: p← 0, continue
34: if p > P then
35: πmeta ← Πmeta, πsub ← Πsub, p← 0
36: else
37: p← p+ 1

transitions, and compare it with the average reward of the stored transitions times a coefficient τ

(lines 25-28). Secondly, for every Fval episodes, we validate the agent on a hold-out validation set

Dval. We track the best validation score V , as well as the corresponding policies Πmeta and Πsub. A

threshold is set that if the agent exhibits inferior performance (i.e., vval < V ) for over P validation

times, the current policies {πmeta, πsub} will be restored as {Πmeta,Πsub} (lines 29-37).
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If we regard a “task” as learning to solve those from a specific difficulty level, the setting of

training on those from a mixture of difficulty levels can be treated as Multi-task Learning (MTL).

Although these levels share some knowledge (e.g., overall objective, vocabulary set), different

amount of effort should be made in learning. For example, the “hard” games typically require more

interaction data and training time, and the agent tends to perform badly on them. In order to make

the agent be capable of such MTL setting, we enhance Algorithm 1 with two training techniques:

1) the scheduled task sampling strategy, and 2) the level-aware replay buffers. Regarding the first

technique, we draw inspiration from the curriculum learning [29] to arrange the tasks by their

difficulties. For each level l, we keep track of the agent’s training performance upon it vl. Then we

compute the probability for sampling a level through softmax-like operation:

pl =
eβ−vl∑

li∈L eβ−vli
(6.4)

where the coefficient β is a constant. Before an episode, instead of sampling a game regardless

of its level, we will first select a level based on pl, then uniformly select a game belonging to this

level (lines 2-3). In this way, we can encourage the agent to pay more attention to those hard games

as the learning goes on. We conduct another technique, the level-aware replay buffers, during the

process of storing newly collected transitions into the replay buffer. In hard games, the agent tends

to perform badly, making the transitions less likely to be pushed into the replay buffer. We use

the level-aware replay buffers to solve this problem. Specifically, we split the replay buffer by

the game levels, then, the new transitions will be compared and stored to the “sub replay buffer”

corresponding to their level (lines 25-28).

6.5 Experiments

6.5.1 Experiment Setting

The experiments are conducted upon cooking games with a range of multiple levels2 [53]. Adhikari

et al. [2] also studied the language-conditional RL in the cooking domain, while we extend their

experiment setting from 4 levels to 8 levels, and consider more difficult generalization type -
2https://aka.ms/twkg/rl.0.1.zip

https://aka.ms/twkg/rl.0.1.zip
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TABLE 6.1: The game statistics.

generalization upon unseen levels. Our training set Dtrain contains a mixture of 4 levels, where

for each level there are 100 games. Our validating set Dval consists of the same levels with Dtrain,

where for each level there are 20 games. We construct two testing sets, Dseen
test , and Dunseen

test . Both

testing sets have 4 levels, and each level contains 20 games. While Dseen
test share same mixture of

levels with Dtrain and Dval, the game levels in Dunseen
test are not encountered during training. Table 6.1

displays the statistics of each level, where a seen level is denoted as “S#” (Dtrain, Dval, and Dseen
test ),

and an unseen level is denoted as “US#” (Dunseen
test ). “#Ings”, “#Reqs”, “#Acts” denote the average

number of the ingredients, the requirements, and the current admissible actions, respectively. More

examples about the games & levels are provided in Appendix A.

6.5.2 Baselines

Our agent and the baselines are shown as follows:

• GATA [2], which is the state-of-the-art agent in the cooking domain. This agent does not

contain the hierarchical architecture. Besides, during the action selection process, neither the

goal nor the subtask is provided to the agent.

• GC-GATA, which extends GATA with a goal-conditioned policy for action selection. How-

ever, it does not have a meta-policy that the goal is uniformly sampled from the currently

available goal set.

• H-KGA, which is the proposed agent.
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• H-KGA HalfJoint, which is a variant of H-KGA. In the first half of the training process, we

only train the sub-policy. Then in the second half, we train both the sub-policy policy and the

meta-policy jointly .

• H-KGA Ind, which is another variant of H-KGA with individually trained policies. In other

words, we only train the sub-policy in the first half. Then we freeze the sub-policy, and train

the meta-policy in the second half.

6.5.3 Implementation and Training Details

We treat GATA as our building backbone and implement H-KGA upon it. In particular, we adopt

the version GATA-GTF, where the full knowledge graph is provided as the observation, and the

textual observation is discarded, thus eliminating the influence of error incurred during information

extraction. For all agents, we implement the graph encoder using R-GCNs, implement the text

encoder using a single head transformer block, and implement the scorers using fully-connected

layers. For H-KGA, we initialize the encoders in both policies as separate modules. We implement

a non-learnable goal set generator for obtaining the goal set Gt, where Algorithm 2 shows the

pipeline. We first obtain the ingredient set I. For each ingredient i ∈ I, we first check whether it

has been collected, then obtain its status set Si and requirement set Ri. We consider three types

of goals: 1) “find” requires the agent to find and collect an uncollected ingredient, 2) “prepare”

requires the agent to prepare an ingredient to satisfy a requirement, and 3) “eat”, that the agent

is required to prepare and eat the final meal. Algorithm 3 shows the pipeline for assigning the

goal-conditioned reward r
goal
t . We first obtain the type of a goal g, then check whether this goal has

been accomplished given at and oKG
t+1. Some functions in Algorithm 2 can be reused here. rgoal

t is

a binary reward that we will assign r
goal
t = rmax if g is accomplished successfully, otherwise rmin

(still not finished, or failed).

We define a training episode as 50 steps, and a validation / testing episode as 100 steps. All agents

are trained for 100,000 episodes. The BeBold method, the scheduled task sampling strategy and the

level-aware replay buffer are applied among all models, where the constant coefficient λ is set as

0.1, and β is set as 1.0. We set the sizes of the replay buffers Bmeta and Bsub as 50,000 and 500,000,

respectively. For every Fmeta
up = F sub

up = 50 steps, we optimize the policies with batch size 64. We

initialize the two H-KGA variants, H-KGA HalfJoint and H-KGA Ind, with the GC-GATA agent
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Algorithm 2 Goal set generation
Input: Knowledge graph oKG

t

Initialize: Goal set Gt ← ∅
1: Get ingredient set I ← GetIng(oKG

t )
2: for each ingredient i ∈ I do
3: if CheckCollection(i, oKG

t ) = False then
4: Add goal “find i” to Gt
5: else
6: Get status set Si ← GetStatus(i, oKG

t )
7: Get requirement setRi ← GetReq(i, oKG

t )
8: for each requirement ri ∈ Ri do
9: if ri /∈ Si then

10: Add goal “ri i” to Gt
11: if Gt = ∅ then
12: Add goal “prepare and eat meal” to Gt
13: return Gt.

Algorithm 3 Goal-conditioned reward acquisition
Input: Knowledge graph oKG

t+1, goal g, rewards {rmin, rmax}
Initialize: FLAG← False

1: Obtain goal type gtype ← GetGoalType(g)
2: if gtype = “find” then
3: Get ingredient i from g
4: if CheckCollection(i, oKG

t+1) = True then
5: FLAG← True
6: else if gtype = “prepare” then
7: Get ingredient i, requirement r from g
8: Get status set Si ← GetStatus(i, oKG

t+1)
9: if r ∈ Si then

10: FLAG← True
11: else
12: if CheckExistance(“meal”, oKG

t+1) = True then
13: FLAG← True
14: if FLAG = True then
15: return rmax.
16: else
17: return rmin.

being pre-trained for 50,000 episodes. For every Fval = 1000 episodes, we conduct validation on

Dval, and test the agents on Dseen
test and Dunseen

test .

6.5.4 Evaluation Metrics

We define the score of a game as the sum of rewards collected in an episode. To make the results of

different levels comparable, we scale the score to [0, 1] by dividing it with the maximum score of
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TABLE 6.2: The testing result at the end of the training process.

FIGURE 6.2: The performance of agents on Dseen
test (“S4”, “Avg Seen”) and Dunseen

test (“US4”, “Avg
Unseen”).

this level (as shown in Table 6.1) Besides reporting the average performance of each testing set, we

also show the testing result for each single level.
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6.6 Results and Discussions

6.6.1 Main Results

Fig. 6.2 displays the agents’ testing performance during training, and Table 6.2 compares the final

testing result when training is done. The proposed agent, H-KGA, achieves better performance than

the baselines in games from both seen and unseen levels. In particular, it significantly outperforms

other agents in “S4”, which is the most complex level in Table 4.1 (most ingredients, preparation

requirements, and rooms). Two aspects, the adaptive goal selection achieved by the meta-policy,

and the goal-conditioned action selection achieved by the sub-policy, collectively contribute to

H-KGA’s performance improvement. The effectiveness of the goal-conditioned learning can also

be observed from the GC-GATA baseline, which could be treated as the sub-policy of H-KGA.

While GC-GATA also improves the performance over the backbone GATA, H-KGA achieves

a larger performance gain through using a learned meta-policy. We then consider another two

baselines, H-KGA HalfJoint and H-KGA Ind, to compare the joint learning method we use with

the individual training [105]. The H-KGA HalfJoint baseline, where the policies are jointly trained

after pre-training the sub-policy in the first half, encounters performance drop, which might be

caused by the RL forgetting problem [200]. Regarding the H-KGA Ind, where the meta-policy and

the sub-policy are trained individually, achieves better performance than GC-GATA, but is still

surpassed by the proposed H-KGA. We observe that there’s still space for the H-KGA Ind baseline

to improve its performance. However, it requires us to train H-KGA Ind for more episodes to collect

enough interaction data, which is undesirable for the real life applications. In contrast, our H-KGA

is more data efficient, that it is able to obtain comparable result with much fewer training episodes.

We also find that being equipped with a learnable meta-policy is helpful to improve generalizability

for those from unseen levels. For example, in order to solve the games from “US4” more efficiently,

it requires the agent to determine the collecting order of the ingredients, since there are multiple

ingredients located in multiple rooms. Compared with the baselines without the meta-policy (i.e.,

GATA and GC-GATA), and the baselines whose meta-policy is “not-well-trained” (i.e., H-KGA

Ind and H-KGA HalfJoint), our agent deals better with these games.
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FIGURE 6.3: The performance of agents with or without the BeBold method.

6.6.2 The Influence of the BeBold Method

As discussed in Sec. 6.4.3, with the aim of conducting more effective exploration, we introduce the

BeBold method to the sub-policy. In this section, we compare the H-KGA variants with or without

this method to study its contribution. As shown in Fig. 6.3, even without using the BeBold method,

the proposed H-KGA already significantly outperforms GATA in some simple levels (by comparing

“H-KGA w/o BeBold” with “GATA w/o BeBold”). The agent still requires sufficient exploration to

solve games from some difficult levels. For example, the H-KGA agent without the BeBold method

can hardly reach 0.5 in “S4”, and reach 0.4 in “US4” (by comparing “H-KGA” with “H-KGA w/o

BeBold”). It can also be observed that only encouraging exploration is not adequate to improve the

agent, as GATA benefits much less from the BeBold method (by comparing “GATA” with “GATA

w/o BeBold”).
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FIGURE 6.4: The performance of agents with or without the scheduled task sampling strategy
(Sch) / level-aware replay buffer (LR).

6.6.3 The Influence of the MTL Training Techniques

As discussed in Sec. 6.4.4, two techniques are introduced to facilitate the MTL training settings.

In this section, we compare the H-KGA variants with or without these techniques to study their

contributions. We consider two variants, “H-KGA w/o Sch”, where the scheduled task sampling

strategy is removed, and “H-KGA w/o Sch w/o LR”, where both the sampling strategy and the

level-aware replay buffer are removed. As shown in Fig. 6.4, without the scheduled task sampling

strategy, H-KGA is still comparable in terms of the average performance (“H-KGA w/o Sch”).

However, the performance of this variant is limited in games from more difficult levels, where more

training samples are required. Similarly, without using the level-aware replay buffer, the transitions

belonging to the difficult levels are less likely to be stored in the replay buffer, resulting in low data

efficiency.
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6.7 Conclusion

In this chapter, we investigated generalization for language-conditional RL from the perspective of

solving text-based games. We introduced a two-level hierarchical framework, H-KGA, to tackle the

generalization problem. In the high level, we considered a meta-policy for task decomposition and

subtask selection. Then, in the low level, we considered a sub-policy for subtask-conditioned action

selection. Besides, we proposed two techniques, the scheduled task sampling strategy, and the

level-aware replay buffers, to facilitate training under the multi-task learning setting. We empirically

validated the effectiveness of H-KGA upon 8 game sets with different levels and generalization

types.

With respect to the limitations & future directions, the H-KGA model still uses heuristic-based goal

set generation and goal-condition reward acquisition methods. As a future direction, we would like

to study automatic methods to achieve such functionalities. Besides, we assume the accessibility of

full knowledge graph as the observation, which does not hold in practice. We would like to alleviate

such assumption in the future work. As this work is conducted under the setting of static training /

testing game sets, we are also interested in extending our work to more difficult and realistic RL

settings, such as the procedurally-generated environment, where one game instance can only be

interacted for one episode.
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Question-guided World-perceiving

Agent

In this chapter, we study the challenges of low sample efficiency and large action space for

language-conditional RL. We address these challenges by introducing the world-perceiving modules,

which automatically decompose tasks and prune actions through answering questions about the

environment. We then propose a two-phase training framework to decouple language learning from

reinforcement learning, which further improves the sample efficiency. The experimental results

indicate that our method improves the sample efficiency and the performance by a large margin.

Besides, it shows robustness against compound error and limited pre-training data.

7.1 Introduction

Despite the effectiveness and premises, two major challenges prevent the RL agents from being

deployed in real world applications: the low sample efficiency, and the large action space [63]. The

low sample efficiency is a crucial limitation of RL, which refers to the fact that it typically requires

massive training data to obtain a human-level agent [195]. Human beings are usually armed with

prior knowledge, so that they don’t have to learn from scratch [61]. In a language-conditional RL

system, in contrast, the agent is required to conduct both language learning and decision making

regimes, where the former can be considered as prior knowledge and is much slower than the

71
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later [93]. The sample efficiency could be improved through pre-training methods, which decouple

the language learning from decision making [188]. The selection of pre-training methods thus plays

an important role: if the pre-trained modules perform poorly on unseen data during RL training, the

incurred compound error will severely affect the decision making process. Another challenge is the

large discrete action space: the agent may waste both time and training data if attempting irrelevant

or inferior actions [62, 227].

Our aim in this chapter is to provide solutions to these two challenges. Since it might be inefficient

to train an agent to solve complicated tasks (games) from scratch, we consider decomposing a task

into a sequence of subtasks as inspired by [12]. We design an RL agent that is capable of automatic

task decomposition and subtask-conditioned action pruning, which brings two branches of benefits.

First, the subtasks are easier to solve, as the involved temporal dependencies are usually short-term.

Second, by acquiring the skills to solve subtasks, the agent can be adapted to a new task more

quickly by reusing the learnt skills [22]. The challenge of large action space can also be alleviated,

if we can filter out the actions that are irrelevant to the current subtask.

Inspired by the observation that human beings understand the environment conditions through

question answering [10, 55], we design world-perceiving modules to realize the aforementioned

functionalities (i.e., task decomposition and action pruning) and name our method as Question-

guided World-perceiving Agent (QWA). Fig. 7.1 (b) shows an example of our decision making

process. Being guided by some questions, the agent first decomposes the task to get a set of

available subtasks, and selects one from them. Next, conditioned on the selected subtask, the agent

conducts action pruning to obtain a refined set of actions. In order to decouple language learning

from decision making, which further improves the sample efficiency, we propose to acquire the

world-perceiving modules through supervised pre-training. We design a two-phase framework to

train our agent. In the first phase, a dataset is built for the training of the world-perceiving modules.

In the second phase, we deploy the agent in games with the pre-trained modules frozen, and train

the agent through reinforcement learning.

We evaluate our agent and training framework on a range of cooking games. We divide the games

as simple games and complex games, and construct the pre-training dataset from simple games only.

The experimental results show that QWA achieves high sample efficiency in solving complex games.
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FIGURE 7.1: (a) An example of the observation, which can be textual, KG-based, or hybrid. (b)
The decision making process. Through question answering, the agent is guided to first decompose

the task as subtasks, then reduce the action space conditioned on the subtask.

We also show that our method enjoys robustness against compound error and limited pre-training

data.

Our contributions are summarized as following three aspects:

1. We develop an RL agent featured with question-guided task decomposition and action space

reduction.

2. We design a two-phase framework to efficiently train the agent with limited data.

3. We empirically validate our method’s effectiveness and robustness in complex games.

7.2 Related Work

In this work, we concentrate on improving the sample efficiency and reducing the action space

through pre-training. Being agnostic about the form of observations and the action selecting

methods, our work complements the existing RL agents.

7.2.1 Hierarchical RL

Our work is closely associated with the task decomposition [157, 179, 184] and hierarchical

reinforcement learning [57, 120, 199]. Similar efforts have been made by Jiang et al. [105] and

Xu et al. [215], who designed a meta-policy for task decomposition and subtask selection, and

a sub-policy for goal-conditioned decision making. Typically, these works either assume the
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access to a set of available subtasks, or decompose a task through pre-defined rules, while we aim

to achieve automatic task decomposition through pre-training, and remove the requirement for

expert knowledge during reinforcement learning. Besides, existing work assumes that unlimited

interaction data can be obtained to train the whole model through RL. In contrast, we consider

the more practical situation where the interaction data is limited, and focus on improving the

RL agent’s data efficiency. Regarding the sub-policy, we do not make the assumption about the

accessibility of the termination states. We also do not require additional handcrafted operations in

reward shaping [21].

7.2.2 Pre-training Methods for RL

There have been a wide range of work studying pre-training methods or incorporating pre-trained

modules to facilitate reinforcement learning [65, 75, 83, 130, 177, 178]. One major branch among

them is the Imitation Learning (IL), in which the agent is trained to mimic the human demonstrations

before being deployed in RL [92, 167, 240]. Although we also collect human labeled data for

pre-training, we utilize the data to aid the agent to perceive the world, instead of learning the solving

strategies. Therefore, we do not require the demonstrations to be perfect to solve the game. Besides,

our method prevails when pre-trained on simple tasks rather than complicated ones, which is more

feasible for human to interact and annotate [19, 140]. Further discussions to compare our method

with IL are provided in subsequent sections.

In the domain of text-based games, some prior works have involved pre-training tasks such as

state representation learning [11, 183], knowledge graph constructing [147] and action pruning [86,

193, 219]. For instance, Ammanabrolu et al. [10] designed a module to extract triplets from the

textual observation by answering questions, and use these triplets to update the knowledge graph.

As far as we know, we are the first to incorporate pre-training based task decompositon in this

domain. Besides, instead of directly pruning the actions based on the observation, we introduce

subtask-conditioned action pruning to further reduce the action space.
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FIGURE 7.2: Subtasks for solving (a) 3 simple games and (b) 1 complex game.

7.3 Problem Statement

As illustrated in previous chapters, the observation could be textual, knowledge graph-based, or

hybrid. Fig. 7.1 (a) gives an example of the textual observation, and its corresponding KG-based

observation. We do not make assumptions about the observation form and our method is compatible

with any of those forms.

Our objective is to make an agent capable of automatic task decomposition and action pruning in

solving text-based games. we only consider games having similar themes, but are different in their

complexities [2, 49]. Taking the cooking games [53] as an example, the task is always “make the

meal”. To accomplish this task, the agent has to explore different rooms to pick up all ingredients,

cook them with right methods, and make the meal. A game’s complexity depends on the number of

rooms, ingredients, and the required preparation steps. We define a subtask as a milestone towards

completing the task (e.g., “get apple” if “apple” is included in the recipe), and a subtask requires a

chain of multiple actions to accomplish (e.g., exploring the house to pick up the apple). A game is

considered simple, if it consists of only a few subtasks, and complex if it consists of more subtasks.

Fig. 7.2 gives examples of simple games and complex games. While being closer to real world

applications, complex games are hard to solve by RL agents because: 1) it’s expensive to collect

sufficient human labeled data for pre-training; 2) it’s unrealistic to train an RL agent from scratch.

We therefore focus on agent’s sample efficiency and performance on complex games. Our objective

is to leverage the labeled data collected from simple games to speed up RL training in complex

games, thus obtaining an agent capable of complex games.
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FIGURE 7.3: The overview of QWA. The blue modules will be trained in the pre-training phase,
while the red module will be trained in the RL phase.

7.4 Methodology

7.4.1 Framework Overview

Fig. 7.3 presents our QWA agent. We consider two world-perceiving modules: a task selector and

an action validator. Given the observation ot and the task candidate set T , we use the task selector

to first get a subset of currently available subtasks Tt ⊆ T , then choose a subtask Tt ∈ Tt. Given Tt

and the action candidate set A, we use the action validator to get an action subset At ⊆ A, which

contains only those relevant to the subtask Tt. Finally, given ot and Tt, we use an action selector to

score each action a ∈ At, then select the action with the largest score as at.

The training of world-perceiving modules can be regarded as the language learning regime, while

the training of the action selector can be regarded as the decision making regime. We consider a two-

phase training strategy to decouple these two regimes to further improve the sample efficiency [93].

In the pre-training phase, we collect human interaction data from those simple games, and design

QA datasets to train the world-perceiving modules through supervised learning. In the reinforcement

learning phase, we freeze the pre-trained modules, and train the action selector in the complex

games through reinforcement learning.
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7.4.2 Task Selector

Depending on the experiment settings, T and A can be either fixed vocabulary sets (parser-based),

or changing over time (choice-based). We regard a subtask available if it is essential for solving

the “global” task, and there’s no prerequisite subtask. For example, the subtask “get apple” in Fig.

7.1, as the object “apple” is an ingredient which has not been collected. Although another subtask

“dice apple” is also essential for making the meal, it is not available since there exists a prerequisite

subtask (i.e., you should collect the apple before dicing it). The task selector aims at identifying a

subset of available subtasks Tt ⊆ T , and then select one subtask Tt ∈ Tt.

We formulate the mapping f(ot, T )→ Tt as a multi-label learning problem [233]. For simplicity,

we assume that the subtask candidates are independent with each other. Thus, the multi-label

learning problem can be decomposed as |T | binary classification problems. Inspired by the recent

progress of question-conditional probing [55], language grounding [93], and QA-based graph

construction [10], we cast these binary classification problems as yes-or-no questions, making the

task selector a world-perceiving module. For example, the corresponding question for the subtask

candidate “get apple” could be “Whether ‘get apple’ is an available subtask?”. This module can

guide the agent to understand the environment conditions through answering questions, but will

not directly lead the agent to a specific decision. We can obtain this module through supervised

pre-training, and decouple it from reinforcement learning to yield better sample efficiency. Fig.

7.1 (b) shows some sample QAs, where a human answerer can be replaced by a pre-trained task

selector.

Some previous work also considered task decomposition [49, 97], but the related module is obtained

through imitating human demonstrations, which is directly related to decision making instead of

world perceiving. Compared with these work, our method has two folds of benefits. First, there may

exist multiple available subtasks at a timestep. Imitating human demonstrations will specify only

one of them, which may be insufficient and lead to information loss. Second, we do not require

expert demonstrations which guarantee to solve the game. Instead, we can ask humans to annotate

either imperfect demonstrations, or even demonstrations from a random agent. We will treat the

IL-based method as a baseline and conduct comparisons in the experiments.
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Given the set of available subtasks Tt, alternative strategies can be used to select a subtask Tt from

it. For example, we can employ a non-learnable task scorer to obtain Tt by random sampling, since

each subtask T ∈ Tt is essential for accomplishing the task. We can also train a task scorer via a

meta-policy for adaptive task selection [215].

7.4.3 Action Validator

After obtaining the subtask Tt, we conduct action pruning conditioned on it (or on both Tt and

ot) to tackle the challenge of the large action set. Similar to the task selector, we formulate action

pruning as |A| binary classification problems, and devise another world-perceiving module: the

action validator. The action validator is designed to check the relevance of each action candidate

a ∈ A with respect to Tt by answering questions like “Is the action candidate ‘take beef’ relevant

to the subtask ‘fry chicken’?”, so as to obtain a subset of actions At ⊆ A with irrelevant actions

filtered. Fig. 7.3 shows the module architecture. Similar to the task selector, we pre-train this

module through question answering. Sample QAs have been shown in Fig. 7.1 (b).

7.4.4 Action Selector

After pre-training, we deploy the agent in the complex games, and train the action selector through

RL. We freeze the pre-trained modules, as in this phase no human labeled data will be obtained. At

each time step, we use the task selector and the action validator to produce Tt and At, respectively.

We keep using the same subtask T over time until it is not included in Tt, as we do not want the

agent to switch subtasks too frequently. The agent can simply treat Tt as the additional observation

of ot. If we do not limit the use of human knowledge in this phase, we can also treat Tt as a goal

with either hand-crafted [105] or learnt reward function [52]. Arbitrary methods can be used for

optimizing [2, 7].

One issue we are concerned about is the compound error − the prediction error from imperfect

pre-trained modules will adversely affect RL training [163, 192]. For example, the false predictions

made by the binary classifier in the task selector may lead to a wrong Tt, which affects At and at in

turn. To alleviate the influence of the compound error, we assign time-awareness to subtasks. A

subtask is bounded by a time limit [0, ξ]. If the current subtask T is not finished within its time limit,
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TABLE 7.1: Game statistics. We use the simple games to provide human labeled data during
pre-training, and use the medium & hard games during reinforcement learning.

Name Traj.Length #Triplets #Rooms #Objs #Ings #Reqs #Acts #Subtasks #Avail.Subtasks
Simple 7.90 38.48 5.76 23.69 1.49 0.96 14.50 12.44 1.14

Medium 15.30 51.07 6.00 26.10 3.00 3.00 23.48 23.00 1.94
Hard 21.75 59.95 8.00 31.48 3.00 4.00 22.94 23.00 2.16

we force the agent to re-select a new subtask Tt ∈ Tt \ {T}, regardless whether T is still available.

Besides making the agent robust against errors, another benefit by introducing time-awareness to

subtasks is that it improves the subtask selection diversity, which helps the agent to avoid getting

stuck in local minima [40, 162].

7.5 Experiments

7.5.1 Experiment Settings

We conduct experiments on cooking games provided by the rl.0.2 game set1 and the FTWP game

set2. Based on the number of subtasks, which is highly correlated to the number of ingredients &

preparing requirements, we design three game sets with varying complexities: 3488 simple games,

280 medium games and 420 hard games. Note that there is no overlapping games between the

simple set and the medium / hard game sets. Following [2], we simplify the game environment by

making the action set changeable over time, which can be provided by the TextWorld platform [53].

Note that although the action space is reduced, it still remains challenging as the agent may

encounter unseen action candidates [42, 43]. We then use a similar way to obtain a changeable

task set, which is a combination of the verb set {chop, dice, slice, fry, get, grill, roast, get, make}

and the ingredient set. We still denote the subtask candidate set (action candidate set) as T (A)

to distinguish it from the available subtask set Tt (refined action set At). Table 7.1 shows the

game statistics. Besides “Traj.Length”, which denotes the average length of expert demonstrations

per game3, other statistic metrics are averaged per time step per game (e.g., “#Subtasks” and

“#Avail.Subtasks” denote the average number of subtask candidates T , and the average number of

available subtasks Tt, respectively). We will collect human interaction data from the simple games
1https://aka.ms/twkg/rl.0.2.zip
2https://aka.ms/ftwp/dataset.zip
3The demonstrations of the medium & hard games are just for statistics, and will not be used for pre-training.

https://aka.ms/twkg/rl.0.2.zip
https://aka.ms/ftwp/dataset.zip
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for pre-training. We regard both medium & hard games as complex, and will conduct reinforcement

learning on these two game sets.

7.5.2 Baselines

Our model and the baselines are shown as follows:

• GATA [2], which is a powerful KG-based agent and the benchmark model for cooking games.

• IL [49], which is a hierarchical agent that also uses two training phases. In the first phase,

both the task selector and the action selector are pre-trained through imitation learning. Then

the action selector will be fine-tuned through reinforcement learning in the second phase.

• IL w/o FT, which is a variant of the IL baseline, where only the imitation pre-training phase

is conducted, and there’s no RL fine-tuning.

• QWA, which is the proposed model with world-perceiving modules.

7.5.3 Implementation Details

Model architecture All models are implemented based on GATA’s released code4. In particular,

we use the version GATA-GTF, which takes only the KG-based observation, and denote it as GATA

for simplicity. The observation encoder is implemented via the Relational Graph Convolutional

Networks (R-GCNs) [173] by taking into account both nodes and edges. Both the task encoder and

the action encoder are implemented based on a single transformer block with single head [197] to

encode short texts. The binary classifier, task scorer and action scorer are linear layers. The details

about GATA as well as IL baselines could be found at Appendix B.

Pre-training data collection We train the task selector and the action validator separately, as

they use different types of QAs. We ask human players to play the simple games, and answer the

yes-or-no questions based on the observations. The details of the dataset construction (interaction

data collection, question generation, answer annotation, etc. ) could be found at Appendix B. We

train the task selector with a batch size of 256, and the action validator with a batch size of 64. The
4https://github.com/xingdi-eric-yuan/GATA-public

https://github.com/xingdi-eric-yuan/GATA-public
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TABLE 7.2: The testing performance at 20% / 100% of the reinforcement learning phase.

Model Medium Hard
20% 100% 20% 100%

QWA (ours) 0.66±0.02 0.71±0.04 0.53±0.04 0.53±0.02
GATA 0.31±0.02 0.57±0.18 0.25±0.02 0.48±0.01

IL 0.45±0.18 0.26±0.03 0.32±0.11 0.35±0.08
IL w/o FT 0.63±0.05 0.63±0.05 0.48±0.05 0.48±0.05

modules are trained for 10-20 epochs using Focal loss and Adam optimizer with a learning rate of

0.001.

Reinforcement learning We consider the medium game set and hard game set as different experi-

ments. We split the medium game set into 200 training games / 40 validation games / 40 testing

games, and the hard game set into 300 / 60 / 60. We follow the default setting of [2] to conduct

reinforcement learning. We define a training episode as 50 steps, and a validation / testing episode

as 100 steps. We set the subtask time limit ξ = 5. For every episode, a game is sampled from the

corresponding game set for the agent to interact with. The models are optimized via Double DQN

(epsilon decays from 1.0 to 0.1 in 20,000 episodes, Adam optimizer with the learning rate being set

as 0.001) with Pritorized Experience Replay (replay buffer size 500,000). All models are trained for

100,000 episodes. For every 1,000 training episodes, we validate the models and report the testing

performance.

7.5.4 Evaluation Metrics

We measure the models through their RL testing performance. Specifically, we adopt the normalized

score defined in Chapter A as the main metric.

7.6 Results and Discussions

7.6.1 Main Results

Fig. 7.4 compares the RL testing performance with respect to the training episodes. Table 7.2

shows the testing performance after 20,000 training episodes (20%) / at the end of RL training

(100%). Compared with GATA, which needs to be “trained from scratch”, the proposed QWA
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FIGURE 7.4: The RL testing performance w.r.t. training episodes. The red dashed line denotes the
IL agent without fine-tuning.

model achieves high sample efficiency: it reaches convergence with high performance before 20%

of the training stage, saving 80% of the online interaction data in complex games. The effectiveness

of pre-training can also be observed from the variant “IL w/o FT”: even though it requires no

further training on the medium / hard games, it achieves comparable performance to our model.

However, the performance of QWA can be further improved through RL, while it does not work

for the IL-based model, as we can observe the performance of “IL” becomes unstable and drops

significantly during the RL fine-tuning. A possible reason is that there exists large domain gap

between simple and medium (hard) games, and our model is more robust against such domain

shifts. For example, our world-perceiving task selector performs better than IL-based task selector

in handling more complex observations (according to Table 7.1, the observations in medium / hard

games contain more triplets, rooms and objects), facilitating the training of the action selector.

Besides the domain gap in terms of the observation space, there is also a gap between domains in

terms of the number of available subtasks − while there’s always one available subtask per time step

in simple games, the model will face more available subtasks in the medium / hard games. Different

from our task selector, which is trained to check the availability of every subtask candidate, the

IL pre-trained task selector can not adapt well in this situation, as it is trained to find the unique

subtask and ignore the other subtask candidates despite whether they are also available.
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TABLE 7.3: The RL testing performance on simple games.

Model Medium 100% Hard 100%
QWA (ours) 0.80±0.01 0.82±0.02

GATA 0.32±0.03 0.45±0.12
IL 0.44±0.02 0.29±0.03

IL w/o FT 0.76±0.06 0.76±0.06

7.6.2 Performance on the Simple Games

We further investigate the generalization performance of our model on simple games, considering

that simple games are not engaged in our RL training. To conduct the experiment, after RL training,

we deploy all models on a set of 140 held-out simple games. Table 7.3 shows the results, where

“Medium 100%” (“Hard 100%”) denotes that the model is trained on medium (hard) games for

the whole RL phase. The generalizability of GATA, which is trained purely with medium and

hard games, is significantly low and cannot perform well on simple games. In contrast, our model

performs very well and achieves over 80% of the scores. The world-perceiving modules, which

are pre-trained with simple games, help to train a decision module that adapts well on unseen

games. It is not surprising that the variant “IL w/o FT” also performs well on simple games, since

they are only pre-trained with simple games. However, as indicated by the performance of “IL”,

after fine-tuning on medium/hard games (recalling Sec. 7.6.1), the action scorer “forgets” the

experience/skills dealing with simple games and the model fails to generalize on unseen simple

games. In summary, the best performance achieved by QWA demonstrates that our model can

generalize well on games with different complexities.

7.6.3 Ablation Study

We study the contribution of the subtask time-awareness by comparing our full model with the

variant without this technique. Fig. 7.5 shows the result. Although the models perform similarly in

the medium games, the full model shows better performance in the hard games, where there may

exist more difficult subtasks (we regard a subtask more difficult if it requires more actions to be

completed). Assigning each subtask a time limit prevents the agent from pursuing a too difficult

subtask, and improves subtask diversity by encouraging the agent to try different subtasks. Besides,
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FIGURE 7.5: The performance of our model and the variant without time-awareness.

FIGURE 7.6: The performance of our model and the variants with expert modules.

it prevents the agent from being stuck in a wrong subtask, making the agent more robust to the

compound error.

We then investigate the performance upper bound of our method by comparing our model to variants

with oracle world-perceiving modules. Fig. 7.6 shows the results, where “+expTS” (“+expAV”)

denotes that the model uses an expert task selector (action validator). There’s still space to improve

the pre-trained modules. The variant “QWA +expTS +expAV” solves all the medium games and

achieves nearly 80% of the scores in hard games, showing the potential of introducing world-

perceiving modules in facilitating RL. We also find that assigning either the expert task selector or

the expert action validator helps to improve the performance. In light of these findings, we will

consider more powerful pre-training methods as a future direction.
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FIGURE 7.7: The performance of our model with varying amounts of pre-training data.

7.6.4 Pre-training on the Partial Dataset

Although we only collect labeled data from the simple games, it is still burdensome for human

players to go through the games and answer the questions. We are thus curious about how the

performance of QWA (or world-perceiving modules) varies with the amount of pre-training data

being reduced. Fig. 7.7 shows the results, where the pre-training dataset has been reduced to 75%,

50% and 25%, respectively. Our model still works well when the pre-training data is reduced to

75% and 50%. When we only use 25% of the pre-training data, the model exhibits instability during

the learning of hard games, while its final performance is still comparable. To summarize, our

model is robust to limited pre-training data and largely alleviates the burden of human annotations.

7.7 Conclusion

In this chapter, we addressed the challenges of low sample efficiency and large action space for

language-conditional reinforcement learning. We introduced the world-perceiving modules, which

are capable of automatic task decomposition and action pruning through answering questions about

the environment. We proposed a two-phase training framework, which decouples the language

learning from the reinforcement learning. We empirically demonstrated that the proposed method

not only achieved improved performance with high sample efficiency, but also exhibited robustness

against compound error and limited pre-training data.
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With respect to the limitations & future directions, our QWA is designed with some simplifications,

which do not hold in real world applications. For example, we simplify the pre-training tasks as

binary classification problems, while the recent progress of multi-label learning [233], could be

leveraged to yield better performance. Another limitation is that our world-perceiving modules

are very simple, while the large pre-trained language models, and more advanced pre-training

methods, could be incorporated with our model. Besides, this work only consider two types of

world-perceiving modules, and we would like to investigate such modules with other functionalities

in the future works. Last but not least, we are willing to explore the potential of QWA in other tasks,

such as commonsense reasoning [147] and systematic generalization [169].
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Conclusions and Future Work

8.1 Conclusions

The language-conditional RL, which aims to ground natural language into reinforcement learning,

has attracted increasing attention in recent years. While studying this cross-domain topic brings

benefits to both natural language processing and reinforcement learning, new challenges arise and

hinder the further development of this domain. This thesis studies the language-condition RL, and

would like to provide solutions to the challenges. We center on the setting where the observation

space as well as the action space is language-based, while the setting of language-based instruction

and reward function will also be partly involved. We summarize our main contributions below:

In Chapter 4, we explored the potential of the transformer architecture for building state representa-

tions in solving the language-conditional reinforcement learning tasks. We designed an adaptable

transformer-based representation generator equipped with three modifications. We first conducted

layer normalization reordering within the blocks. Then we shared weights among the blocks.

Finally, we applied the gate aggregation between the blocks. We empirically validated our method

on both synthetic and man-made text-based games with different settings. The proposed method

showed higher sample efficiency in solving single synthetic games, better generalizability in solving

unseen synthetic games, and better performance in solving complex man-made games.

In Chapter 5, we studied the reasoning process in the language-conditional reinforcement learning.

We designed the SHA-KG agent, which is empowered with the reasoning ability over multi-modal

87
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inputs through two techniques: the knowledge graph division, and the stacked hierarchical attention

mechanism. Besides demonstrating the effectiveness of our agent in solving a range of man-made

text-based games, we also interpreted how the reasoning process is conducted by SHA-KG in

deriving the actions.

In Chapter 6, we investigated generalization for language-conditional RL from the perspective of

solving text-based games. We introduced a two-level hierarchical framework, H-KGA, to tackle the

generalization problem. In the high level, we considered a meta-policy for task decomposition and

subtask selection. Then, in the low level, we considered a sub-policy for subtask-conditioned action

selection. Besides, we proposed two techniques, the scheduled task sampling strategy, and the

level-aware replay buffers, to facilitate training under the multi-task learning setting. We empirically

validated the effectiveness of H-KGA upon 8 game sets with different levels and generalization

types.

In Chapter 7, we addressed the challenges of low sample efficiency and large action space for

language-conditional reinforcement learning. We introduced the world-perceiving modules, which

are capable of automatic task decomposition and action pruning through answering questions about

the environment. We proposed a two-phase training framework, which decouples the language

learning from the reinforcement learning. We empirically demonstrated that the proposed method

not only achieved improved performance with high sample efficiency, but also exhibited robustness

against compound error and limited pre-training data.

8.2 Future Work

We list the future directions as follows:

• State representation learning: The models proposed in this research either considered the

single game setting (Chapter 4 and Chapter 5), or assumed that all games are with similar

vocabulary (Chapter 4, Chapter 6 and Chapter 7). It’s worth investigating how to leverage the

pre-trained language models [37, 164] / knowledge graph models [100, 185] to obtain better

state representations, thus achieving better cross-domain generalizability and commonsense

reasoning ability.
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• Pre-training techniques: In Chapter 7, we introduced the world-perceiving modules, which

are obtained through supervised pre-training. We noticed that there’s still a large gap between

the pre-trained modules and the oracle modules. As an ongoing work, we would like to

investigate how the performance could be further improved by integrating advanced pre-

training techniques, such as the contrastive learning objective [222], and the KG-based data

augmentation [237].

• Real world applications: We still used the simulated game environment as the test-beds. In the

future work, we would like to apply our methods in more practical scenarios. For example,

our “game playing” agents could be served as the virtual assistants in the task-oriented

dialogue system, and help users to achieve specific tasks by providing textual guidance [47].

• Off-line RL: For real world applications, due to the cost and safety concerns, it’s impractical

to train an RL agent by letting it interact with the environment. As a future direction, we

would like to investigate how to design language-conditional RL agent in the offline setting,

i.e. training the agent with a fixed offline dataset (e.g., user logs), instead of an interactive

environment [123].
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Appendix for Chapter 6

We provide more game examples to demonstrate the difference in layouts and difficulty levels. Fig.

A.1 visualizes the initial observation oKG
0 for four games, where “S1 Game1” and “S1 Game2”

belong to level “S1”, “S2 Game1” and “S2 Game2” belong to level “S2”. Fig. A.2 visualizes the

initial observation of two games belonging to level “S3”. Fig. A.3 visualizes the initial observation

of one game belonging to level “S4”. Games within the same level have the same complexity, but

are different in their layouts. For example, “S2 Game1” and “S2 Game2” have the same number

of rooms, ingredients and requirements, but are different in the type of the ingredients and the

requirements. Similarly, “S3 Game1” and “S3 Game2” have the same number of rooms, but are

with different room connectivity. Games within different levels have different complexities, and

their layouts are naturally different (e.g., “S1 Game1” v.s., “S2 Game1” v.s., “S3 Game1” v.s.,

“S4 Game1”). The TextWorld also provides other game themes, such as the default House theme,

the Coin Collector theme and the Treasure Hunter theme. In these themes, the agent needs to go

through the rooms to find either the coin, or an object specified at the beginning of an episode. We

believe that the Cooking theme we use in this work is able to cover these themes, as it requires the

agent to navigate through different numbers of rooms, collect different numbers of ingredients, and

prepare them in different ways.
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FIGURE A.1: The initial observation of four games, where “S1 Game1” and “S1 Game2” belong
to level “S1”, “S2 Game1” and “S2 Game2” belong to level “S2”.
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FIGURE A.2: The initial observation of two games belonging to level “S3”.



94 Appendix A. Appendix for Chapter 6

FIGURE A.3: The initial observation of one game belonging to level “S4”.



Appendix B

Appendix for Chapter 7

The appendix for Chapter 7 is organized as follows: Sec. B.1 details the environment. Sec. B.2

illustrates the process for constructing the pre-training datasets. Sec. B.3 demonstrates the baselines’

architecture and training details. Sec. B.4 provides more experimental results.

B.1 Environment

In the cooking game [53], the player is located in a house, which contains multiple rooms and

interactive objects (food, tools, etc.). Her / his task is to follow the recipe to prepare the meal. Each

game instance has a unique recipe, including different numbers of ingredients (food objects that are

necessary for preparing the meal) and their corresponding preparation requirements (e.g., “slice”,

“fry”). Besides the textual observation, the KG-based observation can also be directly obtained

from the environment. The game sets used in our work contains a task set T of 268 subtasks, and

an action set A of 1304 actions. Following GATA’s experiment setting [2], we simplify the game

environment by making the action set changeable over time, which can be provided by the TextWorld

platform. Note that although the action space is reduced, it still remains challenging as the agent

may encounter unseen action candidates [42, 43]. We then use a similar way to obtain a changeable

task set, which is a combination of the verb set {chop, dice, slice, fry, make, get, grill, roast} and

the ingredient set. Table B.1 and Table B.2 show the KG-based observations ot, corresponding

subtask candidates T and action candidates A. Table B.3 and Table B.4 show more examples of
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TABLE B.1: The observations ot, subtask candidates T and action candidates A of a simple game
and a medium game. The underlined subtask candidates denote the available subtask set Tt.

Game KG-based observation Subtask candidates Action candidates
Simple [”cheese block”, ”cookbook”, ”part of”], [”cheese

block”, ”fried”, ”needs”], [”cheese block”, ”player”,
”in”], [”cheese block”, ”raw”, ”is”], [”cheese block”,
”sliced”, ”needs”], [”cheese block”, ”uncut”, ”is”],
[”cookbook”, ”counter”, ”on”], [”counter”, ”kitchen”,
”at”], [”fridge”, ”kitchen”, ”at”], [”fridge”, ”open”,
”is”], [”knife”, ”counter”, ”on”], [”oven”, ”kitchen”,
”at”], [”player”, ”kitchen”, ”at”], [”stove”, ”kitchen”,
”at”], [”table”, ”kitchen”, ”at”]

”fry cheese block”,
”get knife”, ”chop cheese
block”, ”dice cheese block”,
”get cheese block”, ”grill
cheese block”, ”make meal”,
”roast cheese block”, ”slice
cheese block”

”close fridge”, ”cook cheese
block with oven”, ”cook
cheese block with stove”,
”drop cheese block”, ”eat
cheese block”, ”insert cheese
block into fridge”, ”prepare
meal”, ”put cheese block on
counter”, ”put cheese block
on stove”, ”put cheese block
on table”, ”take cookbook
from counter”, ”take knife
from counter”

Medium [”bathroom”, ”corridor”, ”south of”], [”bed”, ”bed-
room”, ”at”], [”bedroom”, ”livingroom”, ”north of”],
[”cheese block”, ”cookbook”, ”part of”], [”cheese
block”, ”diced”, ”is”], [”cheese block”, ”diced”,
”needs”], [”cheese block”, ”fridge”, ”in”], [”cheese
block”, ”fried”, ”is”], [”cheese block”, ”fried”,
”needs”], [”carrot”, ”fridge”, ”in”], [”carrot”, ”raw”,
”is”], [”carrot”, ”uncut”, ”is”], [”cookbook”, ”counter”,
”on”], [”corridor”, ”bathroom”, ”north of”], [”cor-
ridor”, ”kitchen”, ”east of”], [”corridor”, ”livin-
groom”, ”south of”], [”counter”, ”kitchen”, ”at”],
[”flour”, ”cookbook”, ”part of”], [”flour”, ”shelf”,
”on”], [”fridge”, ”closed”, ”is”], [”fridge”, ”kitchen”,
”at”], [”frosted-glass door”, ”closed”, ”is”], [”frosted-
glass door”, ”kitchen”, ”west of”], [”frosted-glass
door”, ”pantry”, ”east of”], [”kitchen”, ”corridor”,
”west of”], [”knife”, ”counter”, ”on”], [”livingroom”,
”bedroom”, ”south of”], [”livingroom”, ”corridor”,
”north of”], [”oven”, ”kitchen”, ”at”], [”parsley”,
”fridge”, ”in”], [”parsley”, ”uncut”, ”is”], [”player”,
”kitchen”, ”at”], [”pork chop”, ”chopped”, ”is”], [”pork
chop”, ”chopped”, ”needs”], [”pork chop”, ”cook-
book”, ”part of”], [”pork chop”, ”fridge”, ”in”], [”pork
chop”, ”fried”, ”is”], [”pork chop”, ”fried”, ”needs”],
[”purple potato”, ”counter”, ”on”], [”purple potato”,
”uncut”, ”is”], [”red apple”, ”counter”, ”on”], [”red
apple”, ”raw”, ”is”], [”red apple”, ”uncut”, ”is”], [”red
onion”, ”fridge”, ”in”], [”red onion”, ”raw”, ”is”],
[”red onion”, ”uncut”, ”is”], [”red potato”, ”counter”,
”on”], [”red potato”, ”uncut”, ”is”], [”shelf”, ”pantry”,
”at”], [”sofa”, ”livingroom”, ”at”], [”stove”, ”kitchen”,
”at”], [”table”, ”kitchen”, ”at”], [”toilet”, ”bathroom”,
”at”], [”white onion”, ”fridge”, ”in”], [”white onion”,
”raw”, ”is”], [”white onion”, ”uncut”, ”is”]

”get cheese block”,
”get flour”, ”get pork chop”,
”chop cheese block”, ”chop
flour”, ”chop pork chop”,
”dice cheese block”, ”dice
flour”, ”dice pork chop”, ”fry
cheese block”, ”fry flour”,
”fry pork chop”, ”get knife”,
”grill cheese block”, ”grill
flour”, ”grill pork chop”,
”make meal”, ”roast cheese
block”, ”roast flour”, ”roast
pork chop”, ”slice cheese
block”, ”slice flour”, ”slice
pork chop”

”go east”, ”open fridge”,
”open frosted-glass door”,
”take cookbook from
counter”, ”take knife from
counter”, ”take purple potato
from counter”, ”take red
apple from counter”, ”take
red potato from counter”

subtasks and actions, respectively. The underlined subtask candidates denote the available subtask

set Tt. The underlined action candidates in Table B.4 denote the refined action setAt after selecting

the subtask “roast carrot”. We still denote the subtask candidate set (action candidate set) as T (A)

to distinguish it from the available subtask set Tt (refined action set At).
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TABLE B.2: The observations ot, subtask candidates T and action candidates A of a hard game.
The underlined subtask candidates denote the available subtask set Tt. The underlined action

candidates denote the refined action set At after selecting the subtask “roast carrot”.

Game KG-based observation Subtask candidates Action candidates
Hard [”backyard”, ”garden”, ”west of”], [”barn door”,

”backyard”, ”west of”], [”barn door”, ”closed”, ”is”],
[”barn door”, ”shed”, ”east of”], [”bathroom”, ”cor-
ridor”, ”east of”], [”bbq”, ”backyard”, ”at”], [”bed”,
”bedroom”, ”at”], [”bedroom”, ”corridor”, ”north of”],
[”bedroom”, ”livingroom”, ”south of”], [”carrot”,
”cookbook”, ”part of”], [”carrot”, ”player”, ”in”],
[”carrot”, ”raw”, ”is”], [”carrot”, ”roasted”, ”needs”],
[”carrot”, ”sliced”, ”needs”],[”carrot”, ”uncut”, ”is”],
[”commercial glass door”, ”closed”, ”is”], [”com-
mercial glass door”, ”street”, ”east of”], [”commer-
cial glass door”, ”supermarket”, ”west of”], [”cook-
book”, ”table”, ”on”], [”corridor”, ”bathroom”,
”west of”], [”corridor”, ”bedroom”, ”south of”],
[”counter”, ”kitchen”, ”at”], [”driveway”, ”street”,
”north of”], [”fridge”, ”closed”, ”is”], [”fridge”,
”kitchen”, ”at”], [”front door”, ”closed”, ”is”], [”front
door”, ”driveway”, ”west of”], [”front door”, ”livin-
groom”, ”east of”], [”frosted-glass door”, ”closed”,
”is”], [”frosted-glass door”, ”kitchen”, ”south of”],
[”frosted-glass door”, ”pantry”, ”north of”], [”gar-
den”, ”backyard”, ”east of”], [”kitchen”, ”livin-
groom”, ”west of”], [”knife”, ”counter”, ”on”], [”liv-
ingroom”, ”bedroom”, ”north of”], [”livingroom”,
”kitchen”, ”east of”], [”oven”, ”kitchen”, ”at”], [”patio
chair”, ”backyard”, ”at”], [”patio door”, ”backyard”,
”north of”], [”patio door”, ”corridor”, ”south of”],
[”patio door”, ”open”, ”is”], [”patio table”, ”back-
yard”, ”at”], [”player”, ”backyard”, ”at”], [”red ap-
ple”, ”counter”, ”on”], [”red apple”, ”raw”, ”is”], [”red
apple”, ”uncut”, ”is”], [”red hot capsicum”, ”cook-
book”, ”part of”], [”red hot capsicum”, ”player”, ”in”],
[”red hot capsicum”, ”raw”, ”is”], [”red hot capsicum”,
”roasted”, ”needs”], [”red hot capsicum”, ”sliced”,
”needs”], [”red hot capsicum”, ”uncut”, ”is”], [”red
onion”, ”garden”, ”at”], [”red onion”, ”raw”, ”is”],
[”red onion”, ”uncut”, ”is”], [”shelf”, ”pantry”, ”at”],
[”showcase”, ”supermarket”, ”at”], [”sofa”, ”livin-
groom”, ”at”], [”stove”, ”kitchen”, ”at”], [”street”,
”driveway”, ”south of”], [”table”, ”kitchen”, ”at”],
[”toilet”, ”bathroom”, ”at”], [”toolbox”, ”closed”,
”is”], [”toolbox”, ”shed”, ”at”], [”white onion”,
”chopped”, ”needs”], [”white onion”, ”cookbook”,
”part of”], [”white onion”, ”grilled”, ”needs”], [”white
onion”, ”player”, ”in”], [”white onion”, ”raw”, ”is”],
[”white onion”, ”uncut”, ”is”], [”workbench”, ”shed”,
”at”], [”yellow bell capsicum”, ”garden”, ”at”], [”yel-
low bell capsicum”, ”raw”, ”is”], [”yellow bell cap-
sicum”, ”uncut”, ”is”]

”roast carrot”,
”roast red hot capsicum”,
”grill white onion”,
”get knife”, ”chop carrot”,
”chop red hot capsicum”,
”chop white onion”, ”dice
carrot”, ”dice red hot cap-
sicum”, ”dice white onion”,
”fry carrot”, ”fry red hot
capsicum”, ”fry white onion”,
”get carrot”, ”get red hot
capsicum”, ”get white onion”,
”grill carrot”, ”grill red hot
capsicum”, ”make meal”,
”roast white onion”, ”slice
carrot”, ”slice red hot cap-
sicum”, ”slice white onion”

”go east”, ”go north”,
”open barn door”,
”open patio door”, ”close
patio door”, ”cook carrot with
bbq”, ”cook red hot capsicum
with bbq”, ”cook white onion
with bbq”, ”drop carrot”,
”drop red hot capsicum”,
”drop white onion”, ”eat car-
rot”, ”eat red hot capsicum”,
”eat white onion”, ”put carrot
on patio chair”, ”put carrot
on patio table”, ”put red hot
capsicum on patio chair”,
”put red hot capsicum on
patio table”, ”put white onion
on patio chair”, ”put white
onion on patio table”
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TABLE B.3: Examples of subtasks.

Subtask candidates
chop banana chop black capsicum chop cheese block
chop olive oil chop orange bell capsicum chop parsley
chop vegetable oil chop water chop white onion
dice cilantro dice egg dice flour
dice red bell capsicum dice red hot capsicum dice red onion
dice yellow potato fry banana fry black capsicum
fry milk fry olive oil fry orange bell capsicum
fry tomato fry vegetable oil fry water
get chicken wing get cilantro get egg
get purple potato get red apple get red bell capsicum
get yellow bell capsicum get yellow onion get yellow potato
grill green hot capsicum grill lettuce grill milk
grill salt grill sugar grill tomato
roast carrot roast chicken breast roast chicken leg
roast peanut oil roast pork chop roast purple potato
roast white tuna roast yellow apple roast yellow bell capsicum
slice green apple slice green bell capsicum slice green hot capsicum
slice red potato slice red tuna slice salt
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TABLE B.4: Examples of actions.

Action candidates
chop banana with knife chop cheese block with knife chop carrot with knife
cook cheese block with oven cook cheese block with stove cook carrot with bbq
cook orange bell capsicum with
oven

cook orange bell capsicum with
stove

cook parsley with bbq

cook water with stove cook white onion with bbq cook white onion with oven
drink water drop banana drop black capsicum
eat carrot eat chicken breast eat chicken leg
insert cheese block into toolbox insert carrot into fridge insert carrot into toolbox
insert red onion into fridge insert red onion into toolbox insert red potato into fridge
put banana on shelf put banana on showcase put banana on sofa
put chicken breast on showcase put chicken breast on sofa put chicken breast on stove
put egg on patio table put egg on shelf put egg on showcase
put green hot capsicum on shelf put green hot capsicum on show-

case
put green hot capsicum on sofa

put olive oil on patio chair put olive oil on patio table put olive oil on shelf
put pork chop on sofa put pork chop on stove put pork chop on table
put red hot capsicum on table put red hot capsicum on toilet put red hot capsicum on work-

bench
put salt on workbench put sugar on bed put sugar on counter
put white onion on shelf put white onion on showcase put white onion on sofa
put yellow onion on sofa put yellow onion on stove put yellow onion on table
take banana from patio chair take banana from patio table take banana from shelf
take carrot from showcase take carrot from sofa take carrot from stove
take chicken wing from toolbox take chicken wing from workbench take cilantro
take green apple from bed take green apple from counter take green apple from fridge
take lettuce from sofa take lettuce from stove take lettuce from table
take orange bell capsicum from
workbench

take parsley take parsley from bed

take purple potato from showcase take purple potato from sofa take purple potato from stove
take red hot capsicum from tool-
box

take red hot capsicum from work-
bench

take red onion

take salt from counter take salt from fridge take salt from patio chair
take water from counter take water from fridge take water from patio chair
take yellow apple from sofa take yellow apple from stove take yellow apple from table
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B.2 Pre-training Datasets

We build separate datasets for each pre-training task (task decomposition, action pruning, and imita-

tion learning). We first let the player to go through each simple game, then construct the datasets

upon the interaction data. For each time step, the game environment provides the player with the

action set A and the KG-based observation ot, which is represented as a set of triplets. We use a

simple method to build the subtask set T from ot: As shown in Fig. B.1, we first obtain the ingredi-

ents by extracting the nodes having the relation “part of” with the node “cookbook”. Then we build

T as the Cartesian product of the ingredients and the verbs {chop, dice, slice, fry, get, grill, roast}

plus two special subtasks “get knife” and “make meal”. The player is required to select a subtask

Tt ∈ T , and select an action at ∈ A. After executing at, the environment will transit to next state

st+1, and the player will receive ot+1 and rt+1 to form a transition {ot, T , Tt,A, at, ot+1, rt+1},

where {ot, T , Tt,A, at} will be used for imitation learning. Fig. B.1 shows the construction process

of the pre-training dataset for task decomposition. Each subtask candidate T ∈ T will formulate a

question “Is T available?”, whose answer is 1 (yes) if T is an available subtask for ot, otherwise 0

(no). Fig. B.2 shows the construction process of the pre-training dataset for action pruning. The

action selector is made invariant of ot, that we consider every subtask candidate T ∈ T during

pre-training, regardless of whether T is a currently-available subtask. Each action candidate a ∈ A

will be paired with T to formulate a question “Is a relevant to T ”, whose answer is 1 if a is relevant

to T , otherwise 0.
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FIGURE B.1: The construction process of the subtask set T , and the pre-training dataset for task
decomposition.

FIGURE B.2: The construction process of the pre-training dataset for action pruning.
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FIGURE B.3: The architecture of GATA baseline.

FIGURE B.4: The architecture of GATA for action prediction.

B.3 Baseline details

B.3.1 GATA

Fig. B.3 shows our building backbone GATA, which consists of an observation encoder, an action

encoder and an action scorer. The observation encoder is a graph encoder for encoding the KG-

based observation ot. The action encoder is a text encoder for encoding the action set A as a stack

of action candidate representations. The observation representation will be paired with each action

candidate, and then fed into the action scorer, which consists of linear layers.

We train the GATA through reinforcement learning, the experiment setting is same with Sec. 7.5.3.

Instead of initializing the word embedding, node embedding and edge embedding with fastText

word vectors [139], we found that the action prediction task (AP), which is also included in GATA’s

work [2], could provide better initialization. In light of this, we could like to conduct such task,

and apply the AP initialization to all encoders (observation encoder, task encoder, action encoder).

Fig. B.4 shows the action predicting process, where the task is to predict the action at ∈ A given ot

and ot+1. The transition data for AP task is collected from the FTWP game set and is provided by

GATA’s released code.
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FIGURE B.5: The architecture of IL baseline.

B.3.2 IL

Fig. B.5 shows the IL baseline. We follow [49] to conduct a two-phase training process: imitation

pre-training and reinforcement fine-tuning. In the imitation pre-training phase, we use the transition

data to train both the task selector (f(ot, T ) → Tt) and the action selector (f(ot, Tt,A) → at)

through supervised learning. The modules are optimized via cross entropy loss and Adam optimizer

with learning rate 0.001. We train the modules with batch size 128 for up to 50 epochs. Then in

the reinforcement fine-tuning phase, we freeze the task selector and fine-tune the action selector

through reinforcement learning, where the experiment setting is same with QWA and GATA.
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B.4 More experimental results

In the pre-training phase, we conduct rough hyper-parameter tuning by varying batch sizes. Fig.

B.6 and Fig. B.7 show the pre-training performance of QWA’s task selector and action validator,

respectively. Fig. B.8 shows the pre-training performance of IL baseline.

Fig. B.9 compares our GATA and the original GATA without the action prediction initialization.

Fig. B.10, Fig. B.11, Fig. B.12 and Fig. B.13 show the full results of Fig. 7.4, Fig. 7.5, Fig. 7.6

and Fig. 7.7, respectively.
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FIGURE B.6: The pre-training performance of QWA’s task selector. The results are averaged by 3
random seeds, we omit the standard deviation as the performance is relatively stable.

FIGURE B.7: The pre-training performance of QWA’s action validator.

FIGURE B.8: The pre-training performance of IL’s task selector and action selector.
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FIGURE B.9: The RL performance of our GATA baseline and the original GATA without AP
initialization.

FIGURE B.10: The RL performance w.r.t. the training episodes (the full result of Fig. 7.4).
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FIGURE B.11: The RL performance of our agent and the variant without time-awareness (the full
result of Fig. 7.5).

FIGURE B.12: The performance of our agent and the variants with expert modules (the full result
of Fig. 7.6).
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FIGURE B.13: The performance of our agent with varying amounts of pre-training data (the full
result of Fig. 7.7).
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