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ABSTRACT

Low Light Image Enhancement and Saliency Object Detection

by

Yuanfang Zhang

Low light images represent a series of image types with great potential. Their re-

search focuses on images and videos of the environment at dusk and near darkness. It

can be widely used in night safety monitoring, license plate recognition, night scene

shot, special target recognition at dusk, and other emergency events that occur under

light scenes. After the environment is enhanced and combined with other tasks in

computer vision and pattern recognition, it can bring many results, such as saliency

detection and object detection under low illumination, and abnormal detection in

crowded places under low-light environment. For the enhancement of low light and

low light scenes, using traditional methods often results in over-exposure and halo

conditions. Therefore, using deep learning network technology can fix and improve

these specific shortcomings. To achieve this goal, we have done several investigations

about the current state-of-art researches on low-light enhancement and the relevant

computer vision tasks. For low light image enhancement, a series of qualitative and

quantitative experimental comparisons conducted on a benchmark dataset demon-

strate the superiority of our approach, which overcomes the drawbacks of white and

colour distortion. At present, most of the research works on visual saliency have

concentrated on the field of visible light, and there are few studies on night scenes.

Due to insufficient lighting conditions in night scenes, and relatively lower contrasts

and signal-to-noise ratios, the effectiveness of available visual features is greatly re-

duced. Moreover, without sufficient depth information, many features and clues are

lost in the original images. Therefore, the detection of salient targets in night scenes

is also difficult and it is a focus of current research in the field of computer vision.

The performance leads to vague effects when the existing methods are directly con-



ducted, so we adopt a new “enhance firstly detection secondly” mechanism that

firstly enhances the low-light images in order to improve the contrast and visibility,

and then combines it with relevant saliency detection methods with depth infor-

mation. Furthermore, we concern about the feature aggregation schemes for deep

RGB-D saliency object detection and propose novel feature aggregation methods.

Meanwhile, for the monocular vision, of which the depth information is hard to

acquire, a novel RGB-D image saliency detection method is proposed to leverage

depth cues for enhancing the saliency detection performance but without actually

using depth data. Both of the extra depth cues and the proposed “enhance firstly

detection secondly” mechanism can improve saliency detection abilities, according

to the experimental results. The model not only outperforms the state-of-the-art

RGB saliency models, but also achieves comparable or even better results compared

with the state-of-the-art RGB-D saliency models

Dissertation directed by Professor Xiangjian He, Professor Michael Blumenstein and

Doctor Wenjing Jia
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